Carbon dioxide exchange and temperature sensitivity of soil respiration along an elevation gradient in an arctic tundra ecosystem

•There was no temperature gradient along 9–387 m elevation gradient in arctic tundra.•Topography aspect-induced soil microclimate differences drove ecosystem CO2 exchange.•Temperature sensitivity of soil respiration above 0 °C increased with elevation.•Elevation did not regulate temperature sensitiv...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 452; p. 117108
Main Authors Xu, Wenyi, Westergaard-Nielsen, Andreas, Michelsen, Anders, Lennart Ambus, Per
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •There was no temperature gradient along 9–387 m elevation gradient in arctic tundra.•Topography aspect-induced soil microclimate differences drove ecosystem CO2 exchange.•Temperature sensitivity of soil respiration above 0 °C increased with elevation.•Elevation did not regulate temperature sensitivity below 0 °C or moisture sensitivity. Generally, with increasing elevation, there is a corresponding decrease in annual mean air and soil temperatures, resulting in an overall decrease in ecosystem carbon dioxide (CO2) exchange. However, there is a lack of knowledge on the variations in CO2 exchange along elevation gradients in tundra ecosystems. Aiming to quantify CO2 exchange along elevation gradients in tundra ecosystems, we measured ecosystem CO2 exchange in the peak growing season along an elevation gradient (9–387 m above sea level, m.a.s.l) in an arctic heath tundra, West Greenland. We also performed an ex-situ incubation experiment based on soil samples collected along the elevation gradient, to assess the sensitivity of soil respiration to changes in temperature and soil moisture. There was no apparent temperature gradient along the elevation gradient, with the lowest air and soil temperatures at the second lowest elevation site (83 m). The lowest elevation site exhibited the highest net ecosystem exchange (NEE), ecosystem respiration (ER) and gross ecosystem production (GEP) rates, while the other three sites generally showed intercomparable CO2 exchange rates. Topography aspect-induced soil microclimate differences rather than the elevation were the primary drivers for the soil nutrient status and ecosystem CO2 exchange. The temperature sensitivity of soil respiration above 0 °C increased with elevation, while elevation did not regulate the temperature sensitivity below 0 °C or the moisture sensitivity. Soil total nitrogen, carbon, and ammonium contents were the controls of temperature sensitivity below 0 °C. Overall, our results emphasize the significance of considering elevation and microclimate when predicting the response of CO2 balance to climate change or upscaling to regional scales, particularly during the growing season. However, outside the growing season, other factors such as soil nutrient dynamics, play a more influential role in driving ecosystem CO2 fluxes. To accurately upscale or predict annual CO2 fluxes in arctic tundra regions, it is crucial to incorporate elevation-specific microclimate conditions into ecosystem models.
AbstractList •There was no temperature gradient along 9–387 m elevation gradient in arctic tundra.•Topography aspect-induced soil microclimate differences drove ecosystem CO2 exchange.•Temperature sensitivity of soil respiration above 0 °C increased with elevation.•Elevation did not regulate temperature sensitivity below 0 °C or moisture sensitivity. Generally, with increasing elevation, there is a corresponding decrease in annual mean air and soil temperatures, resulting in an overall decrease in ecosystem carbon dioxide (CO2) exchange. However, there is a lack of knowledge on the variations in CO2 exchange along elevation gradients in tundra ecosystems. Aiming to quantify CO2 exchange along elevation gradients in tundra ecosystems, we measured ecosystem CO2 exchange in the peak growing season along an elevation gradient (9–387 m above sea level, m.a.s.l) in an arctic heath tundra, West Greenland. We also performed an ex-situ incubation experiment based on soil samples collected along the elevation gradient, to assess the sensitivity of soil respiration to changes in temperature and soil moisture. There was no apparent temperature gradient along the elevation gradient, with the lowest air and soil temperatures at the second lowest elevation site (83 m). The lowest elevation site exhibited the highest net ecosystem exchange (NEE), ecosystem respiration (ER) and gross ecosystem production (GEP) rates, while the other three sites generally showed intercomparable CO2 exchange rates. Topography aspect-induced soil microclimate differences rather than the elevation were the primary drivers for the soil nutrient status and ecosystem CO2 exchange. The temperature sensitivity of soil respiration above 0 °C increased with elevation, while elevation did not regulate the temperature sensitivity below 0 °C or the moisture sensitivity. Soil total nitrogen, carbon, and ammonium contents were the controls of temperature sensitivity below 0 °C. Overall, our results emphasize the significance of considering elevation and microclimate when predicting the response of CO2 balance to climate change or upscaling to regional scales, particularly during the growing season. However, outside the growing season, other factors such as soil nutrient dynamics, play a more influential role in driving ecosystem CO2 fluxes. To accurately upscale or predict annual CO2 fluxes in arctic tundra regions, it is crucial to incorporate elevation-specific microclimate conditions into ecosystem models.
Generally, with increasing elevation, there is a corresponding decrease in annual mean air and soil temperatures, resulting in an overall decrease in ecosystem carbon dioxide (CO₂) exchange. However, there is a lack of knowledge on the variations in CO₂ exchange along elevation gradients in tundra ecosystems. Aiming to quantify CO₂ exchange along elevation gradients in tundra ecosystems, we measured ecosystem CO₂ exchange in the peak growing season along an elevation gradient (9–387 m above sea level, m.a.s.l) in an arctic heath tundra, West Greenland. We also performed an ex-situ incubation experiment based on soil samples collected along the elevation gradient, to assess the sensitivity of soil respiration to changes in temperature and soil moisture. There was no apparent temperature gradient along the elevation gradient, with the lowest air and soil temperatures at the second lowest elevation site (83 m). The lowest elevation site exhibited the highest net ecosystem exchange (NEE), ecosystem respiration (ER) and gross ecosystem production (GEP) rates, while the other three sites generally showed intercomparable CO₂ exchange rates. Topography aspect-induced soil microclimate differences rather than the elevation were the primary drivers for the soil nutrient status and ecosystem CO₂ exchange. The temperature sensitivity of soil respiration above 0 °C increased with elevation, while elevation did not regulate the temperature sensitivity below 0 °C or the moisture sensitivity. Soil total nitrogen, carbon, and ammonium contents were the controls of temperature sensitivity below 0 °C. Overall, our results emphasize the significance of considering elevation and microclimate when predicting the response of CO₂ balance to climate change or upscaling to regional scales, particularly during the growing season. However, outside the growing season, other factors such as soil nutrient dynamics, play a more influential role in driving ecosystem CO₂ fluxes. To accurately upscale or predict annual CO₂ fluxes in arctic tundra regions, it is crucial to incorporate elevation-specific microclimate conditions into ecosystem models.
Generally, with increasing elevation, there is a corresponding decrease in annual mean air and soil temperatures, resulting in an overall decrease in ecosystem carbon dioxide (CO2) exchange. However, there is a lack of knowledge on the variations in CO2 exchange along elevation gradients in tundra ecosystems. Aiming to quantify CO2 exchange along elevation gradients in tundra ecosystems, we measured ecosystem CO2 exchange in the peak growing season along an elevation gradient (9–387 m above sea level, m.a.s.l) in an arctic heath tundra, West Greenland. We also performed an ex-situ incubation experiment based on soil samples collected along the elevation gradient, to assess the sensitivity of soil respiration to changes in temperature and soil moisture. There was no apparent temperature gradient along the elevation gradient, with the lowest air and soil temperatures at the second lowest elevation site (83 m). The lowest elevation site exhibited the highest net ecosystem exchange (NEE), ecosystem respiration (ER) and gross ecosystem production (GEP) rates, while the other three sites generally showed intercomparable CO2 exchange rates. Topography aspect-induced soil microclimate differences rather than the elevation were the primary drivers for the soil nutrient status and ecosystem CO2 exchange. The temperature sensitivity of soil respiration above 0 °C increased with elevation, while elevation did not regulate the temperature sensitivity below 0 °C or the moisture sensitivity. Soil total nitrogen, carbon, and ammonium contents were the controls of temperature sensitivity below 0 °C. Overall, our results emphasize the significance of considering elevation and microclimate when predicting the response of CO2 balance to climate change or upscaling to regional scales, particularly during the growing season. However, outside the growing season, other factors such as soil nutrient dynamics, play a more influential role in driving ecosystem CO2 fluxes. To accurately upscale or predict annual CO2 fluxes in arctic tundra regions, it is crucial to incorporate elevation-specific microclimate conditions into ecosystem models.
Generally, with increasing elevation, there is a corresponding decrease in annual mean air and soil temperatures, resulting in an overall decrease in ecosystem carbon dioxide (CO2) exchange. However, there is a lack of knowledge on the variations in CO2 exchange along elevation gradients in tundra ecosystems. Aiming to quantify CO2 exchange along elevation gradients in tundra ecosystems, we measured ecosystem CO2 exchange in the peak growing season along an elevation gradient (9-387 m above sea level, m.a.s.l) in an arctic heath tundra, West Greenland. We also performed an ex-situ incubation experiment based on soil samples collected along the elevation gradient, to assess the sensitivity of soil respiration to changes in temperature and soil moisture. There was no apparent temperature gradient along the elevation gradient, with the lowest air and soil temperatures at the second lowest elevation site (83 m). The lowest elevation site exhibited the highest net ecosystem exchange (NEE), ecosystem respiration (ER) and gross ecosystem production (GEP) rates, while the other three sites generally showed intercomparable CO2 exchange rates. Topography aspect-induced soil microclimate differences rather than the elevation were the primary drivers for the soil nutrient status and ecosystem CO2 exchange. The temperature sensitivity of soil respiration above 0 degrees C increased with elevation, while elevation did not regulate the temperature sensitivity below 0 degrees C or the moisture sensitivity. Soil total nitrogen, carbon, and ammonium contents were the controls of temperature sensitivity below 0 degrees C. Overall, our results emphasize the significance of considering elevation and microclimate when predicting the response of CO2 balance to climate change or upscaling to regional scales, particularly during the growing season. However, outside the growing season, other factors such as soil nutrient dynamics, play a more influential role in driving ecosystem CO2 fluxes. To accurately upscale or predict annual CO2 fluxes in arctic tundra regions, it is crucial to incorporate elevation-specific microclimate conditions into ecosystem models.
ArticleNumber 117108
Author Xu, Wenyi
Michelsen, Anders
Lennart Ambus, Per
Westergaard-Nielsen, Andreas
Author_xml – sequence: 1
  givenname: Wenyi
  surname: Xu
  fullname: Xu, Wenyi
  email: wexu@ign.ku.dk
  organization: Department of Soil and Environment, Swedish University of Agricultural Sciences, Sweden
– sequence: 2
  givenname: Andreas
  surname: Westergaard-Nielsen
  fullname: Westergaard-Nielsen, Andreas
  organization: Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark
– sequence: 3
  givenname: Anders
  surname: Michelsen
  fullname: Michelsen, Anders
  organization: Department of Biology, University of Copenhagen, Denmark
– sequence: 4
  givenname: Per
  surname: Lennart Ambus
  fullname: Lennart Ambus, Per
  organization: Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark
BackLink https://res.slu.se/id/publ/139491$$DView record from Swedish Publication Index
BookMark eNqFkU2PEzEMhkdokegu_AWUI5cOceYjzQ1U8bHSSlz2HjmJZ0g1TUoyU7ZH_jkpA0icOFmx_T52_N5WNyEGqqrXwGvg0L891CNFR-mIteCirQEk8N2zagM7Kba96NRNteGlcyt5Dy-q25wP5Sm54Jvqxx6TiYE5H5-8I0ZP9iuGkRgGx2Y6nijhvCRimUL2sz_7-cLiwHL0E0uUT77UfQHgFMNYVIwmOq-pMaHzFGbmw7WAyc7esnkJLiEjG_Mllwkvq-cDTple_Y531ePHD4_7z9uHL5_u9-8ftrZtu3lru0YADNJwkr0DYwUfOkdgkQ8tKeCq5UK0XPbcDEqp1gmuEI0tV1BD09xV9yvWRTzoU_JHTBcd0etfiZhGjansN5EGI4oeEdQArQTYoel6Q1IIIuOACqteWfk7nRbzDy1Pi8F0DToXVKNaBUXwZhWcUvy2UJ710WdL04SB4pJ1A10LUspOlNZ-bbUp5pxo-EsHrq9-64P-47e--q1Xv4vw3SqkcsSzp7KDLde35HwiO5dv-v8hfgIb5rvl
Cites_doi 10.1007/978-3-030-59538-8_4
10.1016/j.soilbio.2008.01.030
10.1016/j.soilbio.2016.02.008
10.1016/j.soilbio.2007.12.002
10.1088/1748-9326/ac1222
10.1002/ece3.5762
10.1002/ppp.2182
10.1016/j.geoderma.2012.06.002
10.1016/j.agrformet.2010.01.011
10.1016/S1002-0160(15)60052-2
10.1016/j.geoderma.2018.11.014
10.1038/s41467-020-17790-5
10.1111/gcb.12029
10.1657/AAAR0016-028
10.1111/gcb.14502
10.5194/bg-13-1991-2016
10.1111/nph.16573
10.1177/0309133317745784
10.1657/1938-4246-45.4.429
10.1111/j.1751-8369.2010.00151.x
10.1016/j.jhydrol.2019.02.009
10.1002/2016JG003486
10.1016/j.soilbio.2006.09.017
10.1016/j.soilbio.2005.07.004
10.1111/j.1365-2486.2005.01065.x
10.1111/1365-2745.12599
10.1029/1999GB001134
10.1038/s43247-022-00498-3
10.1016/j.soilbio.2021.108488
10.1111/nph.12271
10.1016/j.soilbio.2011.01.017
10.1016/j.scitotenv.2018.10.060
10.1016/j.soilbio.2008.02.021
10.5194/wcd-4-747-2023
10.1111/gcb.12793
10.1371/journal.pone.0195400
10.1016/j.scitotenv.2021.148847
10.1111/j.1365-2486.2009.01898.x
10.1111/1365-2745.12247
10.3402/polar.v34.24252
10.1111/gcb.12832
10.1016/j.soilbio.2011.11.008
10.1073/pnas.1605365113
10.1038/nature13604
10.1016/j.soilbio.2004.12.011
10.1016/j.soilbio.2010.06.021
10.1016/j.polar.2012.11.002
10.1016/j.soilbio.2019.107698
10.1111/j.1747-0765.2010.00460.x
10.1111/gcb.14500
10.1111/gcb.13362
10.1657/1938-4246-43.2.189
10.1016/j.soilbio.2021.108356
10.1016/S0038-0717(02)00258-4
10.1073/pnas.0700180104
10.1111/j.1365-2486.2005.00963.x
10.1007/s10021-019-00400-x
10.1007/s11104-022-05362-z
10.1890/06-0649
10.1007/s11104-007-9264-y
10.1007/s10533-015-0176-2
10.3389/fpls.2019.01696
10.1016/j.soilbio.2013.01.002
10.1890/04-0988
10.1002/9781119480419.ch3
10.1016/j.soilbio.2003.09.008
10.1657/AAAR0015-077
10.1088/1748-9326/ac417e
10.1016/j.rse.2016.02.020
10.1657/1523-0430(06-015)[STARR]2.0.CO;2
10.1016/j.soilbio.2023.109013
10.1007/s10533-015-0122-3
10.1016/S0038-0717(02)00168-2
10.1111/j.1365-2486.2007.01371.x
10.1016/j.agrformet.2012.06.012
10.1007/s10533-011-9583-1
10.1111/j.1461-0248.2008.01223.x
10.1038/s43017-021-00233-0
10.1002/2014JG002805
10.3390/rs13132571
10.1016/j.geoderma.2006.03.049
10.1016/j.geoderma.2014.08.005
10.3389/fpls.2019.00330
10.1111/j.1365-2486.2004.00857.x
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
CorporateAuthor Sveriges lantbruksuniversitet
CorporateAuthor_xml – name: Sveriges lantbruksuniversitet
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
ADTPV
AOWAS
D8T
ZZAVC
DOA
DOI 10.1016/j.geoderma.2024.117108
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID oai_doaj_org_article_1b2994aa19f147118ab56be722eebd1e
oai_slubar_slu_se_139491
10_1016_j_geoderma_2024_117108
S0016706124003379
GeographicLocations Greenland
GeographicLocations_xml – name: Greenland
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
ABEFU
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACRPL
ACSBN
ADBBV
ADEZE
ADMUD
ADNMO
ADQTV
ADVLN
AEBSH
AEFWE
AEGFY
AEIPS
AEKER
AENEX
AEQOU
AFFNX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SEP
SES
SEW
SPC
SPCBC
SSA
SSE
SSH
SSZ
T5K
VH1
WUQ
XPP
Y6R
ZMT
~02
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
CITATION
7S9
L.6
ADTPV
AOWAS
D8T
EFKBS
ZZAVC
ID FETCH-LOGICAL-c445t-c53211f7b0e76d1bc20f5de1ca0f4e9109402240760bf9994d209aabc1879f33
IEDL.DBID .~1
ISSN 0016-7061
1872-6259
IngestDate Wed Aug 27 01:27:46 EDT 2025
Thu Aug 21 06:45:23 EDT 2025
Wed Jul 02 03:19:07 EDT 2025
Tue Jul 01 04:59:38 EDT 2025
Sat Apr 26 15:42:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Net ecosystem exchange
Soil nutrients
Temperature sensitivity
Gross ecosystem production
Ecosystem respiration
Moisture sensitivity
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-c53211f7b0e76d1bc20f5de1ca0f4e9109402240760bf9994d209aabc1879f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0016706124003379
PQID 3154177752
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_1b2994aa19f147118ab56be722eebd1e
swepub_primary_oai_slubar_slu_se_139491
proquest_miscellaneous_3154177752
crossref_primary_10_1016_j_geoderma_2024_117108
elsevier_sciencedirect_doi_10_1016_j_geoderma_2024_117108
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Mikan, Schimel, Doyle (b0215) 2002; 34
Tsui, Chen (b0390) 2010; 56
Bracho, Natali, Pegoraro, Crummer, Schädel, Celis, Hale, Wu, Yin, Tiedje (b0050) 2016; 97
Rodeghiero, Cescatti (b0330) 2005; 11
Schimel, Mikan (b0345) 2005; 37
Findlay, Gibson, Kędra, Morata, Orchowska, Pavlov, Reigstad, Silyakova, Tremblay, Walczowski (b0115) 2015; 34
Heinze, Gensch, Weber, Joshi (b0155) 2017; 10
Dan, Nianpeng, Qing, Yuliang, Qiufeng, Zhiwei, Jianxing (b0095) 2016; 26
Richardson, Chatterjee, Jenerette (b0325) 2012; 46
Schimel, Bilbrough, Welker (b0340) 2004; 36
Carey, Tang, Templer, Kroeger, Crowther, Burton, Dukes, Emmett, Frey, Heskel (b0055) 2016; 113
Garten, Hanson (b0130) 2006; 136
Pedersen, Tamstorf, Abermann, Westergaard-Nielsen, Lund, Skov, Sigsgaard, Mylius, Hansen, Liston (b0285) 2016; 48
Pradel, Bravo, Merino, Trefault, Rodríguez, Knicker, Jara, Larama, Matus (b0300) 2023
Schaefer, Jafarov (b0335) 2016; 13
Elberling (b0105) 2007; 39
Treharne, Bjerke, Tømmervik, Stendardi, Phoenix (b0385) 2019; 25
Lenth, R., 2020. Emmeans: estimated marginal means, aka least-squares means. Rpackage version 1.4. 7. 2020.
Sullivan, Stokes, McMillan, Weintraub (b0370) 2020; 11
Turner, Smithwick, Metzger, Tinker, Romme (b0395) 2007; 104
Vanhala, Karhu, Tuomi, Björklöf, Fritze, Liski (b0400) 2008; 40
Ravn, Elberling, Michelsen (b0315) 2020; 142
Aalto, le Roux, Luoto (b0005) 2013; 45
Kim, Kim, Enomoto, Kushida, Kondoh, Uchida (b0170) 2013; 7
Starr, Oberbauer, Ahlquist (b0365) 2008; 40
Makarov, Malysheva, Cornelissen, van Logtestijn, Glasser (b0200) 2008; 40
Córdova, Célleri, Shellito, Orellana-Alvear, Abril, Carrillo-Rojas (b0075) 2016; 48
Watts, Natali, Minions, Risk, Arndt, Zona, Euskirchen, Rocha, Sonnentag, Helbig (b0410) 2021; 16
Hopkins, Gonzalez-Meler, Flower, Lynch, Czimczik, Tang, Subke (b0160) 2013; 199
Onwuka, Mang (b0255) 2018; 8
Panikov, Flanagan, Oechel, Mastepanov, Christensen (b0265) 2006; 38
Team, R.C., 2019. R: A language and environment for statistical computing (Version 3.6. 1)[Software package]. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from
.
Heijmans, Magnússon, Lara, Frost, Myers-Smith, van Huissteden, Jorgenson, Fedorov, Epstein, Lawrence (b0150) 2022; 3
Soong, Cotrufo (b0360) 2015; 21
Xu, Prieme, Cooper, Mörsdorf, Semenchuk, Elberling, Grogan, Ambus (b0430) 2021; 160
Xu, Zhou, Ruan, Luo, Wang (b0440) 2010; 42
Ma, Zang, Xie, Chen, Xu, Zhao, Shen (b0195) 2019; 9
Christiansen, Haugwitz, Priemé, Nielsen, Elberling, Michelsen, Grogan, Blok (b0070) 2017; 23
Rantanen, Karpechko, Lipponen, Nordling, Hyvärinen, Ruosteenoja, Vihma, Laaksonen (b0310) 2022; 3
Flerchinger, Fellows, Seyfried, Clark, Lohse (b0120) 2020; 23
Nottingham, Bååth, Reischke, Salinas, Meir (b0240) 2019; 25
Ramm, Liu, Ambus, Butterbach-Bahl, Hu, Martikainen, Marushchak, Mueller, Rennenberg, Schloter (b0305) 2022; 17
Davidson, Janssens, Luo (b0100) 2006; 12
Oberbauer, Tweedie, Welker, Fahnestock, Henry, Webber, Hollister, Walker, Kuchy, Elmore, Starr (b0245) 2007; 77
Boddy, Roberts, Hill, Farrar, Jones (b0035) 2008; 40
Gutiérrez-Girón, Díaz-Pinés, Rubio, Gavilán (b0140) 2015; 237
Knowles, Blanken, Williams (b0175) 2015; 125
Mankin, E., 2008. Principal components analysis: a how-to manual for R. Desde
Billings, Ballantyne (b0030) 2013; 19
Shahi, Abermann, Silva, Langley, Larsen, Mastepanov, Schöner (b0355) 2023; 4
Celi, L., Said‐Pullicino, D., Bol, R., Lang, F., Luster, J., 2022. Interconnecting soil organic matter with nitrogen and phosphorus cycling. Multi‐Scale Biogeochemical Processes in Soil Ecosystems: Critical Reactions and Resilience to Climate Changes, 51–77.
Dan, Meng, He, He, Zhao, Chen, Zhang, Cai, Müller (b0090) 2022; 474
Elberling, Brandt (b0110) 2003; 35
Schindlbacher, de Gonzalo, Díaz-Pinés, Gorría, Matthews, Inclán, Zechmeister-Boltenstern, Rubio, Jandl (b0350) 2010
Frerichs, Daum, Pacholski (b0125) 2020; 10
Balogh, Pintér, Fóti, Cserhalmi, Papp, Nagy (b0020) 2011; 43
Körner, C., 2021. The climate plants experience. Alpine Plant Life: functional plant ecology of high mountain ecosystems, 65–88.
Corre, Brumme, Veldkamp, Beese (b0080) 2007; 13
Dagg, Lafleur (b0085) 2011; 43
Kobayashi, Yunus, Nagai, Sugiura, Kim, Van Dam, Nagano, Zona, Harazono, Bret-Harte (b0180) 2016; 177
Virkkala, Virtanen, Lehtonen, Rinne, Luoto (b0405) 2018; 42
Christensen, Friborg, Sommerkorn, Kaplan, Illeris, Soegaard, Nordstroem, Jonasson (b0065) 2000; 14
Ni, Cheng, Wang, Ng, Garg (b0230) 2019; 571
Pirk, Tamstorf, Lund, Mastepanov, Pedersen, Mylius, Parmentier, Christiansen, Christensen (b0290) 2016; 121
Nottingham, Turner, Whitaker, Ostle, Bardgett, McNamara, Salinas, Meir (b0235) 2016; 127
Zhang, Liu, Cheng, Cai, Müller, Zhang (b0455) 2019; 337
Zona, Lipson, Zulueta, Oberbauer, Oechel (b0460) 2011
Paré, Bedard-Haughn (b0270) 2012; 189
Moyano, Manzoni, Chenu (b0225) 2013; 59
Sun, Wang, Hu, Yao, Guo (b0375) 2018; 13
Hartley, Hopkins, Garnett, Sommerkorn, Wookey (b0145) 2008; 11
Azevedo, Parker, Siewert, Subke (b0010) 2021; 13
Borchard, Schirrmann, Cayuela, Kammann, Wrage-Mönnig, Estavillo, Fuertes-Mendizábal, Sigua, Spokas, Ippolito (b0045) 2019; 651
Xu, Lambæk, Holm, Furbo-Halken, Elberling, Ambus (b0425) 2021; 795
Göbel, Coners, Hertel, Willinghöfer, Leuschner (b0135) 2019; 10
Pörtl, Zechmeister-Boltenstern, Wanek, Ambus, Berger (b0295) 2007; 295
Azizi-Rad, Guggenberger, Ma, Sierra (b0015) 2022; 165
Whitaker, Ostle, Nottingham, Ccahuana, Salinas, Bardgett, Meir, McNamara (b0420) 2014; 102
Zeeman, Hiller, Gilgen, Michna, Plüss, Buchmann, Eugster (b0445) 2010; 150
Booth, Stark, Rastetter (b0040) 2005; 75
Xu, Frendrup, Michelsen, Elberling, Ambus (b0435) 2023; 180
Revelle, W., Revelle, M.W., 2015. Package ‘psych’. The comprehensive R archive network 337.
Karhu, Auffret, Dungait, Hopkins, Prosser, Singh, Subke, Wookey, Ågren, Sebastia (b0165) 2014; 513
McIntire, Piper, Fajardo (b0210) 2016; 104
Bauer, Weihermüller, Huisman, Herbst, Graf, Sequaris, Vereecken (b0025) 2012; 108
Öquist, Sparrman, Klemedtsson, Drotz, Grip, Schleucher, Nilsson (b0260) 2009; 15
Morgner, Elberling, Strebel, Cooper (b0220) 2010; 29
Zhang, Dong, Xu, Chen, Zhao, Gao, Hu, Huang (b0450) 2015; 120
Ohkubo, Iwata, Hirota (b0250) 2012; 165
Welker, Fahnestock, Henry, O'Dea, Chimner (b0415) 2004; 10
Parker, Subke, Wookey (b0275) 2015; 21
Parker, Clemmensen, Friggens, Hartley, Johnson, Lindahl, Olofsson, Siewert, Street, Subke (b0280) 2020; 227
Kobayashi (10.1016/j.geoderma.2024.117108_b0180) 2016; 177
Gutiérrez-Girón (10.1016/j.geoderma.2024.117108_b0140) 2015; 237
Starr (10.1016/j.geoderma.2024.117108_b0365) 2008; 40
Zeeman (10.1016/j.geoderma.2024.117108_b0445) 2010; 150
Elberling (10.1016/j.geoderma.2024.117108_b0110) 2003; 35
Xu (10.1016/j.geoderma.2024.117108_b0440) 2010; 42
Ohkubo (10.1016/j.geoderma.2024.117108_b0250) 2012; 165
Nottingham (10.1016/j.geoderma.2024.117108_b0240) 2019; 25
Schimel (10.1016/j.geoderma.2024.117108_b0345) 2005; 37
Panikov (10.1016/j.geoderma.2024.117108_b0265) 2006; 38
Dagg (10.1016/j.geoderma.2024.117108_b0085) 2011; 43
10.1016/j.geoderma.2024.117108_b0320
Öquist (10.1016/j.geoderma.2024.117108_b0260) 2009; 15
Bracho (10.1016/j.geoderma.2024.117108_b0050) 2016; 97
Richardson (10.1016/j.geoderma.2024.117108_b0325) 2012; 46
Balogh (10.1016/j.geoderma.2024.117108_b0020) 2011; 43
Azevedo (10.1016/j.geoderma.2024.117108_b0010) 2021; 13
Christiansen (10.1016/j.geoderma.2024.117108_b0070) 2017; 23
Elberling (10.1016/j.geoderma.2024.117108_b0105) 2007; 39
Pirk (10.1016/j.geoderma.2024.117108_b0290) 2016; 121
Zona (10.1016/j.geoderma.2024.117108_b0460) 2011
Findlay (10.1016/j.geoderma.2024.117108_b0115) 2015; 34
Borchard (10.1016/j.geoderma.2024.117108_b0045) 2019; 651
Parker (10.1016/j.geoderma.2024.117108_b0275) 2015; 21
Onwuka (10.1016/j.geoderma.2024.117108_b0255) 2018; 8
Ma (10.1016/j.geoderma.2024.117108_b0195) 2019; 9
Göbel (10.1016/j.geoderma.2024.117108_b0135) 2019; 10
Paré (10.1016/j.geoderma.2024.117108_b0270) 2012; 189
Azizi-Rad (10.1016/j.geoderma.2024.117108_b0015) 2022; 165
10.1016/j.geoderma.2024.117108_b0190
Frerichs (10.1016/j.geoderma.2024.117108_b0125) 2020; 10
Oberbauer (10.1016/j.geoderma.2024.117108_b0245) 2007; 77
Schindlbacher (10.1016/j.geoderma.2024.117108_b0350) 2010
Rantanen (10.1016/j.geoderma.2024.117108_b0310) 2022; 3
Vanhala (10.1016/j.geoderma.2024.117108_b0400) 2008; 40
Sun (10.1016/j.geoderma.2024.117108_b0375) 2018; 13
Boddy (10.1016/j.geoderma.2024.117108_b0035) 2008; 40
Karhu (10.1016/j.geoderma.2024.117108_b0165) 2014; 513
Mikan (10.1016/j.geoderma.2024.117108_b0215) 2002; 34
Bauer (10.1016/j.geoderma.2024.117108_b0025) 2012; 108
Watts (10.1016/j.geoderma.2024.117108_b0410) 2021; 16
Dan (10.1016/j.geoderma.2024.117108_b0090) 2022; 474
Pörtl (10.1016/j.geoderma.2024.117108_b0295) 2007; 295
Tsui (10.1016/j.geoderma.2024.117108_b0390) 2010; 56
Treharne (10.1016/j.geoderma.2024.117108_b0385) 2019; 25
Aalto (10.1016/j.geoderma.2024.117108_b0005) 2013; 45
Schimel (10.1016/j.geoderma.2024.117108_b0340) 2004; 36
Ravn (10.1016/j.geoderma.2024.117108_b0315) 2020; 142
Nottingham (10.1016/j.geoderma.2024.117108_b0235) 2016; 127
Knowles (10.1016/j.geoderma.2024.117108_b0175) 2015; 125
Dan (10.1016/j.geoderma.2024.117108_b0095) 2016; 26
Xu (10.1016/j.geoderma.2024.117108_b0435) 2023; 180
Corre (10.1016/j.geoderma.2024.117108_b0080) 2007; 13
10.1016/j.geoderma.2024.117108_b0380
10.1016/j.geoderma.2024.117108_b0185
Moyano (10.1016/j.geoderma.2024.117108_b0225) 2013; 59
Morgner (10.1016/j.geoderma.2024.117108_b0220) 2010; 29
10.1016/j.geoderma.2024.117108_b0060
Parker (10.1016/j.geoderma.2024.117108_b0280) 2020; 227
Carey (10.1016/j.geoderma.2024.117108_b0055) 2016; 113
Pedersen (10.1016/j.geoderma.2024.117108_b0285) 2016; 48
Zhang (10.1016/j.geoderma.2024.117108_b0455) 2019; 337
Kim (10.1016/j.geoderma.2024.117108_b0170) 2013; 7
Schaefer (10.1016/j.geoderma.2024.117108_b0335) 2016; 13
Booth (10.1016/j.geoderma.2024.117108_b0040) 2005; 75
Billings (10.1016/j.geoderma.2024.117108_b0030) 2013; 19
Hopkins (10.1016/j.geoderma.2024.117108_b0160) 2013; 199
Davidson (10.1016/j.geoderma.2024.117108_b0100) 2006; 12
Rodeghiero (10.1016/j.geoderma.2024.117108_b0330) 2005; 11
Ni (10.1016/j.geoderma.2024.117108_b0230) 2019; 571
Xu (10.1016/j.geoderma.2024.117108_b0430) 2021; 160
Shahi (10.1016/j.geoderma.2024.117108_b0355) 2023; 4
Garten (10.1016/j.geoderma.2024.117108_b0130) 2006; 136
Turner (10.1016/j.geoderma.2024.117108_b0395) 2007; 104
Flerchinger (10.1016/j.geoderma.2024.117108_b0120) 2020; 23
Whitaker (10.1016/j.geoderma.2024.117108_b0420) 2014; 102
Xu (10.1016/j.geoderma.2024.117108_b0425) 2021; 795
Heinze (10.1016/j.geoderma.2024.117108_b0155) 2017; 10
Makarov (10.1016/j.geoderma.2024.117108_b0200) 2008; 40
Virkkala (10.1016/j.geoderma.2024.117108_b0405) 2018; 42
Pradel (10.1016/j.geoderma.2024.117108_b0300) 2023
Soong (10.1016/j.geoderma.2024.117108_b0360) 2015; 21
Hartley (10.1016/j.geoderma.2024.117108_b0145) 2008; 11
Heijmans (10.1016/j.geoderma.2024.117108_b0150) 2022; 3
Sullivan (10.1016/j.geoderma.2024.117108_b0370) 2020; 11
10.1016/j.geoderma.2024.117108_b0205
McIntire (10.1016/j.geoderma.2024.117108_b0210) 2016; 104
Córdova (10.1016/j.geoderma.2024.117108_b0075) 2016; 48
Zhang (10.1016/j.geoderma.2024.117108_b0450) 2015; 120
Ramm (10.1016/j.geoderma.2024.117108_b0305) 2022; 17
Christensen (10.1016/j.geoderma.2024.117108_b0065) 2000; 14
Welker (10.1016/j.geoderma.2024.117108_b0415) 2004; 10
References_xml – volume: 40
  start-page: 1082
  year: 2008
  end-page: 1089
  ident: b0200
  article-title: Consistent patterns of 15N distribution through soil profiles in diverse alpine and tundra ecosystems
  publication-title: Soil Biol. Biochem.
– volume: 14
  start-page: 701
  year: 2000
  end-page: 713
  ident: b0065
  article-title: Trace gas exchange in a high-Arctic valley: 1. Variationsin CO
  publication-title: Global Biogeochem. Cycles
– reference: Körner, C., 2021. The climate plants experience. Alpine Plant Life: functional plant ecology of high mountain ecosystems, 65–88.
– volume: 34
  start-page: 1785
  year: 2002
  end-page: 1795
  ident: b0215
  article-title: Temperature controls of microbial respiration in arctic tundra soils above and below freezing
  publication-title: Soil Biol. Biochem.
– volume: 10
  start-page: 1981
  year: 2004
  end-page: 1995
  ident: b0415
  article-title: CO
  publication-title: Glob. Chang. Biol.
– volume: 102
  start-page: 1058
  year: 2014
  end-page: 1071
  ident: b0420
  article-title: Microbial community composition explains soil respiration responses to changing carbon inputs along an A ndes-to-A mazon elevation gradient
  publication-title: J. Ecol.
– reference: Lenth, R., 2020. Emmeans: estimated marginal means, aka least-squares means. Rpackage version 1.4. 7. 2020.
– volume: 571
  start-page: 494
  year: 2019
  end-page: 502
  ident: b0230
  article-title: Effects of vegetation on soil temperature and water content: field monitoring and numerical modelling
  publication-title: J. Hydrol.
– volume: 10
  start-page: 808
  year: 2017
  end-page: 821
  ident: b0155
  article-title: Soil temperature modifies effects of soil biota on plant growth
  publication-title: J. Plant Ecol.
– volume: 48
  start-page: 673
  year: 2016
  end-page: 684
  ident: b0075
  article-title: Near-surface air temperature lapse rate over complex terrain in the Southern Ecuadorian Andes: implications for temperature mapping
  publication-title: Arct. Antarct. Alp. Res.
– volume: 23
  start-page: 246
  year: 2020
  end-page: 263
  ident: b0120
  article-title: Water and carbon fluxes along an elevational gradient in a sagebrush ecosystem
  publication-title: Ecosystems
– volume: 199
  start-page: 339
  year: 2013
  end-page: 351
  ident: b0160
  article-title: Ecosystem-level controls on root-rhizosphere respiration
  publication-title: New Phytol.
– volume: 165
  year: 2022
  ident: b0015
  article-title: Sensitivity of soil respiration rate with respect to temperature, moisture and oxygen under freezing and thawing
  publication-title: Soil Biol. Biochem.
– volume: 75
  start-page: 139
  year: 2005
  end-page: 157
  ident: b0040
  article-title: Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data
  publication-title: Ecol. Monogr.
– reference: ….
– volume: 29
  start-page: 58
  year: 2010
  end-page: 74
  ident: b0220
  article-title: The importance of winter in annual ecosystem respiration in the High Arctic: effects of snow depth in two vegetation types
  publication-title: Polar Res.
– start-page: 115
  year: 2010
  ident: b0350
  article-title: Temperature sensitivity of forest soil organic matter decomposition along two elevation gradients
  publication-title: J. Geophys. Res. Biogeo.
– volume: 59
  start-page: 72
  year: 2013
  end-page: 85
  ident: b0225
  article-title: Responses of soil heterotrophic respiration to moisture availability: an exploration of processes and models
  publication-title: Soil Biol. Biochem.
– volume: 23
  start-page: 406
  year: 2017
  end-page: 420
  ident: b0070
  article-title: Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra
  publication-title: Glob. Chang. Biol.
– volume: 13
  start-page: 1509
  year: 2007
  end-page: 1527
  ident: b0080
  article-title: Changes in nitrogen cycling and retention processes in soils under spruce forests along a nitrogen enrichment gradient in Germany
  publication-title: Glob. Chang. Biol.
– volume: 25
  start-page: 827
  year: 2019
  end-page: 838
  ident: b0240
  article-title: Adaptation of soil microbial growth to temperature: using a tropical elevation gradient to predict future changes
  publication-title: Glob. Chang. Biol.
– volume: 15
  start-page: 2715
  year: 2009
  end-page: 2722
  ident: b0260
  article-title: Water availability controls microbial temperature responses in frozen soil CO
  publication-title: Glob. Chang. Biol.
– year: 2023
  ident: b0300
  article-title: Microbial response to warming and cellulose addition in a maritime Antarctic soil
  publication-title: Permafr. Periglac. Process.
– volume: 12
  start-page: 154
  year: 2006
  end-page: 164
  ident: b0100
  article-title: On the variability of respiration in terrestrial ecosystems: moving beyond Q10
  publication-title: Glob. Chang. Biol.
– volume: 7
  start-page: 162
  year: 2013
  end-page: 173
  ident: b0170
  article-title: Latitudinal distribution of soil CO
  publication-title: Alaska Polar Sci.
– volume: 227
  start-page: 1818
  year: 2020
  end-page: 1830
  ident: b0280
  article-title: Rhizosphere allocation by canopy-forming species dominates soil CO
  publication-title: New Phytol.
– reference: Team, R.C., 2019. R: A language and environment for statistical computing (Version 3.6. 1)[Software package]. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from
– volume: 10
  start-page: 330
  year: 2019
  ident: b0135
  article-title: The role of low soil temperature for photosynthesis and stomatal conductance of three graminoids from different elevations
  publication-title: Front. Plant Sci.
– volume: 40
  start-page: 1758
  year: 2008
  end-page: 1764
  ident: b0400
  article-title: Temperature sensitivity of soil organic matter decomposition in southern and northern areas of the boreal forest zone
  publication-title: Soil Biol. Biochem.
– volume: 474
  start-page: 581
  year: 2022
  end-page: 594
  ident: b0090
  article-title: Regulation of nitrogen acquisition in vegetables by different impacts on autotrophic and heterotrophic nitrification
  publication-title: Plant Soil
– start-page: 116
  year: 2011
  ident: b0460
  article-title: Microtopographic controls on ecosystem functioning in the Arctic Coastal Plain
  publication-title: J. Geophys. Res. Biogeol.
– volume: 40
  start-page: 181
  year: 2008
  end-page: 191
  ident: b0365
  article-title: The photosynthetic response of Alaskan tundra plants to increased season length and soil warming
  publication-title: Arct. Antarct. Alp. Res.
– volume: 56
  start-page: 319
  year: 2010
  end-page: 331
  ident: b0390
  article-title: Net nitrogen mineralization and nitrification of different landscape positions in a lowland subtropical rainforest in Taiwan
  publication-title: Soil Sci. Plant Nutr.
– volume: 45
  start-page: 429
  year: 2013
  end-page: 439
  ident: b0005
  article-title: Vegetation mediates soil temperature and moisture in arctic-alpine environments
  publication-title: Arct. Antarct. Alp. Res.
– volume: 125
  start-page: 185
  year: 2015
  end-page: 202
  ident: b0175
  article-title: Soil respiration variability across a soil moisture and vegetation community gradient within a snow-scoured alpine meadow
  publication-title: Biogeochemistry
– volume: 189
  start-page: 469
  year: 2012
  end-page: 479
  ident: b0270
  article-title: Landscape-scale N mineralization and greenhouse gas emissions in Canadian Cryosols
  publication-title: Geoderma
– reference: Revelle, W., Revelle, M.W., 2015. Package ‘psych’. The comprehensive R archive network 337.
– volume: 21
  start-page: 2321
  year: 2015
  end-page: 2333
  ident: b0360
  article-title: Annual burning of a tallgrass prairie inhibits C and N cycling in soil, increasing recalcitrant pyrogenic organic matter storage while reducing N availability
  publication-title: Glob. Chang. Biol.
– volume: 16
  year: 2021
  ident: b0410
  article-title: Soil respiration strongly offsets carbon uptake in Alaska and Northwest Canada
  publication-title: Environ. Res. Lett.
– volume: 165
  start-page: 25
  year: 2012
  end-page: 34
  ident: b0250
  article-title: Influence of snow-cover and soil-frost variations on continuously monitored CO
  publication-title: Agric. For. Meteorol.
– reference: Mankin, E., 2008. Principal components analysis: a how-to manual for R. Desde
– volume: 37
  start-page: 1411
  year: 2005
  end-page: 1418
  ident: b0345
  article-title: Changing microbial substrate use in Arctic tundra soils through a freeze-thaw cycle
  publication-title: Soil Biol. Biochem.
– volume: 13
  start-page: 1991
  year: 2016
  end-page: 2001
  ident: b0335
  article-title: A parameterization of respiration in frozen soils based on substrate availability
  publication-title: Biogeosciences
– volume: 36
  start-page: 217
  year: 2004
  end-page: 227
  ident: b0340
  article-title: Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities
  publication-title: Soil Biol. Biochem.
– volume: 35
  start-page: 263
  year: 2003
  end-page: 272
  ident: b0110
  article-title: Uncoupling of microbial CO
  publication-title: Soil Biol. Biochem.
– volume: 104
  start-page: 4782
  year: 2007
  end-page: 4789
  ident: b0395
  article-title: Inorganic nitrogen availability after severe stand-replacing fire in the Greater Yellowstone ecosystem
  publication-title: Proc. Natl. Acad. Sci.
– volume: 39
  start-page: 646
  year: 2007
  end-page: 654
  ident: b0105
  article-title: Annual soil CO
  publication-title: Soil Biol. Biochem.
– volume: 97
  start-page: 1
  year: 2016
  end-page: 14
  ident: b0050
  article-title: Temperature sensitivity of organic matter decomposition of permafrost-region soils during laboratory incubations
  publication-title: Soil Biol. Biochem.
– volume: 651
  start-page: 2354
  year: 2019
  end-page: 2364
  ident: b0045
  article-title: Biochar, soil and land-use interactions that reduce nitrate leaching and N
  publication-title: Sci. Total Environ.
– volume: 34
  start-page: 24252
  year: 2015
  ident: b0115
  article-title: Responses in Arctic marine carbon cycle processes: conceptual scenarios and implications for ecosystem function
  publication-title: Polar Res.
– volume: 113
  start-page: 13797
  year: 2016
  end-page: 13802
  ident: b0055
  article-title: Temperature response of soil respiration largely unaltered with experimental warming
  publication-title: Proc. Natl. Acad. Sci.
– volume: 42
  start-page: 1811
  year: 2010
  end-page: 1815
  ident: b0440
  article-title: Temperature sensitivity increases with soil organic carbon recalcitrance along an elevational gradient in the Wuyi Mountains, China
  publication-title: Soil Biol. Biochem.
– volume: 19
  start-page: 90
  year: 2013
  end-page: 102
  ident: b0030
  article-title: How interactions between microbial resource demands, soil organic matter stoichiometry, and substrate reactivity determine the direction and magnitude of soil respiratory responses to warming
  publication-title: Glob. Chang. Biol.
– volume: 160
  year: 2021
  ident: b0430
  article-title: Deepened snow enhances gross nitrogen cycling among Pan-Arctic tundra soils during both winter and summer
  publication-title: Soil Biol. Biochem.
– volume: 40
  start-page: 1557
  year: 2008
  end-page: 1566
  ident: b0035
  article-title: Turnover of low molecular weight dissolved organic C (DOC) and microbial C exhibit different temperature sensitivities in Arctic tundra soils
  publication-title: Soil Biol. Biochem.
– volume: 38
  start-page: 785
  year: 2006
  end-page: 794
  ident: b0265
  article-title: Microbial activity in soils frozen to below− 39 C
  publication-title: Soil Biol. Biochem.
– volume: 150
  start-page: 519
  year: 2010
  end-page: 530
  ident: b0445
  article-title: Management and climate impacts on net CO
  publication-title: Agric. For. Meteorol.
– reference: Celi, L., Said‐Pullicino, D., Bol, R., Lang, F., Luster, J., 2022. Interconnecting soil organic matter with nitrogen and phosphorus cycling. Multi‐Scale Biogeochemical Processes in Soil Ecosystems: Critical Reactions and Resilience to Climate Changes, 51–77.
– volume: 43
  start-page: 189
  year: 2011
  end-page: 197
  ident: b0085
  article-title: Vegetation community, foliar nitrogen, and temperature effects on tundra CO
  publication-title: Arct. Antarct. Alp. Res.
– volume: 3
  start-page: 68
  year: 2022
  end-page: 84
  ident: b0150
  article-title: Tundra vegetation change and impacts on permafrost
  publication-title: Nat. Rev. Earth Environ.
– volume: 120
  start-page: 773
  year: 2015
  end-page: 787
  ident: b0450
  article-title: Soil respiration sensitivities to water and temperature in a revegetated desert
  publication-title: J. Geophys. Res. Biogeol.
– volume: 3
  start-page: 168
  year: 2022
  ident: b0310
  article-title: The Arctic has warmed nearly four times faster than the globe since 1979
  publication-title: Commun. Earth Environ.
– volume: 237
  start-page: 1
  year: 2015
  end-page: 8
  ident: b0140
  article-title: Both altitude and vegetation affect temperature sensitivity of soil organic matter decomposition in Mediterranean high mountain soils
  publication-title: Geoderma
– volume: 11
  start-page: 1024
  year: 2005
  end-page: 1041
  ident: b0330
  article-title: Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps
  publication-title: Glob. Chang. Biol.
– volume: 337
  start-page: 965
  year: 2019
  end-page: 972
  ident: b0455
  article-title: Composition of soil recalcitrant C regulates nitrification rates in acidic soils
  publication-title: Geoderma
– volume: 21
  start-page: 2070
  year: 2015
  end-page: 2081
  ident: b0275
  article-title: Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline
  publication-title: Glob. Chang. Biol.
– volume: 11
  start-page: 4024
  year: 2020
  ident: b0370
  article-title: Labile carbon limits late winter microbial activity near Arctic treeline
  publication-title: Nat. Commun.
– volume: 13
  start-page: e0195400
  year: 2018
  ident: b0375
  article-title: Spatial variations of soil respiration and temperature sensitivity along a steep slope of the semiarid Loess Plateau
  publication-title: PLoS One
– volume: 513
  start-page: 81
  year: 2014
  end-page: 84
  ident: b0165
  article-title: Temperature sensitivity of soil respiration rates enhanced by microbial community response
  publication-title: Nature
– volume: 142
  year: 2020
  ident: b0315
  article-title: Arctic soil carbon turnover controlled by experimental snow addition, summer warming and shrub removal
  publication-title: Soil Biol. Biochem.
– volume: 13
  start-page: 2571
  year: 2021
  ident: b0010
  article-title: Predicting soil respiration from plant productivity (NDVI) in a sub-Arctic tundra ecosystem
  publication-title: Remote Sens. (Basel)
– volume: 127
  start-page: 217
  year: 2016
  end-page: 230
  ident: b0235
  article-title: Temperature sensitivity of soil enzymes along an elevation gradient in the Peruvian Andes
  publication-title: Biogeochemistry
– volume: 77
  start-page: 221
  year: 2007
  end-page: 238
  ident: b0245
  article-title: Tundra CO
  publication-title: Ecol. Monogr.
– volume: 17
  year: 2022
  ident: b0305
  article-title: A review of the importance of mineral nitrogen cycling in the plant-soil-microbe system of permafrost-affected soils—changing the paradigm
  publication-title: Environ. Res. Lett.
– volume: 9
  start-page: 12846
  year: 2019
  end-page: 12857
  ident: b0195
  article-title: Soil respiration of four forests along elevation gradient in northern subtropical China
  publication-title: Ecol. Evol.
– reference: .
– volume: 48
  start-page: 653
  year: 2016
  end-page: 671
  ident: b0285
  article-title: Spatiotemporal characteristics of seasonal snow cover in Northeast Greenland from in situ observations
  publication-title: Arct. Antarct. Alp. Res.
– volume: 180
  year: 2023
  ident: b0435
  article-title: Deepened snow in combination with summer warming increases growing season nitrous oxide emissions in dry tundra, but not in wet tundra
  publication-title: Soil Biol. Biochem.
– volume: 136
  start-page: 342
  year: 2006
  end-page: 352
  ident: b0130
  article-title: Measured forest soil C stocks and estimated turnover times along an elevation gradient
  publication-title: Geoderma
– volume: 26
  start-page: 399
  year: 2016
  end-page: 407
  ident: b0095
  article-title: Effects of temperature and moisture on soil organic matter decomposition along elevation gradients on the Changbai Mountains, Northeast China
  publication-title: Pedosphere
– volume: 11
  start-page: 1092
  year: 2008
  end-page: 1100
  ident: b0145
  article-title: Soil microbial respiration in arctic soil does not acclimate to temperature
  publication-title: Ecol. Lett.
– volume: 104
  start-page: 1379
  year: 2016
  end-page: 1390
  ident: b0210
  article-title: Wind exposure and light exposure, more than elevation-related temperature, limit tree line seedling abundance on three continents
  publication-title: J. Ecol.
– volume: 8
  start-page: 34
  year: 2018
  end-page: 37
  ident: b0255
  article-title: Effects of soil temperature on some soil properties and plant growth
  publication-title: Adv. Plants Agric. Res.
– volume: 108
  start-page: 119
  year: 2012
  end-page: 134
  ident: b0025
  article-title: Inverse determination of heterotrophic soil respiration response to temperature and water content under field conditions
  publication-title: Biogeochemistry
– volume: 46
  start-page: 89
  year: 2012
  end-page: 95
  ident: b0325
  article-title: Optimum temperatures for soil respiration along a semi-arid elevation gradient in southern California
  publication-title: Soil Biol. Biochem.
– volume: 795
  year: 2021
  ident: b0425
  article-title: Effects of experimental fire in combination with climate warming on greenhouse gas fluxes in Arctic tundra soils
  publication-title: Sci. Total Environ.
– volume: 42
  start-page: 162
  year: 2018
  end-page: 184
  ident: b0405
  article-title: The current state of CO
  publication-title: Prog. Phys. Geogr.: Earth Environ.
– volume: 4
  start-page: 747
  year: 2023
  end-page: 771
  ident: b0355
  article-title: The importance of regional sea-ice variability for the coastal climate and near-surface temperature gradients in Northeast Greenland
  publication-title: Weather Clim. Dyn.
– volume: 43
  start-page: 1006
  year: 2011
  end-page: 1013
  ident: b0020
  article-title: Dependence of soil respiration on soil moisture, clay content, soil organic matter, and CO
  publication-title: Soil Biol. Biochem.
– volume: 295
  start-page: 79
  year: 2007
  end-page: 94
  ident: b0295
  article-title: Natural 15N abundance of soil N pools and N2O reflect the nitrogen dynamics of forest soils
  publication-title: Plant and Soil
– volume: 177
  start-page: 160
  year: 2016
  end-page: 170
  ident: b0180
  article-title: Latitudinal gradient of spruce forest understory and tundra phenology in Alaska as observed from satellite and ground-based data
  publication-title: Remote Sens. Environ.
– volume: 25
  start-page: 489
  year: 2019
  end-page: 503
  ident: b0385
  article-title: Arctic browning: Impacts of extreme climatic events on heathland ecosystem CO
  publication-title: Glob. Chang. Biol.
– volume: 121
  start-page: 2886
  year: 2016
  end-page: 2900
  ident: b0290
  article-title: Snowpack fluxes of methane and carbon dioxide from high Arctic tundra
  publication-title: J. Geophys. Res. Biogeo.
– volume: 10
  start-page: 1696
  year: 2020
  ident: b0125
  article-title: Ammonia and ammonium exposure of basil (Ocimum basilicum L.) growing in an organically fertilized peat substrate and strategies to mitigate related harmful impacts on plant growth
  publication-title: Front. Plant Sci.
– ident: 10.1016/j.geoderma.2024.117108_b0185
  doi: 10.1007/978-3-030-59538-8_4
– volume: 40
  start-page: 1557
  year: 2008
  ident: 10.1016/j.geoderma.2024.117108_b0035
  article-title: Turnover of low molecular weight dissolved organic C (DOC) and microbial C exhibit different temperature sensitivities in Arctic tundra soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2008.01.030
– volume: 97
  start-page: 1
  year: 2016
  ident: 10.1016/j.geoderma.2024.117108_b0050
  article-title: Temperature sensitivity of organic matter decomposition of permafrost-region soils during laboratory incubations
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.02.008
– volume: 40
  start-page: 1082
  year: 2008
  ident: 10.1016/j.geoderma.2024.117108_b0200
  article-title: Consistent patterns of 15N distribution through soil profiles in diverse alpine and tundra ecosystems
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2007.12.002
– volume: 16
  year: 2021
  ident: 10.1016/j.geoderma.2024.117108_b0410
  article-title: Soil respiration strongly offsets carbon uptake in Alaska and Northwest Canada
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ac1222
– volume: 9
  start-page: 12846
  year: 2019
  ident: 10.1016/j.geoderma.2024.117108_b0195
  article-title: Soil respiration of four forests along elevation gradient in northern subtropical China
  publication-title: Ecol. Evol.
  doi: 10.1002/ece3.5762
– year: 2023
  ident: 10.1016/j.geoderma.2024.117108_b0300
  article-title: Microbial response to warming and cellulose addition in a maritime Antarctic soil
  publication-title: Permafr. Periglac. Process.
  doi: 10.1002/ppp.2182
– volume: 189
  start-page: 469
  year: 2012
  ident: 10.1016/j.geoderma.2024.117108_b0270
  article-title: Landscape-scale N mineralization and greenhouse gas emissions in Canadian Cryosols
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.06.002
– volume: 150
  start-page: 519
  year: 2010
  ident: 10.1016/j.geoderma.2024.117108_b0445
  article-title: Management and climate impacts on net CO2 fluxes and carbon budgets of three grasslands along an elevational gradient in Switzerland
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2010.01.011
– volume: 26
  start-page: 399
  year: 2016
  ident: 10.1016/j.geoderma.2024.117108_b0095
  article-title: Effects of temperature and moisture on soil organic matter decomposition along elevation gradients on the Changbai Mountains, Northeast China
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(15)60052-2
– ident: 10.1016/j.geoderma.2024.117108_b0190
– volume: 337
  start-page: 965
  year: 2019
  ident: 10.1016/j.geoderma.2024.117108_b0455
  article-title: Composition of soil recalcitrant C regulates nitrification rates in acidic soils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.11.014
– volume: 11
  start-page: 4024
  year: 2020
  ident: 10.1016/j.geoderma.2024.117108_b0370
  article-title: Labile carbon limits late winter microbial activity near Arctic treeline
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17790-5
– volume: 19
  start-page: 90
  year: 2013
  ident: 10.1016/j.geoderma.2024.117108_b0030
  article-title: How interactions between microbial resource demands, soil organic matter stoichiometry, and substrate reactivity determine the direction and magnitude of soil respiratory responses to warming
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12029
– volume: 48
  start-page: 653
  year: 2016
  ident: 10.1016/j.geoderma.2024.117108_b0285
  article-title: Spatiotemporal characteristics of seasonal snow cover in Northeast Greenland from in situ observations
  publication-title: Arct. Antarct. Alp. Res.
  doi: 10.1657/AAAR0016-028
– volume: 25
  start-page: 827
  year: 2019
  ident: 10.1016/j.geoderma.2024.117108_b0240
  article-title: Adaptation of soil microbial growth to temperature: using a tropical elevation gradient to predict future changes
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14502
– volume: 13
  start-page: 1991
  year: 2016
  ident: 10.1016/j.geoderma.2024.117108_b0335
  article-title: A parameterization of respiration in frozen soils based on substrate availability
  publication-title: Biogeosciences
  doi: 10.5194/bg-13-1991-2016
– volume: 227
  start-page: 1818
  year: 2020
  ident: 10.1016/j.geoderma.2024.117108_b0280
  article-title: Rhizosphere allocation by canopy-forming species dominates soil CO2 efflux in a subarctic landscape
  publication-title: New Phytol.
  doi: 10.1111/nph.16573
– volume: 42
  start-page: 162
  year: 2018
  ident: 10.1016/j.geoderma.2024.117108_b0405
  article-title: The current state of CO2 flux chamber studies in the Arctic tundra: a review
  publication-title: Prog. Phys. Geogr.: Earth Environ.
  doi: 10.1177/0309133317745784
– volume: 45
  start-page: 429
  year: 2013
  ident: 10.1016/j.geoderma.2024.117108_b0005
  article-title: Vegetation mediates soil temperature and moisture in arctic-alpine environments
  publication-title: Arct. Antarct. Alp. Res.
  doi: 10.1657/1938-4246-45.4.429
– volume: 29
  start-page: 58
  year: 2010
  ident: 10.1016/j.geoderma.2024.117108_b0220
  article-title: The importance of winter in annual ecosystem respiration in the High Arctic: effects of snow depth in two vegetation types
  publication-title: Polar Res.
  doi: 10.1111/j.1751-8369.2010.00151.x
– volume: 571
  start-page: 494
  year: 2019
  ident: 10.1016/j.geoderma.2024.117108_b0230
  article-title: Effects of vegetation on soil temperature and water content: field monitoring and numerical modelling
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.02.009
– volume: 121
  start-page: 2886
  year: 2016
  ident: 10.1016/j.geoderma.2024.117108_b0290
  article-title: Snowpack fluxes of methane and carbon dioxide from high Arctic tundra
  publication-title: J. Geophys. Res. Biogeo.
  doi: 10.1002/2016JG003486
– volume: 39
  start-page: 646
  year: 2007
  ident: 10.1016/j.geoderma.2024.117108_b0105
  article-title: Annual soil CO2 effluxes in the High Arctic: the role of snow thickness and vegetation type
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2006.09.017
– volume: 38
  start-page: 785
  year: 2006
  ident: 10.1016/j.geoderma.2024.117108_b0265
  article-title: Microbial activity in soils frozen to below− 39 C
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2005.07.004
– volume: 12
  start-page: 154
  year: 2006
  ident: 10.1016/j.geoderma.2024.117108_b0100
  article-title: On the variability of respiration in terrestrial ecosystems: moving beyond Q10
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2005.01065.x
– volume: 104
  start-page: 1379
  year: 2016
  ident: 10.1016/j.geoderma.2024.117108_b0210
  article-title: Wind exposure and light exposure, more than elevation-related temperature, limit tree line seedling abundance on three continents
  publication-title: J. Ecol.
  doi: 10.1111/1365-2745.12599
– volume: 14
  start-page: 701
  year: 2000
  ident: 10.1016/j.geoderma.2024.117108_b0065
  article-title: Trace gas exchange in a high-Arctic valley: 1. Variationsin CO2 and CH4 flux between tundra vegetation types
  publication-title: Global Biogeochem. Cycles
  doi: 10.1029/1999GB001134
– volume: 3
  start-page: 168
  year: 2022
  ident: 10.1016/j.geoderma.2024.117108_b0310
  article-title: The Arctic has warmed nearly four times faster than the globe since 1979
  publication-title: Commun. Earth Environ.
  doi: 10.1038/s43247-022-00498-3
– volume: 165
  year: 2022
  ident: 10.1016/j.geoderma.2024.117108_b0015
  article-title: Sensitivity of soil respiration rate with respect to temperature, moisture and oxygen under freezing and thawing
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2021.108488
– volume: 199
  start-page: 339
  year: 2013
  ident: 10.1016/j.geoderma.2024.117108_b0160
  article-title: Ecosystem-level controls on root-rhizosphere respiration
  publication-title: New Phytol.
  doi: 10.1111/nph.12271
– volume: 43
  start-page: 1006
  year: 2011
  ident: 10.1016/j.geoderma.2024.117108_b0020
  article-title: Dependence of soil respiration on soil moisture, clay content, soil organic matter, and CO2 uptake in dry grasslands
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.01.017
– volume: 651
  start-page: 2354
  year: 2019
  ident: 10.1016/j.geoderma.2024.117108_b0045
  article-title: Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: a meta-analysis
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.10.060
– volume: 40
  start-page: 1758
  year: 2008
  ident: 10.1016/j.geoderma.2024.117108_b0400
  article-title: Temperature sensitivity of soil organic matter decomposition in southern and northern areas of the boreal forest zone
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2008.02.021
– volume: 4
  start-page: 747
  year: 2023
  ident: 10.1016/j.geoderma.2024.117108_b0355
  article-title: The importance of regional sea-ice variability for the coastal climate and near-surface temperature gradients in Northeast Greenland
  publication-title: Weather Clim. Dyn.
  doi: 10.5194/wcd-4-747-2023
– volume: 21
  start-page: 2070
  year: 2015
  ident: 10.1016/j.geoderma.2024.117108_b0275
  article-title: Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12793
– volume: 13
  start-page: e0195400
  year: 2018
  ident: 10.1016/j.geoderma.2024.117108_b0375
  article-title: Spatial variations of soil respiration and temperature sensitivity along a steep slope of the semiarid Loess Plateau
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0195400
– volume: 795
  year: 2021
  ident: 10.1016/j.geoderma.2024.117108_b0425
  article-title: Effects of experimental fire in combination with climate warming on greenhouse gas fluxes in Arctic tundra soils
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.148847
– volume: 15
  start-page: 2715
  year: 2009
  ident: 10.1016/j.geoderma.2024.117108_b0260
  article-title: Water availability controls microbial temperature responses in frozen soil CO2 production
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2009.01898.x
– volume: 102
  start-page: 1058
  year: 2014
  ident: 10.1016/j.geoderma.2024.117108_b0420
  article-title: Microbial community composition explains soil respiration responses to changing carbon inputs along an A ndes-to-A mazon elevation gradient
  publication-title: J. Ecol.
  doi: 10.1111/1365-2745.12247
– volume: 34
  start-page: 24252
  year: 2015
  ident: 10.1016/j.geoderma.2024.117108_b0115
  article-title: Responses in Arctic marine carbon cycle processes: conceptual scenarios and implications for ecosystem function
  publication-title: Polar Res.
  doi: 10.3402/polar.v34.24252
– volume: 21
  start-page: 2321
  year: 2015
  ident: 10.1016/j.geoderma.2024.117108_b0360
  article-title: Annual burning of a tallgrass prairie inhibits C and N cycling in soil, increasing recalcitrant pyrogenic organic matter storage while reducing N availability
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12832
– volume: 10
  start-page: 808
  year: 2017
  ident: 10.1016/j.geoderma.2024.117108_b0155
  article-title: Soil temperature modifies effects of soil biota on plant growth
  publication-title: J. Plant Ecol.
– volume: 46
  start-page: 89
  year: 2012
  ident: 10.1016/j.geoderma.2024.117108_b0325
  article-title: Optimum temperatures for soil respiration along a semi-arid elevation gradient in southern California
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.11.008
– volume: 113
  start-page: 13797
  year: 2016
  ident: 10.1016/j.geoderma.2024.117108_b0055
  article-title: Temperature response of soil respiration largely unaltered with experimental warming
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1605365113
– volume: 513
  start-page: 81
  year: 2014
  ident: 10.1016/j.geoderma.2024.117108_b0165
  article-title: Temperature sensitivity of soil respiration rates enhanced by microbial community response
  publication-title: Nature
  doi: 10.1038/nature13604
– start-page: 115
  year: 2010
  ident: 10.1016/j.geoderma.2024.117108_b0350
  article-title: Temperature sensitivity of forest soil organic matter decomposition along two elevation gradients
  publication-title: J. Geophys. Res. Biogeo.
– volume: 37
  start-page: 1411
  year: 2005
  ident: 10.1016/j.geoderma.2024.117108_b0345
  article-title: Changing microbial substrate use in Arctic tundra soils through a freeze-thaw cycle
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2004.12.011
– start-page: 116
  year: 2011
  ident: 10.1016/j.geoderma.2024.117108_b0460
  article-title: Microtopographic controls on ecosystem functioning in the Arctic Coastal Plain
  publication-title: J. Geophys. Res. Biogeol.
– volume: 42
  start-page: 1811
  year: 2010
  ident: 10.1016/j.geoderma.2024.117108_b0440
  article-title: Temperature sensitivity increases with soil organic carbon recalcitrance along an elevational gradient in the Wuyi Mountains, China
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2010.06.021
– volume: 7
  start-page: 162
  year: 2013
  ident: 10.1016/j.geoderma.2024.117108_b0170
  article-title: Latitudinal distribution of soil CO2 efflux and temperature along the Dalton Highway
  publication-title: Alaska Polar Sci.
  doi: 10.1016/j.polar.2012.11.002
– volume: 142
  year: 2020
  ident: 10.1016/j.geoderma.2024.117108_b0315
  article-title: Arctic soil carbon turnover controlled by experimental snow addition, summer warming and shrub removal
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2019.107698
– volume: 56
  start-page: 319
  year: 2010
  ident: 10.1016/j.geoderma.2024.117108_b0390
  article-title: Net nitrogen mineralization and nitrification of different landscape positions in a lowland subtropical rainforest in Taiwan
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1111/j.1747-0765.2010.00460.x
– volume: 25
  start-page: 489
  year: 2019
  ident: 10.1016/j.geoderma.2024.117108_b0385
  article-title: Arctic browning: Impacts of extreme climatic events on heathland ecosystem CO2 fluxes
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14500
– volume: 23
  start-page: 406
  year: 2017
  ident: 10.1016/j.geoderma.2024.117108_b0070
  article-title: Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.13362
– volume: 43
  start-page: 189
  year: 2011
  ident: 10.1016/j.geoderma.2024.117108_b0085
  article-title: Vegetation community, foliar nitrogen, and temperature effects on tundra CO2 exchange across a soil moisture gradient
  publication-title: Arct. Antarct. Alp. Res.
  doi: 10.1657/1938-4246-43.2.189
– volume: 160
  year: 2021
  ident: 10.1016/j.geoderma.2024.117108_b0430
  article-title: Deepened snow enhances gross nitrogen cycling among Pan-Arctic tundra soils during both winter and summer
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2021.108356
– volume: 35
  start-page: 263
  year: 2003
  ident: 10.1016/j.geoderma.2024.117108_b0110
  article-title: Uncoupling of microbial CO2 production and release in frozen soil and its implications for field studies of arctic C cycling
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(02)00258-4
– volume: 104
  start-page: 4782
  year: 2007
  ident: 10.1016/j.geoderma.2024.117108_b0395
  article-title: Inorganic nitrogen availability after severe stand-replacing fire in the Greater Yellowstone ecosystem
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0700180104
– ident: 10.1016/j.geoderma.2024.117108_b0320
– volume: 11
  start-page: 1024
  year: 2005
  ident: 10.1016/j.geoderma.2024.117108_b0330
  article-title: Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2005.00963.x
– ident: 10.1016/j.geoderma.2024.117108_b0205
– volume: 23
  start-page: 246
  year: 2020
  ident: 10.1016/j.geoderma.2024.117108_b0120
  article-title: Water and carbon fluxes along an elevational gradient in a sagebrush ecosystem
  publication-title: Ecosystems
  doi: 10.1007/s10021-019-00400-x
– volume: 474
  start-page: 581
  year: 2022
  ident: 10.1016/j.geoderma.2024.117108_b0090
  article-title: Regulation of nitrogen acquisition in vegetables by different impacts on autotrophic and heterotrophic nitrification
  publication-title: Plant Soil
  doi: 10.1007/s11104-022-05362-z
– volume: 77
  start-page: 221
  year: 2007
  ident: 10.1016/j.geoderma.2024.117108_b0245
  article-title: Tundra CO2 fluxes in response to experimental warming across latitudinal and moisture gradients
  publication-title: Ecol. Monogr.
  doi: 10.1890/06-0649
– volume: 295
  start-page: 79
  year: 2007
  ident: 10.1016/j.geoderma.2024.117108_b0295
  article-title: Natural 15N abundance of soil N pools and N2O reflect the nitrogen dynamics of forest soils
  publication-title: Plant and Soil
  doi: 10.1007/s11104-007-9264-y
– volume: 127
  start-page: 217
  year: 2016
  ident: 10.1016/j.geoderma.2024.117108_b0235
  article-title: Temperature sensitivity of soil enzymes along an elevation gradient in the Peruvian Andes
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-015-0176-2
– volume: 10
  start-page: 1696
  year: 2020
  ident: 10.1016/j.geoderma.2024.117108_b0125
  article-title: Ammonia and ammonium exposure of basil (Ocimum basilicum L.) growing in an organically fertilized peat substrate and strategies to mitigate related harmful impacts on plant growth
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.01696
– volume: 59
  start-page: 72
  year: 2013
  ident: 10.1016/j.geoderma.2024.117108_b0225
  article-title: Responses of soil heterotrophic respiration to moisture availability: an exploration of processes and models
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.01.002
– volume: 75
  start-page: 139
  year: 2005
  ident: 10.1016/j.geoderma.2024.117108_b0040
  article-title: Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data
  publication-title: Ecol. Monogr.
  doi: 10.1890/04-0988
– ident: 10.1016/j.geoderma.2024.117108_b0060
  doi: 10.1002/9781119480419.ch3
– volume: 36
  start-page: 217
  year: 2004
  ident: 10.1016/j.geoderma.2024.117108_b0340
  article-title: Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2003.09.008
– volume: 48
  start-page: 673
  year: 2016
  ident: 10.1016/j.geoderma.2024.117108_b0075
  article-title: Near-surface air temperature lapse rate over complex terrain in the Southern Ecuadorian Andes: implications for temperature mapping
  publication-title: Arct. Antarct. Alp. Res.
  doi: 10.1657/AAAR0015-077
– volume: 17
  year: 2022
  ident: 10.1016/j.geoderma.2024.117108_b0305
  article-title: A review of the importance of mineral nitrogen cycling in the plant-soil-microbe system of permafrost-affected soils—changing the paradigm
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ac417e
– volume: 177
  start-page: 160
  year: 2016
  ident: 10.1016/j.geoderma.2024.117108_b0180
  article-title: Latitudinal gradient of spruce forest understory and tundra phenology in Alaska as observed from satellite and ground-based data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.02.020
– volume: 40
  start-page: 181
  year: 2008
  ident: 10.1016/j.geoderma.2024.117108_b0365
  article-title: The photosynthetic response of Alaskan tundra plants to increased season length and soil warming
  publication-title: Arct. Antarct. Alp. Res.
  doi: 10.1657/1523-0430(06-015)[STARR]2.0.CO;2
– volume: 8
  start-page: 34
  year: 2018
  ident: 10.1016/j.geoderma.2024.117108_b0255
  article-title: Effects of soil temperature on some soil properties and plant growth
  publication-title: Adv. Plants Agric. Res.
– ident: 10.1016/j.geoderma.2024.117108_b0380
– volume: 180
  year: 2023
  ident: 10.1016/j.geoderma.2024.117108_b0435
  article-title: Deepened snow in combination with summer warming increases growing season nitrous oxide emissions in dry tundra, but not in wet tundra
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2023.109013
– volume: 125
  start-page: 185
  year: 2015
  ident: 10.1016/j.geoderma.2024.117108_b0175
  article-title: Soil respiration variability across a soil moisture and vegetation community gradient within a snow-scoured alpine meadow
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-015-0122-3
– volume: 34
  start-page: 1785
  year: 2002
  ident: 10.1016/j.geoderma.2024.117108_b0215
  article-title: Temperature controls of microbial respiration in arctic tundra soils above and below freezing
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(02)00168-2
– volume: 13
  start-page: 1509
  year: 2007
  ident: 10.1016/j.geoderma.2024.117108_b0080
  article-title: Changes in nitrogen cycling and retention processes in soils under spruce forests along a nitrogen enrichment gradient in Germany
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2007.01371.x
– volume: 165
  start-page: 25
  year: 2012
  ident: 10.1016/j.geoderma.2024.117108_b0250
  article-title: Influence of snow-cover and soil-frost variations on continuously monitored CO2 flux from agricultural land
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2012.06.012
– volume: 108
  start-page: 119
  year: 2012
  ident: 10.1016/j.geoderma.2024.117108_b0025
  article-title: Inverse determination of heterotrophic soil respiration response to temperature and water content under field conditions
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-011-9583-1
– volume: 11
  start-page: 1092
  year: 2008
  ident: 10.1016/j.geoderma.2024.117108_b0145
  article-title: Soil microbial respiration in arctic soil does not acclimate to temperature
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2008.01223.x
– volume: 3
  start-page: 68
  year: 2022
  ident: 10.1016/j.geoderma.2024.117108_b0150
  article-title: Tundra vegetation change and impacts on permafrost
  publication-title: Nat. Rev. Earth Environ.
  doi: 10.1038/s43017-021-00233-0
– volume: 120
  start-page: 773
  year: 2015
  ident: 10.1016/j.geoderma.2024.117108_b0450
  article-title: Soil respiration sensitivities to water and temperature in a revegetated desert
  publication-title: J. Geophys. Res. Biogeol.
  doi: 10.1002/2014JG002805
– volume: 13
  start-page: 2571
  year: 2021
  ident: 10.1016/j.geoderma.2024.117108_b0010
  article-title: Predicting soil respiration from plant productivity (NDVI) in a sub-Arctic tundra ecosystem
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs13132571
– volume: 136
  start-page: 342
  year: 2006
  ident: 10.1016/j.geoderma.2024.117108_b0130
  article-title: Measured forest soil C stocks and estimated turnover times along an elevation gradient
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2006.03.049
– volume: 237
  start-page: 1
  year: 2015
  ident: 10.1016/j.geoderma.2024.117108_b0140
  article-title: Both altitude and vegetation affect temperature sensitivity of soil organic matter decomposition in Mediterranean high mountain soils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.08.005
– volume: 10
  start-page: 330
  year: 2019
  ident: 10.1016/j.geoderma.2024.117108_b0135
  article-title: The role of low soil temperature for photosynthesis and stomatal conductance of three graminoids from different elevations
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00330
– volume: 10
  start-page: 1981
  year: 2004
  ident: 10.1016/j.geoderma.2024.117108_b0415
  article-title: CO2 exchange in three Canadian High Arctic ecosystems: response to long-term experimental warming
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2004.00857.x
SSID ssj0017020
Score 2.44359
Snippet •There was no temperature gradient along 9–387 m elevation gradient in arctic tundra.•Topography aspect-induced soil microclimate differences drove ecosystem...
Generally, with increasing elevation, there is a corresponding decrease in annual mean air and soil temperatures, resulting in an overall decrease in ecosystem...
SourceID doaj
swepub
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 117108
SubjectTerms air
altitude
ammonium
carbon
carbon dioxide
climate change
Ecosystem respiration
ecosystems
Greenland
Gross ecosystem production
gross primary productivity
Markvetenskap
microclimate
Moisture sensitivity
Net ecosystem exchange
soil nutrient dynamics
Soil nutrients
soil respiration
Soil Science
soil water
temperature
Temperature sensitivity
total nitrogen
tundra
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-UwEA_iyT2In_h0lSwseCo2bfLyelRRHsJ6egveQtIkj8ojlbYPvPqf70zTLvXkxVMh_WCSmWZ-w0x-Q8hvQKALiAKKhAupE0QEiRbCJxl4I7PIF6bgeBr5z_N8-Zc_vYiXSasvrAmL9MBx4W6YgQ2Ta80Kz2AjZQttxNw4mWXOGcsc7r7g88ZgasgfSEBBk_PAr6ANbC3WMw1lHDOVDBtKTlxRz9j_ySNNEeeURbT3PI8HZH-AjPQ2inpIdlw4Ij9u181Am-GOyce9bkwdqK3q98o66t7jgV6qg6XIPjVQJ9MW69Vjwwhae9rW1YY2Q7YdNET1pg5reIvisfM4tG76qrCOVgFvwI8BctBuG2yjKQSvkQv6hKweH1b3y2RorpCUnIsuKUUOsZ-XJnVybpkps9QL61ipU88dgIiCx3BvnhoPKJJbWGatTYntyX2en5LdUAd3Rmhps571zHMJrs57ZLot0hJcokZ6u2xGbsZlVm-RQkONtWWvalSMQsWoqJgZuUNt_H8aKbD7ATAMNRiG-sowZqQYdakGNBFRAnyq-lKAX6PyFfxumEPRwdXbVuUAOZmUUsC0rqNVfBKz3WyNbvCiWpAxL3jBzr9jOhdkDwWMlTQ_yW7XbN0l4KHOXPWm_w_Sjgt1
  priority: 102
  providerName: Directory of Open Access Journals
Title Carbon dioxide exchange and temperature sensitivity of soil respiration along an elevation gradient in an arctic tundra ecosystem
URI https://dx.doi.org/10.1016/j.geoderma.2024.117108
https://www.proquest.com/docview/3154177752
https://res.slu.se/id/publ/139491
https://doaj.org/article/1b2994aa19f147118ab56be722eebd1e
Volume 452
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBUhvbSH0k-6abOoUOjJXcuWrdVxszRsUppTCrkJyZIWh8UOthdyKvSfd8aSw-6ph56MZdmMNWO9kTXzhpAv4IEuYRUgE14InaBHkOii8EkGaGSW-dJIjtnIP2_KzS9-fVfcnZD1lAuDYZVx7g9z-jhbx5ZFHM3FQ11jji8rBSI0x4JkApP4OBdo5d9-P4V5MJFGakZWJtj7IEv4HnSEBcdG_qGM4_4lwzKTBwA18vgf4dShH3rILTri0eUr8jI6knQVZH1NTlzzhrxYbbtIpuHekj9r3Zm2obZuH2vrqHsMab5UN5YiJ1UkVKY9RrGHMhK09bRv6x3t4h486I3qXdts4S6KyeihaduNsWIDrRu8AJ8LyEGHfWM7TWFJGxii35Hby--3600SSy4kFefFkFRFDitCL0zqRGmZqbLUF9axSqeeO3AtJA-LwDI1HnxLbrNUam0qLFru8_w9OW3axn0gtLLZyIXmuQAA9B75b2VaAVBqJL3LZmQxDbN6CMQaaoo4u1eTYhQqRgXFzMgFauOpNxJjjw1tt1XRMhQzgK9cayY9A9xlS22K0jiRZc4Zy9yMyEmX6sjO4FH1PwX4PClfwUeIOyu6ce2-Vzk4okwIUcBrfQ1WcSRmv9sb3eFB9SBjLrlkZ_8hyUfyHM9CWM0ncjp0e3cOztFg5qP1z8mz1dWPzc18_MXwFyWMESw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECaCdGg7FH2iTl8s0KKTapGmRHPokKYNnOYxuUA2gpRIQ4EhBZKNJEuB_qX-wt6JVGBPHYpMBijbOPOO992Zd98R8gEi0ClkASoRmTQJRgSJyTKfcEAjO51MrRLYjXx6ls9-ih_n2fkO-TP0wmBZZfT9waf33jqujONuji-rCnt8WS4RoQUOJJMqVlYeu5sryNu6L0ffQMkfOT_8Pj-YJXG0QFIIka2SIptA5uOlTZ3MS2YLnvqsdKwwqRcOIFSJkOzkqfUQQ4mSp8oYW-Bwbo9_goLbvyfAW-DUhM-_bstKmEwjFSTLE5Ruoyv5AmwCB5z1fEdc4H0pw7GWG4DYzw3YwsXNuHeTy7THv8PH5FEMXOl-2JsnZMfVT8nD_UUbyTvcM_L7wLS2qWlZNddV6ai7Dm3F1NQlRQ6sSOBMO6yaD2MraONp11RL2sY7f7ATapZNvYBPUWx-D0uLtq9NW9GqxgegApCDrtZ12RoKKXRgpH5O5nehhxdkt25q95LQouQ995oXEgDXe-TbVWkBwGyQZI-PyHjYZn0ZiDz0UOF2oQfFaFSMDooZka-ojdt3IxF3v9C0Cx0tUTMLeC6MYcozwHk2NTbLrZOcO2dL5kZEDbrUW3YNX1X9U4D3g_I1HHq8yTG1a9adnkDgy6SUGfysT8EqtsTslmtrWnzRHcg4UUKxvf-Q5B25P5ufnuiTo7PjV-QBPgklPa_J7qpduzcQmK3s2_4kUKLv-OT9BdqeSlE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+dioxide+exchange+and+temperature+sensitivity+of+soil+respiration+along+an+elevation+gradient+in+an+arctic+tundra+ecosystem&rft.jtitle=Geoderma&rft.au=Xu%2C+Wenyi&rft.au=Westergaard-Nielsen%2C+Andreas&rft.au=Michelsen%2C+Anders&rft.au=Lennart+Ambus%2C+Per&rft.date=2024-12-01&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.volume=452&rft_id=info:doi/10.1016%2Fj.geoderma.2024.117108&rft.externalDocID=S0016706124003379
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon