Optimal organic carbon values for soil structure quality of arable soils. Does clay content matter?

Most soil structure-related physical properties are correlated to soil organic carbon (SOC) content. Texture, mineralogy, and SOC:clay ratio are also acknowledged to affect physical properties, however there is no consensus or general conclusions in this respect. Against this background, the present...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 302; pp. 14 - 21
Main Authors Johannes, Alice, Matter, Adrien, Schulin, Rainer, Weisskopf, Peter, Baveye, Philippe C., Boivin, Pascal
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.09.2017
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Most soil structure-related physical properties are correlated to soil organic carbon (SOC) content. Texture, mineralogy, and SOC:clay ratio are also acknowledged to affect physical properties, however there is no consensus or general conclusions in this respect. Against this background, the present study aims at determining objectives for the management of SOC in terms of structural quality of agricultural soils. The large area in which 161 free-to-swell undisturbed samples were obtained for this research represents a major part of the Swiss agricultural land and belongs to one broad soil group (Cambi-Luvisols). The structural quality was scored visually, and bulk volumes (inverse of bulk density) were measured at standard matric potentials. To define the effect of SOC without interference of soil mechanical degradation, soils with good structural quality scores were considered first in studying the relationship between SOC and soil pore volumes. Results suggest that the relationship is always linear, irrespective of the clay content of the soils. No optimum of SOC corresponding to a fraction of the clay content is found, contrary to the theory of “complexed organic carbon” (Dexter et al., 2008). However, the SOC:clay ratio decreases with decreasing soil structure quality. The SOC:clay ratio of 1:8 is the average for a very good structure quality. A SOC:clay ratio of 1:10 is the limit between good and medium structural quality, thus it constitutes a reasonable goal for soil management by farmers. A SOC:clay ratio of 1:8 or smaller leads to a high probability of poor structural state. These ratios can be used as criteria for soil structural quality and SOC management, and in that context, the concept of complexed organic carbon appears relevant. •Total soil organic carbon controls physical properties•Complexed organic carbon concept is relevant for soil structure quality.•Reasonable goal in organic carbon for soil management is SOC:clay of 1:10.•Optimal value of organic carbon for soil structure quality is SOC:clay of 1:8.•Lower threshold of organic carbon for soil structure quality is SOC:clay of 1:13.
AbstractList Most soil structure-related physical properties are correlated to soil organic carbon (SOC) content. Texture, mineralogy, and SOC:clay ratio are also acknowledged to affect physical properties, however there is no consensus or general conclusions in this respect. Against this background, the present study aims at determining objectives for the management of SOC in terms of structural quality of agricultural soils. The large area in which 161 free-to-swell undisturbed samples were obtained for this research represents a major part of the Swiss agricultural land and belongs to one broad soil group (Cambi-Luvisols). The structural quality was scored visually, and bulk volumes (inverse of bulk density) were measured at standard matric potentials. To define the effect of SOC without interference of soil mechanical degradation, soils with good structural quality scores were considered first in studying the relationship between SOC and soil pore volumes. Results suggest that the relationship is always linear, irrespective of the clay content of the soils. No optimum of SOC corresponding to a fraction of the clay content is found, contrary to the theory of “complexed organic carbon” (Dexter et al., 2008). However, the SOC:clay ratio decreases with decreasing soil structure quality. The SOC:clay ratio of 1:8 is the average for a very good structure quality. A SOC:clay ratio of 1:10 is the limit between good and medium structural quality, thus it constitutes a reasonable goal for soil management by farmers. A SOC:clay ratio of 1:8 or smaller leads to a high probability of poor structural state. These ratios can be used as criteria for soil structural quality and SOC management, and in that context, the concept of complexed organic carbon appears relevant.
Most soil structure-related physical properties are correlated to soil organic carbon (SOC) content. Texture, mineralogy, and SOC:clay ratio are also acknowledged to affect physical properties, however there is no consensus or general conclusions in this respect. Against this background, the present study aims at determining objectives for the management of SOC in terms of structural quality of agricultural soils. The large area in which 161 free-to-swell undisturbed samples were obtained for this research represents a major part of the Swiss agricultural land and belongs to one broad soil group (Cambi-Luvisols). The structural quality was scored visually, and bulk volumes (inverse of bulk density) were measured at standard matric potentials. To define the effect of SOC without interference of soil mechanical degradation, soils with good structural quality scores were considered first in studying the relationship between SOC and soil pore volumes. Results suggest that the relationship is always linear, irrespective of the clay content of the soils. No optimum of SOC corresponding to a fraction of the clay content is found, contrary to the theory of “complexed organic carbon” (Dexter et al., 2008). However, the SOC:clay ratio decreases with decreasing soil structure quality. The SOC:clay ratio of 1:8 is the average for a very good structure quality. A SOC:clay ratio of 1:10 is the limit between good and medium structural quality, thus it constitutes a reasonable goal for soil management by farmers. A SOC:clay ratio of 1:8 or smaller leads to a high probability of poor structural state. These ratios can be used as criteria for soil structural quality and SOC management, and in that context, the concept of complexed organic carbon appears relevant. •Total soil organic carbon controls physical properties•Complexed organic carbon concept is relevant for soil structure quality.•Reasonable goal in organic carbon for soil management is SOC:clay of 1:10.•Optimal value of organic carbon for soil structure quality is SOC:clay of 1:8.•Lower threshold of organic carbon for soil structure quality is SOC:clay of 1:13.
Author Boivin, Pascal
Matter, Adrien
Weisskopf, Peter
Baveye, Philippe C.
Johannes, Alice
Schulin, Rainer
Author_xml – sequence: 1
  givenname: Alice
  surname: Johannes
  fullname: Johannes, Alice
  email: Alice.Johannes@hesge.ch
  organization: University of Applied Sciences of Western Switzerland hepia, Soils and Substrates group, Institute Land-Nature-Environment, route de Presinge 150, 1254 Jussy Geneva, Switzerland
– sequence: 2
  givenname: Adrien
  orcidid: 0000-0001-7176-3070
  surname: Matter
  fullname: Matter, Adrien
  organization: University of Applied Sciences of Western Switzerland hepia, Soils and Substrates group, Institute Land-Nature-Environment, route de Presinge 150, 1254 Jussy Geneva, Switzerland
– sequence: 3
  givenname: Rainer
  surname: Schulin
  fullname: Schulin, Rainer
  organization: ETH Zürich, Institute of Terrestrial Ecosystems, Universitätstrasse 16, 8092 Zürich, Switzerland
– sequence: 4
  givenname: Peter
  surname: Weisskopf
  fullname: Weisskopf, Peter
  organization: Swiss Federal Research Station Agroscope, Soil Fertility and Soil Protection group, Department of Natural Resources & Agriculture, Reckenholzstrasse 191, CH-8046 Zurich, Switzerland
– sequence: 5
  givenname: Philippe C.
  surname: Baveye
  fullname: Baveye, Philippe C.
  organization: UMR ECOSYS, AgroParisTech-INRA, Université Paris-Saclay, Avenue Lucien Brétignières, Thiverval-Grignon 78850, France
– sequence: 6
  givenname: Pascal
  surname: Boivin
  fullname: Boivin, Pascal
  organization: University of Applied Sciences of Western Switzerland hepia, Soils and Substrates group, Institute Land-Nature-Environment, route de Presinge 150, 1254 Jussy Geneva, Switzerland
BackLink https://hal.science/hal-01533845$$DView record in HAL
BookMark eNqFkcFu1DAQhi1UJLaFV0A-wiHpOHGctYQEVaEUaaVe4GxNnEnxyhtvbWelfXu8LHDg0pM11vf90sx_yS7mMBNjbwXUAoS63taPFEaKO6wbEH0NsoZGvGArse6bSjWdvmArKGTVgxKv2GVK2zL20MCK2Yd9djv0PMRHnJ3lFuMQZn5Av1DiU4g8Bed5ynGxeYnEnxb0Lh95mDhGHDz9BlLNP4ciWI9HbsOcac58hzlT_PiavZzQJ3rz571iP-6-fL-9rzYPX7_d3mwqK2WXK9tDq5Uc1ATUre0AU6f7HoikFI0WVo2NRClVP5BQjRqx1YPSGkGvaRATtlfs_Tn3J3qzj2WteDQBnbm_2ZjTH4iubdeyO4jCvjuz-xieyqbZ7Fyy5D3OFJZkGgBoJSjdFVSdURtDSpGmf9kCzKkBszV_GzCnBgxIUxoo4of_ROsyZleuE9H55_VPZ53KzQ6OoknW0WxpdJFsNmNwz0X8As83qIQ
CitedBy_id crossref_primary_10_1016_j_geoderma_2024_116871
crossref_primary_10_1016_j_scitotenv_2024_172016
crossref_primary_10_1111_ejss_13212
crossref_primary_10_1016_j_scitotenv_2024_175642
crossref_primary_10_1111_ejss_13573
crossref_primary_10_3390_su13094713
crossref_primary_10_1016_j_ecolind_2023_109886
crossref_primary_10_1111_ejss_13291
crossref_primary_10_1016_j_geoderma_2020_114177
crossref_primary_10_3390_land13071014
crossref_primary_10_1080_03650340_2019_1626984
crossref_primary_10_5194_bg_17_5025_2020
crossref_primary_10_15446_rfnam_v77n1_104425
crossref_primary_10_3389_fenvs_2020_579904
crossref_primary_10_1016_j_agsy_2021_103338
crossref_primary_10_1016_j_heliyon_2024_e30400
crossref_primary_10_1016_j_ecolind_2019_05_040
crossref_primary_10_1007_s12517_023_11574_z
crossref_primary_10_3389_fenvs_2022_834055
crossref_primary_10_1007_s11104_019_04270_z
crossref_primary_10_1016_j_geoderma_2023_116346
crossref_primary_10_1016_j_still_2020_104849
crossref_primary_10_1016_j_geoderma_2022_116080
crossref_primary_10_1016_j_scitotenv_2022_153440
crossref_primary_10_1111_sum_70015
crossref_primary_10_1016_j_apsoil_2022_104688
crossref_primary_10_1002_saj2_70011
crossref_primary_10_1111_sum_13060
crossref_primary_10_1016_j_soilad_2025_100038
crossref_primary_10_1016_j_soilbio_2023_109112
crossref_primary_10_1016_j_jclepro_2022_134725
crossref_primary_10_1016_j_agee_2024_108926
crossref_primary_10_1111_gcb_15289
crossref_primary_10_1111_sum_12658
crossref_primary_10_1007_s11104_021_05047_z
crossref_primary_10_1016_j_geoderma_2024_117027
crossref_primary_10_1038_s44264_024_00031_3
crossref_primary_10_1080_03650340_2022_2047944
crossref_primary_10_1007_s10661_019_7435_y
crossref_primary_10_1007_s11368_020_02837_3
crossref_primary_10_1080_20964129_2018_1463146
crossref_primary_10_1111_1365_2664_14825
crossref_primary_10_1111_sum_13092
crossref_primary_10_1016_j_still_2025_106503
crossref_primary_10_1002_agg2_20178
crossref_primary_10_1016_j_geoderma_2022_116098
crossref_primary_10_1016_j_geoderma_2022_116099
crossref_primary_10_3389_fenvs_2018_00025
crossref_primary_10_1080_03650340_2018_1548765
crossref_primary_10_3390_environments11040073
crossref_primary_10_1016_j_ecoser_2022_101415
crossref_primary_10_1111_ejss_13424
crossref_primary_10_1016_j_jia_2024_12_013
crossref_primary_10_1007_s11104_022_05626_8
crossref_primary_10_1111_sum_12967
crossref_primary_10_1002_jpln_202100089
crossref_primary_10_1016_j_geoderma_2024_116862
crossref_primary_10_3390_agronomy11040677
crossref_primary_10_1016_j_geoderma_2023_116565
crossref_primary_10_3390_agriculture14122288
crossref_primary_10_1111_ejss_13380
crossref_primary_10_1016_j_geoderma_2025_117175
crossref_primary_10_1002_ldr_5442
crossref_primary_10_3389_fenvs_2018_00134
crossref_primary_10_1016_j_scitotenv_2023_165811
crossref_primary_10_1016_j_catena_2023_107760
crossref_primary_10_1111_sum_12554
crossref_primary_10_1016_j_geoderma_2023_116569
crossref_primary_10_1080_00103624_2018_1448406
crossref_primary_10_1016_j_geoderma_2023_116398
crossref_primary_10_1111_ejss_13254
crossref_primary_10_20961_stjssa_v18i1_50489
crossref_primary_10_1016_j_geoderma_2021_115463
crossref_primary_10_5194_bg_18_3467_2021
crossref_primary_10_1016_j_geoderma_2024_117001
crossref_primary_10_1016_j_jenvman_2021_112061
crossref_primary_10_1016_j_still_2023_105999
crossref_primary_10_1016_j_geodrs_2024_e00893
crossref_primary_10_3390_agronomy10121977
crossref_primary_10_3390_f9100598
crossref_primary_10_1016_j_eti_2023_103143
crossref_primary_10_17221_118_2024_SWR
crossref_primary_10_1016_j_jclepro_2023_139646
crossref_primary_10_3390_agronomy15030584
crossref_primary_10_18393_ejss_492466
crossref_primary_10_1007_s42729_023_01256_w
crossref_primary_10_1590_1678_992x_2019_0017
crossref_primary_10_1126_sciadv_abg6995
crossref_primary_10_1038_s41598_022_09101_3
crossref_primary_10_3390_agronomy14081731
crossref_primary_10_1007_s00267_022_01592_0
crossref_primary_10_3390_agriculture14081290
crossref_primary_10_1016_j_eja_2023_127037
crossref_primary_10_1016_j_still_2019_04_011
crossref_primary_10_1111_ejss_13003
crossref_primary_10_1016_j_still_2020_104763
crossref_primary_10_3390_cli8020030
crossref_primary_10_1002_jpln_202200007
crossref_primary_10_1111_sum_13144
crossref_primary_10_1111_gcb_16294
crossref_primary_10_1186_s40677_020_00158_8
crossref_primary_10_3389_fenvs_2020_00113
crossref_primary_10_1111_sum_12856
crossref_primary_10_1016_j_geodrs_2024_e00909
crossref_primary_10_1016_j_agrformet_2023_109837
crossref_primary_10_1007_s11104_022_05713_w
crossref_primary_10_1016_j_scitotenv_2024_175026
crossref_primary_10_1016_j_geoderma_2021_115125
crossref_primary_10_3389_fsoil_2025_1530962
crossref_primary_10_3390_su13074059
crossref_primary_10_1016_j_geoderma_2021_115529
crossref_primary_10_1016_j_soilbio_2018_01_030
crossref_primary_10_1111_ejss_13508
crossref_primary_10_5194_soil_9_573_2023
crossref_primary_10_3390_su151813478
crossref_primary_10_1111_sum_12921
crossref_primary_10_1111_sum_12920
crossref_primary_10_1016_j_jenvman_2023_119945
crossref_primary_10_1080_00103624_2022_2063328
crossref_primary_10_3390_land13070909
crossref_primary_10_1016_j_catena_2024_108048
crossref_primary_10_1016_j_still_2017_07_002
crossref_primary_10_1016_j_still_2022_105341
crossref_primary_10_1016_j_ecolind_2022_109116
crossref_primary_10_3390_agronomy11030607
crossref_primary_10_4081_ija_2022_2114
crossref_primary_10_1016_j_heliyon_2023_e23852
crossref_primary_10_1002_saj2_70033
crossref_primary_10_1016_j_still_2019_104414
crossref_primary_10_3390_su142114609
crossref_primary_10_1016_j_ecoenv_2022_113559
crossref_primary_10_1016_j_still_2022_105503
crossref_primary_10_1016_j_geoderma_2021_115632
crossref_primary_10_1111_sum_12993
crossref_primary_10_3389_fenvs_2019_00164
crossref_primary_10_1007_s11104_021_04853_9
crossref_primary_10_1016_j_geoderma_2024_116829
crossref_primary_10_1111_sum_12879
Cites_doi 10.1016/j.still.2008.02.002
10.1016/j.still.2016.06.001
10.1890/02-0472
10.1097/00010694-193401000-00003
10.2307/2258183
10.1093/biomet/89.2.484
10.1111/j.1475-2743.2011.00354.x
10.1071/SR11174
10.1016/S0016-7061(97)00039-6
10.2136/sssaj1991.03615995005500020030x
10.1016/j.geoderma.2015.10.017
10.1016/j.geoderma.2015.10.002
10.1016/S0167-1987(02)00139-3
10.1016/j.still.2004.03.008
10.1111/j.1365-2389.2008.01024.x
10.1016/0167-1987(90)90029-D
10.2136/sssaj2011.0402
10.1016/j.soilbio.2008.09.015
10.1016/j.geoderma.2008.01.022
10.1038/2101295a0
10.1111/j.1475-2743.2007.00102.x
10.1111/ejss.12323
10.2136/sssaj2005.0051a
10.2136/vzj2011.0067
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7S9
L.6
1XC
DOI 10.1016/j.geoderma.2017.04.021
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
EndPage 21
ExternalDocumentID oai_HAL_hal_01533845v1
10_1016_j_geoderma_2017_04_021
S0016706116305092
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
OHT
R2-
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
1XC
ID FETCH-LOGICAL-c445t-c703964b6f0e58cb0f59770ee441291c6d24a4467be1626da39b699a098eb1fa3
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Fri May 09 12:58:31 EDT 2025
Fri Jul 11 09:18:15 EDT 2025
Thu Apr 24 22:59:28 EDT 2025
Tue Jul 01 04:04:43 EDT 2025
Fri Feb 23 02:27:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Soil organic matter
Clay content
Soil quality
Soil structure
Complexed organic carbon
VESS
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-c703964b6f0e58cb0f59770ee441291c6d24a4467be1626da39b699a098eb1fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7176-3070
PQID 2000340695
PQPubID 24069
PageCount 8
ParticipantIDs hal_primary_oai_HAL_hal_01533845v1
proquest_miscellaneous_2000340695
crossref_primary_10_1016_j_geoderma_2017_04_021
crossref_citationtrail_10_1016_j_geoderma_2017_04_021
elsevier_sciencedirect_doi_10_1016_j_geoderma_2017_04_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-15
PublicationDateYYYYMMDD 2017-09-15
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-15
  day: 15
PublicationDecade 2010
PublicationTitle Geoderma
PublicationYear 2017
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Getahun, Munkholm, Schjønning (bb0040) 2016; 264
Soane (bb0130) 1990; 16
Soil Survey Staff (bb0135) 1999
Keller, Dexter (bb0090) 2012; 50
Ball, Batey, Munkholm (bb0010) 2007; 23
Loveland, Webb (bb9000) 2003; 70
Six, Bossuyt, Degryze, Denef (bb0125) 2004; 79
Guimarães, Ball, Tormena (bb0055) 2011
Dexter, Richard, Arrouays, Czyz, Jolivet, Duval (bb0025) 2008; 144
Manrique, Jones (bb0095) 1991; 55
Schjonning, de Jonge, Munkholm, Moldrup, Christensen, Olesen (bb0120) 2012; 11
Heuscher, Brandt, Jardine (bb0060) 2005; 69
Stock, Downes (bb0140) 2008; 99
Goutal, Ranger, Boivin (bb0045) 2012; 76
Office fédéral de topographie (bb0105) 1984
Kay, Munkholm (bb0085) 2004
Johannes, Weisskopf, Schulin, Boivin (bb0075) 2016
Toms, Lesperance (bb0145) 2003; 84
Goutal-Pousse, Lamy, Ranger, Boivin (bb0050) 2016; 67
IUSS Working Group WRB (bb0065) 2006
Schäffer, Schulin, Boivin (bb0115) 2008; 59
Walkley, Black (bb0150) 1934; 37
Fernandez-Ugalde, Barre, Virto, Hubert, Billiou, Chenu (bb0035) 2016; 264
Davies (bb0020) 2002; 89
Feller, Beare (bb0030) 1997; 79
Saini (bb0110) 1966; 210
Kay (bb0080) 1998
Jeffrey (bb0070) 1970; 58
Boivin, Brunet, Gascuel-Odoux (bb0015) 1990; 28
Muggeo (bb0100) 2015; 58
Abiven, Menasseri, Chenu (bb0005) 2009; 41
Heuscher (10.1016/j.geoderma.2017.04.021_bb0060) 2005; 69
Office fédéral de topographie (10.1016/j.geoderma.2017.04.021_bb0105) 1984
Stock (10.1016/j.geoderma.2017.04.021_bb0140) 2008; 99
Walkley (10.1016/j.geoderma.2017.04.021_bb0150) 1934; 37
Guimarães (10.1016/j.geoderma.2017.04.021_bb0055) 2011
Kay (10.1016/j.geoderma.2017.04.021_bb0080) 1998
Kay (10.1016/j.geoderma.2017.04.021_bb0085) 2004
Goutal (10.1016/j.geoderma.2017.04.021_bb0045) 2012; 76
Toms (10.1016/j.geoderma.2017.04.021_bb0145) 2003; 84
Getahun (10.1016/j.geoderma.2017.04.021_bb0040) 2016; 264
IUSS Working Group WRB (10.1016/j.geoderma.2017.04.021_bb0065) 2006
Loveland (10.1016/j.geoderma.2017.04.021_bb9000) 2003; 70
Six (10.1016/j.geoderma.2017.04.021_bb0125) 2004; 79
Schjonning (10.1016/j.geoderma.2017.04.021_bb0120) 2012; 11
Boivin (10.1016/j.geoderma.2017.04.021_bb0015) 1990; 28
Jeffrey (10.1016/j.geoderma.2017.04.021_bb0070) 1970; 58
Saini (10.1016/j.geoderma.2017.04.021_bb0110) 1966; 210
Soil Survey Staff (10.1016/j.geoderma.2017.04.021_bb0135) 1999
Muggeo (10.1016/j.geoderma.2017.04.021_bb0100) 2015; 58
Schäffer (10.1016/j.geoderma.2017.04.021_bb0115) 2008; 59
Dexter (10.1016/j.geoderma.2017.04.021_bb0025) 2008; 144
Johannes (10.1016/j.geoderma.2017.04.021_bb0075) 2016
Davies (10.1016/j.geoderma.2017.04.021_bb0020) 2002; 89
Feller (10.1016/j.geoderma.2017.04.021_bb0030) 1997; 79
Manrique (10.1016/j.geoderma.2017.04.021_bb0095) 1991; 55
Ball (10.1016/j.geoderma.2017.04.021_bb0010) 2007; 23
Fernandez-Ugalde (10.1016/j.geoderma.2017.04.021_bb0035) 2016; 264
Abiven (10.1016/j.geoderma.2017.04.021_bb0005) 2009; 41
Keller (10.1016/j.geoderma.2017.04.021_bb0090) 2012; 50
Goutal-Pousse (10.1016/j.geoderma.2017.04.021_bb0050) 2016; 67
Soane (10.1016/j.geoderma.2017.04.021_bb0130) 1990; 16
References_xml – volume: 50
  start-page: 7
  year: 2012
  ident: bb0090
  article-title: Plastic limits of agricultural soils as functions of soil texture and organic matter content
  publication-title: Soil Res.
– volume: 58
  start-page: 525
  year: 2015
  end-page: 534
  ident: bb0100
  article-title: Package “segmented.”
  publication-title: Biometrika
– volume: 28
  start-page: 59
  year: 1990
  end-page: 71
  ident: bb0015
  article-title: Densité apparente d'échantillon de sol: méthode de la poche plastique (in french)
  publication-title: Milieux Poreux Transf. Hydr. Bull. GFHN
– volume: 23
  start-page: 329
  year: 2007
  end-page: 337
  ident: bb0010
  article-title: Field assessment of soil structural quality–a development of the Peerlkamp test
  publication-title: Soil Use Manag.
– volume: 11
  year: 2012
  ident: bb0120
  article-title: Clay dispersibility and soil friability-testing the soil clay-to-carbon saturation concept
  publication-title: Vadose Zone J.
– volume: 55
  start-page: 476
  year: 1991
  end-page: 481
  ident: bb0095
  article-title: Bulk density of soils in relation to soil physical and chemical properties
  publication-title: Soil Sci. Soc. Am. J.
– volume: 69
  start-page: 51
  year: 2005
  end-page: 56
  ident: bb0060
  article-title: Using soil physical and chemical properties to estimate bulk density
  publication-title: Soil Sci. Soc. Am. J.
– volume: 70
  start-page: 1
  year: 2003
  end-page: 18
  ident: bb9000
  article-title: Is there a critical level of organic matter in the agricultural soils of temperate regions: a review
  publication-title: Soil Tillage Res.
– volume: 59
  start-page: 771
  year: 2008
  end-page: 783
  ident: bb0115
  article-title: Changes in shrinkage of restored soil caused by compaction beneath heavy agricultural machinery
  publication-title: Eur. J. Soil Sci.
– volume: 37
  start-page: 29
  year: 1934
  end-page: 38
  ident: bb0150
  article-title: An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method
  publication-title: Soil Sci.
– volume: 99
  start-page: 191
  year: 2008
  end-page: 201
  ident: bb0140
  article-title: Effects of additions of organic matter on the penetration resistance of glacial till for the entire water tension range
  publication-title: Soil Tillage Res.
– volume: 264
  start-page: 94
  year: 2016
  end-page: 102
  ident: bb0040
  article-title: The influence of clay-to-carbon ratio on soil physical properties in a humid sandy loam soil with contrasting tillage and residue management
  publication-title: Geoderma
– volume: 79
  start-page: 69
  year: 1997
  end-page: 116
  ident: bb0030
  article-title: Physical control of soil organic matter dynamics in the tropics
  publication-title: Geoderma
– start-page: 436
  year: 1999
  ident: bb0135
  article-title: Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys
  publication-title: Natural Resources Conservation Service. U.S. Department of Agriculture Handbook
– volume: 84
  start-page: 2034
  year: 2003
  end-page: 2041
  ident: bb0145
  article-title: Piecewise regression: a tool for identifying ecological thresholds
  publication-title: Ecology
– year: 2011
  ident: bb0055
  article-title: Improvements in the visual evaluation of soil structure: visual evaluation of soil structure
  publication-title: Soil Use Manag.
– start-page: 185
  year: 2004
  end-page: 197
  ident: bb0085
  article-title: Management-induced soil structure degradation – organic matter depletion and tillage
  publication-title: Managing Soil Quality: Challenges in Modern Agriculture
– volume: 264
  start-page: 171
  year: 2016
  end-page: 178
  ident: bb0035
  article-title: Does phyllosilicate mineralogy explain organic matter stabilization in different particle-size fractions in a 19-year C-3/C-4 chronosequence in a temperate Cambisol?
  publication-title: Geoderma
– start-page: 169
  year: 1998
  end-page: 197
  ident: bb0080
  article-title: Soil structure and organic carbon: a review
  publication-title: Soil Processes and the Carbon Cycle, Advances in Soil Science
– year: 2016
  ident: bb0075
  article-title: To what extent do physical measurements match with visual evaluation of soil structure?
  publication-title: Soil Tillage Res.
– volume: 210
  start-page: 1295
  year: 1966
  ident: bb0110
  article-title: Organic matter as a measure of bulk density of soil
  publication-title: Nature
– volume: 58
  start-page: 297
  year: 1970
  ident: bb0070
  article-title: A note on use of ignition loss as a means for approximate estimation of soil bulk density
  publication-title: J. Ecol.
– year: 2006
  ident: bb0065
  article-title: World reference base for soil resources 2006. A framework for international classification, correlation and communication
  publication-title: World Soil Reports. Food and Agriculture Organization of the United Nations, Rome
– volume: 67
  start-page: 160
  year: 2016
  end-page: 172
  ident: bb0050
  article-title: Structural damage and recovery determined by the colloidal constituents in two forest soils compacted by heavy traffic
  publication-title: Eur. J. Soil Sci.
– volume: 76
  start-page: 1426
  year: 2012
  end-page: 1435
  ident: bb0045
  article-title: Assessment of the natural recovery rate of soil specific volume following forest soil compaction
  publication-title: Soil Sci. Soc. Am. J.
– volume: 144
  start-page: 620
  year: 2008
  end-page: 627
  ident: bb0025
  article-title: Complexed organic matter controls soil physical properties
  publication-title: Geoderma
– volume: 41
  start-page: 1
  year: 2009
  end-page: 12
  ident: bb0005
  article-title: The effects of organic inputs over time on soil aggregate stability – a literature analysis
  publication-title: Soil Biol. Biochem.
– volume: 79
  start-page: 7
  year: 2004
  end-page: 31
  ident: bb0125
  article-title: A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics
  publication-title: Soil Tillage Res.
– volume: 89
  start-page: 484
  year: 2002
  end-page: 489
  ident: bb0020
  article-title: Hypothesis testing when a nuisance parameter is present only under the alternative: linear model case
  publication-title: Biometrika
– volume: 16
  start-page: 179
  year: 1990
  end-page: 201
  ident: bb0130
  article-title: The role of organic matter in soil compactibility: a review of some practical aspects
  publication-title: Soil Tillage Res.
– year: 1984
  ident: bb0105
  article-title: Atlas de la Suisse
– volume: 99
  start-page: 191
  year: 2008
  ident: 10.1016/j.geoderma.2017.04.021_bb0140
  article-title: Effects of additions of organic matter on the penetration resistance of glacial till for the entire water tension range
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2008.02.002
– year: 2016
  ident: 10.1016/j.geoderma.2017.04.021_bb0075
  article-title: To what extent do physical measurements match with visual evaluation of soil structure?
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2016.06.001
– volume: 84
  start-page: 2034
  year: 2003
  ident: 10.1016/j.geoderma.2017.04.021_bb0145
  article-title: Piecewise regression: a tool for identifying ecological thresholds
  publication-title: Ecology
  doi: 10.1890/02-0472
– year: 1984
  ident: 10.1016/j.geoderma.2017.04.021_bb0105
– volume: 37
  start-page: 29
  year: 1934
  ident: 10.1016/j.geoderma.2017.04.021_bb0150
  article-title: An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method
  publication-title: Soil Sci.
  doi: 10.1097/00010694-193401000-00003
– volume: 58
  start-page: 297
  year: 1970
  ident: 10.1016/j.geoderma.2017.04.021_bb0070
  article-title: A note on use of ignition loss as a means for approximate estimation of soil bulk density
  publication-title: J. Ecol.
  doi: 10.2307/2258183
– volume: 89
  start-page: 484
  year: 2002
  ident: 10.1016/j.geoderma.2017.04.021_bb0020
  article-title: Hypothesis testing when a nuisance parameter is present only under the alternative: linear model case
  publication-title: Biometrika
  doi: 10.1093/biomet/89.2.484
– year: 2011
  ident: 10.1016/j.geoderma.2017.04.021_bb0055
  article-title: Improvements in the visual evaluation of soil structure: visual evaluation of soil structure
  publication-title: Soil Use Manag.
  doi: 10.1111/j.1475-2743.2011.00354.x
– volume: 50
  start-page: 7
  year: 2012
  ident: 10.1016/j.geoderma.2017.04.021_bb0090
  article-title: Plastic limits of agricultural soils as functions of soil texture and organic matter content
  publication-title: Soil Res.
  doi: 10.1071/SR11174
– volume: 79
  start-page: 69
  year: 1997
  ident: 10.1016/j.geoderma.2017.04.021_bb0030
  article-title: Physical control of soil organic matter dynamics in the tropics
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(97)00039-6
– volume: 55
  start-page: 476
  year: 1991
  ident: 10.1016/j.geoderma.2017.04.021_bb0095
  article-title: Bulk density of soils in relation to soil physical and chemical properties
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1991.03615995005500020030x
– year: 2006
  ident: 10.1016/j.geoderma.2017.04.021_bb0065
  article-title: World reference base for soil resources 2006. A framework for international classification, correlation and communication
– volume: 264
  start-page: 171
  year: 2016
  ident: 10.1016/j.geoderma.2017.04.021_bb0035
  article-title: Does phyllosilicate mineralogy explain organic matter stabilization in different particle-size fractions in a 19-year C-3/C-4 chronosequence in a temperate Cambisol?
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.10.017
– volume: 264
  start-page: 94
  year: 2016
  ident: 10.1016/j.geoderma.2017.04.021_bb0040
  article-title: The influence of clay-to-carbon ratio on soil physical properties in a humid sandy loam soil with contrasting tillage and residue management
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.10.002
– volume: 28
  start-page: 59
  year: 1990
  ident: 10.1016/j.geoderma.2017.04.021_bb0015
  article-title: Densité apparente d'échantillon de sol: méthode de la poche plastique (in french)
  publication-title: Milieux Poreux Transf. Hydr. Bull. GFHN
– volume: 70
  start-page: 1
  year: 2003
  ident: 10.1016/j.geoderma.2017.04.021_bb9000
  article-title: Is there a critical level of organic matter in the agricultural soils of temperate regions: a review
  publication-title: Soil Tillage Res.
  doi: 10.1016/S0167-1987(02)00139-3
– volume: 79
  start-page: 7
  year: 2004
  ident: 10.1016/j.geoderma.2017.04.021_bb0125
  article-title: A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2004.03.008
– volume: 59
  start-page: 771
  year: 2008
  ident: 10.1016/j.geoderma.2017.04.021_bb0115
  article-title: Changes in shrinkage of restored soil caused by compaction beneath heavy agricultural machinery
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2008.01024.x
– volume: 16
  start-page: 179
  year: 1990
  ident: 10.1016/j.geoderma.2017.04.021_bb0130
  article-title: The role of organic matter in soil compactibility: a review of some practical aspects
  publication-title: Soil Tillage Res.
  doi: 10.1016/0167-1987(90)90029-D
– start-page: 436
  year: 1999
  ident: 10.1016/j.geoderma.2017.04.021_bb0135
  article-title: Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys
– start-page: 185
  year: 2004
  ident: 10.1016/j.geoderma.2017.04.021_bb0085
  article-title: Management-induced soil structure degradation – organic matter depletion and tillage
– start-page: 169
  year: 1998
  ident: 10.1016/j.geoderma.2017.04.021_bb0080
  article-title: Soil structure and organic carbon: a review
– volume: 76
  start-page: 1426
  year: 2012
  ident: 10.1016/j.geoderma.2017.04.021_bb0045
  article-title: Assessment of the natural recovery rate of soil specific volume following forest soil compaction
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2011.0402
– volume: 41
  start-page: 1
  year: 2009
  ident: 10.1016/j.geoderma.2017.04.021_bb0005
  article-title: The effects of organic inputs over time on soil aggregate stability – a literature analysis
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2008.09.015
– volume: 58
  start-page: 525
  year: 2015
  ident: 10.1016/j.geoderma.2017.04.021_bb0100
  article-title: Package “segmented.”
  publication-title: Biometrika
– volume: 144
  start-page: 620
  year: 2008
  ident: 10.1016/j.geoderma.2017.04.021_bb0025
  article-title: Complexed organic matter controls soil physical properties
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.01.022
– volume: 210
  start-page: 1295
  year: 1966
  ident: 10.1016/j.geoderma.2017.04.021_bb0110
  article-title: Organic matter as a measure of bulk density of soil
  publication-title: Nature
  doi: 10.1038/2101295a0
– volume: 23
  start-page: 329
  year: 2007
  ident: 10.1016/j.geoderma.2017.04.021_bb0010
  article-title: Field assessment of soil structural quality–a development of the Peerlkamp test
  publication-title: Soil Use Manag.
  doi: 10.1111/j.1475-2743.2007.00102.x
– volume: 67
  start-page: 160
  year: 2016
  ident: 10.1016/j.geoderma.2017.04.021_bb0050
  article-title: Structural damage and recovery determined by the colloidal constituents in two forest soils compacted by heavy traffic
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12323
– volume: 69
  start-page: 51
  year: 2005
  ident: 10.1016/j.geoderma.2017.04.021_bb0060
  article-title: Using soil physical and chemical properties to estimate bulk density
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2005.0051a
– volume: 11
  year: 2012
  ident: 10.1016/j.geoderma.2017.04.021_bb0120
  article-title: Clay dispersibility and soil friability-testing the soil clay-to-carbon saturation concept
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2011.0067
SSID ssj0017020
Score 2.5871391
Snippet Most soil structure-related physical properties are correlated to soil organic carbon (SOC) content. Texture, mineralogy, and SOC:clay ratio are also...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 14
SubjectTerms agricultural land
agricultural soils
arable soils
bulk density
Clay content
clay fraction
Complexed organic carbon
Dexter
farmers
Life Sciences
mineralogy
probability
soil management
soil organic carbon
Soil organic matter
soil pore system
Soil quality
Soil structure
texture
VESS
Title Optimal organic carbon values for soil structure quality of arable soils. Does clay content matter?
URI https://dx.doi.org/10.1016/j.geoderma.2017.04.021
https://www.proquest.com/docview/2000340695
https://hal.science/hal-01533845
Volume 302
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NbxMxELVCeoFDVVoqCrRyUa_b2Bvbuz6hKFAFStsLlXqzbMcuqZLdKEmRcuG3M7MfEVSqcuC41ozWmrFnZrXz3hBylkrIsirmiUgjkmqHcQKSPIlRWhGY4z5HgPPVtRrdim938q5Dhi0WBtsqm9hfx_QqWjcrvcaavflkghhfrjJIR1BRIIkJxmEhMjzl5783bR48Yw01I1cJSv-FEn4AH-HAsYp_iGcV5WnKn0tQL35ip-STgF1loYs9stuUj3RQ7_A16YRin7wa3C8aCo1wQPwNRIEZCNUDmzz1duHKgiKtd1hSKFLpspxMac0cCyq0BlauaRmpXSCUqhJYntPPJSj4qV1T7GiH9ERnFR3npzfk9uLLj-EoaUYpJF4IuUo8XGythFORBZl7xyLyzrEQoBpKNfdqnAoLX4aZCxw-cca2r53S2jKdQzCPtn9IukVZhLeESqeUkzJ3MUShxsHqkMe8Hy0PPGoVj4hs7Wd8wzOO4y6mpm0oezCt3Q3a3TBhwO5HpLfRm9dMG1s1dOse88-ZMZAOtup-BH9uXoQk26PBd4NrDEvgXMhfIHTautvArcNfKbYI5eMSh3eyPoKG5bv_2MR78hKfsP2Eyw-kC34Px1DjrNxJdYhPyM7g6-Xo-g-O8vz7
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTyMxDI5YOLAcECwg3mQR16HJNEknJ1TxUNkt7AUkblGSJrtFZQa1gMSF3449j4pFQhy4ztiayE5sR-PvMyEHqYQsq2KWiDQiqXYYJCDJkxilFYE57jMEOF9cqt61-HUjb2bIcYOFwbbKOvZXMb2M1vWTVm3N1v1wiBhfrjqQjqCiQBITiMNzAo4vjjE4fJn2efAOq7kZuUpQ_A1M-BachBPHSgIi3ik5T1P-UYb69g9bJd9F7DINnS2Rxbp-pN1qictkJuQ_yEL377jm0AgrxP-BMHAHQtXEJk-9Hbsip8jrHSYUqlQ6KYYjWlHHggqtkJXPtIjUjhFLVQpMDulJAQp-ZJ8ptrRDfqJ3JR_n0Sq5Pju9Ou4l9SyFxAshHxIPJ1sr4VRkQWbesYjEcywEKIdSzb0apMLC1bDjAoc7zsC2tVNaW6YziObRttfIbF7kYZ1Q6ZRyUmYuhijUIFgdspi1o-WBR63iBpGN_YyvicZx3sXINB1lt6axu0G7GyYM2H2DtKZ69xXVxqcaunGP-W_TGMgHn-rugz-nH0KW7V63b_AZwxo4E_IJhH427jZw7PBfis1D8TjB6Z2sjahhufmFReyR-d7VRd_0zy9_b5Hv-AZ7UbjcJrOwB8IOFDwPbrfc0K9Kof6J
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+organic+carbon+values+for+soil+structure+quality+of+arable+soils.+Does+clay+content+matter%3F&rft.jtitle=Geoderma&rft.au=Johannes%2C+Alice&rft.au=Matter%2C+Adrien&rft.au=Schulin%2C+Rainer&rft.au=Weisskopf%2C+Peter&rft.date=2017-09-15&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=302&rft.spage=14&rft.epage=21&rft_id=info:doi/10.1016%2Fj.geoderma.2017.04.021&rft.externalDocID=S0016706116305092
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon