Unpredictable elbow joint perturbation during reaching results in multijoint motor equivalence

Motor equivalence expresses the idea that movement components reorganize in the face of perturbations to preserve the value of important performance variables, such as the hand's position in reaching. A formal method is introduced to evaluate this concept quantitatively: changes in joint config...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurophysiology Vol. 106; no. 3; pp. 1424 - 1436
Main Authors Mattos, D. J. S., Latash, M. L., Park, E., Kuhl, J., Scholz, J. P.
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.09.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Motor equivalence expresses the idea that movement components reorganize in the face of perturbations to preserve the value of important performance variables, such as the hand's position in reaching. A formal method is introduced to evaluate this concept quantitatively: changes in joint configuration due to unpredictable elbow perturbation lead to a smaller change in performance variables than expected given the magnitude of joint configuration change. This study investigated whether motor equivalence was present during the entire movement trajectory and how magnitude of motor equivalence was affected by constraints imposed by two different target types. Subjects pointed to spherical and cylindrical targets both with and without an elbow joint perturbation produced by a low- or high-stiffness elastic band. Subjects' view of their arm was blocked in the initial position, and the perturbation condition was randomized to avoid prediction of the perturbation or its magnitude. A modification of the uncontrolled manifold method variance analysis was used to investigate how changes in joint configuration on perturbed vs. nonperturbed trials (joint deviation vector) affected the hand's position or orientation. Evidence for motor equivalence induced by the perturbation was present from the reach onset and increased with the strength of the perturbation after 40% of the reach, becoming more prominent as the reach progressed. Hand orientation was stabilized more strongly by motor equivalent changes in joint configuration than was three-dimensional position regardless of the target condition. Results are consistent with a recent model of neural control that allows for flexible patterns of joint coordination while resisting joint configuration deviations in directions that affect salient performance variables. The observations also fit a general scheme of synergic control with referent configurations defined across different levels of the motor hierarchy.
AbstractList Motor equivalence expresses the idea that movement components reorganize in the face of perturbations to preserve the value of important performance variables, such as the hand's position in reaching. A formal method is introduced to evaluate this concept quantitatively: changes in joint configuration due to unpredictable elbow perturbation lead to a smaller change in performance variables than expected given the magnitude of joint configuration change. This study investigated whether motor equivalence was present during the entire movement trajectory and how magnitude of motor equivalence was affected by constraints imposed by two different target types. Subjects pointed to spherical and cylindrical targets both with and without an elbow joint perturbation produced by a low- or high-stiffness elastic band. Subjects' view of their arm was blocked in the initial position, and the perturbation condition was randomized to avoid prediction of the perturbation or its magnitude. A modification of the uncontrolled manifold method variance analysis was used to investigate how changes in joint configuration on perturbed vs. nonperturbed trials (joint deviation vector) affected the hand's position or orientation. Evidence for motor equivalence induced by the perturbation was present from the reach onset and increased with the strength of the perturbation after 40% of the reach, becoming more prominent as the reach progressed. Hand orientation was stabilized more strongly by motor equivalent changes in joint configuration than was three-dimensional position regardless of the target condition. Results are consistent with a recent model of neural control that allows for flexible patterns of joint coordination while resisting joint configuration deviations in directions that affect salient performance variables. The observations also fit a general scheme of synergic control with referent configurations defined across different levels of the motor hierarchy.Motor equivalence expresses the idea that movement components reorganize in the face of perturbations to preserve the value of important performance variables, such as the hand's position in reaching. A formal method is introduced to evaluate this concept quantitatively: changes in joint configuration due to unpredictable elbow perturbation lead to a smaller change in performance variables than expected given the magnitude of joint configuration change. This study investigated whether motor equivalence was present during the entire movement trajectory and how magnitude of motor equivalence was affected by constraints imposed by two different target types. Subjects pointed to spherical and cylindrical targets both with and without an elbow joint perturbation produced by a low- or high-stiffness elastic band. Subjects' view of their arm was blocked in the initial position, and the perturbation condition was randomized to avoid prediction of the perturbation or its magnitude. A modification of the uncontrolled manifold method variance analysis was used to investigate how changes in joint configuration on perturbed vs. nonperturbed trials (joint deviation vector) affected the hand's position or orientation. Evidence for motor equivalence induced by the perturbation was present from the reach onset and increased with the strength of the perturbation after 40% of the reach, becoming more prominent as the reach progressed. Hand orientation was stabilized more strongly by motor equivalent changes in joint configuration than was three-dimensional position regardless of the target condition. Results are consistent with a recent model of neural control that allows for flexible patterns of joint coordination while resisting joint configuration deviations in directions that affect salient performance variables. The observations also fit a general scheme of synergic control with referent configurations defined across different levels of the motor hierarchy.
Motor equivalence expresses the idea that movement components reorganize in the face of perturbations to preserve the value of important performance variables, such as the hand's position in reaching. A formal method is introduced to evaluate this concept quantitatively: changes in joint configuration due to unpredictable elbow perturbation lead to a smaller change in performance variables than expected given the magnitude of joint configuration change. This study investigated whether motor equivalence was present during the entire movement trajectory and how magnitude of motor equivalence was affected by constraints imposed by two different target types. Subjects pointed to spherical and cylindrical targets both with and without an elbow joint perturbation produced by a low- or high-stiffness elastic band. Subjects' view of their arm was blocked in the initial position, and the perturbation condition was randomized to avoid prediction of the perturbation or its magnitude. A modification of the uncontrolled manifold method variance analysis was used to investigate how changes in joint configuration on perturbed vs. nonperturbed trials (joint deviation vector) affected the hand's position or orientation. Evidence for motor equivalence induced by the perturbation was present from the reach onset and increased with the strength of the perturbation after 40% of the reach, becoming more prominent as the reach progressed. Hand orientation was stabilized more strongly by motor equivalent changes in joint configuration than was three-dimensional position regardless of the target condition. Results are consistent with a recent model of neural control that allows for flexible patterns of joint coordination while resisting joint configuration deviations in directions that affect salient performance variables. The observations also fit a general scheme of synergic control with referent configurations defined across different levels of the motor hierarchy.
Author Kuhl, J.
Scholz, J. P.
Latash, M. L.
Park, E.
Mattos, D. J. S.
Author_xml – sequence: 1
  givenname: D. J. S.
  surname: Mattos
  fullname: Mattos, D. J. S.
  organization: Biomechanics and Movement Science Program, University of Delaware, Newark, Delaware
– sequence: 2
  givenname: M. L.
  surname: Latash
  fullname: Latash, M. L.
  organization: Department of Kinesiology, Pennsylvania State University, University Park, Pennsylvania; and
– sequence: 3
  givenname: E.
  surname: Park
  fullname: Park, E.
  organization: Biomechanics and Movement Science Program, University of Delaware, Newark, Delaware
– sequence: 4
  givenname: J.
  surname: Kuhl
  fullname: Kuhl, J.
  organization: Department of Biology and
– sequence: 5
  givenname: J. P.
  surname: Scholz
  fullname: Scholz, J. P.
  organization: Biomechanics and Movement Science Program, University of Delaware, Newark, Delaware;, Department of Physical Therapy, University of Delaware, Newark, Delaware
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21676927$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAQxS1URLeFI1eUG6cs_khi54KEKr6kSlzoFWvsTFqvHHtrO0X893i7pQIkhC9-sn_zZux3Rk5CDEjIS0a3jPX8zS5sKWWD2HLK2BOyqWe8Zf2oTsiG0qoFlfKUnOW8o5TKnvJn5JSzQQ4jlxvy7SrsE07OFjAeG_Qmfm920YXS7DGVNRkoLoZmWpML101CsDdHkVdfcuNCs1ThjiVLLDE1eLu6O_AYLD4nT2fwGV887Ofk6sP7rxef2ssvHz9fvLtsbdf1pbV8MCOfgSphjBTDZMaBAU7DpGBQM1Izj0Iaa2bRg6S9UFQyC2bsAKAHKs7J26PvfjULThZDSeD1PrkF0g8dwek_b4K70dfxTgsmO8X7avD6wSDF2xVz0YvLFr2HgHHNeqwN5WH9l1RKCaF4pyr56vehHqf59fsVaI-ATTHnhPMjwqg-pKt3Qd-nqw_pVl78xVtX7vOpb3L-H1U_AcfAq6I
CitedBy_id crossref_primary_10_1016_j_jbiomech_2021_110769
crossref_primary_10_1152_jn_00395_2014
crossref_primary_10_1007_s00221_018_5231_5
crossref_primary_10_1371_journal_pone_0238561
crossref_primary_10_1007_s00221_012_3383_2
crossref_primary_10_1016_j_neuroscience_2017_12_018
crossref_primary_10_1016_j_jbiomech_2019_06_010
crossref_primary_10_1007_s00221_016_4809_z
crossref_primary_10_1007_s00221_017_4971_y
crossref_primary_10_1016_j_neuroscience_2015_09_071
crossref_primary_10_1016_j_neuron_2017_05_013
crossref_primary_10_1080_00222895_2012_740101
crossref_primary_10_1016_j_neuroscience_2015_12_012
crossref_primary_10_1113_JP280555
crossref_primary_10_1080_00222895_2014_996281
crossref_primary_10_1038_s41598_020_79081_9
crossref_primary_10_1298_ptr_R0018
crossref_primary_10_1123_mc_2021_0105
crossref_primary_10_1177_1545968320969936
crossref_primary_10_1590_1809_2950_12646024012017
crossref_primary_10_1007_s00221_018_5393_1
crossref_primary_10_1016_j_gaitpost_2019_01_003
crossref_primary_10_3758_s13414_015_0876_7
crossref_primary_10_1007_s00221_018_5215_5
crossref_primary_10_1038_s41598_023_42408_3
crossref_primary_10_1152_jn_00292_2016
crossref_primary_10_1007_s00221_019_05560_9
crossref_primary_10_1152_jn_00084_2018
crossref_primary_10_1007_s00221_015_4327_4
crossref_primary_10_1007_s00221_015_4369_7
crossref_primary_10_1016_j_gaitpost_2022_05_030
crossref_primary_10_1016_j_neuroscience_2021_01_006
crossref_primary_10_1007_s00221_018_5436_7
crossref_primary_10_1007_s00221_014_4048_0
crossref_primary_10_1016_j_cobeha_2018_01_004
crossref_primary_10_1007_s00221_016_4632_6
crossref_primary_10_1016_j_jbiomech_2020_110219
crossref_primary_10_1007_s00221_013_3665_3
crossref_primary_10_1249_JES_0000000000000002
crossref_primary_10_1007_s00221_021_06188_4
crossref_primary_10_1038_s41598_023_39684_4
crossref_primary_10_1152_jn_00043_2012
crossref_primary_10_1007_s00221_020_05947_z
crossref_primary_10_1007_s00221_019_05510_5
crossref_primary_10_1007_s00221_014_4128_1
crossref_primary_10_1016_j_jbiomech_2022_111353
crossref_primary_10_1007_s00221_013_3748_1
crossref_primary_10_1080_02640414_2018_1463630
crossref_primary_10_1080_00222895_2014_961892
crossref_primary_10_1016_j_gaitpost_2013_04_023
crossref_primary_10_1038_s41598_019_53913_9
crossref_primary_10_1007_s00221_014_3826_z
crossref_primary_10_1016_j_neuroscience_2022_08_006
crossref_primary_10_1007_s00421_015_3282_x
crossref_primary_10_2478_hukin_2018_0086
crossref_primary_10_1007_s00221_016_4806_2
crossref_primary_10_1016_j_jbiomech_2023_111702
crossref_primary_10_1016_j_neuroscience_2024_05_044
crossref_primary_10_1123_mc_2021_0135
crossref_primary_10_1016_j_plrev_2016_03_003
crossref_primary_10_1007_s00221_020_05822_x
crossref_primary_10_1016_j_clinph_2018_02_126
crossref_primary_10_1007_s00221_016_4757_7
crossref_primary_10_1007_s00221_013_3433_4
crossref_primary_10_1080_00222895_2014_986045
crossref_primary_10_1016_j_neuro_2022_10_012
crossref_primary_10_1007_s00221_012_3000_4
crossref_primary_10_1515_hukin_2015_0190
crossref_primary_10_1152_jn_00461_2013
crossref_primary_10_1152_jn_00045_2018
crossref_primary_10_1371_journal_pone_0181041
crossref_primary_10_1007_s00221_018_5239_x
crossref_primary_10_1016_j_humov_2019_01_003
crossref_primary_10_1007_s00221_019_05709_6
crossref_primary_10_1007_s00221_014_4059_x
crossref_primary_10_1016_j_plrev_2020_07_007
crossref_primary_10_1016_j_humov_2015_12_010
crossref_primary_10_3389_fpsyg_2021_661312
crossref_primary_10_3389_fnsys_2021_735406
crossref_primary_10_1007_s00221_017_4972_x
crossref_primary_10_1152_jn_00394_2024
crossref_primary_10_3389_fspor_2024_1382194
crossref_primary_10_1016_j_neuroscience_2022_10_009
crossref_primary_10_1007_s00221_015_4364_z
crossref_primary_10_1152_jn_00519_2017
crossref_primary_10_1007_s00221_017_5133_y
crossref_primary_10_1016_j_neuroscience_2014_12_079
crossref_primary_10_1080_00222895_2017_1367642
crossref_primary_10_1038_s41598_021_86173_7
crossref_primary_10_1152_jn_00246_2014
crossref_primary_10_1177_1545968318760725
crossref_primary_10_1016_j_humov_2018_09_004
crossref_primary_10_1152_jn_00180_2016
crossref_primary_10_1123_kr_2017_0058
crossref_primary_10_1016_j_neulet_2014_03_034
crossref_primary_10_1007_s00221_018_5238_y
crossref_primary_10_1007_s00421_018_4035_4
Cites_doi 10.1152/jn.00030.2002
10.1093/brain/105.2.331
10.1152/jn.1998.79.3.1409
10.1523/JNEUROSCI.15-09-06271.1995
10.1007/BF00229850
10.1016/0028-3932(71)90067-4
10.1016/j.neulet.2007.02.037
10.1016/S0079-6123(06)65017-6
10.1007/s002210050367
10.1007/s00221-011-2541-2
10.1007/s00221-002-1196-4
10.1007/s00221-002-1357-5
10.1007/s00422-003-0419-5
10.1007/s00221-005-0209-5
10.1016/S1050-6411(02)00029-9
10.1123/mcj.6.2.183
10.1007/s00221-002-1277-4
10.1016/j.neulet.2009.03.084
10.1007/s002210050738
10.1080/00222895.1993.9942044
10.1113/jphysiol.2009.186858
10.1123/mcj.9.1.75
10.1007/s00221-003-1812-y
10.1007/s002210050823
10.1007/s002210000427
10.1016/0013-4694(79)90066-X
10.1016/j.humov.2009.01.003
10.1016/j.clinph.2006.11.014
10.1016/S0167-9457(02)00157-4
10.1007/978-0-387-77064-2_38
10.1037/0096-1523.10.6.812
10.1016/j.humov.2009.11.002
10.1152/jn.1987.57.5.1498
10.1152/jn.1999.81.5.2582
10.1017/S0140525X00051268
10.1123/mcj.11.3.276
10.1152/jn.90338.2008
10.1007/s00221-002-1287-2
10.1007/s002210000540
10.1126/science.288.5463.100
10.1016/0021-9290(93)90098-Y
10.1007/BF00236911
10.1007/s00221-006-0848-1
10.1093/brain/awg246
10.1113/jphysiol.1988.sp017415
10.1152/jn.00188.2006
10.1007/s00221-006-0602-8
10.1007/BF00353957
10.1123/mcj.14.3.294
10.1162/neco.2008.01-08-698
10.1016/j.jneumeth.2010.01.023
ContentType Journal Article
Copyright Copyright © 2011 the American Physiological Society 2011
Copyright_xml – notice: Copyright © 2011 the American Physiological Society 2011
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1152/jn.00163.2011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList MEDLINE - Academic
MEDLINE
Neurosciences Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1522-1598
EndPage 1436
ExternalDocumentID PMC3174825
21676927
10_1152_jn_00163_2011
Genre Journal Article
Comparative Study
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS-35032
GroupedDBID ---
-DZ
-~X
.55
.GJ
0VX
18M
1CY
1Z7
29L
2WC
39C
3O-
4.4
41~
53G
5GY
5VS
8M5
AAYXX
ABCQX
ABHWK
ABIVO
ABJNI
ABKWE
ACGFO
ACGFS
ACNCT
ADBBV
ADFNX
ADHGD
ADIYS
AENEX
AETEA
AFFNX
AFOSN
AI.
AIZAD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BTFSW
C1A
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
EMOBN
F5P
H13
H~9
ITBOX
KQ8
L7B
MVM
NEJ
OHT
OK1
P2P
RAP
RHI
RPL
RPRKH
SJN
TR2
UHB
UPT
UQL
VH1
W8F
WH7
WOQ
WOW
X7M
XJT
XOL
XSW
YBH
YQT
YSK
ZGI
ZXP
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
ID FETCH-LOGICAL-c445t-c26b92fa083bb736db961aed6d8a68fe0bf937bcbf35a70538071cab94aaa5a03
ISSN 0022-3077
1522-1598
IngestDate Thu Aug 21 18:19:41 EDT 2025
Thu Jul 10 18:49:22 EDT 2025
Thu Jul 10 17:16:59 EDT 2025
Mon Jul 21 05:52:16 EDT 2025
Tue Jul 01 04:08:56 EDT 2025
Thu Apr 24 23:02:40 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c445t-c26b92fa083bb736db961aed6d8a68fe0bf937bcbf35a70538071cab94aaa5a03
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 21676927
PQID 888338248
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3174825
proquest_miscellaneous_907177777
proquest_miscellaneous_888338248
pubmed_primary_21676927
crossref_primary_10_1152_jn_00163_2011
crossref_citationtrail_10_1152_jn_00163_2011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-09-01
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda, MD
PublicationTitle Journal of neurophysiology
PublicationTitleAlternate J Neurophysiol
PublicationYear 2011
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
B21
Zatsiorsky VM (B55) 2002
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31
B32
B33
B34
B35
B36
B37
B38
B39
B1
B2
B3
B4
B5
B6
B7
B8
B9
B40
B41
B42
B43
B45
B46
B47
B48
B49
Schöner G (B44) 2008
B50
B51
B52
B53
B10
B54
B11
B12
B13
B14
B15
B16
B17
B18
B19
5146491 - Neuropsychologia. 1971 Mar;9(1):97-113
17331643 - Neurosci Lett. 2007 Apr 24;417(1):66-71
19718817 - Neural Comput. 2009 May;21(5):1371-414
12581984 - J Mot Behav. 1993 Sep;25(3):131-139
12541148 - Exp Brain Res. 2003 Feb;148(3):377-87
21287157 - Exp Brain Res. 2011 Mar;209(3):319-32
12905043 - Biol Cybern. 2003 Aug;89(2):152-61
19005003 - J Neurophysiol. 2009 Jan;101(1):184-97
11037282 - Exp Brain Res. 2000 Sep;134(2):155-62
19230996 - Hum Mov Sci. 2009 Apr;28(2):169-90
10753108 - Science. 2000 Apr 7;288(5463):100-6
10473746 - Exp Brain Res. 1999 Sep;128(1-2):92-100
17715460 - Motor Control. 2007 Jul;11(3):276-308
7666209 - J Neurosci. 1995 Sep;15(9):6271-80
20702893 - Motor Control. 2010 Jul;14(3):294-322
12424277 - J Neurophysiol. 2002 Nov;88(5):2355-67
14985897 - Exp Brain Res. 2004 Jul;157(1):18-31
16874517 - Exp Brain Res. 2007 Jan;176(1):54-69
12632230 - Exp Brain Res. 2003 Apr;149(3):276-88
12355270 - Exp Brain Res. 2002 Oct;146(4):419-32
17925252 - Prog Brain Res. 2007;165:267-81
6239907 - J Exp Psychol Hum Percept Perform. 1984 Dec;10(6):812-32
16855113 - J Neurophysiol. 2006 Nov;96(5):2613-32
3256617 - J Physiol. 1988 Dec;407:275-92
20060610 - Hum Mov Sci. 2010 Oct;29(5):642-54
11146817 - Exp Brain Res. 2000 Dec;135(3):382-404
12478397 - Exp Brain Res. 2003 Jan;148(1):62-76
12667747 - Hum Mov Sci. 2003 Apr;22(2):153-71
12122226 - Motor Control. 2002 Apr;6(2):183-207
20105441 - J Neurosci Methods. 2010 Apr 30;188(1):89-96
19429138 - Neurosci Lett. 2009 Jun 5;456(2):80-4
17204456 - Clin Neurophysiol. 2007 Mar;118(3):525-37
7082993 - Brain. 1982 Jun;105(Pt 2):331-48
86424 - Electroencephalogr Clin Neurophysiol. 1979 Feb;46(2):173-81
15784951 - Motor Control. 2005 Jan;9(1):75-100
7093370 - Biol Cybern. 1982;44(1):67-77
10382616 - Exp Brain Res. 1999 Jun;126(3):289-306
3585477 - J Neurophysiol. 1987 May;57(5):1498-510
17256165 - Exp Brain Res. 2007 Jun;180(1):163-79
12958080 - Brain. 2003 Nov;126(Pt 11):2510-27
20231141 - J Physiol. 2010 May 1;588(Pt 9):1551-70
9497421 - J Neurophysiol. 1998 Mar;79(3):1409-24
19227529 - Adv Exp Med Biol. 2009;629:699-726
16328275 - Exp Brain Res. 2006 Apr;170(2):265-76
7262217 - Exp Brain Res. 1981;42(2):223-7
7621927 - Exp Brain Res. 1995;104(1):1-11
12435546 - J Electromyogr Kinesiol. 2002 Dec;12(6):493-505
10322091 - J Neurophysiol. 1999 May;81(5):2582-6
8308052 - J Biomech. 1993 Dec;26(12):1473-7
9588786 - Exp Brain Res. 1998 Apr;119(4):511-6
References_xml – ident: B50
  doi: 10.1152/jn.00030.2002
– ident: B1
  doi: 10.1093/brain/105.2.331
– ident: B16
  doi: 10.1152/jn.1998.79.3.1409
– ident: B46
  doi: 10.1523/JNEUROSCI.15-09-06271.1995
– ident: B48
  doi: 10.1007/BF00229850
– ident: B32
  doi: 10.1016/0028-3932(71)90067-4
– ident: B6
  doi: 10.1016/j.neulet.2007.02.037
– ident: B9
  doi: 10.1016/S0079-6123(06)65017-6
– ident: B7
  doi: 10.1007/s002210050367
– ident: B40
  doi: 10.1007/s00221-011-2541-2
– ident: B25
  doi: 10.1007/s00221-002-1196-4
– ident: B53
  doi: 10.1007/s00221-002-1357-5
– ident: B19
  doi: 10.1007/s00422-003-0419-5
– ident: B35
  doi: 10.1007/s00221-005-0209-5
– ident: B36
  doi: 10.1016/S1050-6411(02)00029-9
– ident: B51
  doi: 10.1123/mcj.6.2.183
– ident: B39
– ident: B27
  doi: 10.1007/s00221-002-1277-4
– ident: B14
  doi: 10.1016/j.neulet.2009.03.084
– ident: B41
  doi: 10.1007/s002210050738
– ident: B5
  doi: 10.1080/00222895.1993.9942044
– ident: B33
  doi: 10.1113/jphysiol.2009.186858
– ident: B52
  doi: 10.1123/mcj.9.1.75
– ident: B20
  doi: 10.1007/s00221-003-1812-y
– ident: B37
  doi: 10.1007/s002210050823
– ident: B15
  doi: 10.1007/s002210000427
– ident: B3
  doi: 10.1016/0013-4694(79)90066-X
– ident: B11
  doi: 10.1016/j.humov.2009.01.003
– ident: B21
  doi: 10.1016/j.clinph.2006.11.014
– ident: B24
  doi: 10.1016/S0167-9457(02)00157-4
– ident: B10
  doi: 10.1007/978-0-387-77064-2_38
– volume-title: Kinetics of Human Motion
  year: 2002
  ident: B55
– ident: B18
  doi: 10.1037/0096-1523.10.6.812
– ident: B23
  doi: 10.1016/j.humov.2009.11.002
– ident: B4
  doi: 10.1152/jn.1987.57.5.1498
– ident: B30
– ident: B31
  doi: 10.1152/jn.1999.81.5.2582
– ident: B2
  doi: 10.1017/S0140525X00051268
– ident: B26
  doi: 10.1123/mcj.11.3.276
– ident: B38
  doi: 10.1152/jn.90338.2008
– ident: B47
  doi: 10.1007/s00221-002-1287-2
– ident: B43
  doi: 10.1007/s002210000540
– ident: B8
  doi: 10.1126/science.288.5463.100
– ident: B45
  doi: 10.1016/0021-9290(93)90098-Y
– ident: B29
  doi: 10.1007/BF00236911
– ident: B42
  doi: 10.1007/s00221-006-0848-1
– ident: B34
  doi: 10.1093/brain/awg246
– ident: B13
  doi: 10.1113/jphysiol.1988.sp017415
– ident: B49
  doi: 10.1152/jn.00188.2006
– start-page: 23
  volume-title: 8th International Seminar on Speech Production
  year: 2008
  ident: B44
– ident: B54
  doi: 10.1007/s00221-006-0602-8
– ident: B17
  doi: 10.1007/BF00353957
– ident: B22
  doi: 10.1123/mcj.14.3.294
– ident: B28
  doi: 10.1162/neco.2008.01-08-698
– ident: B12
  doi: 10.1016/j.jneumeth.2010.01.023
– reference: 11037282 - Exp Brain Res. 2000 Sep;134(2):155-62
– reference: 8308052 - J Biomech. 1993 Dec;26(12):1473-7
– reference: 3256617 - J Physiol. 1988 Dec;407:275-92
– reference: 12958080 - Brain. 2003 Nov;126(Pt 11):2510-27
– reference: 14985897 - Exp Brain Res. 2004 Jul;157(1):18-31
– reference: 12632230 - Exp Brain Res. 2003 Apr;149(3):276-88
– reference: 20105441 - J Neurosci Methods. 2010 Apr 30;188(1):89-96
– reference: 19718817 - Neural Comput. 2009 May;21(5):1371-414
– reference: 9588786 - Exp Brain Res. 1998 Apr;119(4):511-6
– reference: 7666209 - J Neurosci. 1995 Sep;15(9):6271-80
– reference: 10753108 - Science. 2000 Apr 7;288(5463):100-6
– reference: 19005003 - J Neurophysiol. 2009 Jan;101(1):184-97
– reference: 12541148 - Exp Brain Res. 2003 Feb;148(3):377-87
– reference: 12424277 - J Neurophysiol. 2002 Nov;88(5):2355-67
– reference: 12905043 - Biol Cybern. 2003 Aug;89(2):152-61
– reference: 20702893 - Motor Control. 2010 Jul;14(3):294-322
– reference: 19227529 - Adv Exp Med Biol. 2009;629:699-726
– reference: 7621927 - Exp Brain Res. 1995;104(1):1-11
– reference: 9497421 - J Neurophysiol. 1998 Mar;79(3):1409-24
– reference: 10382616 - Exp Brain Res. 1999 Jun;126(3):289-306
– reference: 11146817 - Exp Brain Res. 2000 Dec;135(3):382-404
– reference: 6239907 - J Exp Psychol Hum Percept Perform. 1984 Dec;10(6):812-32
– reference: 12667747 - Hum Mov Sci. 2003 Apr;22(2):153-71
– reference: 10322091 - J Neurophysiol. 1999 May;81(5):2582-6
– reference: 21287157 - Exp Brain Res. 2011 Mar;209(3):319-32
– reference: 12478397 - Exp Brain Res. 2003 Jan;148(1):62-76
– reference: 7082993 - Brain. 1982 Jun;105(Pt 2):331-48
– reference: 17925252 - Prog Brain Res. 2007;165:267-81
– reference: 17204456 - Clin Neurophysiol. 2007 Mar;118(3):525-37
– reference: 12355270 - Exp Brain Res. 2002 Oct;146(4):419-32
– reference: 17256165 - Exp Brain Res. 2007 Jun;180(1):163-79
– reference: 86424 - Electroencephalogr Clin Neurophysiol. 1979 Feb;46(2):173-81
– reference: 16855113 - J Neurophysiol. 2006 Nov;96(5):2613-32
– reference: 17715460 - Motor Control. 2007 Jul;11(3):276-308
– reference: 20060610 - Hum Mov Sci. 2010 Oct;29(5):642-54
– reference: 19429138 - Neurosci Lett. 2009 Jun 5;456(2):80-4
– reference: 7093370 - Biol Cybern. 1982;44(1):67-77
– reference: 20231141 - J Physiol. 2010 May 1;588(Pt 9):1551-70
– reference: 10473746 - Exp Brain Res. 1999 Sep;128(1-2):92-100
– reference: 12122226 - Motor Control. 2002 Apr;6(2):183-207
– reference: 19230996 - Hum Mov Sci. 2009 Apr;28(2):169-90
– reference: 15784951 - Motor Control. 2005 Jan;9(1):75-100
– reference: 12581984 - J Mot Behav. 1993 Sep;25(3):131-139
– reference: 16328275 - Exp Brain Res. 2006 Apr;170(2):265-76
– reference: 17331643 - Neurosci Lett. 2007 Apr 24;417(1):66-71
– reference: 12435546 - J Electromyogr Kinesiol. 2002 Dec;12(6):493-505
– reference: 5146491 - Neuropsychologia. 1971 Mar;9(1):97-113
– reference: 16874517 - Exp Brain Res. 2007 Jan;176(1):54-69
– reference: 7262217 - Exp Brain Res. 1981;42(2):223-7
– reference: 3585477 - J Neurophysiol. 1987 May;57(5):1498-510
SSID ssj0007502
Score 2.3922665
Snippet Motor equivalence expresses the idea that movement components reorganize in the face of perturbations to preserve the value of important performance variables,...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1424
SubjectTerms Adolescent
Biomechanical Phenomena - physiology
Elbow Joint - physiology
Forecasting
Humans
Male
Movement - physiology
Orientation - physiology
Psychomotor Performance - physiology
Young Adult
Title Unpredictable elbow joint perturbation during reaching results in multijoint motor equivalence
URI https://www.ncbi.nlm.nih.gov/pubmed/21676927
https://www.proquest.com/docview/888338248
https://www.proquest.com/docview/907177777
https://pubmed.ncbi.nlm.nih.gov/PMC3174825
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXLggoDyWl3xAvSyBxLG9ybHioaoFVKSu1BOR7TjqrrbOsk1UlV_P2M6z7UrAHqJV4iSrfN9OZsYznxF6y1JKdMiKIAKyBDRXMhBFlAYsJbzQQorUV1t85wdzenjKTvt2RdddUsn36vetfSX_gyrsA1xtl-w_INtdFHbAd8AXtoAwbP8K47lZb-xES-X6n_RKlpfTZbkwTo0Y3iXSo9u0Im7awkmIsOtV5QphXT2hPwUws-rfv-oF_ETdcuGm3-oUMF1CZJSRtwuH-5K9T9PDPqH6VVTiwqVuvk27PPNxU6DddUEc1Werfo4q77OqaZuE0I3hhKAWXKNkZFlDPqBQPLCTtr_udgPOrCDs0tgZIh47idXhOHj-63OHJolsca7XFbimmN0euovuEQge7LoWRz96DXnwkUirtsrIh9G9nDa0P3vsqNyIPq4X0Q68kpOH6EEDC9733HiE7mjzGO3uG1GV51d4Dx93OO2inyO6YEcX7LDHQ7pgTxfc0gU3dMELg3u6YEcXPKDLEzT_8vnk40HQLK8RKEpZFSjCZUoKAU64lLOY5zLlkdA5zxPBk0KHsgDfVSpZxEzMwFgn4I4qIVMqhGAijJ-iHVMa_RxhFcd5mKtI88Kq_xAZF7CHqZBGkYKYdYLetc8yU432vF0CZZW5GJSRbGkyh0JmUZigvW742ouubBuIW2AyMIt2rksYXdYXWWIX0U4ITbYPSW0qw34m6JmHsrtZy4EJmo1A7gZYUfbxEbM4c-Ls4I_ThLAXW6_5Et3v_0Gv0E61qfVrcGwr-cbx9A9iXKha
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unpredictable+elbow+joint+perturbation+during+reaching+results+in+multijoint+motor+equivalence&rft.jtitle=Journal+of+neurophysiology&rft.au=Mattos%2C+D+J+S&rft.au=Latash%2C+M+L&rft.au=Park%2C+E&rft.au=Kuhl%2C+J&rft.date=2011-09-01&rft.eissn=1522-1598&rft.volume=106&rft.issue=3&rft.spage=1424&rft_id=info:doi/10.1152%2Fjn.00163.2011&rft_id=info%3Apmid%2F21676927&rft.externalDocID=21676927
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon