Modeling of additive manufacturing processes for metals: Challenges and opportunities

•This article focuses on reviewing modeling and simulation effort in metal additive manufacturing taking places at U.S. Department of Energy national laboratories.•An integrated computational approach from process-structure-properties-performance is necessary to ultimately enable engineering and opt...

Full description

Saved in:
Bibliographic Details
Published inCurrent opinion in solid state & materials science Vol. 21; no. 4; pp. 198 - 206
Main Authors Francois, M.M., Sun, A., King, W.E., Henson, N.J., Tourret, D., Bronkhorst, C.A., Carlson, N.N., Newman, C.K., Haut, T., Bakosi, J., Gibbs, J.W., Livescu, V., Vander Wiel, S.A., Clarke, A.J., Schraad, M.W., Blacker, T., Lim, H., Rodgers, T., Owen, S., Abdeljawad, F., Madison, J., Anderson, A.T., Fattebert, J-L., Ferencz, R.M., Hodge, N.E., Khairallah, S.A., Walton, O.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.08.2017
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •This article focuses on reviewing modeling and simulation effort in metal additive manufacturing taking places at U.S. Department of Energy national laboratories.•An integrated computational approach from process-structure-properties-performance is necessary to ultimately enable engineering and optimization to specific performance requirements.•Models and simulation tools from processing to performance are being developed at multiple lengths scales to account for the complex structure of additive manufactured metals and to understand their performance response.
AbstractList •This article focuses on reviewing modeling and simulation effort in metal additive manufacturing taking places at U.S. Department of Energy national laboratories.•An integrated computational approach from process-structure-properties-performance is necessary to ultimately enable engineering and optimization to specific performance requirements.•Models and simulation tools from processing to performance are being developed at multiple lengths scales to account for the complex structure of additive manufactured metals and to understand their performance response.
Author Schraad, M.W.
Tourret, D.
Sun, A.
Newman, C.K.
Walton, O.
Hodge, N.E.
Clarke, A.J.
Ferencz, R.M.
Francois, M.M.
Bronkhorst, C.A.
Lim, H.
King, W.E.
Bakosi, J.
Gibbs, J.W.
Owen, S.
Rodgers, T.
Livescu, V.
Vander Wiel, S.A.
Haut, T.
Abdeljawad, F.
Khairallah, S.A.
Henson, N.J.
Carlson, N.N.
Blacker, T.
Fattebert, J-L.
Madison, J.
Anderson, A.T.
Author_xml – sequence: 1
  givenname: M.M.
  surname: Francois
  fullname: Francois, M.M.
  email: mmfran@lanl.gov
  organization: Los Alamos National Laboratory, USA
– sequence: 2
  givenname: A.
  surname: Sun
  fullname: Sun, A.
  organization: Sandia National Laboratories, USA
– sequence: 3
  givenname: W.E.
  surname: King
  fullname: King, W.E.
  organization: Lawrence Livermore National Laboratory, USA
– sequence: 4
  givenname: N.J.
  surname: Henson
  fullname: Henson, N.J.
  organization: Los Alamos National Laboratory, USA
– sequence: 5
  givenname: D.
  surname: Tourret
  fullname: Tourret, D.
  organization: Los Alamos National Laboratory, USA
– sequence: 6
  givenname: C.A.
  surname: Bronkhorst
  fullname: Bronkhorst, C.A.
  organization: Los Alamos National Laboratory, USA
– sequence: 7
  givenname: N.N.
  surname: Carlson
  fullname: Carlson, N.N.
  organization: Los Alamos National Laboratory, USA
– sequence: 8
  givenname: C.K.
  surname: Newman
  fullname: Newman, C.K.
  organization: Los Alamos National Laboratory, USA
– sequence: 9
  givenname: T.
  surname: Haut
  fullname: Haut, T.
  organization: Los Alamos National Laboratory, USA
– sequence: 10
  givenname: J.
  surname: Bakosi
  fullname: Bakosi, J.
  organization: Los Alamos National Laboratory, USA
– sequence: 11
  givenname: J.W.
  surname: Gibbs
  fullname: Gibbs, J.W.
  organization: Los Alamos National Laboratory, USA
– sequence: 12
  givenname: V.
  surname: Livescu
  fullname: Livescu, V.
  organization: Los Alamos National Laboratory, USA
– sequence: 13
  givenname: S.A.
  surname: Vander Wiel
  fullname: Vander Wiel, S.A.
  organization: Los Alamos National Laboratory, USA
– sequence: 14
  givenname: A.J.
  surname: Clarke
  fullname: Clarke, A.J.
  organization: Los Alamos National Laboratory, USA
– sequence: 15
  givenname: M.W.
  surname: Schraad
  fullname: Schraad, M.W.
  organization: Los Alamos National Laboratory, USA
– sequence: 16
  givenname: T.
  surname: Blacker
  fullname: Blacker, T.
  organization: Sandia National Laboratories, USA
– sequence: 17
  givenname: H.
  surname: Lim
  fullname: Lim, H.
  organization: Sandia National Laboratories, USA
– sequence: 18
  givenname: T.
  surname: Rodgers
  fullname: Rodgers, T.
  organization: Sandia National Laboratories, USA
– sequence: 19
  givenname: S.
  surname: Owen
  fullname: Owen, S.
  organization: Sandia National Laboratories, USA
– sequence: 20
  givenname: F.
  surname: Abdeljawad
  fullname: Abdeljawad, F.
  organization: Sandia National Laboratories, USA
– sequence: 21
  givenname: J.
  surname: Madison
  fullname: Madison, J.
  organization: Sandia National Laboratories, USA
– sequence: 22
  givenname: A.T.
  surname: Anderson
  fullname: Anderson, A.T.
  organization: Lawrence Livermore National Laboratory, USA
– sequence: 23
  givenname: J-L.
  surname: Fattebert
  fullname: Fattebert, J-L.
  organization: Lawrence Livermore National Laboratory, USA
– sequence: 24
  givenname: R.M.
  surname: Ferencz
  fullname: Ferencz, R.M.
  organization: Lawrence Livermore National Laboratory, USA
– sequence: 25
  givenname: N.E.
  surname: Hodge
  fullname: Hodge, N.E.
  organization: Lawrence Livermore National Laboratory, USA
– sequence: 26
  givenname: S.A.
  surname: Khairallah
  fullname: Khairallah, S.A.
  organization: Lawrence Livermore National Laboratory, USA
– sequence: 27
  givenname: O.
  surname: Walton
  fullname: Walton, O.
  organization: Lawrence Livermore National Laboratory, USA
BackLink https://www.osti.gov/servlets/purl/1344361$$D View this record in Osti.gov
BookMark eNqFkD9PwzAQxT0UiRb4BgwRe4LtOGnTAQlV_JOKWOhsOfa5dZXYke1W4tvjKEwMMJ3u7r2nu98CzayzgNAtwQXBpL4_FtKF0IeCpq4gtMCYzNCclFWTY7qqL9EihCPGmNV1PUe7d6egM3afOZ0JpUw0Z8h6YU9ayHjy42bwTkIIEDLtfNZDFF1YZ5uD6Dqw-zQWVmVuGJyPJ5sCIFyjC51EcPNTr9Du-elz85pvP17eNo_bXDJWxVxSUapWU4lb2laKEgENrQXVjCy1wG3bLMuypZo0QJdYq5o1DVQMVMnICjQpr9DdlOtCNDxIE0EepLMWZOSkZKysR9F6EkmfyHjQPOlENM5GL0zHCeYjOX7kEzk-kuOE8kQumdkv8-BNL_zXf7aHyQbp-7MBPx4HVoIyfrxNOfN3wDfx0pCi
CitedBy_id crossref_primary_10_1016_j_actamat_2019_11_053
crossref_primary_10_1016_j_pmatsci_2020_100724
crossref_primary_10_1016_j_procir_2020_09_157
crossref_primary_10_3390_coatings14111406
crossref_primary_10_3389_fphy_2020_00032
crossref_primary_10_1016_j_apt_2021_02_019
crossref_primary_10_1007_s40964_022_00290_x
crossref_primary_10_3390_met14030296
crossref_primary_10_1108_RPJ_03_2019_0065
crossref_primary_10_1016_j_jmrt_2020_10_089
crossref_primary_10_3390_ma17102333
crossref_primary_10_1016_j_mfglet_2018_10_002
crossref_primary_10_1115_1_4048193
crossref_primary_10_1115_1_4052207
crossref_primary_10_1016_j_addma_2022_103269
crossref_primary_10_1016_j_cirpj_2022_12_009
crossref_primary_10_1016_j_matdes_2023_112540
crossref_primary_10_1016_j_cma_2018_05_004
crossref_primary_10_1016_j_ijplas_2020_102865
crossref_primary_10_1108_RPJ_02_2022_0041
crossref_primary_10_4028_p_r0d8ov
crossref_primary_10_1080_09500839_2020_1753894
crossref_primary_10_1007_s11837_019_03892_z
crossref_primary_10_1016_j_addma_2021_101924
crossref_primary_10_1002_adma_201902086
crossref_primary_10_1016_j_cirp_2019_05_004
crossref_primary_10_1007_s00170_022_09721_z
crossref_primary_10_1115_1_4055149
crossref_primary_10_1007_s00170_024_13489_9
crossref_primary_10_1007_s40964_022_00298_3
crossref_primary_10_3390_ma16196459
crossref_primary_10_1007_s11661_019_05240_x
crossref_primary_10_1007_s11837_025_07161_0
crossref_primary_10_2320_jinstmet_JA202408
crossref_primary_10_1007_s00466_017_1516_y
crossref_primary_10_1016_j_ijmecsci_2020_106185
crossref_primary_10_1016_j_jcp_2024_113511
crossref_primary_10_1088_2515_7639_abca7b
crossref_primary_10_1016_j_commatsci_2025_113664
crossref_primary_10_1080_17452759_2024_2397008
crossref_primary_10_1016_j_addma_2020_101732
crossref_primary_10_1002_nme_6966
crossref_primary_10_1007_s12206_022_2106_2
crossref_primary_10_1016_j_fusengdes_2018_04_055
crossref_primary_10_1016_j_ijhydene_2023_07_023
crossref_primary_10_1016_j_commatsci_2020_109686
crossref_primary_10_1016_j_actamat_2021_116862
crossref_primary_10_1016_j_jmrt_2020_03_109
crossref_primary_10_3390_met10060800
crossref_primary_10_1016_j_ijfatigue_2023_107894
crossref_primary_10_1016_j_jmatprotec_2021_117485
crossref_primary_10_1007_s00170_019_04004_6
crossref_primary_10_1016_j_promfg_2020_10_005
crossref_primary_10_1016_j_jsv_2023_117997
crossref_primary_10_1007_s40192_021_00221_8
crossref_primary_10_1016_j_cma_2024_116747
crossref_primary_10_1088_1742_6596_2549_1_012028
crossref_primary_10_1007_s00170_024_14156_9
crossref_primary_10_1016_j_addma_2018_05_023
crossref_primary_10_1016_j_cma_2023_116165
crossref_primary_10_1088_1361_651X_ad7bd9
crossref_primary_10_1016_j_matchar_2022_112043
crossref_primary_10_3390_qubs6010005
crossref_primary_10_1007_s10853_023_08838_0
crossref_primary_10_1007_s00466_024_02532_x
crossref_primary_10_1016_j_cjmeam_2023_100102
crossref_primary_10_1007_s00466_019_01685_4
crossref_primary_10_2351_1_5096096
crossref_primary_10_3390_met13061012
crossref_primary_10_3390_met10050683
crossref_primary_10_1080_24725854_2019_1701753
crossref_primary_10_1016_j_ijhydene_2024_01_232
crossref_primary_10_1016_j_jmatprotec_2022_117775
crossref_primary_10_1007_s40964_024_00612_1
crossref_primary_10_1016_j_ijplas_2022_103254
crossref_primary_10_1016_j_jmrt_2022_07_121
crossref_primary_10_1007_s00170_019_04851_3
crossref_primary_10_1016_j_addma_2020_101294
crossref_primary_10_1115_1_4056571
crossref_primary_10_1007_s40192_021_00211_w
crossref_primary_10_1016_j_addma_2018_05_026
crossref_primary_10_1007_s40192_022_00276_1
crossref_primary_10_1016_j_commatsci_2022_111383
crossref_primary_10_1016_j_ijplas_2021_102941
crossref_primary_10_1016_j_jmapro_2022_06_049
crossref_primary_10_1016_j_addma_2023_103737
crossref_primary_10_1016_j_cma_2024_116973
crossref_primary_10_1115_1_4047619
crossref_primary_10_1016_j_cirpj_2021_03_008
crossref_primary_10_1038_s41578_020_00236_1
crossref_primary_10_1016_j_cplett_2019_136706
crossref_primary_10_1016_j_jmrt_2025_01_247
crossref_primary_10_55708_js0103012
crossref_primary_10_1016_j_jmapro_2025_02_038
crossref_primary_10_1016_j_actamat_2019_10_047
crossref_primary_10_1016_j_addma_2021_102090
crossref_primary_10_1177_0954406219861664
crossref_primary_10_1016_j_mtcomm_2021_102430
crossref_primary_10_1007_s00170_023_12536_1
crossref_primary_10_1016_j_addma_2018_10_017
crossref_primary_10_1002_srin_202400463
crossref_primary_10_1016_j_addma_2024_104157
crossref_primary_10_1007_s00366_021_01590_6
crossref_primary_10_3390_ma13204641
crossref_primary_10_1016_j_anucene_2021_108782
crossref_primary_10_1016_j_ijplas_2020_102709
crossref_primary_10_3390_electronics12020471
crossref_primary_10_1051_mattech_2023048
crossref_primary_10_1016_j_jmapro_2024_11_066
crossref_primary_10_3390_machines12060369
crossref_primary_10_1016_j_jmsy_2023_04_008
crossref_primary_10_3390_met9111138
crossref_primary_10_1016_j_addma_2019_06_022
crossref_primary_10_1109_TCST_2024_3464118
crossref_primary_10_1016_j_engfracmech_2023_109709
crossref_primary_10_1103_PhysRevMaterials_7_103401
crossref_primary_10_1007_s41230_020_9092_8
crossref_primary_10_3390_app14166965
crossref_primary_10_1016_j_pmatsci_2020_100703
crossref_primary_10_1088_1361_651X_ac32b3
crossref_primary_10_3934_matersci_2022027
crossref_primary_10_1016_j_msea_2018_11_125
crossref_primary_10_1016_j_matdes_2020_108985
crossref_primary_10_3390_met12101732
crossref_primary_10_1007_s11837_023_06363_8
crossref_primary_10_1016_j_addma_2020_101819
crossref_primary_10_1002_adfm_201907401
crossref_primary_10_1016_j_jmapro_2020_07_025
crossref_primary_10_1016_j_jmatprotec_2018_02_034
crossref_primary_10_1089_3dp_2021_0049
crossref_primary_10_1007_s11837_020_04155_y
crossref_primary_10_1007_s40192_021_00208_5
crossref_primary_10_1016_j_compstruc_2020_106412
crossref_primary_10_1016_j_actamat_2023_119299
crossref_primary_10_1016_j_mechmat_2020_103664
crossref_primary_10_1016_j_matdes_2017_10_026
crossref_primary_10_1007_s40799_017_0223_0
crossref_primary_10_1016_j_commatsci_2023_112566
crossref_primary_10_3390_met12060934
crossref_primary_10_3390_met12111894
crossref_primary_10_3390_met11091425
crossref_primary_10_1088_2515_7639_ac2791
crossref_primary_10_1109_JPROC_2020_3034519
crossref_primary_10_1557_s43578_023_00923_z
crossref_primary_10_1002_srin_202000058
crossref_primary_10_1080_00325899_2021_1921962
crossref_primary_10_1088_2515_7639_abf3cf
crossref_primary_10_1007_s00170_023_11974_1
crossref_primary_10_1016_j_mattod_2021_09_024
crossref_primary_10_1007_s11661_020_06009_3
crossref_primary_10_4150_KPMI_2020_27_4_318
crossref_primary_10_1016_j_actamat_2017_04_027
crossref_primary_10_1016_j_addlet_2024_100256
crossref_primary_10_1016_j_commatsci_2024_113161
crossref_primary_10_1016_j_scriptamat_2017_10_034
crossref_primary_10_1080_00207543_2019_1686187
crossref_primary_10_1088_1361_651X_aaf107
crossref_primary_10_1142_S0218625X25500118
crossref_primary_10_1016_j_addma_2024_104488
crossref_primary_10_1016_j_addma_2024_104487
crossref_primary_10_1007_s00339_022_05851_z
crossref_primary_10_3389_fmats_2021_753040
crossref_primary_10_1016_j_addma_2020_101236
crossref_primary_10_1080_17452759_2025_2474532
crossref_primary_10_1007_s00170_019_04105_2
crossref_primary_10_1007_s12540_023_01444_4
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122112
crossref_primary_10_3390_ma13112608
crossref_primary_10_1016_j_powtec_2021_02_022
crossref_primary_10_1088_1361_651X_accc4b
crossref_primary_10_1016_j_jcp_2022_111069
crossref_primary_10_1016_j_jmapro_2024_05_038
crossref_primary_10_1007_s11665_024_09164_5
crossref_primary_10_1007_s11837_018_2964_3
crossref_primary_10_1038_s43588_025_00780_2
crossref_primary_10_1016_j_powtec_2020_04_031
crossref_primary_10_1038_s41524_021_00548_y
crossref_primary_10_1088_2631_7990_ad7426
crossref_primary_10_3390_app112411910
crossref_primary_10_1016_j_addma_2023_103704
crossref_primary_10_1016_j_matdes_2021_109782
crossref_primary_10_3390_jmmp9010022
crossref_primary_10_1016_j_compositesb_2020_108499
crossref_primary_10_1007_s40430_024_05319_6
crossref_primary_10_1063_5_0141316
crossref_primary_10_26599_MAS_2025_9580002
crossref_primary_10_1021_accountsmr_3c00108
crossref_primary_10_1007_s11837_020_04028_4
crossref_primary_10_1080_17452759_2024_2356079
crossref_primary_10_1016_j_addma_2023_103829
crossref_primary_10_1007_s00170_020_05027_0
crossref_primary_10_1007_s40430_024_04917_8
crossref_primary_10_1016_j_rinma_2022_100258
crossref_primary_10_1111_ffe_13428
crossref_primary_10_1007_s00348_023_03678_9
crossref_primary_10_1016_j_commatsci_2017_03_053
crossref_primary_10_1007_s00158_023_03565_1
crossref_primary_10_1088_1757_899X_655_1_012019
crossref_primary_10_1016_j_cad_2020_102829
crossref_primary_10_1080_17452759_2023_2251032
crossref_primary_10_1016_j_jmapro_2024_05_026
crossref_primary_10_1103_PhysRevApplied_13_064070
crossref_primary_10_1016_j_addma_2023_103398
crossref_primary_10_1016_j_ijmecsci_2022_108089
crossref_primary_10_1007_s40964_022_00331_5
crossref_primary_10_1016_j_jmapro_2024_08_038
crossref_primary_10_1080_09506608_2020_1868889
crossref_primary_10_1016_j_actamat_2018_03_036
crossref_primary_10_1016_j_compfluid_2021_104963
crossref_primary_10_1007_s00170_021_07029_y
crossref_primary_10_1016_j_finel_2024_104282
crossref_primary_10_1088_2053_1591_aaa04c
crossref_primary_10_1016_j_mtla_2022_101368
crossref_primary_10_1016_j_actamat_2024_119935
crossref_primary_10_3390_met13081370
crossref_primary_10_1115_1_4040163
crossref_primary_10_1016_j_jcp_2020_109898
crossref_primary_10_3390_jmmp6030065
crossref_primary_10_1016_j_pmatsci_2023_101129
crossref_primary_10_1007_s40192_024_00358_2
crossref_primary_10_1007_s10845_024_02504_1
crossref_primary_10_1007_s11666_025_01970_0
crossref_primary_10_1016_j_matdes_2022_110385
crossref_primary_10_1016_j_promfg_2020_10_094
crossref_primary_10_3390_jmmp4010025
crossref_primary_10_1016_j_addma_2023_103845
crossref_primary_10_1115_1_4044199
crossref_primary_10_3390_met10111406
crossref_primary_10_1016_j_addma_2019_04_019
crossref_primary_10_1016_j_addma_2023_103609
crossref_primary_10_1080_17452759_2023_2181192
crossref_primary_10_1016_j_jmrt_2023_12_222
crossref_primary_10_1016_j_matdes_2021_109643
crossref_primary_10_1016_j_actamat_2019_12_003
crossref_primary_10_1098_rsta_2020_0319
crossref_primary_10_1016_j_compstruc_2020_106463
crossref_primary_10_1016_j_msea_2021_141237
crossref_primary_10_1007_s00466_018_1539_z
crossref_primary_10_3390_ma12142272
crossref_primary_10_1016_j_ijleo_2018_09_049
crossref_primary_10_1016_j_matdes_2021_110167
crossref_primary_10_1016_j_compind_2023_104037
crossref_primary_10_1016_j_addma_2020_101676
crossref_primary_10_1007_s00170_021_07671_6
crossref_primary_10_1007_s11661_020_05831_z
crossref_primary_10_1108_RPJ_07_2019_0189
crossref_primary_10_1016_j_powtec_2018_07_030
crossref_primary_10_1007_s11837_018_2771_x
crossref_primary_10_1016_j_matdes_2018_07_015
crossref_primary_10_3390_app10238350
crossref_primary_10_1016_j_jcp_2021_110734
crossref_primary_10_1016_j_ijplas_2019_01_012
crossref_primary_10_1016_j_nxmate_2024_100329
crossref_primary_10_1016_j_finel_2021_103607
crossref_primary_10_1016_j_powtec_2017_12_058
crossref_primary_10_1016_j_addma_2022_102892
crossref_primary_10_1016_j_jmrt_2024_06_234
crossref_primary_10_1080_0951192X_2022_2162597
crossref_primary_10_1007_s00170_024_13042_8
crossref_primary_10_1016_j_compositesa_2023_107941
crossref_primary_10_1016_j_cossms_2023_101106
crossref_primary_10_1088_2515_7639_ac194f
crossref_primary_10_1016_j_measurement_2022_111146
crossref_primary_10_1115_1_4043648
crossref_primary_10_1007_s40964_025_00955_3
crossref_primary_10_1016_j_procir_2022_05_076
crossref_primary_10_1016_j_actamat_2019_01_011
crossref_primary_10_1007_s12541_023_00905_5
crossref_primary_10_1016_j_jmst_2021_06_011
crossref_primary_10_1007_s10845_021_01842_8
crossref_primary_10_1007_s11837_022_05310_3
crossref_primary_10_1016_j_optlastec_2024_111480
crossref_primary_10_1016_j_autcon_2023_104918
crossref_primary_10_1080_17452759_2023_2274494
crossref_primary_10_1088_1757_899X_631_2_022028
crossref_primary_10_1016_j_addlet_2022_100032
crossref_primary_10_2320_matertrans_MT_ME2022014
crossref_primary_10_1016_j_addma_2021_102264
crossref_primary_10_1088_1361_651X_abca19
crossref_primary_10_1016_j_addma_2019_100909
crossref_primary_10_1016_j_mattod_2022_08_014
crossref_primary_10_1016_j_optlastec_2022_108281
crossref_primary_10_1016_j_matdes_2019_108126
crossref_primary_10_1557_jmr_2020_129
crossref_primary_10_1007_s00170_024_14858_0
crossref_primary_10_1016_j_addma_2018_06_019
crossref_primary_10_1007_s40571_019_00296_3
crossref_primary_10_1016_j_aime_2021_100051
crossref_primary_10_1080_17452759_2019_1677345
crossref_primary_10_1007_s11837_018_3038_2
crossref_primary_10_1016_j_ejcon_2021_04_007
crossref_primary_10_1016_j_jmatprotec_2021_117443
crossref_primary_10_1016_j_addma_2024_104415
crossref_primary_10_3390_pr12061062
crossref_primary_10_1016_j_procir_2020_04_151
crossref_primary_10_1080_17452759_2024_2349683
crossref_primary_10_1007_s12541_019_00230_w
crossref_primary_10_1016_j_jmatprotec_2022_117724
crossref_primary_10_1016_j_addma_2021_102353
crossref_primary_10_1007_s12206_024_1214_6
crossref_primary_10_1016_j_ijfatigue_2019_05_004
crossref_primary_10_1016_j_optlastec_2020_106872
crossref_primary_10_1007_s00339_019_3173_9
crossref_primary_10_1007_s11837_019_03913_x
crossref_primary_10_3390_met12071096
crossref_primary_10_1016_j_addma_2018_06_024
crossref_primary_10_3390_polym15183694
crossref_primary_10_1016_j_msea_2019_02_078
crossref_primary_10_1016_j_jmapro_2023_11_018
crossref_primary_10_1016_j_mfglet_2019_12_002
crossref_primary_10_1016_j_commatsci_2022_111228
crossref_primary_10_1088_1742_6596_2090_1_012056
crossref_primary_10_3390_cryst10040257
crossref_primary_10_1088_1361_651X_ac40d3
crossref_primary_10_1016_j_simpat_2024_102896
Cites_doi 10.1016/j.ijplas.2014.01.010
10.1680/geot.1979.29.1.47
10.1088/0965-0393/18/5/055001
10.1146/annurev.matsci.32.101901.155803
10.1016/j.calphad.2007.11.003
10.1179/1743284714Y.0000000701
10.1016/j.ijplas.2012.12.006
10.1016/j.jmatprotec.2016.01.017
10.1016/j.ijplas.2010.05.006
10.1016/j.jcp.2009.09.041
10.1007/s00466-014-1024-2
10.1016/0022-5096(92)80003-9
10.1088/0965-0393/24/4/045016
10.1209/epl/i2005-10081-7
10.1016/j.actamat.2013.08.004
10.1016/j.jmps.2007.03.019
10.2172/1237211
10.1088/0965-0393/23/6/065007
10.1016/j.cossms.2015.09.001
10.1016/j.finel.2014.04.003
10.1016/0956-7151(93)90065-Z
10.1016/j.actamat.2016.05.011
10.1007/s11661-008-9557-7
10.1016/j.jmatprotec.2014.06.001
10.1016/S0927-796X(03)00036-6
10.1016/j.commatsci.2007.04.020
10.1016/j.actamat.2013.09.036
10.1007/s11661-014-2549-x
10.1016/j.actamat.2016.02.014
10.1016/j.cad.2016.08.006
10.1016/j.crhy.2010.07.010
10.1007/s11837-015-1444-2
10.1098/rsta.1992.0111
10.1063/1.4937809
10.1007/s11837-016-1863-8
10.1016/j.jmps.2013.04.007
10.1103/PhysRevE.64.051302
10.1088/0965-0393/24/4/045013
10.1115/1.4028724
10.1016/j.jmatprotec.2010.05.010
10.1016/j.powtec.2015.10.035
10.1016/j.jmps.2015.09.012
10.1051/epjconf/20159402006
10.1016/j.ijplas.2006.11.006
10.1016/j.actamat.2013.07.026
10.1115/1.4031088
10.1115/1.3109245
10.1016/j.ijplas.2014.08.013
ContentType Journal Article
Copyright 2016
Copyright_xml – notice: 2016
CorporateAuthor Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
CorporateAuthor_xml – name: Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
– name: Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
– name: Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
DBID AAYXX
CITATION
OIOZB
OTOTI
DOI 10.1016/j.cossms.2016.12.001
DatabaseName CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EndPage 206
ExternalDocumentID 1344361
10_1016_j_cossms_2016_12_001
S1359028616300833
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSM
SSZ
T5K
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ABPIF
ABPTK
OIOZB
OTOTI
ID FETCH-LOGICAL-c445t-c2a3dbf2c0b2b5d21ae926a2f417fa0bb9733b2f19e270fd6499e54ed3418ef13
IEDL.DBID .~1
ISSN 1359-0286
IngestDate Wed Nov 29 06:10:50 EST 2023
Tue Jul 01 01:27:21 EDT 2025
Thu Apr 24 23:13:04 EDT 2025
Fri Feb 23 02:26:59 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-c2a3dbf2c0b2b5d21ae926a2f417fa0bb9733b2f19e270fd6499e54ed3418ef13
Notes LA-UR-16-24513; LLNL-JRNL-838542; SAND-2017-6832J
AC52-06NA25396; AC52-07NA27344; AC04-94AL85000; 13-SI-002
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division
USDOE Laboratory Directed Research and Development (LDRD) Program
USDOE National Nuclear Security Administration (NNSA)
ORCID 0000000206045555
0000000218427884
0000000330626234
0000000202311318
0000000212812853
OpenAccessLink https://www.osti.gov/servlets/purl/1344361
PageCount 9
ParticipantIDs osti_scitechconnect_1344361
crossref_citationtrail_10_1016_j_cossms_2016_12_001
crossref_primary_10_1016_j_cossms_2016_12_001
elsevier_sciencedirect_doi_10_1016_j_cossms_2016_12_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Current opinion in solid state & materials science
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Mayeur, McDowell, Neu (b0275) 2008; 41
Mayeur, Mourad, Luscher, Hunter, Kenamond (b0300) 2016; 24
Hodge, Ferencz, Solberg (b0135) 2014; 54
Hansen, Bronkhorst, Ortiz (b0250) 2010; 18
Shimokawabe, Aoki, Takaki, Yamanaka, Nukada, Endo, Maruyama, Matsuoka (b0165) 2011
A.J. Trainer, C.K. Newman, M.M. Francois, Overview of the Tusas Code for Simulation of Dendritic Solidification, Los Alamos Technical Report, LA-UR-16-20078, 2016.
Silbert, Ertas, Grest, Halsey, Levine, Plimpton (b0115) 2001; 64
Chen, Guillemot, Gandin (b0205) 2016
R. Berger, Additive manufacturing a game changer for the manufacturing industry? Munich, 2013.
Cundall, Strack (b0105) 1979; 29
Fattebert, Wickett, Turchi (b0185) 2014; 62
Mayeur, Beyerlein, Bronkhorst, Mourad (b0290) 2015; 65
Khairallah, Anderson, Rubenchik, King (b0100) 2016; 108
Bronkhorst, Kalidindi, Anand (b0235) 1992; 341
Lebensohn, Escobedo, Cerreta, Dennis-Koller, Bronkhorst, Bingert (b0265) 2013; 61
Teddy D. Blacker, Joshua Robbins, Steven J. Owen, Miguel Alejandro Aguilovalentin, Brett W. Clark, Thomas Eugene Voth, PLATO Platinum Topology Optimization, Sandia National Laboratories Technical Report, SAND2015-10065PE, 2015.
Mayeur, McDowell (b0295) 2015; 23
Gray, Livescu, Rigg, Trujillo, Cady, Chen, Carpenter, Lienert, Fensin (b0005) 2015; 94
Wu, Brown, Kumar, Gallegos, King (b0010) 2014; 45
Tourret, Karma (b0210) 2013; 61
C.K. Newman, M.M. Francois, An Implicit Approach to Phase Field Modeling of Solidification for Additively Manufactured Materials, Los Alamos Technical Report, LA-UR-16-24310, 2016.
Pusztai, Bortel, Gránásy (b0190) 2005; 71
Boettinger, Warren, Beckermann, Karma (b0155) 2002; 32
E. Herbold, O. Walton, M. Homel, A. Rubenchik, W. King, Simulation of Powder Bed Layer Spreading in Additive Manufacturing, 2016 Solid Freeform Fabrication Symposium, Austin, TX, 2016.
C. McCallen, ALE3D: Arbitrary Lagrange Eulerian Three-and Two Dimensional Modeling and Simulation Capability, Livermore, CA, Report No. LLNL-ABS-565212, 2012.
Karma, Tourret (b0145) 2016; 20
.
Rappaz, Gandin (b0195) 1993; 41
See
D. Steinberg, Lawrence Livermore National Laboratory report UCRL-MA-106439 change 1, 1996.
Anisimov, Khokhlov (b0080) 1995
Mirzendehdel, Suresh (b0345) 2015; 137
Hoyt, Asta, Karma (b0150) 2003; 41
Mayeur, McDowell (b0270) 2007; 23
Michaleris (b0060) 2014; 86
Zhang, Toman, Yu, Biyikli, Kirca, Chmielus, To (b0350) 2015; 137
J.M. Solberg, N.E. Hodge, R.M. Ferencz, I.D. Parsons, M.A. Puso, M.A. Havstad, R.A. Whitesides, A.P. Wemhoff, Diablo user manual, Livermore, CA, Report No. LLNL-SM-651163, 2014.
Kalidindi, Bronkhorst, Anand (b0240) 1992; 40
Tourret, Clarke, Imhoff, Gibbs, Gibbs, Karma (b0215) 2015; 67
Bronkhorst, Hansen, Cerreta, Bingert (b0245) 2007; 55
Mindt, Megahed, Lavery, Holmes, Brown (b0125) 2016; 1
Lim, Abdeljawad, Owen, Hanks, Foulk, Battaile (b0305) 2016; 24
Moelans, Blanpain, Wollants (b0160) 2008; 32
S. Srivatsa, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, 2014.
Mirzendehdel, Suresh (b0340) 2016
Farshidianfar, Khajepour, Gerlich (b0045) 2016; 231
Mayeur, McDowell (b0280) 2013; 61
Mayeur, McDowell (b0285) 2014; 57
Robbins, Owen, Clark, Voth (b0325) 2016; 12
Rodgers, Madison, Tikare, Maguire (b0225) 2016; 68
Hansen, Beyerlein, Bronkhorst, Cerreta, Dennis-Koller (b0260) 2013; 44
D.L. Bourell, M.C. Leu, D.W. Rosen, Roadmap for Additive Manufacturing Identifying the Future of Freeform Processing, Austin TX, 2009.
Dorr, Fattebert, Wickett, Belak, Turchi (b0180) 2010; 229
Zheng, Zhou, Smugeresky, Schoenung, Lavernia (b0040) 2008; 39
King, Anderson, Ferencz, Hodge, Kamath, Khairallah, Rubenchik (b0095) 2015; 2
Gandin (b0200) 2010; 11
Parteli, Pöschel (b0110) 2016; 288
Martukanitz, Michaleris, Palmer, DebRoy, Liu, Otis, Heo, Chen (b0055) 2014; 1
Luscher, McDowell, Bronkhorst (b0310) 2010; 26
Khairallah, Anderson (b0090) 2014; 214
Gusarov, Yadroitsev, Bertrand, Smurov (b0140) 2009; 131
Alleman, Luscher, Bronkhorst, Ghosh (b0315) 2015; 85
Bronkhorst, Ross, Hansen, Cerreta, Bingert (b0255) 2010; 17
Manvatkar, De, DebRoy (b0035) 2015; 31
Energetics Incorporated, Measurement Science Roadmap for Metal-Based Additive Manufacturing, Columbia, Maryland, 2013.
Yadroitsev, Gusarov, Yadroitsava, Smurov (b0085) 2010; 210
Z. Fan, F. Liou, Numerical Modeling of the Additive Manufacturing (AM) Processes of Titanium Alloy.
Rappaz (10.1016/j.cossms.2016.12.001_b0195) 1993; 41
Mayeur (10.1016/j.cossms.2016.12.001_b0280) 2013; 61
Alleman (10.1016/j.cossms.2016.12.001_b0315) 2015; 85
Zheng (10.1016/j.cossms.2016.12.001_b0040) 2008; 39
Tourret (10.1016/j.cossms.2016.12.001_b0210) 2013; 61
Martukanitz (10.1016/j.cossms.2016.12.001_b0055) 2014; 1
Yadroitsev (10.1016/j.cossms.2016.12.001_b0085) 2010; 210
Bronkhorst (10.1016/j.cossms.2016.12.001_b0255) 2010; 17
Wu (10.1016/j.cossms.2016.12.001_b0010) 2014; 45
Bronkhorst (10.1016/j.cossms.2016.12.001_b0245) 2007; 55
Gusarov (10.1016/j.cossms.2016.12.001_b0140) 2009; 131
10.1016/j.cossms.2016.12.001_b0120
10.1016/j.cossms.2016.12.001_b0320
Hoyt (10.1016/j.cossms.2016.12.001_b0150) 2003; 41
Mirzendehdel (10.1016/j.cossms.2016.12.001_b0345) 2015; 137
King (10.1016/j.cossms.2016.12.001_b0095) 2015; 2
Karma (10.1016/j.cossms.2016.12.001_b0145) 2016; 20
Manvatkar (10.1016/j.cossms.2016.12.001_b0035) 2015; 31
Hansen (10.1016/j.cossms.2016.12.001_b0260) 2013; 44
Silbert (10.1016/j.cossms.2016.12.001_b0115) 2001; 64
Gandin (10.1016/j.cossms.2016.12.001_b0200) 2010; 11
Robbins (10.1016/j.cossms.2016.12.001_b0325) 2016; 12
Mayeur (10.1016/j.cossms.2016.12.001_b0295) 2015; 23
Michaleris (10.1016/j.cossms.2016.12.001_b0060) 2014; 86
Luscher (10.1016/j.cossms.2016.12.001_b0310) 2010; 26
Lim (10.1016/j.cossms.2016.12.001_b0305) 2016; 24
Bronkhorst (10.1016/j.cossms.2016.12.001_b0235) 1992; 341
Mindt (10.1016/j.cossms.2016.12.001_b0125) 2016; 1
Dorr (10.1016/j.cossms.2016.12.001_b0180) 2010; 229
10.1016/j.cossms.2016.12.001_b0015
Boettinger (10.1016/j.cossms.2016.12.001_b0155) 2002; 32
10.1016/j.cossms.2016.12.001_b0335
10.1016/j.cossms.2016.12.001_b0130
Mayeur (10.1016/j.cossms.2016.12.001_b0270) 2007; 23
10.1016/j.cossms.2016.12.001_b0175
Chen (10.1016/j.cossms.2016.12.001_b0205) 2016
10.1016/j.cossms.2016.12.001_b0330
Cundall (10.1016/j.cossms.2016.12.001_b0105) 1979; 29
10.1016/j.cossms.2016.12.001_b0170
Hansen (10.1016/j.cossms.2016.12.001_b0250) 2010; 18
Mayeur (10.1016/j.cossms.2016.12.001_b0275) 2008; 41
10.1016/j.cossms.2016.12.001_b0050
Khairallah (10.1016/j.cossms.2016.12.001_b0090) 2014; 214
Parteli (10.1016/j.cossms.2016.12.001_b0110) 2016; 288
Fattebert (10.1016/j.cossms.2016.12.001_b0185) 2014; 62
Tourret (10.1016/j.cossms.2016.12.001_b0215) 2015; 67
Gray (10.1016/j.cossms.2016.12.001_b0005) 2015; 94
Hodge (10.1016/j.cossms.2016.12.001_b0135) 2014; 54
Shimokawabe (10.1016/j.cossms.2016.12.001_b0165) 2011
10.1016/j.cossms.2016.12.001_b0025
10.1016/j.cossms.2016.12.001_b0020
Kalidindi (10.1016/j.cossms.2016.12.001_b0240) 1992; 40
10.1016/j.cossms.2016.12.001_b0065
10.1016/j.cossms.2016.12.001_b0220
10.1016/j.cossms.2016.12.001_b0070
Khairallah (10.1016/j.cossms.2016.12.001_b0100) 2016; 108
Lebensohn (10.1016/j.cossms.2016.12.001_b0265) 2013; 61
Mirzendehdel (10.1016/j.cossms.2016.12.001_b0340) 2016
Moelans (10.1016/j.cossms.2016.12.001_b0160) 2008; 32
Pusztai (10.1016/j.cossms.2016.12.001_b0190) 2005; 71
Mayeur (10.1016/j.cossms.2016.12.001_b0285) 2014; 57
Mayeur (10.1016/j.cossms.2016.12.001_b0290) 2015; 65
Rodgers (10.1016/j.cossms.2016.12.001_b0225) 2016; 68
Farshidianfar (10.1016/j.cossms.2016.12.001_b0045) 2016; 231
Mayeur (10.1016/j.cossms.2016.12.001_b0300) 2016; 24
Zhang (10.1016/j.cossms.2016.12.001_b0350) 2015; 137
10.1016/j.cossms.2016.12.001_b0075
10.1016/j.cossms.2016.12.001_b0230
Anisimov (10.1016/j.cossms.2016.12.001_b0080) 1995
10.1016/j.cossms.2016.12.001_b0030
References_xml – volume: 131
  start-page: 072101
  year: 2009
  ident: b0140
  publication-title: J. Heat Transf.-Trans. ASME
– reference: Z. Fan, F. Liou, Numerical Modeling of the Additive Manufacturing (AM) Processes of Titanium Alloy.
– volume: 41
  start-page: 121
  year: 2003
  end-page: 163
  ident: b0150
  article-title: Atomistic and continuum modeling of dendritic solidification
  publication-title: Mater. Sci. Eng. R: Rep.
– start-page: 1
  year: 2011
  end-page: 11
  ident: b0165
  publication-title: 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC)
– volume: 86
  start-page: 51
  year: 2014
  end-page: 60
  ident: b0060
  article-title: Modeling metal deposition in heat transfer analyses of additive manufacturing processes
  publication-title: Finite Elem. Anal. Des.
– volume: 229
  start-page: 626
  year: 2010
  ident: b0180
  publication-title: J. Comput. Phys.
– volume: 41
  start-page: 356
  year: 2008
  end-page: 365
  ident: b0275
  article-title: Crystal plasticity simulations of fretting of Ti-6Al-4V in partial slip regime considering effects of texture
  publication-title: Comput. Mater. Sci.
– volume: 61
  start-page: 1935
  year: 2013
  end-page: 1954
  ident: b0280
  article-title: An evaluation of higher-order single crystal strength models for constrained thin films subjected to simple shear
  publication-title: J. Mech. Phys. Solids
– volume: 341
  start-page: 443
  year: 1992
  end-page: 477
  ident: b0235
  article-title: Polycrystalline plasticity and the evolution of crystallographic texture in FCC Metals
  publication-title: Philos. Trans. R. Soc. Lond. A
– volume: 45
  start-page: 6260
  year: 2014
  ident: b0010
  article-title: An experimental investigation into additive manufacturing-induced residual stresses in 316L stainless steel
  publication-title: Metall. Mater. Trans. A
– volume: 32
  start-page: 268
  year: 2008
  ident: b0160
  publication-title: CALPHAD
– volume: 23
  start-page: 1457
  year: 2007
  end-page: 1485
  ident: b0270
  article-title: A three-dimensional crystal plasticity model for duplex Ti–6Al–4V
  publication-title: Int. J. Plast
– reference: D. Steinberg, Lawrence Livermore National Laboratory report UCRL-MA-106439 change 1, 1996.
– volume: 61
  start-page: 6474
  year: 2013
  end-page: 6491
  ident: b0210
  article-title: Multiscale dendritic needle network model of alloy solidification
  publication-title: Acta Mater.
– volume: 85
  start-page: 176
  year: 2015
  end-page: 202
  ident: b0315
  article-title: Distributed-enhanced homogenization framework and model for heterogeneous elasto-plastic problems
  publication-title: J. Mech. Phys. Solids
– volume: 2
  start-page: 041304
  year: 2015
  ident: b0095
  publication-title: Appl. Phys. Rev.
– volume: 94
  start-page: 02006
  year: 2015
  ident: b0005
  article-title: Structure/property (constitutive and dynamic strength/damage) characterization of additively manufactured 316L SS
  publication-title: EPJ Web Conf.
– reference: S. Srivatsa, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, 2014.
– volume: 214
  start-page: 2627
  year: 2014
  ident: b0090
  publication-title: J. Mater. Process. Technol.
– volume: 57
  start-page: 29
  year: 2014
  end-page: 51
  ident: b0285
  article-title: A comparison of Gurtin type and micropolar theories of generalized single crystal plasticity
  publication-title: Int. J. Plast
– reference: Teddy D. Blacker, Joshua Robbins, Steven J. Owen, Miguel Alejandro Aguilovalentin, Brett W. Clark, Thomas Eugene Voth, PLATO Platinum Topology Optimization, Sandia National Laboratories Technical Report, SAND2015-10065PE, 2015.
– reference: R. Berger, Additive manufacturing a game changer for the manufacturing industry? Munich, 2013.
– reference: See <
– volume: 55
  start-page: 2351
  year: 2007
  end-page: 2383
  ident: b0245
  article-title: Modeling the microstructural evolution of metallic polycrystalline materials under localization conditions
  publication-title: J. Mech. Phys. Solids
– volume: 231
  start-page: 468
  year: 2016
  end-page: 478
  ident: b0045
  article-title: Effect of real-time cooling rate on microstructure in Laser Additive Manufacturing
  publication-title: J. Mater. Process. Technol.
– volume: 23
  start-page: 065007
  year: 2015
  ident: b0295
  article-title: Micropolar crystal plasticity simulation of particle strengthening
  publication-title: Modell. Simul. Mater. Sci. Eng.
– volume: 288
  start-page: 96
  year: 2016
  end-page: 102
  ident: b0110
  article-title: Particle-based simulation of powder application in additive manufacturing
  publication-title: Powder Technol.
– volume: 54
  start-page: 33
  year: 2014
  ident: b0135
  publication-title: Comput. Mech.
– volume: 210
  start-page: 1624
  year: 2010
  ident: b0085
  publication-title: J. Mater. Process. Technol.
– volume: 108
  start-page: 36
  year: 2016
  ident: b0100
  publication-title: Acta Mater.
– reference: D.L. Bourell, M.C. Leu, D.W. Rosen, Roadmap for Additive Manufacturing Identifying the Future of Freeform Processing, Austin TX, 2009.
– volume: 18
  start-page: 055001
  year: 2010
  ident: b0250
  article-title: Dislocation subgrain structures and modeling the plastic hardening of metallic single crystals
  publication-title: Modell. Simul. Mater. Sci. Eng.
– volume: 17
  start-page: 149
  year: 2010
  end-page: 174
  ident: b0255
  article-title: Modeling and characterization of grain scale strain distribution in polycrystalline tantalum
  publication-title: Comput. Mater. Continua
– volume: 137
  start-page: 021004
  year: 2015
  ident: b0350
  article-title: Efficient design-optimization of variable-density hexagonal cellular structure by additive manufacturing: theory and validation
  publication-title: ASME J. Manuf. Sci. Eng.
– volume: 24
  start-page: 045016
  year: 2016
  ident: b0305
  article-title: Incorporating physically-based microstructures in material modeling: bridging phase field and crystal plasticity frameworks
  publication-title: Modell. Simul. Mater. Sci. Eng.
– reference: C. McCallen, ALE3D: Arbitrary Lagrange Eulerian Three-and Two Dimensional Modeling and Simulation Capability, Livermore, CA, Report No. LLNL-ABS-565212, 2012.
– volume: 11
  start-page: 216
  year: 2010
  end-page: 225
  ident: b0200
  article-title: Modeling of solidification: grain structures and segregations in metallic alloys
  publication-title: C.R. Phys.
– volume: 65
  start-page: 206
  year: 2015
  end-page: 225
  ident: b0290
  article-title: Incorporating interface affected zones into crystal plasticity
  publication-title: Int. J. Plast
– year: 2016
  ident: b0340
  article-title: Support structure constrained topology optimization for additive manufacturing
  publication-title: Comput.-Aided Des.
– volume: 64
  start-page: 051302
  year: 2001
  ident: b0115
  article-title: Granular flow down an inclined plane: Bagnold scaling and rheology
  publication-title: Phys. Rev. E
– volume: 40
  start-page: 537
  year: 1992
  end-page: 569
  ident: b0240
  article-title: Crystallographic texture evolution in bulk deformation processing of FCC metals
  publication-title: J. Mech. Phys. Solids
– volume: 20
  start-page: 25
  year: 2016
  end-page: 36
  ident: b0145
  article-title: Atomistic to continuum modeling of solidification microstructures
  publication-title: Curr. Opin. Solid State Mater. Sci.
– volume: 67
  start-page: 1776
  year: 2015
  end-page: 1785
  ident: b0215
  article-title: Three-dimensional multiscale modeling of dendritic spacing selection during Al-Si directional solidification
  publication-title: JOM
– volume: 41
  start-page: 345
  year: 1993
  end-page: 360
  ident: b0195
  article-title: Probabilistic modelling of microstructure formation in solidification processes
  publication-title: Acta Metall. Mater.
– reference: A.J. Trainer, C.K. Newman, M.M. Francois, Overview of the Tusas Code for Simulation of Dendritic Solidification, Los Alamos Technical Report, LA-UR-16-20078, 2016.
– volume: 12
  start-page: 296
  year: 2016
  end-page: 304
  ident: b0325
  article-title: An efficient process for generating topologically optimized cellular structures
  publication-title: Addit. Manuf.
– volume: 44
  start-page: 129
  year: 2013
  end-page: 146
  ident: b0260
  article-title: A dislocation-based multi-rate single crystal plasticity model
  publication-title: Int. J. Plasticity
– volume: 1
  year: 2016
  ident: b0125
  publication-title: Metall. Mater. Trans. A
– reference: J.M. Solberg, N.E. Hodge, R.M. Ferencz, I.D. Parsons, M.A. Puso, M.A. Havstad, R.A. Whitesides, A.P. Wemhoff, Diablo user manual, Livermore, CA, Report No. LLNL-SM-651163, 2014.
– volume: 68
  start-page: 1419
  year: 2016
  end-page: 1426
  ident: b0225
  article-title: Predicting mesoscale microstructural evolution in electron beam welding
  publication-title: JOM
– volume: 137
  year: 2015
  ident: b0345
  article-title: A pareto-optimal approach to multi-material topology optimization
  publication-title: J. Mech. Des.
– volume: 29
  start-page: 47
  year: 1979
  end-page: 65
  ident: b0105
  article-title: A discrete numerical model for granular assemblies
  publication-title: Geotechnique
– volume: 32
  start-page: 163
  year: 2002
  end-page: 194
  ident: b0155
  article-title: Phase-field simulation of solidification
  publication-title: Annu. Rev. Mater. Res.
– volume: 31
  start-page: 924
  year: 2015
  end-page: 930
  ident: b0035
  article-title: Spatial variation of melt pool geometry, peak temperature and solidification parameters during laser assisted additive manufacturing process
  publication-title: Mater. Sci. Technol.
– reference: >.
– volume: 71
  start-page: 131
  year: 2005
  ident: b0190
  publication-title: EPL (Europhys. Lett.)
– reference: .
– year: 2016
  ident: b0205
  article-title: Three-dimensional cellular automaton-finite element modeling of solidification grain structures for arc-welding processes
  publication-title: Acta Mater.
– volume: 24
  start-page: 45013
  year: 2016
  end-page: 45036
  ident: b0300
  article-title: Numerical implementation of a crystal plasticity model with dislocation transport for high strain rate applications
  publication-title: Modell. Simul. Mater. Sci. Eng.
– volume: 61
  start-page: 6918
  year: 2013
  end-page: 6932
  ident: b0265
  article-title: Modeling void growth in polycrystalline materials
  publication-title: Acta Mater.
– volume: 1
  start-page: 52
  year: 2014
  end-page: 63
  ident: b0055
  article-title: Towards an integrated computational system for describing the additive manufacturing process for metallic materials
  publication-title: Addit. Manuf.
– volume: 26
  start-page: 1248
  year: 2010
  end-page: 1275
  ident: b0310
  article-title: A second gradient theoretical framework for hierarchical multiscale modeling of materials
  publication-title: Int. J. Plasticity
– reference: Energetics Incorporated, Measurement Science Roadmap for Metal-Based Additive Manufacturing, Columbia, Maryland, 2013.
– volume: 62
  start-page: 89
  year: 2014
  ident: b0185
  publication-title: Acta Mater.
– year: 1995
  ident: b0080
  article-title: Instabilities in Laser-Matter Interaction
– reference: C.K. Newman, M.M. Francois, An Implicit Approach to Phase Field Modeling of Solidification for Additively Manufactured Materials, Los Alamos Technical Report, LA-UR-16-24310, 2016.
– reference: E. Herbold, O. Walton, M. Homel, A. Rubenchik, W. King, Simulation of Powder Bed Layer Spreading in Additive Manufacturing, 2016 Solid Freeform Fabrication Symposium, Austin, TX, 2016.
– volume: 39
  start-page: 2228
  year: 2008
  end-page: 2236
  ident: b0040
  article-title: Thermal behavior and microstructural evolution during laser deposition with laser-engineered net shaping: Part I. Numerical calculations
  publication-title: Metall. Mater. Trans. A
– volume: 57
  start-page: 29
  year: 2014
  ident: 10.1016/j.cossms.2016.12.001_b0285
  article-title: A comparison of Gurtin type and micropolar theories of generalized single crystal plasticity
  publication-title: Int. J. Plast
  doi: 10.1016/j.ijplas.2014.01.010
– ident: 10.1016/j.cossms.2016.12.001_b0130
– ident: 10.1016/j.cossms.2016.12.001_b0025
– volume: 29
  start-page: 47
  year: 1979
  ident: 10.1016/j.cossms.2016.12.001_b0105
  article-title: A discrete numerical model for granular assemblies
  publication-title: Geotechnique
  doi: 10.1680/geot.1979.29.1.47
– volume: 18
  start-page: 055001
  year: 2010
  ident: 10.1016/j.cossms.2016.12.001_b0250
  article-title: Dislocation subgrain structures and modeling the plastic hardening of metallic single crystals
  publication-title: Modell. Simul. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/18/5/055001
– volume: 32
  start-page: 163
  year: 2002
  ident: 10.1016/j.cossms.2016.12.001_b0155
  article-title: Phase-field simulation of solidification
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev.matsci.32.101901.155803
– volume: 32
  start-page: 268
  issue: 2
  year: 2008
  ident: 10.1016/j.cossms.2016.12.001_b0160
  publication-title: CALPHAD
  doi: 10.1016/j.calphad.2007.11.003
– volume: 31
  start-page: 924
  year: 2015
  ident: 10.1016/j.cossms.2016.12.001_b0035
  article-title: Spatial variation of melt pool geometry, peak temperature and solidification parameters during laser assisted additive manufacturing process
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/1743284714Y.0000000701
– ident: 10.1016/j.cossms.2016.12.001_b0030
– volume: 1
  start-page: 52
  year: 2014
  ident: 10.1016/j.cossms.2016.12.001_b0055
  article-title: Towards an integrated computational system for describing the additive manufacturing process for metallic materials
  publication-title: Addit. Manuf.
– year: 1995
  ident: 10.1016/j.cossms.2016.12.001_b0080
– volume: 44
  start-page: 129
  year: 2013
  ident: 10.1016/j.cossms.2016.12.001_b0260
  article-title: A dislocation-based multi-rate single crystal plasticity model
  publication-title: Int. J. Plasticity
  doi: 10.1016/j.ijplas.2012.12.006
– ident: 10.1016/j.cossms.2016.12.001_b0120
– volume: 231
  start-page: 468
  year: 2016
  ident: 10.1016/j.cossms.2016.12.001_b0045
  article-title: Effect of real-time cooling rate on microstructure in Laser Additive Manufacturing
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2016.01.017
– volume: 26
  start-page: 1248
  year: 2010
  ident: 10.1016/j.cossms.2016.12.001_b0310
  article-title: A second gradient theoretical framework for hierarchical multiscale modeling of materials
  publication-title: Int. J. Plasticity
  doi: 10.1016/j.ijplas.2010.05.006
– volume: 229
  start-page: 626
  issue: 3
  year: 2010
  ident: 10.1016/j.cossms.2016.12.001_b0180
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.09.041
– ident: 10.1016/j.cossms.2016.12.001_b0015
– volume: 54
  start-page: 33
  issue: 1
  year: 2014
  ident: 10.1016/j.cossms.2016.12.001_b0135
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-014-1024-2
– volume: 40
  start-page: 537
  year: 1992
  ident: 10.1016/j.cossms.2016.12.001_b0240
  article-title: Crystallographic texture evolution in bulk deformation processing of FCC metals
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/0022-5096(92)80003-9
– volume: 24
  start-page: 045016
  year: 2016
  ident: 10.1016/j.cossms.2016.12.001_b0305
  article-title: Incorporating physically-based microstructures in material modeling: bridging phase field and crystal plasticity frameworks
  publication-title: Modell. Simul. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/24/4/045016
– volume: 71
  start-page: 131
  issue: 1
  year: 2005
  ident: 10.1016/j.cossms.2016.12.001_b0190
  publication-title: EPL (Europhys. Lett.)
  doi: 10.1209/epl/i2005-10081-7
– volume: 61
  start-page: 6918
  year: 2013
  ident: 10.1016/j.cossms.2016.12.001_b0265
  article-title: Modeling void growth in polycrystalline materials
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.08.004
– volume: 55
  start-page: 2351
  year: 2007
  ident: 10.1016/j.cossms.2016.12.001_b0245
  article-title: Modeling the microstructural evolution of metallic polycrystalline materials under localization conditions
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2007.03.019
– ident: 10.1016/j.cossms.2016.12.001_b0175
  doi: 10.2172/1237211
– volume: 23
  start-page: 065007
  issue: 6
  year: 2015
  ident: 10.1016/j.cossms.2016.12.001_b0295
  article-title: Micropolar crystal plasticity simulation of particle strengthening
  publication-title: Modell. Simul. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/23/6/065007
– volume: 20
  start-page: 25
  year: 2016
  ident: 10.1016/j.cossms.2016.12.001_b0145
  article-title: Atomistic to continuum modeling of solidification microstructures
  publication-title: Curr. Opin. Solid State Mater. Sci.
  doi: 10.1016/j.cossms.2015.09.001
– ident: 10.1016/j.cossms.2016.12.001_b0230
– volume: 86
  start-page: 51
  issue: 1
  year: 2014
  ident: 10.1016/j.cossms.2016.12.001_b0060
  article-title: Modeling metal deposition in heat transfer analyses of additive manufacturing processes
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2014.04.003
– volume: 41
  start-page: 345
  year: 1993
  ident: 10.1016/j.cossms.2016.12.001_b0195
  article-title: Probabilistic modelling of microstructure formation in solidification processes
  publication-title: Acta Metall. Mater.
  doi: 10.1016/0956-7151(93)90065-Z
– year: 2016
  ident: 10.1016/j.cossms.2016.12.001_b0205
  article-title: Three-dimensional cellular automaton-finite element modeling of solidification grain structures for arc-welding processes
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.05.011
– volume: 39
  start-page: 2228
  year: 2008
  ident: 10.1016/j.cossms.2016.12.001_b0040
  article-title: Thermal behavior and microstructural evolution during laser deposition with laser-engineered net shaping: Part I. Numerical calculations
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-008-9557-7
– volume: 214
  start-page: 2627
  issue: 11
  year: 2014
  ident: 10.1016/j.cossms.2016.12.001_b0090
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2014.06.001
– ident: 10.1016/j.cossms.2016.12.001_b0220
– volume: 41
  start-page: 121
  year: 2003
  ident: 10.1016/j.cossms.2016.12.001_b0150
  article-title: Atomistic and continuum modeling of dendritic solidification
  publication-title: Mater. Sci. Eng. R: Rep.
  doi: 10.1016/S0927-796X(03)00036-6
– volume: 41
  start-page: 356
  issue: 3
  year: 2008
  ident: 10.1016/j.cossms.2016.12.001_b0275
  article-title: Crystal plasticity simulations of fretting of Ti-6Al-4V in partial slip regime considering effects of texture
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2007.04.020
– volume: 62
  start-page: 89
  year: 2014
  ident: 10.1016/j.cossms.2016.12.001_b0185
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.09.036
– ident: 10.1016/j.cossms.2016.12.001_b0050
– volume: 45
  start-page: 6260
  year: 2014
  ident: 10.1016/j.cossms.2016.12.001_b0010
  article-title: An experimental investigation into additive manufacturing-induced residual stresses in 316L stainless steel
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-014-2549-x
– ident: 10.1016/j.cossms.2016.12.001_b0075
– volume: 108
  start-page: 36
  year: 2016
  ident: 10.1016/j.cossms.2016.12.001_b0100
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.02.014
– year: 2016
  ident: 10.1016/j.cossms.2016.12.001_b0340
  article-title: Support structure constrained topology optimization for additive manufacturing
  publication-title: Comput.-Aided Des.
  doi: 10.1016/j.cad.2016.08.006
– volume: 11
  start-page: 216
  year: 2010
  ident: 10.1016/j.cossms.2016.12.001_b0200
  article-title: Modeling of solidification: grain structures and segregations in metallic alloys
  publication-title: C.R. Phys.
  doi: 10.1016/j.crhy.2010.07.010
– ident: 10.1016/j.cossms.2016.12.001_b0170
– volume: 67
  start-page: 1776
  year: 2015
  ident: 10.1016/j.cossms.2016.12.001_b0215
  article-title: Three-dimensional multiscale modeling of dendritic spacing selection during Al-Si directional solidification
  publication-title: JOM
  doi: 10.1007/s11837-015-1444-2
– ident: 10.1016/j.cossms.2016.12.001_b0065
– ident: 10.1016/j.cossms.2016.12.001_b0330
– volume: 341
  start-page: 443
  year: 1992
  ident: 10.1016/j.cossms.2016.12.001_b0235
  article-title: Polycrystalline plasticity and the evolution of crystallographic texture in FCC Metals
  publication-title: Philos. Trans. R. Soc. Lond. A
  doi: 10.1098/rsta.1992.0111
– volume: 2
  start-page: 041304
  issue: 4
  year: 2015
  ident: 10.1016/j.cossms.2016.12.001_b0095
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.4937809
– volume: 68
  start-page: 1419
  year: 2016
  ident: 10.1016/j.cossms.2016.12.001_b0225
  article-title: Predicting mesoscale microstructural evolution in electron beam welding
  publication-title: JOM
  doi: 10.1007/s11837-016-1863-8
– volume: 61
  start-page: 1935
  issue: 9
  year: 2013
  ident: 10.1016/j.cossms.2016.12.001_b0280
  article-title: An evaluation of higher-order single crystal strength models for constrained thin films subjected to simple shear
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2013.04.007
– volume: 64
  start-page: 051302
  year: 2001
  ident: 10.1016/j.cossms.2016.12.001_b0115
  article-title: Granular flow down an inclined plane: Bagnold scaling and rheology
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.64.051302
– volume: 17
  start-page: 149
  year: 2010
  ident: 10.1016/j.cossms.2016.12.001_b0255
  article-title: Modeling and characterization of grain scale strain distribution in polycrystalline tantalum
  publication-title: Comput. Mater. Continua
– ident: 10.1016/j.cossms.2016.12.001_b0070
– volume: 1
  year: 2016
  ident: 10.1016/j.cossms.2016.12.001_b0125
  publication-title: Metall. Mater. Trans. A
– volume: 24
  start-page: 45013
  issue: 4
  year: 2016
  ident: 10.1016/j.cossms.2016.12.001_b0300
  article-title: Numerical implementation of a crystal plasticity model with dislocation transport for high strain rate applications
  publication-title: Modell. Simul. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/24/4/045013
– volume: 137
  start-page: 021004
  year: 2015
  ident: 10.1016/j.cossms.2016.12.001_b0350
  article-title: Efficient design-optimization of variable-density hexagonal cellular structure by additive manufacturing: theory and validation
  publication-title: ASME J. Manuf. Sci. Eng.
  doi: 10.1115/1.4028724
– ident: 10.1016/j.cossms.2016.12.001_b0020
– volume: 210
  start-page: 1624
  issue: 12
  year: 2010
  ident: 10.1016/j.cossms.2016.12.001_b0085
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2010.05.010
– volume: 288
  start-page: 96
  year: 2016
  ident: 10.1016/j.cossms.2016.12.001_b0110
  article-title: Particle-based simulation of powder application in additive manufacturing
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2015.10.035
– volume: 85
  start-page: 176
  year: 2015
  ident: 10.1016/j.cossms.2016.12.001_b0315
  article-title: Distributed-enhanced homogenization framework and model for heterogeneous elasto-plastic problems
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2015.09.012
– ident: 10.1016/j.cossms.2016.12.001_b0320
– volume: 94
  start-page: 02006
  year: 2015
  ident: 10.1016/j.cossms.2016.12.001_b0005
  article-title: Structure/property (constitutive and dynamic strength/damage) characterization of additively manufactured 316L SS
  publication-title: EPJ Web Conf.
  doi: 10.1051/epjconf/20159402006
– volume: 23
  start-page: 1457
  issue: 9
  year: 2007
  ident: 10.1016/j.cossms.2016.12.001_b0270
  article-title: A three-dimensional crystal plasticity model for duplex Ti–6Al–4V
  publication-title: Int. J. Plast
  doi: 10.1016/j.ijplas.2006.11.006
– volume: 12
  start-page: 296
  year: 2016
  ident: 10.1016/j.cossms.2016.12.001_b0325
  article-title: An efficient process for generating topologically optimized cellular structures
  publication-title: Addit. Manuf.
– start-page: 1
  year: 2011
  ident: 10.1016/j.cossms.2016.12.001_b0165
– volume: 61
  start-page: 6474
  year: 2013
  ident: 10.1016/j.cossms.2016.12.001_b0210
  article-title: Multiscale dendritic needle network model of alloy solidification
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.07.026
– volume: 137
  issue: 10
  year: 2015
  ident: 10.1016/j.cossms.2016.12.001_b0345
  article-title: A pareto-optimal approach to multi-material topology optimization
  publication-title: J. Mech. Des.
  doi: 10.1115/1.4031088
– volume: 131
  start-page: 072101
  issue: 7
  year: 2009
  ident: 10.1016/j.cossms.2016.12.001_b0140
  publication-title: J. Heat Transf.-Trans. ASME
  doi: 10.1115/1.3109245
– ident: 10.1016/j.cossms.2016.12.001_b0335
– volume: 65
  start-page: 206
  year: 2015
  ident: 10.1016/j.cossms.2016.12.001_b0290
  article-title: Incorporating interface affected zones into crystal plasticity
  publication-title: Int. J. Plast
  doi: 10.1016/j.ijplas.2014.08.013
SSID ssj0004666
Score 2.631383
SecondaryResourceType review_article
Snippet •This article focuses on reviewing modeling and simulation effort in metal additive manufacturing taking places at U.S. Department of Energy national...
SourceID osti
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 198
SubjectTerms additive manufacturing
MATERIALS SCIENCE
Title Modeling of additive manufacturing processes for metals: Challenges and opportunities
URI https://dx.doi.org/10.1016/j.cossms.2016.12.001
https://www.osti.gov/servlets/purl/1344361
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jIuiD6FSc05EHX-uaj6arb2M45tcQdbC30jQJTFxX7Pbq324ubWWCMPClhZIr5XK5u6S_-x1CVyI1od0WGGu8OrAbFHuRKvE9I5QNltLvRwrOIZ8mYjzl97Ng1kDDuhYGYJWV7y99uvPW1ZNepc1ePp_3Xglz1COCAGtUnwHjJ-chWPn1F9mojXT_K2GwB6Pr8jmH8UptIFoAaTcR7lCwag3zR3hqLu2K24g8o0N0UKWMeFB-1RFq6KyF9jeIBFto1wE50-IYTaG5GZSY46XBABYCd4YXSbaGEgZXk4jzsjhAF9hmrHihbf5d3OBh3ValwEmm8DKHzHydOcbVEzQd3b4Nx17VOsFLOQ9WXkoTpqShqS-pDBQliY6oSKjhJDSJL2UUMiapIZGmoW-UsBsfHXCtbFDra0PYKWpmy0yfIWxoYHUnfGME5VLyRCrGImKYXf1GRbKNWK2xOK14xaG9xUdcA8je41LPMeg5JhRwdG3k_UjlJa_GlvFhPRnxL_uIrevfItmBuQMpoMVNAT9kxQjjnAly_u_3dtAehRDvwIAXqLn6XOtLm6CsZNdZYBftDIYvj89wv3sYT74BxIfoOw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1qRdSDaFWsn3vwGpr9yKbxJsXSWu1FC72FbHYXFJsW2_5_dzaJVBAELzmEnRBmNzOzm_feANzK3MZuW2Dd4jWR26C4i9JZGFipXbJUYTfReA75PJaDiXicRtMG9GouDMIqq9hfxnQfras7ncqbncXbW-eFci89IimqRnU534JtVKeKmrB9PxwNxhv0SP_LEscHaFAz6DzMK3e5aIa63VT6c8GqO8wvGao5dx_dRvLpH8JBVTWS-_LFjqBhihbsb2gJtmDHYznz5TFMsL8ZsszJ3BLEC2FEI7OsWCOLwdMSyaLkB5glcUUrmRlXgi_vSK_urLIkWaHJfIHF-brwoqsnMOk_vPYGQdU9IciFiFZBzjKulWV5qJiKNKOZSZjMmBU0tlmoVBJzrpiliWFxaLV0ex8TCaNdXusaS_kpNIt5Yc6AWBY538nQWsmEUiJTmvOEWu4CgNWJagOvPZbmlbQ4drj4SGsM2Xta-jlFP6eUIZSuDcG31aKU1vhjfFxPRvpjiaQu-v9heYFzh1aojJsjhMiZUS4El_T838-9gd3B6_NT-jQcjy5gj2HG99jAS2iuPtfmytUrK3Vdrccvc9TpVw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+of+additive+manufacturing+processes+for+metals%3A+Challenges+and+opportunities&rft.jtitle=Current+opinion+in+solid+state+%26+materials+science&rft.au=Francois%2C+Marianne+M.&rft.au=Sun%2C+Amy&rft.au=King%2C+Wayne+E.&rft.au=Henson%2C+Neil+Jon&rft.date=2017-08-01&rft.pub=Elsevier&rft.issn=1359-0286&rft.volume=21&rft.issue=4&rft_id=info:doi/10.1016%2Fj.cossms.2016.12.001&rft.externalDocID=1344361
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-0286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-0286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-0286&client=summon