Unpredictable elbow joint perturbation during reaching results in multijoint motor equivalence
Motor equivalence expresses the idea that movement components reorganize in the face of perturbations to preserve the value of important performance variables, such as the hand's position in reaching. A formal method is introduced to evaluate this concept quantitatively: changes in joint config...
Saved in:
Published in | Journal of neurophysiology Vol. 106; no. 3; pp. 1424 - 1436 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
01.09.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Motor equivalence expresses the idea that movement components reorganize in the face of perturbations to preserve the value of important performance variables, such as the hand's position in reaching. A formal method is introduced to evaluate this concept quantitatively: changes in joint configuration due to unpredictable elbow perturbation lead to a smaller change in performance variables than expected given the magnitude of joint configuration change. This study investigated whether motor equivalence was present during the entire movement trajectory and how magnitude of motor equivalence was affected by constraints imposed by two different target types. Subjects pointed to spherical and cylindrical targets both with and without an elbow joint perturbation produced by a low- or high-stiffness elastic band. Subjects' view of their arm was blocked in the initial position, and the perturbation condition was randomized to avoid prediction of the perturbation or its magnitude. A modification of the uncontrolled manifold method variance analysis was used to investigate how changes in joint configuration on perturbed vs. nonperturbed trials (joint deviation vector) affected the hand's position or orientation. Evidence for motor equivalence induced by the perturbation was present from the reach onset and increased with the strength of the perturbation after 40% of the reach, becoming more prominent as the reach progressed. Hand orientation was stabilized more strongly by motor equivalent changes in joint configuration than was three-dimensional position regardless of the target condition. Results are consistent with a recent model of neural control that allows for flexible patterns of joint coordination while resisting joint configuration deviations in directions that affect salient performance variables. The observations also fit a general scheme of synergic control with referent configurations defined across different levels of the motor hierarchy. |
---|---|
AbstractList | Motor equivalence expresses the idea that movement components reorganize in the face of perturbations to preserve the value of important performance variables, such as the hand's position in reaching. A formal method is introduced to evaluate this concept quantitatively: changes in joint configuration due to unpredictable elbow perturbation lead to a smaller change in performance variables than expected given the magnitude of joint configuration change. This study investigated whether motor equivalence was present during the entire movement trajectory and how magnitude of motor equivalence was affected by constraints imposed by two different target types. Subjects pointed to spherical and cylindrical targets both with and without an elbow joint perturbation produced by a low- or high-stiffness elastic band. Subjects' view of their arm was blocked in the initial position, and the perturbation condition was randomized to avoid prediction of the perturbation or its magnitude. A modification of the uncontrolled manifold method variance analysis was used to investigate how changes in joint configuration on perturbed vs. nonperturbed trials (joint deviation vector) affected the hand's position or orientation. Evidence for motor equivalence induced by the perturbation was present from the reach onset and increased with the strength of the perturbation after 40% of the reach, becoming more prominent as the reach progressed. Hand orientation was stabilized more strongly by motor equivalent changes in joint configuration than was three-dimensional position regardless of the target condition. Results are consistent with a recent model of neural control that allows for flexible patterns of joint coordination while resisting joint configuration deviations in directions that affect salient performance variables. The observations also fit a general scheme of synergic control with referent configurations defined across different levels of the motor hierarchy.Motor equivalence expresses the idea that movement components reorganize in the face of perturbations to preserve the value of important performance variables, such as the hand's position in reaching. A formal method is introduced to evaluate this concept quantitatively: changes in joint configuration due to unpredictable elbow perturbation lead to a smaller change in performance variables than expected given the magnitude of joint configuration change. This study investigated whether motor equivalence was present during the entire movement trajectory and how magnitude of motor equivalence was affected by constraints imposed by two different target types. Subjects pointed to spherical and cylindrical targets both with and without an elbow joint perturbation produced by a low- or high-stiffness elastic band. Subjects' view of their arm was blocked in the initial position, and the perturbation condition was randomized to avoid prediction of the perturbation or its magnitude. A modification of the uncontrolled manifold method variance analysis was used to investigate how changes in joint configuration on perturbed vs. nonperturbed trials (joint deviation vector) affected the hand's position or orientation. Evidence for motor equivalence induced by the perturbation was present from the reach onset and increased with the strength of the perturbation after 40% of the reach, becoming more prominent as the reach progressed. Hand orientation was stabilized more strongly by motor equivalent changes in joint configuration than was three-dimensional position regardless of the target condition. Results are consistent with a recent model of neural control that allows for flexible patterns of joint coordination while resisting joint configuration deviations in directions that affect salient performance variables. The observations also fit a general scheme of synergic control with referent configurations defined across different levels of the motor hierarchy. Motor equivalence expresses the idea that movement components reorganize in the face of perturbations to preserve the value of important performance variables, such as the hand's position in reaching. A formal method is introduced to evaluate this concept quantitatively: changes in joint configuration due to unpredictable elbow perturbation lead to a smaller change in performance variables than expected given the magnitude of joint configuration change. This study investigated whether motor equivalence was present during the entire movement trajectory and how magnitude of motor equivalence was affected by constraints imposed by two different target types. Subjects pointed to spherical and cylindrical targets both with and without an elbow joint perturbation produced by a low- or high-stiffness elastic band. Subjects' view of their arm was blocked in the initial position, and the perturbation condition was randomized to avoid prediction of the perturbation or its magnitude. A modification of the uncontrolled manifold method variance analysis was used to investigate how changes in joint configuration on perturbed vs. nonperturbed trials (joint deviation vector) affected the hand's position or orientation. Evidence for motor equivalence induced by the perturbation was present from the reach onset and increased with the strength of the perturbation after 40% of the reach, becoming more prominent as the reach progressed. Hand orientation was stabilized more strongly by motor equivalent changes in joint configuration than was three-dimensional position regardless of the target condition. Results are consistent with a recent model of neural control that allows for flexible patterns of joint coordination while resisting joint configuration deviations in directions that affect salient performance variables. The observations also fit a general scheme of synergic control with referent configurations defined across different levels of the motor hierarchy. |
Author | Kuhl, J. Scholz, J. P. Latash, M. L. Park, E. Mattos, D. J. S. |
Author_xml | – sequence: 1 givenname: D. J. S. surname: Mattos fullname: Mattos, D. J. S. organization: Biomechanics and Movement Science Program, University of Delaware, Newark, Delaware – sequence: 2 givenname: M. L. surname: Latash fullname: Latash, M. L. organization: Department of Kinesiology, Pennsylvania State University, University Park, Pennsylvania; and – sequence: 3 givenname: E. surname: Park fullname: Park, E. organization: Biomechanics and Movement Science Program, University of Delaware, Newark, Delaware – sequence: 4 givenname: J. surname: Kuhl fullname: Kuhl, J. organization: Department of Biology and – sequence: 5 givenname: J. P. surname: Scholz fullname: Scholz, J. P. organization: Biomechanics and Movement Science Program, University of Delaware, Newark, Delaware;, Department of Physical Therapy, University of Delaware, Newark, Delaware |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21676927$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1v1DAQxS1URLeFI1eUG6cs_khi54KEKr6kSlzoFWvsTFqvHHtrO0X893i7pQIkhC9-sn_zZux3Rk5CDEjIS0a3jPX8zS5sKWWD2HLK2BOyqWe8Zf2oTsiG0qoFlfKUnOW8o5TKnvJn5JSzQQ4jlxvy7SrsE07OFjAeG_Qmfm920YXS7DGVNRkoLoZmWpML101CsDdHkVdfcuNCs1ThjiVLLDE1eLu6O_AYLD4nT2fwGV887Ofk6sP7rxef2ssvHz9fvLtsbdf1pbV8MCOfgSphjBTDZMaBAU7DpGBQM1Izj0Iaa2bRg6S9UFQyC2bsAKAHKs7J26PvfjULThZDSeD1PrkF0g8dwek_b4K70dfxTgsmO8X7avD6wSDF2xVz0YvLFr2HgHHNeqwN5WH9l1RKCaF4pyr56vehHqf59fsVaI-ATTHnhPMjwqg-pKt3Qd-nqw_pVl78xVtX7vOpb3L-H1U_AcfAq6I |
CitedBy_id | crossref_primary_10_1016_j_jbiomech_2021_110769 crossref_primary_10_1152_jn_00395_2014 crossref_primary_10_1007_s00221_018_5231_5 crossref_primary_10_1371_journal_pone_0238561 crossref_primary_10_1007_s00221_012_3383_2 crossref_primary_10_1016_j_neuroscience_2017_12_018 crossref_primary_10_1016_j_jbiomech_2019_06_010 crossref_primary_10_1007_s00221_016_4809_z crossref_primary_10_1007_s00221_017_4971_y crossref_primary_10_1016_j_neuroscience_2015_09_071 crossref_primary_10_1016_j_neuron_2017_05_013 crossref_primary_10_1080_00222895_2012_740101 crossref_primary_10_1016_j_neuroscience_2015_12_012 crossref_primary_10_1113_JP280555 crossref_primary_10_1080_00222895_2014_996281 crossref_primary_10_1038_s41598_020_79081_9 crossref_primary_10_1298_ptr_R0018 crossref_primary_10_1123_mc_2021_0105 crossref_primary_10_1177_1545968320969936 crossref_primary_10_1590_1809_2950_12646024012017 crossref_primary_10_1007_s00221_018_5393_1 crossref_primary_10_1016_j_gaitpost_2019_01_003 crossref_primary_10_3758_s13414_015_0876_7 crossref_primary_10_1007_s00221_018_5215_5 crossref_primary_10_1038_s41598_023_42408_3 crossref_primary_10_1152_jn_00292_2016 crossref_primary_10_1007_s00221_019_05560_9 crossref_primary_10_1152_jn_00084_2018 crossref_primary_10_1007_s00221_015_4327_4 crossref_primary_10_1007_s00221_015_4369_7 crossref_primary_10_1016_j_gaitpost_2022_05_030 crossref_primary_10_1016_j_neuroscience_2021_01_006 crossref_primary_10_1007_s00221_018_5436_7 crossref_primary_10_1007_s00221_014_4048_0 crossref_primary_10_1016_j_cobeha_2018_01_004 crossref_primary_10_1007_s00221_016_4632_6 crossref_primary_10_1016_j_jbiomech_2020_110219 crossref_primary_10_1007_s00221_013_3665_3 crossref_primary_10_1249_JES_0000000000000002 crossref_primary_10_1007_s00221_021_06188_4 crossref_primary_10_1038_s41598_023_39684_4 crossref_primary_10_1152_jn_00043_2012 crossref_primary_10_1007_s00221_020_05947_z crossref_primary_10_1007_s00221_019_05510_5 crossref_primary_10_1007_s00221_014_4128_1 crossref_primary_10_1016_j_jbiomech_2022_111353 crossref_primary_10_1007_s00221_013_3748_1 crossref_primary_10_1080_02640414_2018_1463630 crossref_primary_10_1080_00222895_2014_961892 crossref_primary_10_1016_j_gaitpost_2013_04_023 crossref_primary_10_1038_s41598_019_53913_9 crossref_primary_10_1007_s00221_014_3826_z crossref_primary_10_1016_j_neuroscience_2022_08_006 crossref_primary_10_1007_s00421_015_3282_x crossref_primary_10_2478_hukin_2018_0086 crossref_primary_10_1007_s00221_016_4806_2 crossref_primary_10_1016_j_jbiomech_2023_111702 crossref_primary_10_1016_j_neuroscience_2024_05_044 crossref_primary_10_1123_mc_2021_0135 crossref_primary_10_1016_j_plrev_2016_03_003 crossref_primary_10_1007_s00221_020_05822_x crossref_primary_10_1016_j_clinph_2018_02_126 crossref_primary_10_1007_s00221_016_4757_7 crossref_primary_10_1007_s00221_013_3433_4 crossref_primary_10_1080_00222895_2014_986045 crossref_primary_10_1016_j_neuro_2022_10_012 crossref_primary_10_1007_s00221_012_3000_4 crossref_primary_10_1515_hukin_2015_0190 crossref_primary_10_1152_jn_00461_2013 crossref_primary_10_1152_jn_00045_2018 crossref_primary_10_1371_journal_pone_0181041 crossref_primary_10_1007_s00221_018_5239_x crossref_primary_10_1016_j_humov_2019_01_003 crossref_primary_10_1007_s00221_019_05709_6 crossref_primary_10_1007_s00221_014_4059_x crossref_primary_10_1016_j_plrev_2020_07_007 crossref_primary_10_1016_j_humov_2015_12_010 crossref_primary_10_3389_fpsyg_2021_661312 crossref_primary_10_3389_fnsys_2021_735406 crossref_primary_10_1007_s00221_017_4972_x crossref_primary_10_1152_jn_00394_2024 crossref_primary_10_3389_fspor_2024_1382194 crossref_primary_10_1016_j_neuroscience_2022_10_009 crossref_primary_10_1007_s00221_015_4364_z crossref_primary_10_1152_jn_00519_2017 crossref_primary_10_1007_s00221_017_5133_y crossref_primary_10_1016_j_neuroscience_2014_12_079 crossref_primary_10_1080_00222895_2017_1367642 crossref_primary_10_1038_s41598_021_86173_7 crossref_primary_10_1152_jn_00246_2014 crossref_primary_10_1177_1545968318760725 crossref_primary_10_1016_j_humov_2018_09_004 crossref_primary_10_1152_jn_00180_2016 crossref_primary_10_1123_kr_2017_0058 crossref_primary_10_1016_j_neulet_2014_03_034 crossref_primary_10_1007_s00221_018_5238_y crossref_primary_10_1007_s00421_018_4035_4 |
Cites_doi | 10.1152/jn.00030.2002 10.1093/brain/105.2.331 10.1152/jn.1998.79.3.1409 10.1523/JNEUROSCI.15-09-06271.1995 10.1007/BF00229850 10.1016/0028-3932(71)90067-4 10.1016/j.neulet.2007.02.037 10.1016/S0079-6123(06)65017-6 10.1007/s002210050367 10.1007/s00221-011-2541-2 10.1007/s00221-002-1196-4 10.1007/s00221-002-1357-5 10.1007/s00422-003-0419-5 10.1007/s00221-005-0209-5 10.1016/S1050-6411(02)00029-9 10.1123/mcj.6.2.183 10.1007/s00221-002-1277-4 10.1016/j.neulet.2009.03.084 10.1007/s002210050738 10.1080/00222895.1993.9942044 10.1113/jphysiol.2009.186858 10.1123/mcj.9.1.75 10.1007/s00221-003-1812-y 10.1007/s002210050823 10.1007/s002210000427 10.1016/0013-4694(79)90066-X 10.1016/j.humov.2009.01.003 10.1016/j.clinph.2006.11.014 10.1016/S0167-9457(02)00157-4 10.1007/978-0-387-77064-2_38 10.1037/0096-1523.10.6.812 10.1016/j.humov.2009.11.002 10.1152/jn.1987.57.5.1498 10.1152/jn.1999.81.5.2582 10.1017/S0140525X00051268 10.1123/mcj.11.3.276 10.1152/jn.90338.2008 10.1007/s00221-002-1287-2 10.1007/s002210000540 10.1126/science.288.5463.100 10.1016/0021-9290(93)90098-Y 10.1007/BF00236911 10.1007/s00221-006-0848-1 10.1093/brain/awg246 10.1113/jphysiol.1988.sp017415 10.1152/jn.00188.2006 10.1007/s00221-006-0602-8 10.1007/BF00353957 10.1123/mcj.14.3.294 10.1162/neco.2008.01-08-698 10.1016/j.jneumeth.2010.01.023 |
ContentType | Journal Article |
Copyright | Copyright © 2011 the American Physiological Society 2011 |
Copyright_xml | – notice: Copyright © 2011 the American Physiological Society 2011 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
DOI | 10.1152/jn.00163.2011 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | MEDLINE - Academic MEDLINE Neurosciences Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1522-1598 |
EndPage | 1436 |
ExternalDocumentID | PMC3174825 21676927 10_1152_jn_00163_2011 |
Genre | Journal Article Comparative Study Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS-35032 |
GroupedDBID | --- -DZ -~X .55 .GJ 0VX 18M 1CY 1Z7 29L 2WC 39C 3O- 4.4 41~ 53G 5GY 5VS 8M5 AAYXX ABCQX ABHWK ABIVO ABJNI ABKWE ACGFO ACGFS ACNCT ADBBV ADFNX ADHGD ADIYS AENEX AETEA AFFNX AFOSN AI. AIZAD ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BTFSW C1A CITATION CS3 DIK DU5 E3Z EBS EJD EMOBN F5P H13 H~9 ITBOX KQ8 L7B MVM NEJ OHT OK1 P2P RAP RHI RPL RPRKH SJN TR2 UHB UPT UQL VH1 W8F WH7 WOQ WOW X7M XJT XOL XSW YBH YQT YSK ZGI ZXP ZY4 CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c445t-c26b92fa083bb736db961aed6d8a68fe0bf937bcbf35a70538071cab94aaa5a03 |
ISSN | 0022-3077 1522-1598 |
IngestDate | Thu Aug 21 18:19:41 EDT 2025 Thu Jul 10 18:49:22 EDT 2025 Thu Jul 10 17:16:59 EDT 2025 Mon Jul 21 05:52:16 EDT 2025 Tue Jul 01 04:08:56 EDT 2025 Thu Apr 24 23:02:40 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c445t-c26b92fa083bb736db961aed6d8a68fe0bf937bcbf35a70538071cab94aaa5a03 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PMID | 21676927 |
PQID | 888338248 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3174825 proquest_miscellaneous_907177777 proquest_miscellaneous_888338248 pubmed_primary_21676927 crossref_primary_10_1152_jn_00163_2011 crossref_citationtrail_10_1152_jn_00163_2011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-09-01 |
PublicationDateYYYYMMDD | 2011-09-01 |
PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda, MD |
PublicationTitle | Journal of neurophysiology |
PublicationTitleAlternate | J Neurophysiol |
PublicationYear | 2011 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | B20 B21 Zatsiorsky VM (B55) 2002 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B1 B2 B3 B4 B5 B6 B7 B8 B9 B40 B41 B42 B43 B45 B46 B47 B48 B49 Schöner G (B44) 2008 B50 B51 B52 B53 B10 B54 B11 B12 B13 B14 B15 B16 B17 B18 B19 5146491 - Neuropsychologia. 1971 Mar;9(1):97-113 17331643 - Neurosci Lett. 2007 Apr 24;417(1):66-71 19718817 - Neural Comput. 2009 May;21(5):1371-414 12581984 - J Mot Behav. 1993 Sep;25(3):131-139 12541148 - Exp Brain Res. 2003 Feb;148(3):377-87 21287157 - Exp Brain Res. 2011 Mar;209(3):319-32 12905043 - Biol Cybern. 2003 Aug;89(2):152-61 19005003 - J Neurophysiol. 2009 Jan;101(1):184-97 11037282 - Exp Brain Res. 2000 Sep;134(2):155-62 19230996 - Hum Mov Sci. 2009 Apr;28(2):169-90 10753108 - Science. 2000 Apr 7;288(5463):100-6 10473746 - Exp Brain Res. 1999 Sep;128(1-2):92-100 17715460 - Motor Control. 2007 Jul;11(3):276-308 7666209 - J Neurosci. 1995 Sep;15(9):6271-80 20702893 - Motor Control. 2010 Jul;14(3):294-322 12424277 - J Neurophysiol. 2002 Nov;88(5):2355-67 14985897 - Exp Brain Res. 2004 Jul;157(1):18-31 16874517 - Exp Brain Res. 2007 Jan;176(1):54-69 12632230 - Exp Brain Res. 2003 Apr;149(3):276-88 12355270 - Exp Brain Res. 2002 Oct;146(4):419-32 17925252 - Prog Brain Res. 2007;165:267-81 6239907 - J Exp Psychol Hum Percept Perform. 1984 Dec;10(6):812-32 16855113 - J Neurophysiol. 2006 Nov;96(5):2613-32 3256617 - J Physiol. 1988 Dec;407:275-92 20060610 - Hum Mov Sci. 2010 Oct;29(5):642-54 11146817 - Exp Brain Res. 2000 Dec;135(3):382-404 12478397 - Exp Brain Res. 2003 Jan;148(1):62-76 12667747 - Hum Mov Sci. 2003 Apr;22(2):153-71 12122226 - Motor Control. 2002 Apr;6(2):183-207 20105441 - J Neurosci Methods. 2010 Apr 30;188(1):89-96 19429138 - Neurosci Lett. 2009 Jun 5;456(2):80-4 17204456 - Clin Neurophysiol. 2007 Mar;118(3):525-37 7082993 - Brain. 1982 Jun;105(Pt 2):331-48 86424 - Electroencephalogr Clin Neurophysiol. 1979 Feb;46(2):173-81 15784951 - Motor Control. 2005 Jan;9(1):75-100 7093370 - Biol Cybern. 1982;44(1):67-77 10382616 - Exp Brain Res. 1999 Jun;126(3):289-306 3585477 - J Neurophysiol. 1987 May;57(5):1498-510 17256165 - Exp Brain Res. 2007 Jun;180(1):163-79 12958080 - Brain. 2003 Nov;126(Pt 11):2510-27 20231141 - J Physiol. 2010 May 1;588(Pt 9):1551-70 9497421 - J Neurophysiol. 1998 Mar;79(3):1409-24 19227529 - Adv Exp Med Biol. 2009;629:699-726 16328275 - Exp Brain Res. 2006 Apr;170(2):265-76 7262217 - Exp Brain Res. 1981;42(2):223-7 7621927 - Exp Brain Res. 1995;104(1):1-11 12435546 - J Electromyogr Kinesiol. 2002 Dec;12(6):493-505 10322091 - J Neurophysiol. 1999 May;81(5):2582-6 8308052 - J Biomech. 1993 Dec;26(12):1473-7 9588786 - Exp Brain Res. 1998 Apr;119(4):511-6 |
References_xml | – ident: B50 doi: 10.1152/jn.00030.2002 – ident: B1 doi: 10.1093/brain/105.2.331 – ident: B16 doi: 10.1152/jn.1998.79.3.1409 – ident: B46 doi: 10.1523/JNEUROSCI.15-09-06271.1995 – ident: B48 doi: 10.1007/BF00229850 – ident: B32 doi: 10.1016/0028-3932(71)90067-4 – ident: B6 doi: 10.1016/j.neulet.2007.02.037 – ident: B9 doi: 10.1016/S0079-6123(06)65017-6 – ident: B7 doi: 10.1007/s002210050367 – ident: B40 doi: 10.1007/s00221-011-2541-2 – ident: B25 doi: 10.1007/s00221-002-1196-4 – ident: B53 doi: 10.1007/s00221-002-1357-5 – ident: B19 doi: 10.1007/s00422-003-0419-5 – ident: B35 doi: 10.1007/s00221-005-0209-5 – ident: B36 doi: 10.1016/S1050-6411(02)00029-9 – ident: B51 doi: 10.1123/mcj.6.2.183 – ident: B39 – ident: B27 doi: 10.1007/s00221-002-1277-4 – ident: B14 doi: 10.1016/j.neulet.2009.03.084 – ident: B41 doi: 10.1007/s002210050738 – ident: B5 doi: 10.1080/00222895.1993.9942044 – ident: B33 doi: 10.1113/jphysiol.2009.186858 – ident: B52 doi: 10.1123/mcj.9.1.75 – ident: B20 doi: 10.1007/s00221-003-1812-y – ident: B37 doi: 10.1007/s002210050823 – ident: B15 doi: 10.1007/s002210000427 – ident: B3 doi: 10.1016/0013-4694(79)90066-X – ident: B11 doi: 10.1016/j.humov.2009.01.003 – ident: B21 doi: 10.1016/j.clinph.2006.11.014 – ident: B24 doi: 10.1016/S0167-9457(02)00157-4 – ident: B10 doi: 10.1007/978-0-387-77064-2_38 – volume-title: Kinetics of Human Motion year: 2002 ident: B55 – ident: B18 doi: 10.1037/0096-1523.10.6.812 – ident: B23 doi: 10.1016/j.humov.2009.11.002 – ident: B4 doi: 10.1152/jn.1987.57.5.1498 – ident: B30 – ident: B31 doi: 10.1152/jn.1999.81.5.2582 – ident: B2 doi: 10.1017/S0140525X00051268 – ident: B26 doi: 10.1123/mcj.11.3.276 – ident: B38 doi: 10.1152/jn.90338.2008 – ident: B47 doi: 10.1007/s00221-002-1287-2 – ident: B43 doi: 10.1007/s002210000540 – ident: B8 doi: 10.1126/science.288.5463.100 – ident: B45 doi: 10.1016/0021-9290(93)90098-Y – ident: B29 doi: 10.1007/BF00236911 – ident: B42 doi: 10.1007/s00221-006-0848-1 – ident: B34 doi: 10.1093/brain/awg246 – ident: B13 doi: 10.1113/jphysiol.1988.sp017415 – ident: B49 doi: 10.1152/jn.00188.2006 – start-page: 23 volume-title: 8th International Seminar on Speech Production year: 2008 ident: B44 – ident: B54 doi: 10.1007/s00221-006-0602-8 – ident: B17 doi: 10.1007/BF00353957 – ident: B22 doi: 10.1123/mcj.14.3.294 – ident: B28 doi: 10.1162/neco.2008.01-08-698 – ident: B12 doi: 10.1016/j.jneumeth.2010.01.023 – reference: 11037282 - Exp Brain Res. 2000 Sep;134(2):155-62 – reference: 8308052 - J Biomech. 1993 Dec;26(12):1473-7 – reference: 3256617 - J Physiol. 1988 Dec;407:275-92 – reference: 12958080 - Brain. 2003 Nov;126(Pt 11):2510-27 – reference: 14985897 - Exp Brain Res. 2004 Jul;157(1):18-31 – reference: 12632230 - Exp Brain Res. 2003 Apr;149(3):276-88 – reference: 20105441 - J Neurosci Methods. 2010 Apr 30;188(1):89-96 – reference: 19718817 - Neural Comput. 2009 May;21(5):1371-414 – reference: 9588786 - Exp Brain Res. 1998 Apr;119(4):511-6 – reference: 7666209 - J Neurosci. 1995 Sep;15(9):6271-80 – reference: 10753108 - Science. 2000 Apr 7;288(5463):100-6 – reference: 19005003 - J Neurophysiol. 2009 Jan;101(1):184-97 – reference: 12541148 - Exp Brain Res. 2003 Feb;148(3):377-87 – reference: 12424277 - J Neurophysiol. 2002 Nov;88(5):2355-67 – reference: 12905043 - Biol Cybern. 2003 Aug;89(2):152-61 – reference: 20702893 - Motor Control. 2010 Jul;14(3):294-322 – reference: 19227529 - Adv Exp Med Biol. 2009;629:699-726 – reference: 7621927 - Exp Brain Res. 1995;104(1):1-11 – reference: 9497421 - J Neurophysiol. 1998 Mar;79(3):1409-24 – reference: 10382616 - Exp Brain Res. 1999 Jun;126(3):289-306 – reference: 11146817 - Exp Brain Res. 2000 Dec;135(3):382-404 – reference: 6239907 - J Exp Psychol Hum Percept Perform. 1984 Dec;10(6):812-32 – reference: 12667747 - Hum Mov Sci. 2003 Apr;22(2):153-71 – reference: 10322091 - J Neurophysiol. 1999 May;81(5):2582-6 – reference: 21287157 - Exp Brain Res. 2011 Mar;209(3):319-32 – reference: 12478397 - Exp Brain Res. 2003 Jan;148(1):62-76 – reference: 7082993 - Brain. 1982 Jun;105(Pt 2):331-48 – reference: 17925252 - Prog Brain Res. 2007;165:267-81 – reference: 17204456 - Clin Neurophysiol. 2007 Mar;118(3):525-37 – reference: 12355270 - Exp Brain Res. 2002 Oct;146(4):419-32 – reference: 17256165 - Exp Brain Res. 2007 Jun;180(1):163-79 – reference: 86424 - Electroencephalogr Clin Neurophysiol. 1979 Feb;46(2):173-81 – reference: 16855113 - J Neurophysiol. 2006 Nov;96(5):2613-32 – reference: 17715460 - Motor Control. 2007 Jul;11(3):276-308 – reference: 20060610 - Hum Mov Sci. 2010 Oct;29(5):642-54 – reference: 19429138 - Neurosci Lett. 2009 Jun 5;456(2):80-4 – reference: 7093370 - Biol Cybern. 1982;44(1):67-77 – reference: 20231141 - J Physiol. 2010 May 1;588(Pt 9):1551-70 – reference: 10473746 - Exp Brain Res. 1999 Sep;128(1-2):92-100 – reference: 12122226 - Motor Control. 2002 Apr;6(2):183-207 – reference: 19230996 - Hum Mov Sci. 2009 Apr;28(2):169-90 – reference: 15784951 - Motor Control. 2005 Jan;9(1):75-100 – reference: 12581984 - J Mot Behav. 1993 Sep;25(3):131-139 – reference: 16328275 - Exp Brain Res. 2006 Apr;170(2):265-76 – reference: 17331643 - Neurosci Lett. 2007 Apr 24;417(1):66-71 – reference: 12435546 - J Electromyogr Kinesiol. 2002 Dec;12(6):493-505 – reference: 5146491 - Neuropsychologia. 1971 Mar;9(1):97-113 – reference: 16874517 - Exp Brain Res. 2007 Jan;176(1):54-69 – reference: 7262217 - Exp Brain Res. 1981;42(2):223-7 – reference: 3585477 - J Neurophysiol. 1987 May;57(5):1498-510 |
SSID | ssj0007502 |
Score | 2.3922665 |
Snippet | Motor equivalence expresses the idea that movement components reorganize in the face of perturbations to preserve the value of important performance variables,... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1424 |
SubjectTerms | Adolescent Biomechanical Phenomena - physiology Elbow Joint - physiology Forecasting Humans Male Movement - physiology Orientation - physiology Psychomotor Performance - physiology Young Adult |
Title | Unpredictable elbow joint perturbation during reaching results in multijoint motor equivalence |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21676927 https://www.proquest.com/docview/888338248 https://www.proquest.com/docview/907177777 https://pubmed.ncbi.nlm.nih.gov/PMC3174825 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXLggoDyWl3xAvSyBxLG9ybHioaoFVKSu1BOR7TjqrrbOsk1UlV_P2M6z7UrAHqJV4iSrfN9OZsYznxF6y1JKdMiKIAKyBDRXMhBFlAYsJbzQQorUV1t85wdzenjKTvt2RdddUsn36vetfSX_gyrsA1xtl-w_INtdFHbAd8AXtoAwbP8K47lZb-xES-X6n_RKlpfTZbkwTo0Y3iXSo9u0Im7awkmIsOtV5QphXT2hPwUws-rfv-oF_ETdcuGm3-oUMF1CZJSRtwuH-5K9T9PDPqH6VVTiwqVuvk27PPNxU6DddUEc1Werfo4q77OqaZuE0I3hhKAWXKNkZFlDPqBQPLCTtr_udgPOrCDs0tgZIh47idXhOHj-63OHJolsca7XFbimmN0euovuEQge7LoWRz96DXnwkUirtsrIh9G9nDa0P3vsqNyIPq4X0Q68kpOH6EEDC9733HiE7mjzGO3uG1GV51d4Dx93OO2inyO6YEcX7LDHQ7pgTxfc0gU3dMELg3u6YEcXPKDLEzT_8vnk40HQLK8RKEpZFSjCZUoKAU64lLOY5zLlkdA5zxPBk0KHsgDfVSpZxEzMwFgn4I4qIVMqhGAijJ-iHVMa_RxhFcd5mKtI88Kq_xAZF7CHqZBGkYKYdYLetc8yU432vF0CZZW5GJSRbGkyh0JmUZigvW742ouubBuIW2AyMIt2rksYXdYXWWIX0U4ITbYPSW0qw34m6JmHsrtZy4EJmo1A7gZYUfbxEbM4c-Ls4I_ThLAXW6_5Et3v_0Gv0E61qfVrcGwr-cbx9A9iXKha |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unpredictable+elbow+joint+perturbation+during+reaching+results+in+multijoint+motor+equivalence&rft.jtitle=Journal+of+neurophysiology&rft.au=Mattos%2C+D+J+S&rft.au=Latash%2C+M+L&rft.au=Park%2C+E&rft.au=Kuhl%2C+J&rft.date=2011-09-01&rft.eissn=1522-1598&rft.volume=106&rft.issue=3&rft.spage=1424&rft_id=info:doi/10.1152%2Fjn.00163.2011&rft_id=info%3Apmid%2F21676927&rft.externalDocID=21676927 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon |