Carbon dioxide exchange and temperature sensitivity of soil respiration along an elevation gradient in an arctic tundra ecosystem
•There was no temperature gradient along 9–387 m elevation gradient in arctic tundra.•Topography aspect-induced soil microclimate differences drove ecosystem CO2 exchange.•Temperature sensitivity of soil respiration above 0 °C increased with elevation.•Elevation did not regulate temperature sensitiv...
Saved in:
Published in | Geoderma Vol. 452; p. 117108 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •There was no temperature gradient along 9–387 m elevation gradient in arctic tundra.•Topography aspect-induced soil microclimate differences drove ecosystem CO2 exchange.•Temperature sensitivity of soil respiration above 0 °C increased with elevation.•Elevation did not regulate temperature sensitivity below 0 °C or moisture sensitivity.
Generally, with increasing elevation, there is a corresponding decrease in annual mean air and soil temperatures, resulting in an overall decrease in ecosystem carbon dioxide (CO2) exchange. However, there is a lack of knowledge on the variations in CO2 exchange along elevation gradients in tundra ecosystems. Aiming to quantify CO2 exchange along elevation gradients in tundra ecosystems, we measured ecosystem CO2 exchange in the peak growing season along an elevation gradient (9–387 m above sea level, m.a.s.l) in an arctic heath tundra, West Greenland. We also performed an ex-situ incubation experiment based on soil samples collected along the elevation gradient, to assess the sensitivity of soil respiration to changes in temperature and soil moisture. There was no apparent temperature gradient along the elevation gradient, with the lowest air and soil temperatures at the second lowest elevation site (83 m). The lowest elevation site exhibited the highest net ecosystem exchange (NEE), ecosystem respiration (ER) and gross ecosystem production (GEP) rates, while the other three sites generally showed intercomparable CO2 exchange rates. Topography aspect-induced soil microclimate differences rather than the elevation were the primary drivers for the soil nutrient status and ecosystem CO2 exchange. The temperature sensitivity of soil respiration above 0 °C increased with elevation, while elevation did not regulate the temperature sensitivity below 0 °C or the moisture sensitivity. Soil total nitrogen, carbon, and ammonium contents were the controls of temperature sensitivity below 0 °C. Overall, our results emphasize the significance of considering elevation and microclimate when predicting the response of CO2 balance to climate change or upscaling to regional scales, particularly during the growing season. However, outside the growing season, other factors such as soil nutrient dynamics, play a more influential role in driving ecosystem CO2 fluxes. To accurately upscale or predict annual CO2 fluxes in arctic tundra regions, it is crucial to incorporate elevation-specific microclimate conditions into ecosystem models. |
---|---|
AbstractList | •There was no temperature gradient along 9–387 m elevation gradient in arctic tundra.•Topography aspect-induced soil microclimate differences drove ecosystem CO2 exchange.•Temperature sensitivity of soil respiration above 0 °C increased with elevation.•Elevation did not regulate temperature sensitivity below 0 °C or moisture sensitivity.
Generally, with increasing elevation, there is a corresponding decrease in annual mean air and soil temperatures, resulting in an overall decrease in ecosystem carbon dioxide (CO2) exchange. However, there is a lack of knowledge on the variations in CO2 exchange along elevation gradients in tundra ecosystems. Aiming to quantify CO2 exchange along elevation gradients in tundra ecosystems, we measured ecosystem CO2 exchange in the peak growing season along an elevation gradient (9–387 m above sea level, m.a.s.l) in an arctic heath tundra, West Greenland. We also performed an ex-situ incubation experiment based on soil samples collected along the elevation gradient, to assess the sensitivity of soil respiration to changes in temperature and soil moisture. There was no apparent temperature gradient along the elevation gradient, with the lowest air and soil temperatures at the second lowest elevation site (83 m). The lowest elevation site exhibited the highest net ecosystem exchange (NEE), ecosystem respiration (ER) and gross ecosystem production (GEP) rates, while the other three sites generally showed intercomparable CO2 exchange rates. Topography aspect-induced soil microclimate differences rather than the elevation were the primary drivers for the soil nutrient status and ecosystem CO2 exchange. The temperature sensitivity of soil respiration above 0 °C increased with elevation, while elevation did not regulate the temperature sensitivity below 0 °C or the moisture sensitivity. Soil total nitrogen, carbon, and ammonium contents were the controls of temperature sensitivity below 0 °C. Overall, our results emphasize the significance of considering elevation and microclimate when predicting the response of CO2 balance to climate change or upscaling to regional scales, particularly during the growing season. However, outside the growing season, other factors such as soil nutrient dynamics, play a more influential role in driving ecosystem CO2 fluxes. To accurately upscale or predict annual CO2 fluxes in arctic tundra regions, it is crucial to incorporate elevation-specific microclimate conditions into ecosystem models. Generally, with increasing elevation, there is a corresponding decrease in annual mean air and soil temperatures, resulting in an overall decrease in ecosystem carbon dioxide (CO₂) exchange. However, there is a lack of knowledge on the variations in CO₂ exchange along elevation gradients in tundra ecosystems. Aiming to quantify CO₂ exchange along elevation gradients in tundra ecosystems, we measured ecosystem CO₂ exchange in the peak growing season along an elevation gradient (9–387 m above sea level, m.a.s.l) in an arctic heath tundra, West Greenland. We also performed an ex-situ incubation experiment based on soil samples collected along the elevation gradient, to assess the sensitivity of soil respiration to changes in temperature and soil moisture. There was no apparent temperature gradient along the elevation gradient, with the lowest air and soil temperatures at the second lowest elevation site (83 m). The lowest elevation site exhibited the highest net ecosystem exchange (NEE), ecosystem respiration (ER) and gross ecosystem production (GEP) rates, while the other three sites generally showed intercomparable CO₂ exchange rates. Topography aspect-induced soil microclimate differences rather than the elevation were the primary drivers for the soil nutrient status and ecosystem CO₂ exchange. The temperature sensitivity of soil respiration above 0 °C increased with elevation, while elevation did not regulate the temperature sensitivity below 0 °C or the moisture sensitivity. Soil total nitrogen, carbon, and ammonium contents were the controls of temperature sensitivity below 0 °C. Overall, our results emphasize the significance of considering elevation and microclimate when predicting the response of CO₂ balance to climate change or upscaling to regional scales, particularly during the growing season. However, outside the growing season, other factors such as soil nutrient dynamics, play a more influential role in driving ecosystem CO₂ fluxes. To accurately upscale or predict annual CO₂ fluxes in arctic tundra regions, it is crucial to incorporate elevation-specific microclimate conditions into ecosystem models. Generally, with increasing elevation, there is a corresponding decrease in annual mean air and soil temperatures, resulting in an overall decrease in ecosystem carbon dioxide (CO2) exchange. However, there is a lack of knowledge on the variations in CO2 exchange along elevation gradients in tundra ecosystems. Aiming to quantify CO2 exchange along elevation gradients in tundra ecosystems, we measured ecosystem CO2 exchange in the peak growing season along an elevation gradient (9–387 m above sea level, m.a.s.l) in an arctic heath tundra, West Greenland. We also performed an ex-situ incubation experiment based on soil samples collected along the elevation gradient, to assess the sensitivity of soil respiration to changes in temperature and soil moisture. There was no apparent temperature gradient along the elevation gradient, with the lowest air and soil temperatures at the second lowest elevation site (83 m). The lowest elevation site exhibited the highest net ecosystem exchange (NEE), ecosystem respiration (ER) and gross ecosystem production (GEP) rates, while the other three sites generally showed intercomparable CO2 exchange rates. Topography aspect-induced soil microclimate differences rather than the elevation were the primary drivers for the soil nutrient status and ecosystem CO2 exchange. The temperature sensitivity of soil respiration above 0 °C increased with elevation, while elevation did not regulate the temperature sensitivity below 0 °C or the moisture sensitivity. Soil total nitrogen, carbon, and ammonium contents were the controls of temperature sensitivity below 0 °C. Overall, our results emphasize the significance of considering elevation and microclimate when predicting the response of CO2 balance to climate change or upscaling to regional scales, particularly during the growing season. However, outside the growing season, other factors such as soil nutrient dynamics, play a more influential role in driving ecosystem CO2 fluxes. To accurately upscale or predict annual CO2 fluxes in arctic tundra regions, it is crucial to incorporate elevation-specific microclimate conditions into ecosystem models. Generally, with increasing elevation, there is a corresponding decrease in annual mean air and soil temperatures, resulting in an overall decrease in ecosystem carbon dioxide (CO2) exchange. However, there is a lack of knowledge on the variations in CO2 exchange along elevation gradients in tundra ecosystems. Aiming to quantify CO2 exchange along elevation gradients in tundra ecosystems, we measured ecosystem CO2 exchange in the peak growing season along an elevation gradient (9-387 m above sea level, m.a.s.l) in an arctic heath tundra, West Greenland. We also performed an ex-situ incubation experiment based on soil samples collected along the elevation gradient, to assess the sensitivity of soil respiration to changes in temperature and soil moisture. There was no apparent temperature gradient along the elevation gradient, with the lowest air and soil temperatures at the second lowest elevation site (83 m). The lowest elevation site exhibited the highest net ecosystem exchange (NEE), ecosystem respiration (ER) and gross ecosystem production (GEP) rates, while the other three sites generally showed intercomparable CO2 exchange rates. Topography aspect-induced soil microclimate differences rather than the elevation were the primary drivers for the soil nutrient status and ecosystem CO2 exchange. The temperature sensitivity of soil respiration above 0 degrees C increased with elevation, while elevation did not regulate the temperature sensitivity below 0 degrees C or the moisture sensitivity. Soil total nitrogen, carbon, and ammonium contents were the controls of temperature sensitivity below 0 degrees C. Overall, our results emphasize the significance of considering elevation and microclimate when predicting the response of CO2 balance to climate change or upscaling to regional scales, particularly during the growing season. However, outside the growing season, other factors such as soil nutrient dynamics, play a more influential role in driving ecosystem CO2 fluxes. To accurately upscale or predict annual CO2 fluxes in arctic tundra regions, it is crucial to incorporate elevation-specific microclimate conditions into ecosystem models. |
ArticleNumber | 117108 |
Author | Xu, Wenyi Michelsen, Anders Lennart Ambus, Per Westergaard-Nielsen, Andreas |
Author_xml | – sequence: 1 givenname: Wenyi surname: Xu fullname: Xu, Wenyi email: wexu@ign.ku.dk organization: Department of Soil and Environment, Swedish University of Agricultural Sciences, Sweden – sequence: 2 givenname: Andreas surname: Westergaard-Nielsen fullname: Westergaard-Nielsen, Andreas organization: Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark – sequence: 3 givenname: Anders surname: Michelsen fullname: Michelsen, Anders organization: Department of Biology, University of Copenhagen, Denmark – sequence: 4 givenname: Per surname: Lennart Ambus fullname: Lennart Ambus, Per organization: Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark |
BackLink | https://res.slu.se/id/publ/139491$$DView record from Swedish Publication Index |
BookMark | eNqFkU2PEzEMhkdokegu_AWUI5cOceYjzQ1U8bHSSlz2HjmJZ0g1TUoyU7ZH_jkpA0icOFmx_T52_N5WNyEGqqrXwGvg0L891CNFR-mIteCirQEk8N2zagM7Kba96NRNteGlcyt5Dy-q25wP5Sm54Jvqxx6TiYE5H5-8I0ZP9iuGkRgGx2Y6nijhvCRimUL2sz_7-cLiwHL0E0uUT77UfQHgFMNYVIwmOq-pMaHzFGbmw7WAyc7esnkJLiEjG_Mllwkvq-cDTple_Y531ePHD4_7z9uHL5_u9-8ftrZtu3lru0YADNJwkr0DYwUfOkdgkQ8tKeCq5UK0XPbcDEqp1gmuEI0tV1BD09xV9yvWRTzoU_JHTBcd0etfiZhGjansN5EGI4oeEdQArQTYoel6Q1IIIuOACqteWfk7nRbzDy1Pi8F0DToXVKNaBUXwZhWcUvy2UJ710WdL04SB4pJ1A10LUspOlNZ-bbUp5pxo-EsHrq9-64P-47e--q1Xv4vw3SqkcsSzp7KDLde35HwiO5dv-v8hfgIb5rvl |
Cites_doi | 10.1007/978-3-030-59538-8_4 10.1016/j.soilbio.2008.01.030 10.1016/j.soilbio.2016.02.008 10.1016/j.soilbio.2007.12.002 10.1088/1748-9326/ac1222 10.1002/ece3.5762 10.1002/ppp.2182 10.1016/j.geoderma.2012.06.002 10.1016/j.agrformet.2010.01.011 10.1016/S1002-0160(15)60052-2 10.1016/j.geoderma.2018.11.014 10.1038/s41467-020-17790-5 10.1111/gcb.12029 10.1657/AAAR0016-028 10.1111/gcb.14502 10.5194/bg-13-1991-2016 10.1111/nph.16573 10.1177/0309133317745784 10.1657/1938-4246-45.4.429 10.1111/j.1751-8369.2010.00151.x 10.1016/j.jhydrol.2019.02.009 10.1002/2016JG003486 10.1016/j.soilbio.2006.09.017 10.1016/j.soilbio.2005.07.004 10.1111/j.1365-2486.2005.01065.x 10.1111/1365-2745.12599 10.1029/1999GB001134 10.1038/s43247-022-00498-3 10.1016/j.soilbio.2021.108488 10.1111/nph.12271 10.1016/j.soilbio.2011.01.017 10.1016/j.scitotenv.2018.10.060 10.1016/j.soilbio.2008.02.021 10.5194/wcd-4-747-2023 10.1111/gcb.12793 10.1371/journal.pone.0195400 10.1016/j.scitotenv.2021.148847 10.1111/j.1365-2486.2009.01898.x 10.1111/1365-2745.12247 10.3402/polar.v34.24252 10.1111/gcb.12832 10.1016/j.soilbio.2011.11.008 10.1073/pnas.1605365113 10.1038/nature13604 10.1016/j.soilbio.2004.12.011 10.1016/j.soilbio.2010.06.021 10.1016/j.polar.2012.11.002 10.1016/j.soilbio.2019.107698 10.1111/j.1747-0765.2010.00460.x 10.1111/gcb.14500 10.1111/gcb.13362 10.1657/1938-4246-43.2.189 10.1016/j.soilbio.2021.108356 10.1016/S0038-0717(02)00258-4 10.1073/pnas.0700180104 10.1111/j.1365-2486.2005.00963.x 10.1007/s10021-019-00400-x 10.1007/s11104-022-05362-z 10.1890/06-0649 10.1007/s11104-007-9264-y 10.1007/s10533-015-0176-2 10.3389/fpls.2019.01696 10.1016/j.soilbio.2013.01.002 10.1890/04-0988 10.1002/9781119480419.ch3 10.1016/j.soilbio.2003.09.008 10.1657/AAAR0015-077 10.1088/1748-9326/ac417e 10.1016/j.rse.2016.02.020 10.1657/1523-0430(06-015)[STARR]2.0.CO;2 10.1016/j.soilbio.2023.109013 10.1007/s10533-015-0122-3 10.1016/S0038-0717(02)00168-2 10.1111/j.1365-2486.2007.01371.x 10.1016/j.agrformet.2012.06.012 10.1007/s10533-011-9583-1 10.1111/j.1461-0248.2008.01223.x 10.1038/s43017-021-00233-0 10.1002/2014JG002805 10.3390/rs13132571 10.1016/j.geoderma.2006.03.049 10.1016/j.geoderma.2014.08.005 10.3389/fpls.2019.00330 10.1111/j.1365-2486.2004.00857.x |
ContentType | Journal Article |
Copyright | 2024 The Author(s) |
Copyright_xml | – notice: 2024 The Author(s) |
CorporateAuthor | Sveriges lantbruksuniversitet |
CorporateAuthor_xml | – name: Sveriges lantbruksuniversitet |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 ADTPV AOWAS D8T ZZAVC DOA |
DOI | 10.1016/j.geoderma.2024.117108 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | oai_doaj_org_article_1b2994aa19f147118ab56be722eebd1e oai_slubar_slu_se_139491 10_1016_j_geoderma_2024_117108 S0016706124003379 |
GeographicLocations | Greenland |
GeographicLocations_xml | – name: Greenland |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO ABEFU ABFNM ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACRPL ACSBN ADBBV ADEZE ADMUD ADNMO ADQTV ADVLN AEBSH AEFWE AEGFY AEIPS AEKER AENEX AEQOU AFFNX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SEP SES SEW SPC SPCBC SSA SSE SSH SSZ T5K VH1 WUQ XPP Y6R ZMT ~02 ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGRNS AIGII AIIUN AKBMS AKYEP CITATION 7S9 L.6 ADTPV AOWAS D8T EFKBS ZZAVC |
ID | FETCH-LOGICAL-c445t-c53211f7b0e76d1bc20f5de1ca0f4e9109402240760bf9994d209aabc1879f33 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 1872-6259 |
IngestDate | Wed Aug 27 01:27:46 EDT 2025 Thu Aug 21 06:45:23 EDT 2025 Wed Jul 02 03:19:07 EDT 2025 Tue Jul 01 04:59:38 EDT 2025 Sat Apr 26 15:42:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Net ecosystem exchange Soil nutrients Temperature sensitivity Gross ecosystem production Ecosystem respiration Moisture sensitivity |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c445t-c53211f7b0e76d1bc20f5de1ca0f4e9109402240760bf9994d209aabc1879f33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0016706124003379 |
PQID | 3154177752 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1b2994aa19f147118ab56be722eebd1e swepub_primary_oai_slubar_slu_se_139491 proquest_miscellaneous_3154177752 crossref_primary_10_1016_j_geoderma_2024_117108 elsevier_sciencedirect_doi_10_1016_j_geoderma_2024_117108 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Mikan, Schimel, Doyle (b0215) 2002; 34 Tsui, Chen (b0390) 2010; 56 Bracho, Natali, Pegoraro, Crummer, Schädel, Celis, Hale, Wu, Yin, Tiedje (b0050) 2016; 97 Rodeghiero, Cescatti (b0330) 2005; 11 Schimel, Mikan (b0345) 2005; 37 Findlay, Gibson, Kędra, Morata, Orchowska, Pavlov, Reigstad, Silyakova, Tremblay, Walczowski (b0115) 2015; 34 Heinze, Gensch, Weber, Joshi (b0155) 2017; 10 Dan, Nianpeng, Qing, Yuliang, Qiufeng, Zhiwei, Jianxing (b0095) 2016; 26 Richardson, Chatterjee, Jenerette (b0325) 2012; 46 Schimel, Bilbrough, Welker (b0340) 2004; 36 Carey, Tang, Templer, Kroeger, Crowther, Burton, Dukes, Emmett, Frey, Heskel (b0055) 2016; 113 Garten, Hanson (b0130) 2006; 136 Pedersen, Tamstorf, Abermann, Westergaard-Nielsen, Lund, Skov, Sigsgaard, Mylius, Hansen, Liston (b0285) 2016; 48 Pradel, Bravo, Merino, Trefault, Rodríguez, Knicker, Jara, Larama, Matus (b0300) 2023 Schaefer, Jafarov (b0335) 2016; 13 Elberling (b0105) 2007; 39 Treharne, Bjerke, Tømmervik, Stendardi, Phoenix (b0385) 2019; 25 Lenth, R., 2020. Emmeans: estimated marginal means, aka least-squares means. Rpackage version 1.4. 7. 2020. Sullivan, Stokes, McMillan, Weintraub (b0370) 2020; 11 Turner, Smithwick, Metzger, Tinker, Romme (b0395) 2007; 104 Vanhala, Karhu, Tuomi, Björklöf, Fritze, Liski (b0400) 2008; 40 Ravn, Elberling, Michelsen (b0315) 2020; 142 Aalto, le Roux, Luoto (b0005) 2013; 45 Kim, Kim, Enomoto, Kushida, Kondoh, Uchida (b0170) 2013; 7 Starr, Oberbauer, Ahlquist (b0365) 2008; 40 Makarov, Malysheva, Cornelissen, van Logtestijn, Glasser (b0200) 2008; 40 Córdova, Célleri, Shellito, Orellana-Alvear, Abril, Carrillo-Rojas (b0075) 2016; 48 Watts, Natali, Minions, Risk, Arndt, Zona, Euskirchen, Rocha, Sonnentag, Helbig (b0410) 2021; 16 Hopkins, Gonzalez-Meler, Flower, Lynch, Czimczik, Tang, Subke (b0160) 2013; 199 Onwuka, Mang (b0255) 2018; 8 Panikov, Flanagan, Oechel, Mastepanov, Christensen (b0265) 2006; 38 Team, R.C., 2019. R: A language and environment for statistical computing (Version 3.6. 1)[Software package]. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from . Heijmans, Magnússon, Lara, Frost, Myers-Smith, van Huissteden, Jorgenson, Fedorov, Epstein, Lawrence (b0150) 2022; 3 Soong, Cotrufo (b0360) 2015; 21 Xu, Prieme, Cooper, Mörsdorf, Semenchuk, Elberling, Grogan, Ambus (b0430) 2021; 160 Xu, Zhou, Ruan, Luo, Wang (b0440) 2010; 42 Ma, Zang, Xie, Chen, Xu, Zhao, Shen (b0195) 2019; 9 Christiansen, Haugwitz, Priemé, Nielsen, Elberling, Michelsen, Grogan, Blok (b0070) 2017; 23 Rantanen, Karpechko, Lipponen, Nordling, Hyvärinen, Ruosteenoja, Vihma, Laaksonen (b0310) 2022; 3 Flerchinger, Fellows, Seyfried, Clark, Lohse (b0120) 2020; 23 Nottingham, Bååth, Reischke, Salinas, Meir (b0240) 2019; 25 Ramm, Liu, Ambus, Butterbach-Bahl, Hu, Martikainen, Marushchak, Mueller, Rennenberg, Schloter (b0305) 2022; 17 Davidson, Janssens, Luo (b0100) 2006; 12 Oberbauer, Tweedie, Welker, Fahnestock, Henry, Webber, Hollister, Walker, Kuchy, Elmore, Starr (b0245) 2007; 77 Boddy, Roberts, Hill, Farrar, Jones (b0035) 2008; 40 Gutiérrez-Girón, Díaz-Pinés, Rubio, Gavilán (b0140) 2015; 237 Knowles, Blanken, Williams (b0175) 2015; 125 Mankin, E., 2008. Principal components analysis: a how-to manual for R. Desde Billings, Ballantyne (b0030) 2013; 19 Shahi, Abermann, Silva, Langley, Larsen, Mastepanov, Schöner (b0355) 2023; 4 Celi, L., Said‐Pullicino, D., Bol, R., Lang, F., Luster, J., 2022. Interconnecting soil organic matter with nitrogen and phosphorus cycling. Multi‐Scale Biogeochemical Processes in Soil Ecosystems: Critical Reactions and Resilience to Climate Changes, 51–77. Dan, Meng, He, He, Zhao, Chen, Zhang, Cai, Müller (b0090) 2022; 474 Elberling, Brandt (b0110) 2003; 35 Schindlbacher, de Gonzalo, Díaz-Pinés, Gorría, Matthews, Inclán, Zechmeister-Boltenstern, Rubio, Jandl (b0350) 2010 Frerichs, Daum, Pacholski (b0125) 2020; 10 Balogh, Pintér, Fóti, Cserhalmi, Papp, Nagy (b0020) 2011; 43 Körner, C., 2021. The climate plants experience. Alpine Plant Life: functional plant ecology of high mountain ecosystems, 65–88. Corre, Brumme, Veldkamp, Beese (b0080) 2007; 13 Dagg, Lafleur (b0085) 2011; 43 Kobayashi, Yunus, Nagai, Sugiura, Kim, Van Dam, Nagano, Zona, Harazono, Bret-Harte (b0180) 2016; 177 Virkkala, Virtanen, Lehtonen, Rinne, Luoto (b0405) 2018; 42 Christensen, Friborg, Sommerkorn, Kaplan, Illeris, Soegaard, Nordstroem, Jonasson (b0065) 2000; 14 Ni, Cheng, Wang, Ng, Garg (b0230) 2019; 571 Pirk, Tamstorf, Lund, Mastepanov, Pedersen, Mylius, Parmentier, Christiansen, Christensen (b0290) 2016; 121 Nottingham, Turner, Whitaker, Ostle, Bardgett, McNamara, Salinas, Meir (b0235) 2016; 127 Zhang, Liu, Cheng, Cai, Müller, Zhang (b0455) 2019; 337 Zona, Lipson, Zulueta, Oberbauer, Oechel (b0460) 2011 Paré, Bedard-Haughn (b0270) 2012; 189 Moyano, Manzoni, Chenu (b0225) 2013; 59 Sun, Wang, Hu, Yao, Guo (b0375) 2018; 13 Hartley, Hopkins, Garnett, Sommerkorn, Wookey (b0145) 2008; 11 Azevedo, Parker, Siewert, Subke (b0010) 2021; 13 Borchard, Schirrmann, Cayuela, Kammann, Wrage-Mönnig, Estavillo, Fuertes-Mendizábal, Sigua, Spokas, Ippolito (b0045) 2019; 651 Xu, Lambæk, Holm, Furbo-Halken, Elberling, Ambus (b0425) 2021; 795 Göbel, Coners, Hertel, Willinghöfer, Leuschner (b0135) 2019; 10 Pörtl, Zechmeister-Boltenstern, Wanek, Ambus, Berger (b0295) 2007; 295 Azizi-Rad, Guggenberger, Ma, Sierra (b0015) 2022; 165 Whitaker, Ostle, Nottingham, Ccahuana, Salinas, Bardgett, Meir, McNamara (b0420) 2014; 102 Zeeman, Hiller, Gilgen, Michna, Plüss, Buchmann, Eugster (b0445) 2010; 150 Booth, Stark, Rastetter (b0040) 2005; 75 Xu, Frendrup, Michelsen, Elberling, Ambus (b0435) 2023; 180 Revelle, W., Revelle, M.W., 2015. Package ‘psych’. The comprehensive R archive network 337. Karhu, Auffret, Dungait, Hopkins, Prosser, Singh, Subke, Wookey, Ågren, Sebastia (b0165) 2014; 513 McIntire, Piper, Fajardo (b0210) 2016; 104 Bauer, Weihermüller, Huisman, Herbst, Graf, Sequaris, Vereecken (b0025) 2012; 108 Öquist, Sparrman, Klemedtsson, Drotz, Grip, Schleucher, Nilsson (b0260) 2009; 15 Morgner, Elberling, Strebel, Cooper (b0220) 2010; 29 Zhang, Dong, Xu, Chen, Zhao, Gao, Hu, Huang (b0450) 2015; 120 Ohkubo, Iwata, Hirota (b0250) 2012; 165 Welker, Fahnestock, Henry, O'Dea, Chimner (b0415) 2004; 10 Parker, Subke, Wookey (b0275) 2015; 21 Parker, Clemmensen, Friggens, Hartley, Johnson, Lindahl, Olofsson, Siewert, Street, Subke (b0280) 2020; 227 Kobayashi (10.1016/j.geoderma.2024.117108_b0180) 2016; 177 Gutiérrez-Girón (10.1016/j.geoderma.2024.117108_b0140) 2015; 237 Starr (10.1016/j.geoderma.2024.117108_b0365) 2008; 40 Zeeman (10.1016/j.geoderma.2024.117108_b0445) 2010; 150 Elberling (10.1016/j.geoderma.2024.117108_b0110) 2003; 35 Xu (10.1016/j.geoderma.2024.117108_b0440) 2010; 42 Ohkubo (10.1016/j.geoderma.2024.117108_b0250) 2012; 165 Nottingham (10.1016/j.geoderma.2024.117108_b0240) 2019; 25 Schimel (10.1016/j.geoderma.2024.117108_b0345) 2005; 37 Panikov (10.1016/j.geoderma.2024.117108_b0265) 2006; 38 Dagg (10.1016/j.geoderma.2024.117108_b0085) 2011; 43 10.1016/j.geoderma.2024.117108_b0320 Öquist (10.1016/j.geoderma.2024.117108_b0260) 2009; 15 Bracho (10.1016/j.geoderma.2024.117108_b0050) 2016; 97 Richardson (10.1016/j.geoderma.2024.117108_b0325) 2012; 46 Balogh (10.1016/j.geoderma.2024.117108_b0020) 2011; 43 Azevedo (10.1016/j.geoderma.2024.117108_b0010) 2021; 13 Christiansen (10.1016/j.geoderma.2024.117108_b0070) 2017; 23 Elberling (10.1016/j.geoderma.2024.117108_b0105) 2007; 39 Pirk (10.1016/j.geoderma.2024.117108_b0290) 2016; 121 Zona (10.1016/j.geoderma.2024.117108_b0460) 2011 Findlay (10.1016/j.geoderma.2024.117108_b0115) 2015; 34 Borchard (10.1016/j.geoderma.2024.117108_b0045) 2019; 651 Parker (10.1016/j.geoderma.2024.117108_b0275) 2015; 21 Onwuka (10.1016/j.geoderma.2024.117108_b0255) 2018; 8 Ma (10.1016/j.geoderma.2024.117108_b0195) 2019; 9 Göbel (10.1016/j.geoderma.2024.117108_b0135) 2019; 10 Paré (10.1016/j.geoderma.2024.117108_b0270) 2012; 189 Azizi-Rad (10.1016/j.geoderma.2024.117108_b0015) 2022; 165 10.1016/j.geoderma.2024.117108_b0190 Frerichs (10.1016/j.geoderma.2024.117108_b0125) 2020; 10 Oberbauer (10.1016/j.geoderma.2024.117108_b0245) 2007; 77 Schindlbacher (10.1016/j.geoderma.2024.117108_b0350) 2010 Rantanen (10.1016/j.geoderma.2024.117108_b0310) 2022; 3 Vanhala (10.1016/j.geoderma.2024.117108_b0400) 2008; 40 Sun (10.1016/j.geoderma.2024.117108_b0375) 2018; 13 Boddy (10.1016/j.geoderma.2024.117108_b0035) 2008; 40 Karhu (10.1016/j.geoderma.2024.117108_b0165) 2014; 513 Mikan (10.1016/j.geoderma.2024.117108_b0215) 2002; 34 Bauer (10.1016/j.geoderma.2024.117108_b0025) 2012; 108 Watts (10.1016/j.geoderma.2024.117108_b0410) 2021; 16 Dan (10.1016/j.geoderma.2024.117108_b0090) 2022; 474 Pörtl (10.1016/j.geoderma.2024.117108_b0295) 2007; 295 Tsui (10.1016/j.geoderma.2024.117108_b0390) 2010; 56 Treharne (10.1016/j.geoderma.2024.117108_b0385) 2019; 25 Aalto (10.1016/j.geoderma.2024.117108_b0005) 2013; 45 Schimel (10.1016/j.geoderma.2024.117108_b0340) 2004; 36 Ravn (10.1016/j.geoderma.2024.117108_b0315) 2020; 142 Nottingham (10.1016/j.geoderma.2024.117108_b0235) 2016; 127 Knowles (10.1016/j.geoderma.2024.117108_b0175) 2015; 125 Dan (10.1016/j.geoderma.2024.117108_b0095) 2016; 26 Xu (10.1016/j.geoderma.2024.117108_b0435) 2023; 180 Corre (10.1016/j.geoderma.2024.117108_b0080) 2007; 13 10.1016/j.geoderma.2024.117108_b0380 10.1016/j.geoderma.2024.117108_b0185 Moyano (10.1016/j.geoderma.2024.117108_b0225) 2013; 59 Morgner (10.1016/j.geoderma.2024.117108_b0220) 2010; 29 10.1016/j.geoderma.2024.117108_b0060 Parker (10.1016/j.geoderma.2024.117108_b0280) 2020; 227 Carey (10.1016/j.geoderma.2024.117108_b0055) 2016; 113 Pedersen (10.1016/j.geoderma.2024.117108_b0285) 2016; 48 Zhang (10.1016/j.geoderma.2024.117108_b0455) 2019; 337 Kim (10.1016/j.geoderma.2024.117108_b0170) 2013; 7 Schaefer (10.1016/j.geoderma.2024.117108_b0335) 2016; 13 Booth (10.1016/j.geoderma.2024.117108_b0040) 2005; 75 Billings (10.1016/j.geoderma.2024.117108_b0030) 2013; 19 Hopkins (10.1016/j.geoderma.2024.117108_b0160) 2013; 199 Davidson (10.1016/j.geoderma.2024.117108_b0100) 2006; 12 Rodeghiero (10.1016/j.geoderma.2024.117108_b0330) 2005; 11 Ni (10.1016/j.geoderma.2024.117108_b0230) 2019; 571 Xu (10.1016/j.geoderma.2024.117108_b0430) 2021; 160 Shahi (10.1016/j.geoderma.2024.117108_b0355) 2023; 4 Garten (10.1016/j.geoderma.2024.117108_b0130) 2006; 136 Turner (10.1016/j.geoderma.2024.117108_b0395) 2007; 104 Flerchinger (10.1016/j.geoderma.2024.117108_b0120) 2020; 23 Whitaker (10.1016/j.geoderma.2024.117108_b0420) 2014; 102 Xu (10.1016/j.geoderma.2024.117108_b0425) 2021; 795 Heinze (10.1016/j.geoderma.2024.117108_b0155) 2017; 10 Makarov (10.1016/j.geoderma.2024.117108_b0200) 2008; 40 Virkkala (10.1016/j.geoderma.2024.117108_b0405) 2018; 42 Pradel (10.1016/j.geoderma.2024.117108_b0300) 2023 Soong (10.1016/j.geoderma.2024.117108_b0360) 2015; 21 Hartley (10.1016/j.geoderma.2024.117108_b0145) 2008; 11 Heijmans (10.1016/j.geoderma.2024.117108_b0150) 2022; 3 Sullivan (10.1016/j.geoderma.2024.117108_b0370) 2020; 11 10.1016/j.geoderma.2024.117108_b0205 McIntire (10.1016/j.geoderma.2024.117108_b0210) 2016; 104 Córdova (10.1016/j.geoderma.2024.117108_b0075) 2016; 48 Zhang (10.1016/j.geoderma.2024.117108_b0450) 2015; 120 Ramm (10.1016/j.geoderma.2024.117108_b0305) 2022; 17 Christensen (10.1016/j.geoderma.2024.117108_b0065) 2000; 14 Welker (10.1016/j.geoderma.2024.117108_b0415) 2004; 10 |
References_xml | – volume: 40 start-page: 1082 year: 2008 end-page: 1089 ident: b0200 article-title: Consistent patterns of 15N distribution through soil profiles in diverse alpine and tundra ecosystems publication-title: Soil Biol. Biochem. – volume: 14 start-page: 701 year: 2000 end-page: 713 ident: b0065 article-title: Trace gas exchange in a high-Arctic valley: 1. Variationsin CO publication-title: Global Biogeochem. Cycles – reference: Körner, C., 2021. The climate plants experience. Alpine Plant Life: functional plant ecology of high mountain ecosystems, 65–88. – volume: 34 start-page: 1785 year: 2002 end-page: 1795 ident: b0215 article-title: Temperature controls of microbial respiration in arctic tundra soils above and below freezing publication-title: Soil Biol. Biochem. – volume: 10 start-page: 1981 year: 2004 end-page: 1995 ident: b0415 article-title: CO publication-title: Glob. Chang. Biol. – volume: 102 start-page: 1058 year: 2014 end-page: 1071 ident: b0420 article-title: Microbial community composition explains soil respiration responses to changing carbon inputs along an A ndes-to-A mazon elevation gradient publication-title: J. Ecol. – reference: Lenth, R., 2020. Emmeans: estimated marginal means, aka least-squares means. Rpackage version 1.4. 7. 2020. – volume: 571 start-page: 494 year: 2019 end-page: 502 ident: b0230 article-title: Effects of vegetation on soil temperature and water content: field monitoring and numerical modelling publication-title: J. Hydrol. – volume: 10 start-page: 808 year: 2017 end-page: 821 ident: b0155 article-title: Soil temperature modifies effects of soil biota on plant growth publication-title: J. Plant Ecol. – volume: 48 start-page: 673 year: 2016 end-page: 684 ident: b0075 article-title: Near-surface air temperature lapse rate over complex terrain in the Southern Ecuadorian Andes: implications for temperature mapping publication-title: Arct. Antarct. Alp. Res. – volume: 23 start-page: 246 year: 2020 end-page: 263 ident: b0120 article-title: Water and carbon fluxes along an elevational gradient in a sagebrush ecosystem publication-title: Ecosystems – volume: 199 start-page: 339 year: 2013 end-page: 351 ident: b0160 article-title: Ecosystem-level controls on root-rhizosphere respiration publication-title: New Phytol. – volume: 165 year: 2022 ident: b0015 article-title: Sensitivity of soil respiration rate with respect to temperature, moisture and oxygen under freezing and thawing publication-title: Soil Biol. Biochem. – volume: 75 start-page: 139 year: 2005 end-page: 157 ident: b0040 article-title: Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data publication-title: Ecol. Monogr. – reference: …. – volume: 29 start-page: 58 year: 2010 end-page: 74 ident: b0220 article-title: The importance of winter in annual ecosystem respiration in the High Arctic: effects of snow depth in two vegetation types publication-title: Polar Res. – start-page: 115 year: 2010 ident: b0350 article-title: Temperature sensitivity of forest soil organic matter decomposition along two elevation gradients publication-title: J. Geophys. Res. Biogeo. – volume: 59 start-page: 72 year: 2013 end-page: 85 ident: b0225 article-title: Responses of soil heterotrophic respiration to moisture availability: an exploration of processes and models publication-title: Soil Biol. Biochem. – volume: 23 start-page: 406 year: 2017 end-page: 420 ident: b0070 article-title: Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra publication-title: Glob. Chang. Biol. – volume: 13 start-page: 1509 year: 2007 end-page: 1527 ident: b0080 article-title: Changes in nitrogen cycling and retention processes in soils under spruce forests along a nitrogen enrichment gradient in Germany publication-title: Glob. Chang. Biol. – volume: 25 start-page: 827 year: 2019 end-page: 838 ident: b0240 article-title: Adaptation of soil microbial growth to temperature: using a tropical elevation gradient to predict future changes publication-title: Glob. Chang. Biol. – volume: 15 start-page: 2715 year: 2009 end-page: 2722 ident: b0260 article-title: Water availability controls microbial temperature responses in frozen soil CO publication-title: Glob. Chang. Biol. – year: 2023 ident: b0300 article-title: Microbial response to warming and cellulose addition in a maritime Antarctic soil publication-title: Permafr. Periglac. Process. – volume: 12 start-page: 154 year: 2006 end-page: 164 ident: b0100 article-title: On the variability of respiration in terrestrial ecosystems: moving beyond Q10 publication-title: Glob. Chang. Biol. – volume: 7 start-page: 162 year: 2013 end-page: 173 ident: b0170 article-title: Latitudinal distribution of soil CO publication-title: Alaska Polar Sci. – volume: 227 start-page: 1818 year: 2020 end-page: 1830 ident: b0280 article-title: Rhizosphere allocation by canopy-forming species dominates soil CO publication-title: New Phytol. – reference: Team, R.C., 2019. R: A language and environment for statistical computing (Version 3.6. 1)[Software package]. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from – volume: 10 start-page: 330 year: 2019 ident: b0135 article-title: The role of low soil temperature for photosynthesis and stomatal conductance of three graminoids from different elevations publication-title: Front. Plant Sci. – volume: 40 start-page: 1758 year: 2008 end-page: 1764 ident: b0400 article-title: Temperature sensitivity of soil organic matter decomposition in southern and northern areas of the boreal forest zone publication-title: Soil Biol. Biochem. – volume: 474 start-page: 581 year: 2022 end-page: 594 ident: b0090 article-title: Regulation of nitrogen acquisition in vegetables by different impacts on autotrophic and heterotrophic nitrification publication-title: Plant Soil – start-page: 116 year: 2011 ident: b0460 article-title: Microtopographic controls on ecosystem functioning in the Arctic Coastal Plain publication-title: J. Geophys. Res. Biogeol. – volume: 40 start-page: 181 year: 2008 end-page: 191 ident: b0365 article-title: The photosynthetic response of Alaskan tundra plants to increased season length and soil warming publication-title: Arct. Antarct. Alp. Res. – volume: 56 start-page: 319 year: 2010 end-page: 331 ident: b0390 article-title: Net nitrogen mineralization and nitrification of different landscape positions in a lowland subtropical rainforest in Taiwan publication-title: Soil Sci. Plant Nutr. – volume: 45 start-page: 429 year: 2013 end-page: 439 ident: b0005 article-title: Vegetation mediates soil temperature and moisture in arctic-alpine environments publication-title: Arct. Antarct. Alp. Res. – volume: 125 start-page: 185 year: 2015 end-page: 202 ident: b0175 article-title: Soil respiration variability across a soil moisture and vegetation community gradient within a snow-scoured alpine meadow publication-title: Biogeochemistry – volume: 189 start-page: 469 year: 2012 end-page: 479 ident: b0270 article-title: Landscape-scale N mineralization and greenhouse gas emissions in Canadian Cryosols publication-title: Geoderma – reference: Revelle, W., Revelle, M.W., 2015. Package ‘psych’. The comprehensive R archive network 337. – volume: 21 start-page: 2321 year: 2015 end-page: 2333 ident: b0360 article-title: Annual burning of a tallgrass prairie inhibits C and N cycling in soil, increasing recalcitrant pyrogenic organic matter storage while reducing N availability publication-title: Glob. Chang. Biol. – volume: 16 year: 2021 ident: b0410 article-title: Soil respiration strongly offsets carbon uptake in Alaska and Northwest Canada publication-title: Environ. Res. Lett. – volume: 165 start-page: 25 year: 2012 end-page: 34 ident: b0250 article-title: Influence of snow-cover and soil-frost variations on continuously monitored CO publication-title: Agric. For. Meteorol. – reference: Mankin, E., 2008. Principal components analysis: a how-to manual for R. Desde – volume: 37 start-page: 1411 year: 2005 end-page: 1418 ident: b0345 article-title: Changing microbial substrate use in Arctic tundra soils through a freeze-thaw cycle publication-title: Soil Biol. Biochem. – volume: 13 start-page: 1991 year: 2016 end-page: 2001 ident: b0335 article-title: A parameterization of respiration in frozen soils based on substrate availability publication-title: Biogeosciences – volume: 36 start-page: 217 year: 2004 end-page: 227 ident: b0340 article-title: Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities publication-title: Soil Biol. Biochem. – volume: 35 start-page: 263 year: 2003 end-page: 272 ident: b0110 article-title: Uncoupling of microbial CO publication-title: Soil Biol. Biochem. – volume: 104 start-page: 4782 year: 2007 end-page: 4789 ident: b0395 article-title: Inorganic nitrogen availability after severe stand-replacing fire in the Greater Yellowstone ecosystem publication-title: Proc. Natl. Acad. Sci. – volume: 39 start-page: 646 year: 2007 end-page: 654 ident: b0105 article-title: Annual soil CO publication-title: Soil Biol. Biochem. – volume: 97 start-page: 1 year: 2016 end-page: 14 ident: b0050 article-title: Temperature sensitivity of organic matter decomposition of permafrost-region soils during laboratory incubations publication-title: Soil Biol. Biochem. – volume: 651 start-page: 2354 year: 2019 end-page: 2364 ident: b0045 article-title: Biochar, soil and land-use interactions that reduce nitrate leaching and N publication-title: Sci. Total Environ. – volume: 34 start-page: 24252 year: 2015 ident: b0115 article-title: Responses in Arctic marine carbon cycle processes: conceptual scenarios and implications for ecosystem function publication-title: Polar Res. – volume: 113 start-page: 13797 year: 2016 end-page: 13802 ident: b0055 article-title: Temperature response of soil respiration largely unaltered with experimental warming publication-title: Proc. Natl. Acad. Sci. – volume: 42 start-page: 1811 year: 2010 end-page: 1815 ident: b0440 article-title: Temperature sensitivity increases with soil organic carbon recalcitrance along an elevational gradient in the Wuyi Mountains, China publication-title: Soil Biol. Biochem. – volume: 19 start-page: 90 year: 2013 end-page: 102 ident: b0030 article-title: How interactions between microbial resource demands, soil organic matter stoichiometry, and substrate reactivity determine the direction and magnitude of soil respiratory responses to warming publication-title: Glob. Chang. Biol. – volume: 160 year: 2021 ident: b0430 article-title: Deepened snow enhances gross nitrogen cycling among Pan-Arctic tundra soils during both winter and summer publication-title: Soil Biol. Biochem. – volume: 40 start-page: 1557 year: 2008 end-page: 1566 ident: b0035 article-title: Turnover of low molecular weight dissolved organic C (DOC) and microbial C exhibit different temperature sensitivities in Arctic tundra soils publication-title: Soil Biol. Biochem. – volume: 38 start-page: 785 year: 2006 end-page: 794 ident: b0265 article-title: Microbial activity in soils frozen to below− 39 C publication-title: Soil Biol. Biochem. – volume: 150 start-page: 519 year: 2010 end-page: 530 ident: b0445 article-title: Management and climate impacts on net CO publication-title: Agric. For. Meteorol. – reference: Celi, L., Said‐Pullicino, D., Bol, R., Lang, F., Luster, J., 2022. Interconnecting soil organic matter with nitrogen and phosphorus cycling. Multi‐Scale Biogeochemical Processes in Soil Ecosystems: Critical Reactions and Resilience to Climate Changes, 51–77. – volume: 43 start-page: 189 year: 2011 end-page: 197 ident: b0085 article-title: Vegetation community, foliar nitrogen, and temperature effects on tundra CO publication-title: Arct. Antarct. Alp. Res. – volume: 3 start-page: 68 year: 2022 end-page: 84 ident: b0150 article-title: Tundra vegetation change and impacts on permafrost publication-title: Nat. Rev. Earth Environ. – volume: 120 start-page: 773 year: 2015 end-page: 787 ident: b0450 article-title: Soil respiration sensitivities to water and temperature in a revegetated desert publication-title: J. Geophys. Res. Biogeol. – volume: 3 start-page: 168 year: 2022 ident: b0310 article-title: The Arctic has warmed nearly four times faster than the globe since 1979 publication-title: Commun. Earth Environ. – volume: 237 start-page: 1 year: 2015 end-page: 8 ident: b0140 article-title: Both altitude and vegetation affect temperature sensitivity of soil organic matter decomposition in Mediterranean high mountain soils publication-title: Geoderma – volume: 11 start-page: 1024 year: 2005 end-page: 1041 ident: b0330 article-title: Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps publication-title: Glob. Chang. Biol. – volume: 337 start-page: 965 year: 2019 end-page: 972 ident: b0455 article-title: Composition of soil recalcitrant C regulates nitrification rates in acidic soils publication-title: Geoderma – volume: 21 start-page: 2070 year: 2015 end-page: 2081 ident: b0275 article-title: Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline publication-title: Glob. Chang. Biol. – volume: 11 start-page: 4024 year: 2020 ident: b0370 article-title: Labile carbon limits late winter microbial activity near Arctic treeline publication-title: Nat. Commun. – volume: 13 start-page: e0195400 year: 2018 ident: b0375 article-title: Spatial variations of soil respiration and temperature sensitivity along a steep slope of the semiarid Loess Plateau publication-title: PLoS One – volume: 513 start-page: 81 year: 2014 end-page: 84 ident: b0165 article-title: Temperature sensitivity of soil respiration rates enhanced by microbial community response publication-title: Nature – volume: 142 year: 2020 ident: b0315 article-title: Arctic soil carbon turnover controlled by experimental snow addition, summer warming and shrub removal publication-title: Soil Biol. Biochem. – volume: 13 start-page: 2571 year: 2021 ident: b0010 article-title: Predicting soil respiration from plant productivity (NDVI) in a sub-Arctic tundra ecosystem publication-title: Remote Sens. (Basel) – volume: 127 start-page: 217 year: 2016 end-page: 230 ident: b0235 article-title: Temperature sensitivity of soil enzymes along an elevation gradient in the Peruvian Andes publication-title: Biogeochemistry – volume: 77 start-page: 221 year: 2007 end-page: 238 ident: b0245 article-title: Tundra CO publication-title: Ecol. Monogr. – volume: 17 year: 2022 ident: b0305 article-title: A review of the importance of mineral nitrogen cycling in the plant-soil-microbe system of permafrost-affected soils—changing the paradigm publication-title: Environ. Res. Lett. – volume: 9 start-page: 12846 year: 2019 end-page: 12857 ident: b0195 article-title: Soil respiration of four forests along elevation gradient in northern subtropical China publication-title: Ecol. Evol. – reference: . – volume: 48 start-page: 653 year: 2016 end-page: 671 ident: b0285 article-title: Spatiotemporal characteristics of seasonal snow cover in Northeast Greenland from in situ observations publication-title: Arct. Antarct. Alp. Res. – volume: 180 year: 2023 ident: b0435 article-title: Deepened snow in combination with summer warming increases growing season nitrous oxide emissions in dry tundra, but not in wet tundra publication-title: Soil Biol. Biochem. – volume: 136 start-page: 342 year: 2006 end-page: 352 ident: b0130 article-title: Measured forest soil C stocks and estimated turnover times along an elevation gradient publication-title: Geoderma – volume: 26 start-page: 399 year: 2016 end-page: 407 ident: b0095 article-title: Effects of temperature and moisture on soil organic matter decomposition along elevation gradients on the Changbai Mountains, Northeast China publication-title: Pedosphere – volume: 11 start-page: 1092 year: 2008 end-page: 1100 ident: b0145 article-title: Soil microbial respiration in arctic soil does not acclimate to temperature publication-title: Ecol. Lett. – volume: 104 start-page: 1379 year: 2016 end-page: 1390 ident: b0210 article-title: Wind exposure and light exposure, more than elevation-related temperature, limit tree line seedling abundance on three continents publication-title: J. Ecol. – volume: 8 start-page: 34 year: 2018 end-page: 37 ident: b0255 article-title: Effects of soil temperature on some soil properties and plant growth publication-title: Adv. Plants Agric. Res. – volume: 108 start-page: 119 year: 2012 end-page: 134 ident: b0025 article-title: Inverse determination of heterotrophic soil respiration response to temperature and water content under field conditions publication-title: Biogeochemistry – volume: 46 start-page: 89 year: 2012 end-page: 95 ident: b0325 article-title: Optimum temperatures for soil respiration along a semi-arid elevation gradient in southern California publication-title: Soil Biol. Biochem. – volume: 795 year: 2021 ident: b0425 article-title: Effects of experimental fire in combination with climate warming on greenhouse gas fluxes in Arctic tundra soils publication-title: Sci. Total Environ. – volume: 42 start-page: 162 year: 2018 end-page: 184 ident: b0405 article-title: The current state of CO publication-title: Prog. Phys. Geogr.: Earth Environ. – volume: 4 start-page: 747 year: 2023 end-page: 771 ident: b0355 article-title: The importance of regional sea-ice variability for the coastal climate and near-surface temperature gradients in Northeast Greenland publication-title: Weather Clim. Dyn. – volume: 43 start-page: 1006 year: 2011 end-page: 1013 ident: b0020 article-title: Dependence of soil respiration on soil moisture, clay content, soil organic matter, and CO publication-title: Soil Biol. Biochem. – volume: 295 start-page: 79 year: 2007 end-page: 94 ident: b0295 article-title: Natural 15N abundance of soil N pools and N2O reflect the nitrogen dynamics of forest soils publication-title: Plant and Soil – volume: 177 start-page: 160 year: 2016 end-page: 170 ident: b0180 article-title: Latitudinal gradient of spruce forest understory and tundra phenology in Alaska as observed from satellite and ground-based data publication-title: Remote Sens. Environ. – volume: 25 start-page: 489 year: 2019 end-page: 503 ident: b0385 article-title: Arctic browning: Impacts of extreme climatic events on heathland ecosystem CO publication-title: Glob. Chang. Biol. – volume: 121 start-page: 2886 year: 2016 end-page: 2900 ident: b0290 article-title: Snowpack fluxes of methane and carbon dioxide from high Arctic tundra publication-title: J. Geophys. Res. Biogeo. – volume: 10 start-page: 1696 year: 2020 ident: b0125 article-title: Ammonia and ammonium exposure of basil (Ocimum basilicum L.) growing in an organically fertilized peat substrate and strategies to mitigate related harmful impacts on plant growth publication-title: Front. Plant Sci. – ident: 10.1016/j.geoderma.2024.117108_b0185 doi: 10.1007/978-3-030-59538-8_4 – volume: 40 start-page: 1557 year: 2008 ident: 10.1016/j.geoderma.2024.117108_b0035 article-title: Turnover of low molecular weight dissolved organic C (DOC) and microbial C exhibit different temperature sensitivities in Arctic tundra soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2008.01.030 – volume: 97 start-page: 1 year: 2016 ident: 10.1016/j.geoderma.2024.117108_b0050 article-title: Temperature sensitivity of organic matter decomposition of permafrost-region soils during laboratory incubations publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.02.008 – volume: 40 start-page: 1082 year: 2008 ident: 10.1016/j.geoderma.2024.117108_b0200 article-title: Consistent patterns of 15N distribution through soil profiles in diverse alpine and tundra ecosystems publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2007.12.002 – volume: 16 year: 2021 ident: 10.1016/j.geoderma.2024.117108_b0410 article-title: Soil respiration strongly offsets carbon uptake in Alaska and Northwest Canada publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ac1222 – volume: 9 start-page: 12846 year: 2019 ident: 10.1016/j.geoderma.2024.117108_b0195 article-title: Soil respiration of four forests along elevation gradient in northern subtropical China publication-title: Ecol. Evol. doi: 10.1002/ece3.5762 – year: 2023 ident: 10.1016/j.geoderma.2024.117108_b0300 article-title: Microbial response to warming and cellulose addition in a maritime Antarctic soil publication-title: Permafr. Periglac. Process. doi: 10.1002/ppp.2182 – volume: 189 start-page: 469 year: 2012 ident: 10.1016/j.geoderma.2024.117108_b0270 article-title: Landscape-scale N mineralization and greenhouse gas emissions in Canadian Cryosols publication-title: Geoderma doi: 10.1016/j.geoderma.2012.06.002 – volume: 150 start-page: 519 year: 2010 ident: 10.1016/j.geoderma.2024.117108_b0445 article-title: Management and climate impacts on net CO2 fluxes and carbon budgets of three grasslands along an elevational gradient in Switzerland publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2010.01.011 – volume: 26 start-page: 399 year: 2016 ident: 10.1016/j.geoderma.2024.117108_b0095 article-title: Effects of temperature and moisture on soil organic matter decomposition along elevation gradients on the Changbai Mountains, Northeast China publication-title: Pedosphere doi: 10.1016/S1002-0160(15)60052-2 – ident: 10.1016/j.geoderma.2024.117108_b0190 – volume: 337 start-page: 965 year: 2019 ident: 10.1016/j.geoderma.2024.117108_b0455 article-title: Composition of soil recalcitrant C regulates nitrification rates in acidic soils publication-title: Geoderma doi: 10.1016/j.geoderma.2018.11.014 – volume: 11 start-page: 4024 year: 2020 ident: 10.1016/j.geoderma.2024.117108_b0370 article-title: Labile carbon limits late winter microbial activity near Arctic treeline publication-title: Nat. Commun. doi: 10.1038/s41467-020-17790-5 – volume: 19 start-page: 90 year: 2013 ident: 10.1016/j.geoderma.2024.117108_b0030 article-title: How interactions between microbial resource demands, soil organic matter stoichiometry, and substrate reactivity determine the direction and magnitude of soil respiratory responses to warming publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12029 – volume: 48 start-page: 653 year: 2016 ident: 10.1016/j.geoderma.2024.117108_b0285 article-title: Spatiotemporal characteristics of seasonal snow cover in Northeast Greenland from in situ observations publication-title: Arct. Antarct. Alp. Res. doi: 10.1657/AAAR0016-028 – volume: 25 start-page: 827 year: 2019 ident: 10.1016/j.geoderma.2024.117108_b0240 article-title: Adaptation of soil microbial growth to temperature: using a tropical elevation gradient to predict future changes publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14502 – volume: 13 start-page: 1991 year: 2016 ident: 10.1016/j.geoderma.2024.117108_b0335 article-title: A parameterization of respiration in frozen soils based on substrate availability publication-title: Biogeosciences doi: 10.5194/bg-13-1991-2016 – volume: 227 start-page: 1818 year: 2020 ident: 10.1016/j.geoderma.2024.117108_b0280 article-title: Rhizosphere allocation by canopy-forming species dominates soil CO2 efflux in a subarctic landscape publication-title: New Phytol. doi: 10.1111/nph.16573 – volume: 42 start-page: 162 year: 2018 ident: 10.1016/j.geoderma.2024.117108_b0405 article-title: The current state of CO2 flux chamber studies in the Arctic tundra: a review publication-title: Prog. Phys. Geogr.: Earth Environ. doi: 10.1177/0309133317745784 – volume: 45 start-page: 429 year: 2013 ident: 10.1016/j.geoderma.2024.117108_b0005 article-title: Vegetation mediates soil temperature and moisture in arctic-alpine environments publication-title: Arct. Antarct. Alp. Res. doi: 10.1657/1938-4246-45.4.429 – volume: 29 start-page: 58 year: 2010 ident: 10.1016/j.geoderma.2024.117108_b0220 article-title: The importance of winter in annual ecosystem respiration in the High Arctic: effects of snow depth in two vegetation types publication-title: Polar Res. doi: 10.1111/j.1751-8369.2010.00151.x – volume: 571 start-page: 494 year: 2019 ident: 10.1016/j.geoderma.2024.117108_b0230 article-title: Effects of vegetation on soil temperature and water content: field monitoring and numerical modelling publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.02.009 – volume: 121 start-page: 2886 year: 2016 ident: 10.1016/j.geoderma.2024.117108_b0290 article-title: Snowpack fluxes of methane and carbon dioxide from high Arctic tundra publication-title: J. Geophys. Res. Biogeo. doi: 10.1002/2016JG003486 – volume: 39 start-page: 646 year: 2007 ident: 10.1016/j.geoderma.2024.117108_b0105 article-title: Annual soil CO2 effluxes in the High Arctic: the role of snow thickness and vegetation type publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2006.09.017 – volume: 38 start-page: 785 year: 2006 ident: 10.1016/j.geoderma.2024.117108_b0265 article-title: Microbial activity in soils frozen to below− 39 C publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2005.07.004 – volume: 12 start-page: 154 year: 2006 ident: 10.1016/j.geoderma.2024.117108_b0100 article-title: On the variability of respiration in terrestrial ecosystems: moving beyond Q10 publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2005.01065.x – volume: 104 start-page: 1379 year: 2016 ident: 10.1016/j.geoderma.2024.117108_b0210 article-title: Wind exposure and light exposure, more than elevation-related temperature, limit tree line seedling abundance on three continents publication-title: J. Ecol. doi: 10.1111/1365-2745.12599 – volume: 14 start-page: 701 year: 2000 ident: 10.1016/j.geoderma.2024.117108_b0065 article-title: Trace gas exchange in a high-Arctic valley: 1. Variationsin CO2 and CH4 flux between tundra vegetation types publication-title: Global Biogeochem. Cycles doi: 10.1029/1999GB001134 – volume: 3 start-page: 168 year: 2022 ident: 10.1016/j.geoderma.2024.117108_b0310 article-title: The Arctic has warmed nearly four times faster than the globe since 1979 publication-title: Commun. Earth Environ. doi: 10.1038/s43247-022-00498-3 – volume: 165 year: 2022 ident: 10.1016/j.geoderma.2024.117108_b0015 article-title: Sensitivity of soil respiration rate with respect to temperature, moisture and oxygen under freezing and thawing publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2021.108488 – volume: 199 start-page: 339 year: 2013 ident: 10.1016/j.geoderma.2024.117108_b0160 article-title: Ecosystem-level controls on root-rhizosphere respiration publication-title: New Phytol. doi: 10.1111/nph.12271 – volume: 43 start-page: 1006 year: 2011 ident: 10.1016/j.geoderma.2024.117108_b0020 article-title: Dependence of soil respiration on soil moisture, clay content, soil organic matter, and CO2 uptake in dry grasslands publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.01.017 – volume: 651 start-page: 2354 year: 2019 ident: 10.1016/j.geoderma.2024.117108_b0045 article-title: Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: a meta-analysis publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.10.060 – volume: 40 start-page: 1758 year: 2008 ident: 10.1016/j.geoderma.2024.117108_b0400 article-title: Temperature sensitivity of soil organic matter decomposition in southern and northern areas of the boreal forest zone publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2008.02.021 – volume: 4 start-page: 747 year: 2023 ident: 10.1016/j.geoderma.2024.117108_b0355 article-title: The importance of regional sea-ice variability for the coastal climate and near-surface temperature gradients in Northeast Greenland publication-title: Weather Clim. Dyn. doi: 10.5194/wcd-4-747-2023 – volume: 21 start-page: 2070 year: 2015 ident: 10.1016/j.geoderma.2024.117108_b0275 article-title: Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12793 – volume: 13 start-page: e0195400 year: 2018 ident: 10.1016/j.geoderma.2024.117108_b0375 article-title: Spatial variations of soil respiration and temperature sensitivity along a steep slope of the semiarid Loess Plateau publication-title: PLoS One doi: 10.1371/journal.pone.0195400 – volume: 795 year: 2021 ident: 10.1016/j.geoderma.2024.117108_b0425 article-title: Effects of experimental fire in combination with climate warming on greenhouse gas fluxes in Arctic tundra soils publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.148847 – volume: 15 start-page: 2715 year: 2009 ident: 10.1016/j.geoderma.2024.117108_b0260 article-title: Water availability controls microbial temperature responses in frozen soil CO2 production publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2009.01898.x – volume: 102 start-page: 1058 year: 2014 ident: 10.1016/j.geoderma.2024.117108_b0420 article-title: Microbial community composition explains soil respiration responses to changing carbon inputs along an A ndes-to-A mazon elevation gradient publication-title: J. Ecol. doi: 10.1111/1365-2745.12247 – volume: 34 start-page: 24252 year: 2015 ident: 10.1016/j.geoderma.2024.117108_b0115 article-title: Responses in Arctic marine carbon cycle processes: conceptual scenarios and implications for ecosystem function publication-title: Polar Res. doi: 10.3402/polar.v34.24252 – volume: 21 start-page: 2321 year: 2015 ident: 10.1016/j.geoderma.2024.117108_b0360 article-title: Annual burning of a tallgrass prairie inhibits C and N cycling in soil, increasing recalcitrant pyrogenic organic matter storage while reducing N availability publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12832 – volume: 10 start-page: 808 year: 2017 ident: 10.1016/j.geoderma.2024.117108_b0155 article-title: Soil temperature modifies effects of soil biota on plant growth publication-title: J. Plant Ecol. – volume: 46 start-page: 89 year: 2012 ident: 10.1016/j.geoderma.2024.117108_b0325 article-title: Optimum temperatures for soil respiration along a semi-arid elevation gradient in southern California publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.11.008 – volume: 113 start-page: 13797 year: 2016 ident: 10.1016/j.geoderma.2024.117108_b0055 article-title: Temperature response of soil respiration largely unaltered with experimental warming publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1605365113 – volume: 513 start-page: 81 year: 2014 ident: 10.1016/j.geoderma.2024.117108_b0165 article-title: Temperature sensitivity of soil respiration rates enhanced by microbial community response publication-title: Nature doi: 10.1038/nature13604 – start-page: 115 year: 2010 ident: 10.1016/j.geoderma.2024.117108_b0350 article-title: Temperature sensitivity of forest soil organic matter decomposition along two elevation gradients publication-title: J. Geophys. Res. Biogeo. – volume: 37 start-page: 1411 year: 2005 ident: 10.1016/j.geoderma.2024.117108_b0345 article-title: Changing microbial substrate use in Arctic tundra soils through a freeze-thaw cycle publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2004.12.011 – start-page: 116 year: 2011 ident: 10.1016/j.geoderma.2024.117108_b0460 article-title: Microtopographic controls on ecosystem functioning in the Arctic Coastal Plain publication-title: J. Geophys. Res. Biogeol. – volume: 42 start-page: 1811 year: 2010 ident: 10.1016/j.geoderma.2024.117108_b0440 article-title: Temperature sensitivity increases with soil organic carbon recalcitrance along an elevational gradient in the Wuyi Mountains, China publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2010.06.021 – volume: 7 start-page: 162 year: 2013 ident: 10.1016/j.geoderma.2024.117108_b0170 article-title: Latitudinal distribution of soil CO2 efflux and temperature along the Dalton Highway publication-title: Alaska Polar Sci. doi: 10.1016/j.polar.2012.11.002 – volume: 142 year: 2020 ident: 10.1016/j.geoderma.2024.117108_b0315 article-title: Arctic soil carbon turnover controlled by experimental snow addition, summer warming and shrub removal publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2019.107698 – volume: 56 start-page: 319 year: 2010 ident: 10.1016/j.geoderma.2024.117108_b0390 article-title: Net nitrogen mineralization and nitrification of different landscape positions in a lowland subtropical rainforest in Taiwan publication-title: Soil Sci. Plant Nutr. doi: 10.1111/j.1747-0765.2010.00460.x – volume: 25 start-page: 489 year: 2019 ident: 10.1016/j.geoderma.2024.117108_b0385 article-title: Arctic browning: Impacts of extreme climatic events on heathland ecosystem CO2 fluxes publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14500 – volume: 23 start-page: 406 year: 2017 ident: 10.1016/j.geoderma.2024.117108_b0070 article-title: Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.13362 – volume: 43 start-page: 189 year: 2011 ident: 10.1016/j.geoderma.2024.117108_b0085 article-title: Vegetation community, foliar nitrogen, and temperature effects on tundra CO2 exchange across a soil moisture gradient publication-title: Arct. Antarct. Alp. Res. doi: 10.1657/1938-4246-43.2.189 – volume: 160 year: 2021 ident: 10.1016/j.geoderma.2024.117108_b0430 article-title: Deepened snow enhances gross nitrogen cycling among Pan-Arctic tundra soils during both winter and summer publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2021.108356 – volume: 35 start-page: 263 year: 2003 ident: 10.1016/j.geoderma.2024.117108_b0110 article-title: Uncoupling of microbial CO2 production and release in frozen soil and its implications for field studies of arctic C cycling publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(02)00258-4 – volume: 104 start-page: 4782 year: 2007 ident: 10.1016/j.geoderma.2024.117108_b0395 article-title: Inorganic nitrogen availability after severe stand-replacing fire in the Greater Yellowstone ecosystem publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0700180104 – ident: 10.1016/j.geoderma.2024.117108_b0320 – volume: 11 start-page: 1024 year: 2005 ident: 10.1016/j.geoderma.2024.117108_b0330 article-title: Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2005.00963.x – ident: 10.1016/j.geoderma.2024.117108_b0205 – volume: 23 start-page: 246 year: 2020 ident: 10.1016/j.geoderma.2024.117108_b0120 article-title: Water and carbon fluxes along an elevational gradient in a sagebrush ecosystem publication-title: Ecosystems doi: 10.1007/s10021-019-00400-x – volume: 474 start-page: 581 year: 2022 ident: 10.1016/j.geoderma.2024.117108_b0090 article-title: Regulation of nitrogen acquisition in vegetables by different impacts on autotrophic and heterotrophic nitrification publication-title: Plant Soil doi: 10.1007/s11104-022-05362-z – volume: 77 start-page: 221 year: 2007 ident: 10.1016/j.geoderma.2024.117108_b0245 article-title: Tundra CO2 fluxes in response to experimental warming across latitudinal and moisture gradients publication-title: Ecol. Monogr. doi: 10.1890/06-0649 – volume: 295 start-page: 79 year: 2007 ident: 10.1016/j.geoderma.2024.117108_b0295 article-title: Natural 15N abundance of soil N pools and N2O reflect the nitrogen dynamics of forest soils publication-title: Plant and Soil doi: 10.1007/s11104-007-9264-y – volume: 127 start-page: 217 year: 2016 ident: 10.1016/j.geoderma.2024.117108_b0235 article-title: Temperature sensitivity of soil enzymes along an elevation gradient in the Peruvian Andes publication-title: Biogeochemistry doi: 10.1007/s10533-015-0176-2 – volume: 10 start-page: 1696 year: 2020 ident: 10.1016/j.geoderma.2024.117108_b0125 article-title: Ammonia and ammonium exposure of basil (Ocimum basilicum L.) growing in an organically fertilized peat substrate and strategies to mitigate related harmful impacts on plant growth publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.01696 – volume: 59 start-page: 72 year: 2013 ident: 10.1016/j.geoderma.2024.117108_b0225 article-title: Responses of soil heterotrophic respiration to moisture availability: an exploration of processes and models publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.01.002 – volume: 75 start-page: 139 year: 2005 ident: 10.1016/j.geoderma.2024.117108_b0040 article-title: Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data publication-title: Ecol. Monogr. doi: 10.1890/04-0988 – ident: 10.1016/j.geoderma.2024.117108_b0060 doi: 10.1002/9781119480419.ch3 – volume: 36 start-page: 217 year: 2004 ident: 10.1016/j.geoderma.2024.117108_b0340 article-title: Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2003.09.008 – volume: 48 start-page: 673 year: 2016 ident: 10.1016/j.geoderma.2024.117108_b0075 article-title: Near-surface air temperature lapse rate over complex terrain in the Southern Ecuadorian Andes: implications for temperature mapping publication-title: Arct. Antarct. Alp. Res. doi: 10.1657/AAAR0015-077 – volume: 17 year: 2022 ident: 10.1016/j.geoderma.2024.117108_b0305 article-title: A review of the importance of mineral nitrogen cycling in the plant-soil-microbe system of permafrost-affected soils—changing the paradigm publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ac417e – volume: 177 start-page: 160 year: 2016 ident: 10.1016/j.geoderma.2024.117108_b0180 article-title: Latitudinal gradient of spruce forest understory and tundra phenology in Alaska as observed from satellite and ground-based data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.02.020 – volume: 40 start-page: 181 year: 2008 ident: 10.1016/j.geoderma.2024.117108_b0365 article-title: The photosynthetic response of Alaskan tundra plants to increased season length and soil warming publication-title: Arct. Antarct. Alp. Res. doi: 10.1657/1523-0430(06-015)[STARR]2.0.CO;2 – volume: 8 start-page: 34 year: 2018 ident: 10.1016/j.geoderma.2024.117108_b0255 article-title: Effects of soil temperature on some soil properties and plant growth publication-title: Adv. Plants Agric. Res. – ident: 10.1016/j.geoderma.2024.117108_b0380 – volume: 180 year: 2023 ident: 10.1016/j.geoderma.2024.117108_b0435 article-title: Deepened snow in combination with summer warming increases growing season nitrous oxide emissions in dry tundra, but not in wet tundra publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2023.109013 – volume: 125 start-page: 185 year: 2015 ident: 10.1016/j.geoderma.2024.117108_b0175 article-title: Soil respiration variability across a soil moisture and vegetation community gradient within a snow-scoured alpine meadow publication-title: Biogeochemistry doi: 10.1007/s10533-015-0122-3 – volume: 34 start-page: 1785 year: 2002 ident: 10.1016/j.geoderma.2024.117108_b0215 article-title: Temperature controls of microbial respiration in arctic tundra soils above and below freezing publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(02)00168-2 – volume: 13 start-page: 1509 year: 2007 ident: 10.1016/j.geoderma.2024.117108_b0080 article-title: Changes in nitrogen cycling and retention processes in soils under spruce forests along a nitrogen enrichment gradient in Germany publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2007.01371.x – volume: 165 start-page: 25 year: 2012 ident: 10.1016/j.geoderma.2024.117108_b0250 article-title: Influence of snow-cover and soil-frost variations on continuously monitored CO2 flux from agricultural land publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2012.06.012 – volume: 108 start-page: 119 year: 2012 ident: 10.1016/j.geoderma.2024.117108_b0025 article-title: Inverse determination of heterotrophic soil respiration response to temperature and water content under field conditions publication-title: Biogeochemistry doi: 10.1007/s10533-011-9583-1 – volume: 11 start-page: 1092 year: 2008 ident: 10.1016/j.geoderma.2024.117108_b0145 article-title: Soil microbial respiration in arctic soil does not acclimate to temperature publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2008.01223.x – volume: 3 start-page: 68 year: 2022 ident: 10.1016/j.geoderma.2024.117108_b0150 article-title: Tundra vegetation change and impacts on permafrost publication-title: Nat. Rev. Earth Environ. doi: 10.1038/s43017-021-00233-0 – volume: 120 start-page: 773 year: 2015 ident: 10.1016/j.geoderma.2024.117108_b0450 article-title: Soil respiration sensitivities to water and temperature in a revegetated desert publication-title: J. Geophys. Res. Biogeol. doi: 10.1002/2014JG002805 – volume: 13 start-page: 2571 year: 2021 ident: 10.1016/j.geoderma.2024.117108_b0010 article-title: Predicting soil respiration from plant productivity (NDVI) in a sub-Arctic tundra ecosystem publication-title: Remote Sens. (Basel) doi: 10.3390/rs13132571 – volume: 136 start-page: 342 year: 2006 ident: 10.1016/j.geoderma.2024.117108_b0130 article-title: Measured forest soil C stocks and estimated turnover times along an elevation gradient publication-title: Geoderma doi: 10.1016/j.geoderma.2006.03.049 – volume: 237 start-page: 1 year: 2015 ident: 10.1016/j.geoderma.2024.117108_b0140 article-title: Both altitude and vegetation affect temperature sensitivity of soil organic matter decomposition in Mediterranean high mountain soils publication-title: Geoderma doi: 10.1016/j.geoderma.2014.08.005 – volume: 10 start-page: 330 year: 2019 ident: 10.1016/j.geoderma.2024.117108_b0135 article-title: The role of low soil temperature for photosynthesis and stomatal conductance of three graminoids from different elevations publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00330 – volume: 10 start-page: 1981 year: 2004 ident: 10.1016/j.geoderma.2024.117108_b0415 article-title: CO2 exchange in three Canadian High Arctic ecosystems: response to long-term experimental warming publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2004.00857.x |
SSID | ssj0017020 |
Score | 2.44359 |
Snippet | •There was no temperature gradient along 9–387 m elevation gradient in arctic tundra.•Topography aspect-induced soil microclimate differences drove ecosystem... Generally, with increasing elevation, there is a corresponding decrease in annual mean air and soil temperatures, resulting in an overall decrease in ecosystem... |
SourceID | doaj swepub proquest crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 117108 |
SubjectTerms | air altitude ammonium carbon carbon dioxide climate change Ecosystem respiration ecosystems Greenland Gross ecosystem production gross primary productivity Markvetenskap microclimate Moisture sensitivity Net ecosystem exchange soil nutrient dynamics Soil nutrients soil respiration Soil Science soil water temperature Temperature sensitivity total nitrogen tundra |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-UwEA_iyT2In_h0lSwseCo2bfLyelRRHsJ6egveQtIkj8ojlbYPvPqf70zTLvXkxVMh_WCSmWZ-w0x-Q8hvQKALiAKKhAupE0QEiRbCJxl4I7PIF6bgeBr5z_N8-Zc_vYiXSasvrAmL9MBx4W6YgQ2Ta80Kz2AjZQttxNw4mWXOGcsc7r7g88ZgasgfSEBBk_PAr6ANbC3WMw1lHDOVDBtKTlxRz9j_ySNNEeeURbT3PI8HZH-AjPQ2inpIdlw4Ij9u181Am-GOyce9bkwdqK3q98o66t7jgV6qg6XIPjVQJ9MW69Vjwwhae9rW1YY2Q7YdNET1pg5reIvisfM4tG76qrCOVgFvwI8BctBuG2yjKQSvkQv6hKweH1b3y2RorpCUnIsuKUUOsZ-XJnVybpkps9QL61ipU88dgIiCx3BvnhoPKJJbWGatTYntyX2en5LdUAd3Rmhps571zHMJrs57ZLot0hJcokZ6u2xGbsZlVm-RQkONtWWvalSMQsWoqJgZuUNt_H8aKbD7ATAMNRiG-sowZqQYdakGNBFRAnyq-lKAX6PyFfxumEPRwdXbVuUAOZmUUsC0rqNVfBKz3WyNbvCiWpAxL3jBzr9jOhdkDwWMlTQ_yW7XbN0l4KHOXPWm_w_Sjgt1 priority: 102 providerName: Directory of Open Access Journals |
Title | Carbon dioxide exchange and temperature sensitivity of soil respiration along an elevation gradient in an arctic tundra ecosystem |
URI | https://dx.doi.org/10.1016/j.geoderma.2024.117108 https://www.proquest.com/docview/3154177752 https://res.slu.se/id/publ/139491 https://doaj.org/article/1b2994aa19f147118ab56be722eebd1e |
Volume | 452 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBUhvbSH0k-6abOoUOjJXcuWrdVxszRsUppTCrkJyZIWh8UOthdyKvSfd8aSw-6ph56MZdmMNWO9kTXzhpAv4IEuYRUgE14InaBHkOii8EkGaGSW-dJIjtnIP2_KzS9-fVfcnZD1lAuDYZVx7g9z-jhbx5ZFHM3FQ11jji8rBSI0x4JkApP4OBdo5d9-P4V5MJFGakZWJtj7IEv4HnSEBcdG_qGM4_4lwzKTBwA18vgf4dShH3rILTri0eUr8jI6knQVZH1NTlzzhrxYbbtIpuHekj9r3Zm2obZuH2vrqHsMab5UN5YiJ1UkVKY9RrGHMhK09bRv6x3t4h486I3qXdts4S6KyeihaduNsWIDrRu8AJ8LyEGHfWM7TWFJGxii35Hby--3600SSy4kFefFkFRFDitCL0zqRGmZqbLUF9axSqeeO3AtJA-LwDI1HnxLbrNUam0qLFru8_w9OW3axn0gtLLZyIXmuQAA9B75b2VaAVBqJL3LZmQxDbN6CMQaaoo4u1eTYhQqRgXFzMgFauOpNxJjjw1tt1XRMhQzgK9cayY9A9xlS22K0jiRZc4Zy9yMyEmX6sjO4FH1PwX4PClfwUeIOyu6ce2-Vzk4okwIUcBrfQ1WcSRmv9sb3eFB9SBjLrlkZ_8hyUfyHM9CWM0ncjp0e3cOztFg5qP1z8mz1dWPzc18_MXwFyWMESw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECaCdGg7FH2iTl8s0KKTapGmRHPokKYNnOYxuUA2gpRIQ4EhBZKNJEuB_qX-wt6JVGBPHYpMBijbOPOO992Zd98R8gEi0ClkASoRmTQJRgSJyTKfcEAjO51MrRLYjXx6ls9-ih_n2fkO-TP0wmBZZfT9waf33jqujONuji-rCnt8WS4RoQUOJJMqVlYeu5sryNu6L0ffQMkfOT_8Pj-YJXG0QFIIka2SIptA5uOlTZ3MS2YLnvqsdKwwqRcOIFSJkOzkqfUQQ4mSp8oYW-Bwbo9_goLbvyfAW-DUhM-_bstKmEwjFSTLE5Ruoyv5AmwCB5z1fEdc4H0pw7GWG4DYzw3YwsXNuHeTy7THv8PH5FEMXOl-2JsnZMfVT8nD_UUbyTvcM_L7wLS2qWlZNddV6ai7Dm3F1NQlRQ6sSOBMO6yaD2MraONp11RL2sY7f7ATapZNvYBPUWx-D0uLtq9NW9GqxgegApCDrtZ12RoKKXRgpH5O5nehhxdkt25q95LQouQ995oXEgDXe-TbVWkBwGyQZI-PyHjYZn0ZiDz0UOF2oQfFaFSMDooZka-ojdt3IxF3v9C0Cx0tUTMLeC6MYcozwHk2NTbLrZOcO2dL5kZEDbrUW3YNX1X9U4D3g_I1HHq8yTG1a9adnkDgy6SUGfysT8EqtsTslmtrWnzRHcg4UUKxvf-Q5B25P5ufnuiTo7PjV-QBPgklPa_J7qpduzcQmK3s2_4kUKLv-OT9BdqeSlE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+dioxide+exchange+and+temperature+sensitivity+of+soil+respiration+along+an+elevation+gradient+in+an+arctic+tundra+ecosystem&rft.jtitle=Geoderma&rft.au=Xu%2C+Wenyi&rft.au=Westergaard-Nielsen%2C+Andreas&rft.au=Michelsen%2C+Anders&rft.au=Lennart+Ambus%2C+Per&rft.date=2024-12-01&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.volume=452&rft_id=info:doi/10.1016%2Fj.geoderma.2024.117108&rft.externalDocID=S0016706124003379 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |