Optimal organic carbon values for soil structure quality of arable soils. Does clay content matter?
Most soil structure-related physical properties are correlated to soil organic carbon (SOC) content. Texture, mineralogy, and SOC:clay ratio are also acknowledged to affect physical properties, however there is no consensus or general conclusions in this respect. Against this background, the present...
Saved in:
Published in | Geoderma Vol. 302; pp. 14 - 21 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.09.2017
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Most soil structure-related physical properties are correlated to soil organic carbon (SOC) content. Texture, mineralogy, and SOC:clay ratio are also acknowledged to affect physical properties, however there is no consensus or general conclusions in this respect. Against this background, the present study aims at determining objectives for the management of SOC in terms of structural quality of agricultural soils. The large area in which 161 free-to-swell undisturbed samples were obtained for this research represents a major part of the Swiss agricultural land and belongs to one broad soil group (Cambi-Luvisols). The structural quality was scored visually, and bulk volumes (inverse of bulk density) were measured at standard matric potentials. To define the effect of SOC without interference of soil mechanical degradation, soils with good structural quality scores were considered first in studying the relationship between SOC and soil pore volumes. Results suggest that the relationship is always linear, irrespective of the clay content of the soils. No optimum of SOC corresponding to a fraction of the clay content is found, contrary to the theory of “complexed organic carbon” (Dexter et al., 2008). However, the SOC:clay ratio decreases with decreasing soil structure quality. The SOC:clay ratio of 1:8 is the average for a very good structure quality. A SOC:clay ratio of 1:10 is the limit between good and medium structural quality, thus it constitutes a reasonable goal for soil management by farmers. A SOC:clay ratio of 1:8 or smaller leads to a high probability of poor structural state. These ratios can be used as criteria for soil structural quality and SOC management, and in that context, the concept of complexed organic carbon appears relevant.
•Total soil organic carbon controls physical properties•Complexed organic carbon concept is relevant for soil structure quality.•Reasonable goal in organic carbon for soil management is SOC:clay of 1:10.•Optimal value of organic carbon for soil structure quality is SOC:clay of 1:8.•Lower threshold of organic carbon for soil structure quality is SOC:clay of 1:13. |
---|---|
AbstractList | Most soil structure-related physical properties are correlated to soil organic carbon (SOC) content. Texture, mineralogy, and SOC:clay ratio are also acknowledged to affect physical properties, however there is no consensus or general conclusions in this respect. Against this background, the present study aims at determining objectives for the management of SOC in terms of structural quality of agricultural soils. The large area in which 161 free-to-swell undisturbed samples were obtained for this research represents a major part of the Swiss agricultural land and belongs to one broad soil group (Cambi-Luvisols). The structural quality was scored visually, and bulk volumes (inverse of bulk density) were measured at standard matric potentials. To define the effect of SOC without interference of soil mechanical degradation, soils with good structural quality scores were considered first in studying the relationship between SOC and soil pore volumes. Results suggest that the relationship is always linear, irrespective of the clay content of the soils. No optimum of SOC corresponding to a fraction of the clay content is found, contrary to the theory of “complexed organic carbon” (Dexter et al., 2008). However, the SOC:clay ratio decreases with decreasing soil structure quality. The SOC:clay ratio of 1:8 is the average for a very good structure quality. A SOC:clay ratio of 1:10 is the limit between good and medium structural quality, thus it constitutes a reasonable goal for soil management by farmers. A SOC:clay ratio of 1:8 or smaller leads to a high probability of poor structural state. These ratios can be used as criteria for soil structural quality and SOC management, and in that context, the concept of complexed organic carbon appears relevant. Most soil structure-related physical properties are correlated to soil organic carbon (SOC) content. Texture, mineralogy, and SOC:clay ratio are also acknowledged to affect physical properties, however there is no consensus or general conclusions in this respect. Against this background, the present study aims at determining objectives for the management of SOC in terms of structural quality of agricultural soils. The large area in which 161 free-to-swell undisturbed samples were obtained for this research represents a major part of the Swiss agricultural land and belongs to one broad soil group (Cambi-Luvisols). The structural quality was scored visually, and bulk volumes (inverse of bulk density) were measured at standard matric potentials. To define the effect of SOC without interference of soil mechanical degradation, soils with good structural quality scores were considered first in studying the relationship between SOC and soil pore volumes. Results suggest that the relationship is always linear, irrespective of the clay content of the soils. No optimum of SOC corresponding to a fraction of the clay content is found, contrary to the theory of “complexed organic carbon” (Dexter et al., 2008). However, the SOC:clay ratio decreases with decreasing soil structure quality. The SOC:clay ratio of 1:8 is the average for a very good structure quality. A SOC:clay ratio of 1:10 is the limit between good and medium structural quality, thus it constitutes a reasonable goal for soil management by farmers. A SOC:clay ratio of 1:8 or smaller leads to a high probability of poor structural state. These ratios can be used as criteria for soil structural quality and SOC management, and in that context, the concept of complexed organic carbon appears relevant. •Total soil organic carbon controls physical properties•Complexed organic carbon concept is relevant for soil structure quality.•Reasonable goal in organic carbon for soil management is SOC:clay of 1:10.•Optimal value of organic carbon for soil structure quality is SOC:clay of 1:8.•Lower threshold of organic carbon for soil structure quality is SOC:clay of 1:13. |
Author | Boivin, Pascal Matter, Adrien Weisskopf, Peter Baveye, Philippe C. Johannes, Alice Schulin, Rainer |
Author_xml | – sequence: 1 givenname: Alice surname: Johannes fullname: Johannes, Alice email: Alice.Johannes@hesge.ch organization: University of Applied Sciences of Western Switzerland hepia, Soils and Substrates group, Institute Land-Nature-Environment, route de Presinge 150, 1254 Jussy Geneva, Switzerland – sequence: 2 givenname: Adrien orcidid: 0000-0001-7176-3070 surname: Matter fullname: Matter, Adrien organization: University of Applied Sciences of Western Switzerland hepia, Soils and Substrates group, Institute Land-Nature-Environment, route de Presinge 150, 1254 Jussy Geneva, Switzerland – sequence: 3 givenname: Rainer surname: Schulin fullname: Schulin, Rainer organization: ETH Zürich, Institute of Terrestrial Ecosystems, Universitätstrasse 16, 8092 Zürich, Switzerland – sequence: 4 givenname: Peter surname: Weisskopf fullname: Weisskopf, Peter organization: Swiss Federal Research Station Agroscope, Soil Fertility and Soil Protection group, Department of Natural Resources & Agriculture, Reckenholzstrasse 191, CH-8046 Zurich, Switzerland – sequence: 5 givenname: Philippe C. surname: Baveye fullname: Baveye, Philippe C. organization: UMR ECOSYS, AgroParisTech-INRA, Université Paris-Saclay, Avenue Lucien Brétignières, Thiverval-Grignon 78850, France – sequence: 6 givenname: Pascal surname: Boivin fullname: Boivin, Pascal organization: University of Applied Sciences of Western Switzerland hepia, Soils and Substrates group, Institute Land-Nature-Environment, route de Presinge 150, 1254 Jussy Geneva, Switzerland |
BackLink | https://hal.science/hal-01533845$$DView record in HAL |
BookMark | eNqFkcFu1DAQhi1UJLaFV0A-wiHpOHGctYQEVaEUaaVe4GxNnEnxyhtvbWelfXu8LHDg0pM11vf90sx_yS7mMBNjbwXUAoS63taPFEaKO6wbEH0NsoZGvGArse6bSjWdvmArKGTVgxKv2GVK2zL20MCK2Yd9djv0PMRHnJ3lFuMQZn5Av1DiU4g8Bed5ynGxeYnEnxb0Lh95mDhGHDz9BlLNP4ciWI9HbsOcac58hzlT_PiavZzQJ3rz571iP-6-fL-9rzYPX7_d3mwqK2WXK9tDq5Uc1ATUre0AU6f7HoikFI0WVo2NRClVP5BQjRqx1YPSGkGvaRATtlfs_Tn3J3qzj2WteDQBnbm_2ZjTH4iubdeyO4jCvjuz-xieyqbZ7Fyy5D3OFJZkGgBoJSjdFVSdURtDSpGmf9kCzKkBszV_GzCnBgxIUxoo4of_ROsyZleuE9H55_VPZ53KzQ6OoknW0WxpdJFsNmNwz0X8As83qIQ |
CitedBy_id | crossref_primary_10_1016_j_geoderma_2024_116871 crossref_primary_10_1016_j_scitotenv_2024_172016 crossref_primary_10_1111_ejss_13212 crossref_primary_10_1016_j_scitotenv_2024_175642 crossref_primary_10_1111_ejss_13573 crossref_primary_10_3390_su13094713 crossref_primary_10_1016_j_ecolind_2023_109886 crossref_primary_10_1111_ejss_13291 crossref_primary_10_1016_j_geoderma_2020_114177 crossref_primary_10_3390_land13071014 crossref_primary_10_1080_03650340_2019_1626984 crossref_primary_10_5194_bg_17_5025_2020 crossref_primary_10_15446_rfnam_v77n1_104425 crossref_primary_10_3389_fenvs_2020_579904 crossref_primary_10_1016_j_agsy_2021_103338 crossref_primary_10_1016_j_heliyon_2024_e30400 crossref_primary_10_1016_j_ecolind_2019_05_040 crossref_primary_10_1007_s12517_023_11574_z crossref_primary_10_3389_fenvs_2022_834055 crossref_primary_10_1007_s11104_019_04270_z crossref_primary_10_1016_j_geoderma_2023_116346 crossref_primary_10_1016_j_still_2020_104849 crossref_primary_10_1016_j_geoderma_2022_116080 crossref_primary_10_1016_j_scitotenv_2022_153440 crossref_primary_10_1111_sum_70015 crossref_primary_10_1016_j_apsoil_2022_104688 crossref_primary_10_1002_saj2_70011 crossref_primary_10_1111_sum_13060 crossref_primary_10_1016_j_soilad_2025_100038 crossref_primary_10_1016_j_soilbio_2023_109112 crossref_primary_10_1016_j_jclepro_2022_134725 crossref_primary_10_1016_j_agee_2024_108926 crossref_primary_10_1111_gcb_15289 crossref_primary_10_1111_sum_12658 crossref_primary_10_1007_s11104_021_05047_z crossref_primary_10_1016_j_geoderma_2024_117027 crossref_primary_10_1038_s44264_024_00031_3 crossref_primary_10_1080_03650340_2022_2047944 crossref_primary_10_1007_s10661_019_7435_y crossref_primary_10_1007_s11368_020_02837_3 crossref_primary_10_1080_20964129_2018_1463146 crossref_primary_10_1111_1365_2664_14825 crossref_primary_10_1111_sum_13092 crossref_primary_10_1016_j_still_2025_106503 crossref_primary_10_1002_agg2_20178 crossref_primary_10_1016_j_geoderma_2022_116098 crossref_primary_10_1016_j_geoderma_2022_116099 crossref_primary_10_3389_fenvs_2018_00025 crossref_primary_10_1080_03650340_2018_1548765 crossref_primary_10_3390_environments11040073 crossref_primary_10_1016_j_ecoser_2022_101415 crossref_primary_10_1111_ejss_13424 crossref_primary_10_1016_j_jia_2024_12_013 crossref_primary_10_1007_s11104_022_05626_8 crossref_primary_10_1111_sum_12967 crossref_primary_10_1002_jpln_202100089 crossref_primary_10_1016_j_geoderma_2024_116862 crossref_primary_10_3390_agronomy11040677 crossref_primary_10_1016_j_geoderma_2023_116565 crossref_primary_10_3390_agriculture14122288 crossref_primary_10_1111_ejss_13380 crossref_primary_10_1016_j_geoderma_2025_117175 crossref_primary_10_1002_ldr_5442 crossref_primary_10_3389_fenvs_2018_00134 crossref_primary_10_1016_j_scitotenv_2023_165811 crossref_primary_10_1016_j_catena_2023_107760 crossref_primary_10_1111_sum_12554 crossref_primary_10_1016_j_geoderma_2023_116569 crossref_primary_10_1080_00103624_2018_1448406 crossref_primary_10_1016_j_geoderma_2023_116398 crossref_primary_10_1111_ejss_13254 crossref_primary_10_20961_stjssa_v18i1_50489 crossref_primary_10_1016_j_geoderma_2021_115463 crossref_primary_10_5194_bg_18_3467_2021 crossref_primary_10_1016_j_geoderma_2024_117001 crossref_primary_10_1016_j_jenvman_2021_112061 crossref_primary_10_1016_j_still_2023_105999 crossref_primary_10_1016_j_geodrs_2024_e00893 crossref_primary_10_3390_agronomy10121977 crossref_primary_10_3390_f9100598 crossref_primary_10_1016_j_eti_2023_103143 crossref_primary_10_17221_118_2024_SWR crossref_primary_10_1016_j_jclepro_2023_139646 crossref_primary_10_3390_agronomy15030584 crossref_primary_10_18393_ejss_492466 crossref_primary_10_1007_s42729_023_01256_w crossref_primary_10_1590_1678_992x_2019_0017 crossref_primary_10_1126_sciadv_abg6995 crossref_primary_10_1038_s41598_022_09101_3 crossref_primary_10_3390_agronomy14081731 crossref_primary_10_1007_s00267_022_01592_0 crossref_primary_10_3390_agriculture14081290 crossref_primary_10_1016_j_eja_2023_127037 crossref_primary_10_1016_j_still_2019_04_011 crossref_primary_10_1111_ejss_13003 crossref_primary_10_1016_j_still_2020_104763 crossref_primary_10_3390_cli8020030 crossref_primary_10_1002_jpln_202200007 crossref_primary_10_1111_sum_13144 crossref_primary_10_1111_gcb_16294 crossref_primary_10_1186_s40677_020_00158_8 crossref_primary_10_3389_fenvs_2020_00113 crossref_primary_10_1111_sum_12856 crossref_primary_10_1016_j_geodrs_2024_e00909 crossref_primary_10_1016_j_agrformet_2023_109837 crossref_primary_10_1007_s11104_022_05713_w crossref_primary_10_1016_j_scitotenv_2024_175026 crossref_primary_10_1016_j_geoderma_2021_115125 crossref_primary_10_3389_fsoil_2025_1530962 crossref_primary_10_3390_su13074059 crossref_primary_10_1016_j_geoderma_2021_115529 crossref_primary_10_1016_j_soilbio_2018_01_030 crossref_primary_10_1111_ejss_13508 crossref_primary_10_5194_soil_9_573_2023 crossref_primary_10_3390_su151813478 crossref_primary_10_1111_sum_12921 crossref_primary_10_1111_sum_12920 crossref_primary_10_1016_j_jenvman_2023_119945 crossref_primary_10_1080_00103624_2022_2063328 crossref_primary_10_3390_land13070909 crossref_primary_10_1016_j_catena_2024_108048 crossref_primary_10_1016_j_still_2017_07_002 crossref_primary_10_1016_j_still_2022_105341 crossref_primary_10_1016_j_ecolind_2022_109116 crossref_primary_10_3390_agronomy11030607 crossref_primary_10_4081_ija_2022_2114 crossref_primary_10_1016_j_heliyon_2023_e23852 crossref_primary_10_1002_saj2_70033 crossref_primary_10_1016_j_still_2019_104414 crossref_primary_10_3390_su142114609 crossref_primary_10_1016_j_ecoenv_2022_113559 crossref_primary_10_1016_j_still_2022_105503 crossref_primary_10_1016_j_geoderma_2021_115632 crossref_primary_10_1111_sum_12993 crossref_primary_10_3389_fenvs_2019_00164 crossref_primary_10_1007_s11104_021_04853_9 crossref_primary_10_1016_j_geoderma_2024_116829 crossref_primary_10_1111_sum_12879 |
Cites_doi | 10.1016/j.still.2008.02.002 10.1016/j.still.2016.06.001 10.1890/02-0472 10.1097/00010694-193401000-00003 10.2307/2258183 10.1093/biomet/89.2.484 10.1111/j.1475-2743.2011.00354.x 10.1071/SR11174 10.1016/S0016-7061(97)00039-6 10.2136/sssaj1991.03615995005500020030x 10.1016/j.geoderma.2015.10.017 10.1016/j.geoderma.2015.10.002 10.1016/S0167-1987(02)00139-3 10.1016/j.still.2004.03.008 10.1111/j.1365-2389.2008.01024.x 10.1016/0167-1987(90)90029-D 10.2136/sssaj2011.0402 10.1016/j.soilbio.2008.09.015 10.1016/j.geoderma.2008.01.022 10.1038/2101295a0 10.1111/j.1475-2743.2007.00102.x 10.1111/ejss.12323 10.2136/sssaj2005.0051a 10.2136/vzj2011.0067 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7S9 L.6 1XC |
DOI | 10.1016/j.geoderma.2017.04.021 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
EndPage | 21 |
ExternalDocumentID | oai_HAL_hal_01533845v1 10_1016_j_geoderma_2017_04_021 S0016706116305092 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W K-O KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 OHT R2- SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 1XC |
ID | FETCH-LOGICAL-c445t-c703964b6f0e58cb0f59770ee441291c6d24a4467be1626da39b699a098eb1fa3 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri May 09 12:58:31 EDT 2025 Fri Jul 11 09:18:15 EDT 2025 Thu Apr 24 22:59:28 EDT 2025 Tue Jul 01 04:04:43 EDT 2025 Fri Feb 23 02:27:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Soil organic matter Clay content Soil quality Soil structure Complexed organic carbon VESS |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c445t-c703964b6f0e58cb0f59770ee441291c6d24a4467be1626da39b699a098eb1fa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7176-3070 |
PQID | 2000340695 |
PQPubID | 24069 |
PageCount | 8 |
ParticipantIDs | hal_primary_oai_HAL_hal_01533845v1 proquest_miscellaneous_2000340695 crossref_primary_10_1016_j_geoderma_2017_04_021 crossref_citationtrail_10_1016_j_geoderma_2017_04_021 elsevier_sciencedirect_doi_10_1016_j_geoderma_2017_04_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-15 |
PublicationDateYYYYMMDD | 2017-09-15 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma |
PublicationYear | 2017 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Getahun, Munkholm, Schjønning (bb0040) 2016; 264 Soane (bb0130) 1990; 16 Soil Survey Staff (bb0135) 1999 Keller, Dexter (bb0090) 2012; 50 Ball, Batey, Munkholm (bb0010) 2007; 23 Loveland, Webb (bb9000) 2003; 70 Six, Bossuyt, Degryze, Denef (bb0125) 2004; 79 Guimarães, Ball, Tormena (bb0055) 2011 Dexter, Richard, Arrouays, Czyz, Jolivet, Duval (bb0025) 2008; 144 Manrique, Jones (bb0095) 1991; 55 Schjonning, de Jonge, Munkholm, Moldrup, Christensen, Olesen (bb0120) 2012; 11 Heuscher, Brandt, Jardine (bb0060) 2005; 69 Stock, Downes (bb0140) 2008; 99 Goutal, Ranger, Boivin (bb0045) 2012; 76 Office fédéral de topographie (bb0105) 1984 Kay, Munkholm (bb0085) 2004 Johannes, Weisskopf, Schulin, Boivin (bb0075) 2016 Toms, Lesperance (bb0145) 2003; 84 Goutal-Pousse, Lamy, Ranger, Boivin (bb0050) 2016; 67 IUSS Working Group WRB (bb0065) 2006 Schäffer, Schulin, Boivin (bb0115) 2008; 59 Walkley, Black (bb0150) 1934; 37 Fernandez-Ugalde, Barre, Virto, Hubert, Billiou, Chenu (bb0035) 2016; 264 Davies (bb0020) 2002; 89 Feller, Beare (bb0030) 1997; 79 Saini (bb0110) 1966; 210 Kay (bb0080) 1998 Jeffrey (bb0070) 1970; 58 Boivin, Brunet, Gascuel-Odoux (bb0015) 1990; 28 Muggeo (bb0100) 2015; 58 Abiven, Menasseri, Chenu (bb0005) 2009; 41 Heuscher (10.1016/j.geoderma.2017.04.021_bb0060) 2005; 69 Office fédéral de topographie (10.1016/j.geoderma.2017.04.021_bb0105) 1984 Stock (10.1016/j.geoderma.2017.04.021_bb0140) 2008; 99 Walkley (10.1016/j.geoderma.2017.04.021_bb0150) 1934; 37 Guimarães (10.1016/j.geoderma.2017.04.021_bb0055) 2011 Kay (10.1016/j.geoderma.2017.04.021_bb0080) 1998 Kay (10.1016/j.geoderma.2017.04.021_bb0085) 2004 Goutal (10.1016/j.geoderma.2017.04.021_bb0045) 2012; 76 Toms (10.1016/j.geoderma.2017.04.021_bb0145) 2003; 84 Getahun (10.1016/j.geoderma.2017.04.021_bb0040) 2016; 264 IUSS Working Group WRB (10.1016/j.geoderma.2017.04.021_bb0065) 2006 Loveland (10.1016/j.geoderma.2017.04.021_bb9000) 2003; 70 Six (10.1016/j.geoderma.2017.04.021_bb0125) 2004; 79 Schjonning (10.1016/j.geoderma.2017.04.021_bb0120) 2012; 11 Boivin (10.1016/j.geoderma.2017.04.021_bb0015) 1990; 28 Jeffrey (10.1016/j.geoderma.2017.04.021_bb0070) 1970; 58 Saini (10.1016/j.geoderma.2017.04.021_bb0110) 1966; 210 Soil Survey Staff (10.1016/j.geoderma.2017.04.021_bb0135) 1999 Muggeo (10.1016/j.geoderma.2017.04.021_bb0100) 2015; 58 Schäffer (10.1016/j.geoderma.2017.04.021_bb0115) 2008; 59 Dexter (10.1016/j.geoderma.2017.04.021_bb0025) 2008; 144 Johannes (10.1016/j.geoderma.2017.04.021_bb0075) 2016 Davies (10.1016/j.geoderma.2017.04.021_bb0020) 2002; 89 Feller (10.1016/j.geoderma.2017.04.021_bb0030) 1997; 79 Manrique (10.1016/j.geoderma.2017.04.021_bb0095) 1991; 55 Ball (10.1016/j.geoderma.2017.04.021_bb0010) 2007; 23 Fernandez-Ugalde (10.1016/j.geoderma.2017.04.021_bb0035) 2016; 264 Abiven (10.1016/j.geoderma.2017.04.021_bb0005) 2009; 41 Keller (10.1016/j.geoderma.2017.04.021_bb0090) 2012; 50 Goutal-Pousse (10.1016/j.geoderma.2017.04.021_bb0050) 2016; 67 Soane (10.1016/j.geoderma.2017.04.021_bb0130) 1990; 16 |
References_xml | – volume: 50 start-page: 7 year: 2012 ident: bb0090 article-title: Plastic limits of agricultural soils as functions of soil texture and organic matter content publication-title: Soil Res. – volume: 58 start-page: 525 year: 2015 end-page: 534 ident: bb0100 article-title: Package “segmented.” publication-title: Biometrika – volume: 28 start-page: 59 year: 1990 end-page: 71 ident: bb0015 article-title: Densité apparente d'échantillon de sol: méthode de la poche plastique (in french) publication-title: Milieux Poreux Transf. Hydr. Bull. GFHN – volume: 23 start-page: 329 year: 2007 end-page: 337 ident: bb0010 article-title: Field assessment of soil structural quality–a development of the Peerlkamp test publication-title: Soil Use Manag. – volume: 11 year: 2012 ident: bb0120 article-title: Clay dispersibility and soil friability-testing the soil clay-to-carbon saturation concept publication-title: Vadose Zone J. – volume: 55 start-page: 476 year: 1991 end-page: 481 ident: bb0095 article-title: Bulk density of soils in relation to soil physical and chemical properties publication-title: Soil Sci. Soc. Am. J. – volume: 69 start-page: 51 year: 2005 end-page: 56 ident: bb0060 article-title: Using soil physical and chemical properties to estimate bulk density publication-title: Soil Sci. Soc. Am. J. – volume: 70 start-page: 1 year: 2003 end-page: 18 ident: bb9000 article-title: Is there a critical level of organic matter in the agricultural soils of temperate regions: a review publication-title: Soil Tillage Res. – volume: 59 start-page: 771 year: 2008 end-page: 783 ident: bb0115 article-title: Changes in shrinkage of restored soil caused by compaction beneath heavy agricultural machinery publication-title: Eur. J. Soil Sci. – volume: 37 start-page: 29 year: 1934 end-page: 38 ident: bb0150 article-title: An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method publication-title: Soil Sci. – volume: 99 start-page: 191 year: 2008 end-page: 201 ident: bb0140 article-title: Effects of additions of organic matter on the penetration resistance of glacial till for the entire water tension range publication-title: Soil Tillage Res. – volume: 264 start-page: 94 year: 2016 end-page: 102 ident: bb0040 article-title: The influence of clay-to-carbon ratio on soil physical properties in a humid sandy loam soil with contrasting tillage and residue management publication-title: Geoderma – volume: 79 start-page: 69 year: 1997 end-page: 116 ident: bb0030 article-title: Physical control of soil organic matter dynamics in the tropics publication-title: Geoderma – start-page: 436 year: 1999 ident: bb0135 article-title: Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys publication-title: Natural Resources Conservation Service. U.S. Department of Agriculture Handbook – volume: 84 start-page: 2034 year: 2003 end-page: 2041 ident: bb0145 article-title: Piecewise regression: a tool for identifying ecological thresholds publication-title: Ecology – year: 2011 ident: bb0055 article-title: Improvements in the visual evaluation of soil structure: visual evaluation of soil structure publication-title: Soil Use Manag. – start-page: 185 year: 2004 end-page: 197 ident: bb0085 article-title: Management-induced soil structure degradation – organic matter depletion and tillage publication-title: Managing Soil Quality: Challenges in Modern Agriculture – volume: 264 start-page: 171 year: 2016 end-page: 178 ident: bb0035 article-title: Does phyllosilicate mineralogy explain organic matter stabilization in different particle-size fractions in a 19-year C-3/C-4 chronosequence in a temperate Cambisol? publication-title: Geoderma – start-page: 169 year: 1998 end-page: 197 ident: bb0080 article-title: Soil structure and organic carbon: a review publication-title: Soil Processes and the Carbon Cycle, Advances in Soil Science – year: 2016 ident: bb0075 article-title: To what extent do physical measurements match with visual evaluation of soil structure? publication-title: Soil Tillage Res. – volume: 210 start-page: 1295 year: 1966 ident: bb0110 article-title: Organic matter as a measure of bulk density of soil publication-title: Nature – volume: 58 start-page: 297 year: 1970 ident: bb0070 article-title: A note on use of ignition loss as a means for approximate estimation of soil bulk density publication-title: J. Ecol. – year: 2006 ident: bb0065 article-title: World reference base for soil resources 2006. A framework for international classification, correlation and communication publication-title: World Soil Reports. Food and Agriculture Organization of the United Nations, Rome – volume: 67 start-page: 160 year: 2016 end-page: 172 ident: bb0050 article-title: Structural damage and recovery determined by the colloidal constituents in two forest soils compacted by heavy traffic publication-title: Eur. J. Soil Sci. – volume: 76 start-page: 1426 year: 2012 end-page: 1435 ident: bb0045 article-title: Assessment of the natural recovery rate of soil specific volume following forest soil compaction publication-title: Soil Sci. Soc. Am. J. – volume: 144 start-page: 620 year: 2008 end-page: 627 ident: bb0025 article-title: Complexed organic matter controls soil physical properties publication-title: Geoderma – volume: 41 start-page: 1 year: 2009 end-page: 12 ident: bb0005 article-title: The effects of organic inputs over time on soil aggregate stability – a literature analysis publication-title: Soil Biol. Biochem. – volume: 79 start-page: 7 year: 2004 end-page: 31 ident: bb0125 article-title: A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics publication-title: Soil Tillage Res. – volume: 89 start-page: 484 year: 2002 end-page: 489 ident: bb0020 article-title: Hypothesis testing when a nuisance parameter is present only under the alternative: linear model case publication-title: Biometrika – volume: 16 start-page: 179 year: 1990 end-page: 201 ident: bb0130 article-title: The role of organic matter in soil compactibility: a review of some practical aspects publication-title: Soil Tillage Res. – year: 1984 ident: bb0105 article-title: Atlas de la Suisse – volume: 99 start-page: 191 year: 2008 ident: 10.1016/j.geoderma.2017.04.021_bb0140 article-title: Effects of additions of organic matter on the penetration resistance of glacial till for the entire water tension range publication-title: Soil Tillage Res. doi: 10.1016/j.still.2008.02.002 – year: 2016 ident: 10.1016/j.geoderma.2017.04.021_bb0075 article-title: To what extent do physical measurements match with visual evaluation of soil structure? publication-title: Soil Tillage Res. doi: 10.1016/j.still.2016.06.001 – volume: 84 start-page: 2034 year: 2003 ident: 10.1016/j.geoderma.2017.04.021_bb0145 article-title: Piecewise regression: a tool for identifying ecological thresholds publication-title: Ecology doi: 10.1890/02-0472 – year: 1984 ident: 10.1016/j.geoderma.2017.04.021_bb0105 – volume: 37 start-page: 29 year: 1934 ident: 10.1016/j.geoderma.2017.04.021_bb0150 article-title: An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method publication-title: Soil Sci. doi: 10.1097/00010694-193401000-00003 – volume: 58 start-page: 297 year: 1970 ident: 10.1016/j.geoderma.2017.04.021_bb0070 article-title: A note on use of ignition loss as a means for approximate estimation of soil bulk density publication-title: J. Ecol. doi: 10.2307/2258183 – volume: 89 start-page: 484 year: 2002 ident: 10.1016/j.geoderma.2017.04.021_bb0020 article-title: Hypothesis testing when a nuisance parameter is present only under the alternative: linear model case publication-title: Biometrika doi: 10.1093/biomet/89.2.484 – year: 2011 ident: 10.1016/j.geoderma.2017.04.021_bb0055 article-title: Improvements in the visual evaluation of soil structure: visual evaluation of soil structure publication-title: Soil Use Manag. doi: 10.1111/j.1475-2743.2011.00354.x – volume: 50 start-page: 7 year: 2012 ident: 10.1016/j.geoderma.2017.04.021_bb0090 article-title: Plastic limits of agricultural soils as functions of soil texture and organic matter content publication-title: Soil Res. doi: 10.1071/SR11174 – volume: 79 start-page: 69 year: 1997 ident: 10.1016/j.geoderma.2017.04.021_bb0030 article-title: Physical control of soil organic matter dynamics in the tropics publication-title: Geoderma doi: 10.1016/S0016-7061(97)00039-6 – volume: 55 start-page: 476 year: 1991 ident: 10.1016/j.geoderma.2017.04.021_bb0095 article-title: Bulk density of soils in relation to soil physical and chemical properties publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1991.03615995005500020030x – year: 2006 ident: 10.1016/j.geoderma.2017.04.021_bb0065 article-title: World reference base for soil resources 2006. A framework for international classification, correlation and communication – volume: 264 start-page: 171 year: 2016 ident: 10.1016/j.geoderma.2017.04.021_bb0035 article-title: Does phyllosilicate mineralogy explain organic matter stabilization in different particle-size fractions in a 19-year C-3/C-4 chronosequence in a temperate Cambisol? publication-title: Geoderma doi: 10.1016/j.geoderma.2015.10.017 – volume: 264 start-page: 94 year: 2016 ident: 10.1016/j.geoderma.2017.04.021_bb0040 article-title: The influence of clay-to-carbon ratio on soil physical properties in a humid sandy loam soil with contrasting tillage and residue management publication-title: Geoderma doi: 10.1016/j.geoderma.2015.10.002 – volume: 28 start-page: 59 year: 1990 ident: 10.1016/j.geoderma.2017.04.021_bb0015 article-title: Densité apparente d'échantillon de sol: méthode de la poche plastique (in french) publication-title: Milieux Poreux Transf. Hydr. Bull. GFHN – volume: 70 start-page: 1 year: 2003 ident: 10.1016/j.geoderma.2017.04.021_bb9000 article-title: Is there a critical level of organic matter in the agricultural soils of temperate regions: a review publication-title: Soil Tillage Res. doi: 10.1016/S0167-1987(02)00139-3 – volume: 79 start-page: 7 year: 2004 ident: 10.1016/j.geoderma.2017.04.021_bb0125 article-title: A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics publication-title: Soil Tillage Res. doi: 10.1016/j.still.2004.03.008 – volume: 59 start-page: 771 year: 2008 ident: 10.1016/j.geoderma.2017.04.021_bb0115 article-title: Changes in shrinkage of restored soil caused by compaction beneath heavy agricultural machinery publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2008.01024.x – volume: 16 start-page: 179 year: 1990 ident: 10.1016/j.geoderma.2017.04.021_bb0130 article-title: The role of organic matter in soil compactibility: a review of some practical aspects publication-title: Soil Tillage Res. doi: 10.1016/0167-1987(90)90029-D – start-page: 436 year: 1999 ident: 10.1016/j.geoderma.2017.04.021_bb0135 article-title: Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys – start-page: 185 year: 2004 ident: 10.1016/j.geoderma.2017.04.021_bb0085 article-title: Management-induced soil structure degradation – organic matter depletion and tillage – start-page: 169 year: 1998 ident: 10.1016/j.geoderma.2017.04.021_bb0080 article-title: Soil structure and organic carbon: a review – volume: 76 start-page: 1426 year: 2012 ident: 10.1016/j.geoderma.2017.04.021_bb0045 article-title: Assessment of the natural recovery rate of soil specific volume following forest soil compaction publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2011.0402 – volume: 41 start-page: 1 year: 2009 ident: 10.1016/j.geoderma.2017.04.021_bb0005 article-title: The effects of organic inputs over time on soil aggregate stability – a literature analysis publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2008.09.015 – volume: 58 start-page: 525 year: 2015 ident: 10.1016/j.geoderma.2017.04.021_bb0100 article-title: Package “segmented.” publication-title: Biometrika – volume: 144 start-page: 620 year: 2008 ident: 10.1016/j.geoderma.2017.04.021_bb0025 article-title: Complexed organic matter controls soil physical properties publication-title: Geoderma doi: 10.1016/j.geoderma.2008.01.022 – volume: 210 start-page: 1295 year: 1966 ident: 10.1016/j.geoderma.2017.04.021_bb0110 article-title: Organic matter as a measure of bulk density of soil publication-title: Nature doi: 10.1038/2101295a0 – volume: 23 start-page: 329 year: 2007 ident: 10.1016/j.geoderma.2017.04.021_bb0010 article-title: Field assessment of soil structural quality–a development of the Peerlkamp test publication-title: Soil Use Manag. doi: 10.1111/j.1475-2743.2007.00102.x – volume: 67 start-page: 160 year: 2016 ident: 10.1016/j.geoderma.2017.04.021_bb0050 article-title: Structural damage and recovery determined by the colloidal constituents in two forest soils compacted by heavy traffic publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12323 – volume: 69 start-page: 51 year: 2005 ident: 10.1016/j.geoderma.2017.04.021_bb0060 article-title: Using soil physical and chemical properties to estimate bulk density publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2005.0051a – volume: 11 year: 2012 ident: 10.1016/j.geoderma.2017.04.021_bb0120 article-title: Clay dispersibility and soil friability-testing the soil clay-to-carbon saturation concept publication-title: Vadose Zone J. doi: 10.2136/vzj2011.0067 |
SSID | ssj0017020 |
Score | 2.5871391 |
Snippet | Most soil structure-related physical properties are correlated to soil organic carbon (SOC) content. Texture, mineralogy, and SOC:clay ratio are also... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 14 |
SubjectTerms | agricultural land agricultural soils arable soils bulk density Clay content clay fraction Complexed organic carbon Dexter farmers Life Sciences mineralogy probability soil management soil organic carbon Soil organic matter soil pore system Soil quality Soil structure texture VESS |
Title | Optimal organic carbon values for soil structure quality of arable soils. Does clay content matter? |
URI | https://dx.doi.org/10.1016/j.geoderma.2017.04.021 https://www.proquest.com/docview/2000340695 https://hal.science/hal-01533845 |
Volume | 302 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NbxMxELVCeoFDVVoqCrRyUa_b2Bvbuz6hKFAFStsLlXqzbMcuqZLdKEmRcuG3M7MfEVSqcuC41ozWmrFnZrXz3hBylkrIsirmiUgjkmqHcQKSPIlRWhGY4z5HgPPVtRrdim938q5Dhi0WBtsqm9hfx_QqWjcrvcaavflkghhfrjJIR1BRIIkJxmEhMjzl5783bR48Yw01I1cJSv-FEn4AH-HAsYp_iGcV5WnKn0tQL35ip-STgF1loYs9stuUj3RQ7_A16YRin7wa3C8aCo1wQPwNRIEZCNUDmzz1duHKgiKtd1hSKFLpspxMac0cCyq0BlauaRmpXSCUqhJYntPPJSj4qV1T7GiH9ERnFR3npzfk9uLLj-EoaUYpJF4IuUo8XGythFORBZl7xyLyzrEQoBpKNfdqnAoLX4aZCxw-cca2r53S2jKdQzCPtn9IukVZhLeESqeUkzJ3MUShxsHqkMe8Hy0PPGoVj4hs7Wd8wzOO4y6mpm0oezCt3Q3a3TBhwO5HpLfRm9dMG1s1dOse88-ZMZAOtup-BH9uXoQk26PBd4NrDEvgXMhfIHTautvArcNfKbYI5eMSh3eyPoKG5bv_2MR78hKfsP2Eyw-kC34Px1DjrNxJdYhPyM7g6-Xo-g-O8vz7 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTyMxDI5YOLAcECwg3mQR16HJNEknJ1TxUNkt7AUkblGSJrtFZQa1gMSF3449j4pFQhy4ztiayE5sR-PvMyEHqYQsq2KWiDQiqXYYJCDJkxilFYE57jMEOF9cqt61-HUjb2bIcYOFwbbKOvZXMb2M1vWTVm3N1v1wiBhfrjqQjqCiQBITiMNzAo4vjjE4fJn2efAOq7kZuUpQ_A1M-BachBPHSgIi3ik5T1P-UYb69g9bJd9F7DINnS2Rxbp-pN1qictkJuQ_yEL377jm0AgrxP-BMHAHQtXEJk-9Hbsip8jrHSYUqlQ6KYYjWlHHggqtkJXPtIjUjhFLVQpMDulJAQp-ZJ8ptrRDfqJ3JR_n0Sq5Pju9Ou4l9SyFxAshHxIPJ1sr4VRkQWbesYjEcywEKIdSzb0apMLC1bDjAoc7zsC2tVNaW6YziObRttfIbF7kYZ1Q6ZRyUmYuhijUIFgdspi1o-WBR63iBpGN_YyvicZx3sXINB1lt6axu0G7GyYM2H2DtKZ69xXVxqcaunGP-W_TGMgHn-rugz-nH0KW7V63b_AZwxo4E_IJhH427jZw7PBfis1D8TjB6Z2sjahhufmFReyR-d7VRd_0zy9_b5Hv-AZ7UbjcJrOwB8IOFDwPbrfc0K9Kof6J |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+organic+carbon+values+for+soil+structure+quality+of+arable+soils.+Does+clay+content+matter%3F&rft.jtitle=Geoderma&rft.au=Johannes%2C+Alice&rft.au=Matter%2C+Adrien&rft.au=Schulin%2C+Rainer&rft.au=Weisskopf%2C+Peter&rft.date=2017-09-15&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=302&rft.spage=14&rft.epage=21&rft_id=info:doi/10.1016%2Fj.geoderma.2017.04.021&rft.externalDocID=S0016706116305092 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |