Humidity effect on electrochemical performance of Li–O2 batteries
In this work, we compare the performance of Li–O2 batteries in pure/dry O2, pure O2 with a relative humidity (RH) of 15% and ambient air with an RH of 50%, and analyze the ambient humidity effect on the reactions in the carbon-based catalytic electrode. Electrochemical investigation indicates that d...
Saved in:
Published in | Journal of power sources Vol. 264; pp. 1 - 7 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.10.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, we compare the performance of Li–O2 batteries in pure/dry O2, pure O2 with a relative humidity (RH) of 15% and ambient air with an RH of 50%, and analyze the ambient humidity effect on the reactions in the carbon-based catalytic electrode. Electrochemical investigation indicates that discharge capacities of Li–O2 batteries increased with growth of RH value, but cyclic ability and rate performance are influenced in an opposite way. Ex-situ X-ray diffraction (XRD), Fourier transform-infrared spectrophotometer (FT-IR) and scanning electron microscope (SEM) investigations suggest that ambient humidity affects not only the Li2O2/O2 conversion, LiCO3/CO2 conversion and LiOH formation but also the morphology of discharge products in porous catalytic electrode over charge/discharge cycle. These results may be important for developing Li–air battery.
•Humidity is a strong capacity enhancer for the Li–O2 batteries, but limits the cyclic ability and rate performance.•Humidity affects the Li2O2/O2 conversion, LiCO3/CO2 conversion and LiOH formation over charge/discharge cycle.•Humidity varying results in different morphologies of the discharge products. |
---|---|
AbstractList | In this work, we compare the performance of Li–O2 batteries in pure/dry O2, pure O2 with a relative humidity (RH) of 15% and ambient air with an RH of 50%, and analyze the ambient humidity effect on the reactions in the carbon-based catalytic electrode. Electrochemical investigation indicates that discharge capacities of Li–O2 batteries increased with growth of RH value, but cyclic ability and rate performance are influenced in an opposite way. Ex-situ X-ray diffraction (XRD), Fourier transform-infrared spectrophotometer (FT-IR) and scanning electron microscope (SEM) investigations suggest that ambient humidity affects not only the Li2O2/O2 conversion, LiCO3/CO2 conversion and LiOH formation but also the morphology of discharge products in porous catalytic electrode over charge/discharge cycle. These results may be important for developing Li–air battery.
•Humidity is a strong capacity enhancer for the Li–O2 batteries, but limits the cyclic ability and rate performance.•Humidity affects the Li2O2/O2 conversion, LiCO3/CO2 conversion and LiOH formation over charge/discharge cycle.•Humidity varying results in different morphologies of the discharge products. |
Author | Wang, Yonggang Xia, Yongyao Guo, Ziyang Yuan, Shouyi Dong, Xiaoli |
Author_xml | – sequence: 1 givenname: Ziyang surname: Guo fullname: Guo, Ziyang – sequence: 2 givenname: Xiaoli surname: Dong fullname: Dong, Xiaoli – sequence: 3 givenname: Shouyi surname: Yuan fullname: Yuan, Shouyi – sequence: 4 givenname: Yonggang surname: Wang fullname: Wang, Yonggang email: ygwang@fudan.edu.cn – sequence: 5 givenname: Yongyao surname: Xia fullname: Xia, Yongyao |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28522119$$DView record in Pascal Francis |
BookMark | eNqFkL1OwzAUhT0UibbwCigLY4Lt_DiWGEAVUKRKXbpbjn0jHCVxZLugbrwDb8iT4KqwsFS60r3DOecefQs0G-0ICN0QnBFMqrsu6yb74e3eZRSTIsNxGJ-hOc5ZnTJW5pdo4X2HMSaE4TlarfeD0SYcEmhbUCGxYwJ9PJxVbzAYJftkAtdaN8hRQWLbZGO-P7-2NGlkCOAM-Ct00crew_XvXqLd89NutU4325fX1eMmVUVRhrQBLqlikgEpQHIimVaMqpxiVVGmAbDmnCve0iavqiIW1KohvKhLrlUN-RLdnmIn6WOt1sVCxovJmUG6g6B1SSkhPOruTzrlrPcOWqFMkMHYMThpekGwOLISnfhjJY6sBI7Djvbqn_3vw1njw8kIkcG7ASe8MhChaeMiUKGtORfxAw-8jrE |
CODEN | JPSODZ |
CitedBy_id | crossref_primary_10_1002_ange_201511832 crossref_primary_10_1039_C8NR02376J crossref_primary_10_1016_j_apenergy_2022_120356 crossref_primary_10_1039_D0SE01313G crossref_primary_10_1021_acsenergylett_0c01997 crossref_primary_10_1186_s12936_019_3030_5 crossref_primary_10_1002_smtd_201800358 crossref_primary_10_1039_C6CP04055A crossref_primary_10_1149_2_0201504jes crossref_primary_10_1002_adma_202208925 crossref_primary_10_1021_acsami_0c21791 crossref_primary_10_1016_j_electacta_2018_04_168 crossref_primary_10_1007_s10008_015_2887_7 crossref_primary_10_1021_acs_jpcc_0c05433 crossref_primary_10_1002_advs_202103760 crossref_primary_10_1108_IJESM_11_2018_0004 crossref_primary_10_1002_cssc_202102404 crossref_primary_10_1039_C6CP03695C crossref_primary_10_1039_C5CC07884A crossref_primary_10_1016_j_gee_2017_06_004 crossref_primary_10_1002_aenm_202403596 crossref_primary_10_1002_smll_201903854 crossref_primary_10_1021_acsaem_1c03750 crossref_primary_10_1002_aenm_201801156 crossref_primary_10_1016_j_jallcom_2020_158459 crossref_primary_10_1002_aenm_201800348 crossref_primary_10_1038_nchem_2132 crossref_primary_10_1002_adma_201504373 crossref_primary_10_1002_anie_201701290 crossref_primary_10_1002_er_6928 crossref_primary_10_1007_s12598_018_1033_y crossref_primary_10_1021_acsami_3c01599 crossref_primary_10_1126_science_aac7730 crossref_primary_10_3390_molecules28052024 crossref_primary_10_1016_j_ceja_2022_100271 crossref_primary_10_1155_2023_5310171 crossref_primary_10_1002_batt_202000092 crossref_primary_10_3390_s24010104 crossref_primary_10_1016_j_cclet_2023_108586 crossref_primary_10_1021_acs_energyfuels_4c03140 crossref_primary_10_1016_j_apenergy_2024_123852 crossref_primary_10_1016_j_electacta_2017_09_125 crossref_primary_10_1016_j_nanoen_2016_06_010 crossref_primary_10_1002_smtd_202101280 crossref_primary_10_1016_j_nanoen_2019_103945 crossref_primary_10_1021_acs_chemrev_9b00545 crossref_primary_10_1021_acsaem_3c00430 crossref_primary_10_1021_acsami_3c16296 crossref_primary_10_1021_acs_jpclett_6b00080 crossref_primary_10_1002_aenm_201500633 crossref_primary_10_3389_fchem_2022_923936 crossref_primary_10_1039_C5CC06370A crossref_primary_10_1016_j_jpowsour_2017_05_039 crossref_primary_10_1039_C6EE00550K crossref_primary_10_1016_j_apenergy_2017_07_054 crossref_primary_10_1021_acsaem_0c01328 crossref_primary_10_1002_aenm_202001767 crossref_primary_10_1039_C5TA10690G crossref_primary_10_1039_C6CS00929H crossref_primary_10_1002_anie_201511832 crossref_primary_10_1039_C4CP05785F crossref_primary_10_1002_aenm_201401999 crossref_primary_10_1016_j_jpowsour_2017_03_041 crossref_primary_10_1016_j_ensm_2023_03_018 crossref_primary_10_1002_aenm_201502303 crossref_primary_10_1016_j_jpowsour_2021_230203 crossref_primary_10_1021_acsomega_0c06309 crossref_primary_10_1016_j_electacta_2020_136779 crossref_primary_10_1016_j_apenergy_2016_08_113 crossref_primary_10_1149_2_1011514jes crossref_primary_10_1002_batt_201900045 crossref_primary_10_1016_j_est_2023_107969 crossref_primary_10_1002_cssc_202201473 crossref_primary_10_1016_j_elecom_2015_05_004 crossref_primary_10_1021_acs_jpcc_3c02808 crossref_primary_10_1016_j_electacta_2019_01_027 crossref_primary_10_1002_ange_201701290 crossref_primary_10_1016_j_energy_2022_125335 crossref_primary_10_1016_j_jechem_2020_09_018 crossref_primary_10_1039_D1CP03429D crossref_primary_10_1021_acsaem_3c00057 crossref_primary_10_1021_acsnano_0c07907 crossref_primary_10_1016_j_jechem_2021_05_013 crossref_primary_10_1016_j_joule_2022_10_008 crossref_primary_10_1021_acs_jpcc_5b02673 crossref_primary_10_1149_1945_7111_acb66c crossref_primary_10_1002_anie_202006303 crossref_primary_10_1038_srep07127 crossref_primary_10_1039_D0TA05147K crossref_primary_10_1021_acsami_0c05494 crossref_primary_10_1149_1945_7111_acc2ea crossref_primary_10_1016_j_cej_2018_06_014 crossref_primary_10_1016_j_est_2024_112761 crossref_primary_10_1039_C5EE00838G crossref_primary_10_1039_C7TA09028E crossref_primary_10_1002_aenm_201502164 crossref_primary_10_1016_j_nanoen_2022_106964 crossref_primary_10_1007_s10800_016_0951_3 crossref_primary_10_1002_aenm_201602934 crossref_primary_10_1002_eem2_12008 crossref_primary_10_1016_j_ensm_2024_103874 crossref_primary_10_1039_D2CS00003B crossref_primary_10_1039_C7CS00255F crossref_primary_10_1021_acs_jpcc_4c05865 crossref_primary_10_1039_C6EE03499C crossref_primary_10_1016_j_electacta_2022_140517 crossref_primary_10_1557_mrc_2018_59 crossref_primary_10_1002_aenm_201601753 crossref_primary_10_1002_adfm_201505420 crossref_primary_10_1002_aenm_202401157 crossref_primary_10_1021_acs_jpclett_8b01333 crossref_primary_10_1038_ncomms8843 crossref_primary_10_1021_acsami_7b15499 crossref_primary_10_1016_j_ssi_2016_03_003 crossref_primary_10_1039_C5EE02867A crossref_primary_10_1039_D0RA07924C crossref_primary_10_1002_smll_201703454 crossref_primary_10_1002_ange_202006303 crossref_primary_10_1016_j_jpowsour_2016_08_117 crossref_primary_10_1002_adsu_201700036 crossref_primary_10_1039_C6CC06954A crossref_primary_10_1016_j_chempr_2018_02_015 crossref_primary_10_1021_acs_jpcc_1c06802 |
Cites_doi | 10.1039/c3cp53534g 10.1016/j.jpowsour.2010.01.022 10.1039/c3cp51112j 10.1021/jz1005384 10.1021/ja1036572 10.1016/j.jpowsour.2011.01.032 10.1002/adfm.201200403 10.1038/ncomms2855 10.1038/nmat3191 10.1002/adma.201302459 10.1038/ncomms3438 10.1149/2.005204esl 10.1021/ja208608s 10.1126/science.1223985 10.1021/jp311114u 10.1002/anie.200702505 10.1038/451652a 10.1039/c3cp53754d 10.1021/jz300243r 10.1021/nl302066d 10.1021/ja310258x 10.1149/1.1836378 10.1021/jp407576q 10.1149/1.3531981 10.1016/j.elecom.2012.09.022 10.1002/adfm.201300130 10.1038/nchem.1376 10.1021/ja4016765 10.1021/ja056811q 10.1021/nl203332e 10.1021/jp2043015 10.1002/anie.201210057 10.1021/ja2021747 10.1016/j.jpowsour.2010.12.065 10.1021/jz200352v 10.1021/ja302178w 10.1002/anie.201205354 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2014 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW |
DOI | 10.1016/j.jpowsour.2014.04.079 |
DatabaseName | CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EndPage | 7 |
ExternalDocumentID | 28522119 10_1016_j_jpowsour_2014_04_079 S0378775314005795 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABXDB ABXRA ACDAQ ACGFS ACRLP ACVFH ADBBV ADCNI ADECG ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEZYN AFPUW AFRZQ AFTJW AFXIZ AFZHZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHHHB AHIDL AIEXJ AIIUN AIKHN AITUG AJSZI AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LX7 LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSH SSK SSM SSR SSZ T5K XPP ZMT ~G- 29L AAQXK AAYXX ABWVN ACNNM ACRPL ADMUD ADNMO AFJKZ AGQPQ AI. AIGII APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ NDZJH R2- SAC SCB SCE SEW T9H VH1 VOH WUQ AACTN IQODW |
ID | FETCH-LOGICAL-c445t-be9a2c7a7e14ea91a7dc72c320c627dee0d999c9f2b3664011dcb194859dc8e3 |
IEDL.DBID | .~1 |
ISSN | 0378-7753 |
IngestDate | Wed Apr 02 07:15:03 EDT 2025 Tue Jul 01 04:23:05 EDT 2025 Thu Apr 24 22:51:53 EDT 2025 Thu Jul 17 01:59:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Li–air battery Li–O2 battery O2 catalytic electrode Humidity Electrodes Lithium air battery Li-air battery Humidity effect catalytic electrode Secondary cell Li-O battery Electrical characteristic Electrochemical characteristic O |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c445t-be9a2c7a7e14ea91a7dc72c320c627dee0d999c9f2b3664011dcb194859dc8e3 |
PageCount | 7 |
ParticipantIDs | pascalfrancis_primary_28522119 crossref_citationtrail_10_1016_j_jpowsour_2014_04_079 crossref_primary_10_1016_j_jpowsour_2014_04_079 elsevier_sciencedirect_doi_10_1016_j_jpowsour_2014_04_079 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-10-15 |
PublicationDateYYYYMMDD | 2014-10-15 |
PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of power sources |
PublicationYear | 2014 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Veith, Dudney, Howe, Nanda (bib36) 2011; 115 Ogasawara, Debart, Holzapfel, Novak, Bruce (bib5) 2006; 128 Lim, Park, Seo, Gwon, Hong, Goddard, Kim, Kang (bib41) 2013; 135 Gowda, Brunet, Wallraff, McCloskey (bib40) 2013; 4 Chen, Frunberger, Peng, Barde, Bruce (bib34) 2012; 134 McCloskey, Speidel, Scheffler, Miller, Viswanathan, Hummelshøj, Nørskov, Luntz (bib39) 2012; 3 Jung, Hassoun, Park, Sun, Scrosati (bib14) 2012; 4 Zhang, Zhou (bib15) 2013; 4 McCloskey, Bethune, Shelby, Girishkumar, Luntz (bib35) 2011; 2 Padbury, Zhang (bib12) 2011; 196 Guo, Zhou, Dong, Qiu, Wang, Xia (bib18) 2013; 25 Armand, Tarascon (bib1) 2008; 451 Xu, Xu, Wang, Wang, Zhang, Zhang (bib8) 2013; 52 Black, Lee, Adams, Mims, Nazar (bib28) 2013; 52 Kim, Lee, Kim (bib30) 2013; 15 Thotiyl, Freunberger, Peng, Bruce (bib27) 2013; 135 Bruce, Feunberger, Hardwick, Tarascon (bib7) 2013; 11 Guo, Wang, Wang, Zhou, Xia, Wang (bib20) 2013; 23 Nsybulin, Xu, Englhard, Nie, Burton, Cosimbescu, Gross, Zhang (bib21) 2013; 117 Xiao, Mei, Li, Xu, Wang, Graff, Bennett, Nie, Saraf, Aksay, Liu, Zhang (bib10) 2011; 11 Jung, Kim, Park, Oh, Hassoun, Yoon, Scrosati, Sun (bib22) 2012; 12 Laoire, Mukerjee, Plichta, Hendrickson, Abraham (bib23) 2011; 3 Thotiyl, Freunberger, Peng, Chen, Liu, Bruce (bib13) 2013; 12 Freunberger, Chen, Peng, Griffin, Hardwick, Barde, Novak, Bruce (bib33) 2011; 133 Abraham, Jiang (bib4) 1996; 143 Meini, Tsiouvaras, Schwenke, Piana, Beyer, Lange, Gasteiger (bib32) 2013; 15 Bruce, Freunberger, Hardwick, Tarascon (bib3) 2012; 11 Zhang, Wang, Xu, Xiao, Williford (bib29) 2010; 195 Girishkumar, McCloskey, Luntz, Swanson, Wilcke (bib6) 2010; 1 Ma, Sun, Cong, Gao, Yao, Guo, Tai, Mei, Zeng, Xie, Wang (bib9) 2013; 117 Xu, Viswanathan, Wang, Towne, Xiao, Nie, Hu, Zhang (bib37) 2011; 196 Wang, Xu, Xu, Zhang, Zhang (bib19) 2013; 22 Xu, Wang, Xu, Zhang, Zhang (bib16) 2013; 4 Song, Jung, Heo, Lee, Cho, Kang (bib31) 2013; 15 Guo, Zhu, Qiu, Wang, Xia (bib24) 2012; 25 Peng, Freunberger, Chen, Bruce (bib11) 2012; 337 Lu, Gasteiger, Shao-Horn (bib26) 2011; 133 Bruce, Scrosati, Tarascon (bib2) 2008; 47 Jian, Liu, Li, He, Guo, Chen, Zhou (bib17) 2013 Lu, Xu, Gasteiger, Chen, Hamad-Schifferli, Shao-Horn (bib25) 2010; 132 Meini, Piana, Tsiouvaras, Garsuch, Gasteiger (bib38) 2012; 15 Bruce (10.1016/j.jpowsour.2014.04.079_bib3) 2012; 11 Thotiyl (10.1016/j.jpowsour.2014.04.079_bib13) 2013; 12 Nsybulin (10.1016/j.jpowsour.2014.04.079_bib21) 2013; 117 Armand (10.1016/j.jpowsour.2014.04.079_bib1) 2008; 451 Meini (10.1016/j.jpowsour.2014.04.079_bib32) 2013; 15 Xu (10.1016/j.jpowsour.2014.04.079_bib16) 2013; 4 Lu (10.1016/j.jpowsour.2014.04.079_bib25) 2010; 132 Chen (10.1016/j.jpowsour.2014.04.079_bib34) 2012; 134 Meini (10.1016/j.jpowsour.2014.04.079_bib38) 2012; 15 Laoire (10.1016/j.jpowsour.2014.04.079_bib23) 2011; 3 Bruce (10.1016/j.jpowsour.2014.04.079_bib2) 2008; 47 Padbury (10.1016/j.jpowsour.2014.04.079_bib12) 2011; 196 Freunberger (10.1016/j.jpowsour.2014.04.079_bib33) 2011; 133 Guo (10.1016/j.jpowsour.2014.04.079_bib18) 2013; 25 Veith (10.1016/j.jpowsour.2014.04.079_bib36) 2011; 115 Lu (10.1016/j.jpowsour.2014.04.079_bib26) 2011; 133 Kim (10.1016/j.jpowsour.2014.04.079_bib30) 2013; 15 Xu (10.1016/j.jpowsour.2014.04.079_bib8) 2013; 52 Zhang (10.1016/j.jpowsour.2014.04.079_bib15) 2013; 4 McCloskey (10.1016/j.jpowsour.2014.04.079_bib35) 2011; 2 Ogasawara (10.1016/j.jpowsour.2014.04.079_bib5) 2006; 128 Song (10.1016/j.jpowsour.2014.04.079_bib31) 2013; 15 Guo (10.1016/j.jpowsour.2014.04.079_bib20) 2013; 23 Girishkumar (10.1016/j.jpowsour.2014.04.079_bib6) 2010; 1 Black (10.1016/j.jpowsour.2014.04.079_bib28) 2013; 52 Bruce (10.1016/j.jpowsour.2014.04.079_bib7) 2013; 11 Xiao (10.1016/j.jpowsour.2014.04.079_bib10) 2011; 11 Lim (10.1016/j.jpowsour.2014.04.079_bib41) 2013; 135 Zhang (10.1016/j.jpowsour.2014.04.079_bib29) 2010; 195 Peng (10.1016/j.jpowsour.2014.04.079_bib11) 2012; 337 Wang (10.1016/j.jpowsour.2014.04.079_bib19) 2013; 22 Xu (10.1016/j.jpowsour.2014.04.079_bib37) 2011; 196 Jung (10.1016/j.jpowsour.2014.04.079_bib14) 2012; 4 Jian (10.1016/j.jpowsour.2014.04.079_bib17) 2013 McCloskey (10.1016/j.jpowsour.2014.04.079_bib39) 2012; 3 Ma (10.1016/j.jpowsour.2014.04.079_bib9) 2013; 117 Guo (10.1016/j.jpowsour.2014.04.079_bib24) 2012; 25 Thotiyl (10.1016/j.jpowsour.2014.04.079_bib27) 2013; 135 Abraham (10.1016/j.jpowsour.2014.04.079_bib4) 1996; 143 Jung (10.1016/j.jpowsour.2014.04.079_bib22) 2012; 12 Gowda (10.1016/j.jpowsour.2014.04.079_bib40) 2013; 4 |
References_xml | – volume: 15 start-page: 20075 year: 2013 end-page: 20079 ident: bib31 publication-title: Phys. Chem. Chem. Phys. – volume: 15 start-page: A45 year: 2012 end-page: A48 ident: bib38 publication-title: Electrochem. Solid-State Lett. – volume: 47 start-page: 2930 year: 2008 end-page: 2946 ident: bib2 publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 4333 year: 2012 end-page: 4335 ident: bib22 publication-title: Nano Lett. – volume: 4 start-page: 276 year: 2013 end-page: 279 ident: bib40 publication-title: J. Phys. Chem. Lett. – volume: 135 start-page: 494 year: 2013 end-page: 500 ident: bib27 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 3887 year: 2013 end-page: 3890 ident: bib8 publication-title: Angew. Chem. Int. Ed. – volume: 2 start-page: 1161 year: 2011 end-page: 1166 ident: bib35 publication-title: J. Phys. Chem. Lett. – volume: 4 start-page: 2438 year: 2013 ident: bib16 publication-title: Nat. Commun. – volume: 195 start-page: 4332 year: 2010 end-page: 4337 ident: bib29 publication-title: J. Power Sources – volume: 133 start-page: 8040 year: 2011 end-page: 8047 ident: bib33 publication-title: J. Am. Chem. Soc. – volume: 337 start-page: 563 year: 2012 end-page: 566 ident: bib11 publication-title: Science – volume: 134 start-page: 7952 year: 2012 end-page: 7957 ident: bib34 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 1049 year: 2013 end-page: 1055 ident: bib13 publication-title: Nat. Mater. – volume: 133 start-page: 19048 year: 2011 end-page: 19051 ident: bib26 publication-title: J. Am. Chem. Soc. – volume: 115 start-page: 14325 year: 2011 end-page: 14333 ident: bib36 publication-title: J. Phys. Chem. C – volume: 25 start-page: 26 year: 2012 end-page: 29 ident: bib24 publication-title: Electrochem. Commun. – volume: 117 start-page: 2635 year: 2013 end-page: 2645 ident: bib21 publication-title: J. Phys. Chem. C – volume: 3 start-page: A302 year: 2011 end-page: A308 ident: bib23 publication-title: J. Electrochem. Soc. – volume: 135 start-page: 9733 year: 2013 end-page: 9742 ident: bib41 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 1817 year: 2013 ident: bib15 publication-title: Nat. Commun. – volume: 25 start-page: 5668 year: 2013 end-page: 5672 ident: bib18 publication-title: Adv. Mater. – volume: 132 start-page: 12170 year: 2010 end-page: 12171 ident: bib25 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 19 year: 2013 end-page: 29 ident: bib7 publication-title: Nat. Mater. – volume: 4 start-page: 579 year: 2012 end-page: 585 ident: bib14 publication-title: Nat. Chem. – volume: 15 start-page: 11478 year: 2013 end-page: 11493 ident: bib32 publication-title: Phys. Chem. Chem. Phys. – volume: 3 start-page: 997 year: 2012 end-page: 1001 ident: bib39 publication-title: J. Phys. Chem. Lett. – volume: 196 start-page: 3894 year: 2011 end-page: 3899 ident: bib37 publication-title: J. Power Sources – volume: 15 start-page: 20262 year: 2013 end-page: 20271 ident: bib30 publication-title: Phys. Chem. Chem. Phys. – volume: 117 start-page: 25890 year: 2013 end-page: 25897 ident: bib9 publication-title: J. Phys. Chem. C – volume: 11 start-page: 5071 year: 2011 end-page: 5078 ident: bib10 publication-title: Nano Lett. – volume: 11 start-page: 19 year: 2012 end-page: 29 ident: bib3 publication-title: Nat. Mater. – volume: 196 start-page: 4436 year: 2011 end-page: 4444 ident: bib12 publication-title: J. Power Sources – volume: 23 start-page: 4840 year: 2013 end-page: 4846 ident: bib20 publication-title: Adv. Funct. Mater. – volume: 451 start-page: 652 year: 2008 end-page: 657 ident: bib1 publication-title: Nature – volume: 128 start-page: 1390 year: 2006 end-page: 1393 ident: bib5 publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 3699 year: 2013 end-page: 3705 ident: bib19 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 2193 year: 2010 end-page: 2203 ident: bib6 publication-title: J. Phys. Chem. Lett. – year: 2013 ident: bib17 publication-title: Angew. Chem. Int. Ed. – volume: 52 start-page: 392 year: 2013 end-page: 396 ident: bib28 publication-title: Angew. Chem. Int. Ed. – volume: 143 start-page: 1 year: 1996 end-page: 5 ident: bib4 publication-title: J. Electrochem. Soc. – year: 2013 ident: 10.1016/j.jpowsour.2014.04.079_bib17 publication-title: Angew. Chem. Int. Ed. – volume: 15 start-page: 20262 year: 2013 ident: 10.1016/j.jpowsour.2014.04.079_bib30 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp53534g – volume: 195 start-page: 4332 year: 2010 ident: 10.1016/j.jpowsour.2014.04.079_bib29 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.01.022 – volume: 15 start-page: 11478 year: 2013 ident: 10.1016/j.jpowsour.2014.04.079_bib32 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp51112j – volume: 1 start-page: 2193 year: 2010 ident: 10.1016/j.jpowsour.2014.04.079_bib6 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz1005384 – volume: 132 start-page: 12170 year: 2010 ident: 10.1016/j.jpowsour.2014.04.079_bib25 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1036572 – volume: 196 start-page: 4436 year: 2011 ident: 10.1016/j.jpowsour.2014.04.079_bib12 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.01.032 – volume: 22 start-page: 3699 year: 2013 ident: 10.1016/j.jpowsour.2014.04.079_bib19 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200403 – volume: 4 start-page: 1817 year: 2013 ident: 10.1016/j.jpowsour.2014.04.079_bib15 publication-title: Nat. Commun. doi: 10.1038/ncomms2855 – volume: 11 start-page: 19 year: 2012 ident: 10.1016/j.jpowsour.2014.04.079_bib3 publication-title: Nat. Mater. doi: 10.1038/nmat3191 – volume: 25 start-page: 5668 year: 2013 ident: 10.1016/j.jpowsour.2014.04.079_bib18 publication-title: Adv. Mater. doi: 10.1002/adma.201302459 – volume: 4 start-page: 2438 year: 2013 ident: 10.1016/j.jpowsour.2014.04.079_bib16 publication-title: Nat. Commun. doi: 10.1038/ncomms3438 – volume: 15 start-page: A45 year: 2012 ident: 10.1016/j.jpowsour.2014.04.079_bib38 publication-title: Electrochem. Solid-State Lett. doi: 10.1149/2.005204esl – volume: 12 start-page: 1049 year: 2013 ident: 10.1016/j.jpowsour.2014.04.079_bib13 publication-title: Nat. Mater. – volume: 133 start-page: 19048 year: 2011 ident: 10.1016/j.jpowsour.2014.04.079_bib26 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja208608s – volume: 337 start-page: 563 year: 2012 ident: 10.1016/j.jpowsour.2014.04.079_bib11 publication-title: Science doi: 10.1126/science.1223985 – volume: 117 start-page: 2635 year: 2013 ident: 10.1016/j.jpowsour.2014.04.079_bib21 publication-title: J. Phys. Chem. C doi: 10.1021/jp311114u – volume: 47 start-page: 2930 year: 2008 ident: 10.1016/j.jpowsour.2014.04.079_bib2 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200702505 – volume: 451 start-page: 652 year: 2008 ident: 10.1016/j.jpowsour.2014.04.079_bib1 publication-title: Nature doi: 10.1038/451652a – volume: 15 start-page: 20075 year: 2013 ident: 10.1016/j.jpowsour.2014.04.079_bib31 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp53754d – volume: 3 start-page: 997 year: 2012 ident: 10.1016/j.jpowsour.2014.04.079_bib39 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz300243r – volume: 12 start-page: 4333 year: 2012 ident: 10.1016/j.jpowsour.2014.04.079_bib22 publication-title: Nano Lett. doi: 10.1021/nl302066d – volume: 135 start-page: 494 year: 2013 ident: 10.1016/j.jpowsour.2014.04.079_bib27 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja310258x – volume: 143 start-page: 1 year: 1996 ident: 10.1016/j.jpowsour.2014.04.079_bib4 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1836378 – volume: 117 start-page: 25890 year: 2013 ident: 10.1016/j.jpowsour.2014.04.079_bib9 publication-title: J. Phys. Chem. C doi: 10.1021/jp407576q – volume: 3 start-page: A302 year: 2011 ident: 10.1016/j.jpowsour.2014.04.079_bib23 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3531981 – volume: 25 start-page: 26 year: 2012 ident: 10.1016/j.jpowsour.2014.04.079_bib24 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2012.09.022 – volume: 23 start-page: 4840 year: 2013 ident: 10.1016/j.jpowsour.2014.04.079_bib20 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201300130 – volume: 4 start-page: 579 year: 2012 ident: 10.1016/j.jpowsour.2014.04.079_bib14 publication-title: Nat. Chem. doi: 10.1038/nchem.1376 – volume: 4 start-page: 276 year: 2013 ident: 10.1016/j.jpowsour.2014.04.079_bib40 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz300243r – volume: 135 start-page: 9733 year: 2013 ident: 10.1016/j.jpowsour.2014.04.079_bib41 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4016765 – volume: 128 start-page: 1390 year: 2006 ident: 10.1016/j.jpowsour.2014.04.079_bib5 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja056811q – volume: 11 start-page: 5071 year: 2011 ident: 10.1016/j.jpowsour.2014.04.079_bib10 publication-title: Nano Lett. doi: 10.1021/nl203332e – volume: 115 start-page: 14325 year: 2011 ident: 10.1016/j.jpowsour.2014.04.079_bib36 publication-title: J. Phys. Chem. C doi: 10.1021/jp2043015 – volume: 52 start-page: 3887 year: 2013 ident: 10.1016/j.jpowsour.2014.04.079_bib8 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201210057 – volume: 133 start-page: 8040 year: 2011 ident: 10.1016/j.jpowsour.2014.04.079_bib33 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2021747 – volume: 196 start-page: 3894 year: 2011 ident: 10.1016/j.jpowsour.2014.04.079_bib37 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.12.065 – volume: 2 start-page: 1161 year: 2011 ident: 10.1016/j.jpowsour.2014.04.079_bib35 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz200352v – volume: 134 start-page: 7952 year: 2012 ident: 10.1016/j.jpowsour.2014.04.079_bib34 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja302178w – volume: 52 start-page: 392 year: 2013 ident: 10.1016/j.jpowsour.2014.04.079_bib28 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201205354 – volume: 11 start-page: 19 year: 2013 ident: 10.1016/j.jpowsour.2014.04.079_bib7 publication-title: Nat. Mater. doi: 10.1038/nmat3191 |
SSID | ssj0001170 |
Score | 2.489141 |
Snippet | In this work, we compare the performance of Li–O2 batteries in pure/dry O2, pure O2 with a relative humidity (RH) of 15% and ambient air with an RH of 50%, and... |
SourceID | pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Applied sciences Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Exact sciences and technology Humidity Li–air battery Li–O2 battery O2 catalytic electrode |
Title | Humidity effect on electrochemical performance of Li–O2 batteries |
URI | https://dx.doi.org/10.1016/j.jpowsour.2014.04.079 |
Volume | 264 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB6KXhQRV6xLmYPXNJnJJJM5lmKpC_Vghd7CrJAiadCKN_E_-A_9Jc5k6QJCD0IuCXlJePN4y-R73wPgOjZSSamQhxXCHuFJ5AkWG0_b0BtKQbmp0BajePhM7ibRpAX6TS-Mg1XWvr_y6aW3rq_4tTb9Isv8pyC0xmazbVsiuI5K12hOCHVW3v1cwjzcZJXyT4KtltzdK13C0-60mH24TXIH8SIl5amDdP0doPYK_mbVZqp5FytBaHAA9uvsEfaqDzwELZ0fgd0VTsFj0LcLlCmbW8MKqgFnOaxn3ciaHAAWy24BODPwIfv5-n7EUJRcm7Z0PgHjwc24P_TqSQmeJCSae0IzjiXlVCOiOUOcKkmxDHEgY0yV1oGyiaBkBoswjm1JhZQUyBHDMCUTHZ6CrXyW6zMAaaypiAw1nAZEcSaiJA6UxMqWr4FEpg2iRjuprFnE3TCLl7SBi03TRqup02oa2IOyNvAXckXFo7FRgjXKT9csIrXOfqNsZ221Fq_Eic03EWLn_3j4BdhxZy6AoegSbM1f3_WVzUzmolOaXgds927vh6NfVDrnHQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFL1ou1AR8Yn1OQu3sZlJJtNZSlGqrXVhBXdhntAibdCKW__BP_RLnGkmtYLgQsgq4SbhzHAfybnnApxlVmmlNI6IxiRKRYtGkmc2Mi70JkoyYUu2RT_rPKQ3j_RxCdpVL4ynVQbfX_r0mbcOZ5oBzWYxHDbv48RtNpdtuxLBd1TSZah7dSpag_rFdbfTnztkP1xl9jPBFUzeYKFReHQ-KiZv_ju5Z3mlM9VTz-r6PUatF-LFIWfLkRcLcehqEzZCAokuynfcgiUz3oa1BVnBHWi7NRpql16jkq2BJmMUxt2ooA-Aiu-GATSxqDf8fP-4I0jO5DZd9bwLg6vLQbsThWEJkUpTOo2k4YIoJpjBqREcC6YVIyohscoI08bE2uWCilsikyxzVRXWSmKvDcO1aplkD2rjydjsA2KZYZJaZgWLUy24pK0s1opoV8HGCtsG0AqdXAUhcT_P4imvGGOjvEI196jmsTsYb0BzbleUUhp_WvAK_PzHpsidv__T9uTHas0fSVou5cSYH_zj5qew0hnc9vLedb97CKv-io9nmB5Bbfr8ao5dojKVJ2EjfgE96OnO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Humidity+effect+on+electrochemical+performance+of+Li%E2%80%93O2+batteries&rft.jtitle=Journal+of+power+sources&rft.au=Guo%2C+Ziyang&rft.au=Dong%2C+Xiaoli&rft.au=Yuan%2C+Shouyi&rft.au=Wang%2C+Yonggang&rft.date=2014-10-15&rft.pub=Elsevier+B.V&rft.issn=0378-7753&rft.volume=264&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1016%2Fj.jpowsour.2014.04.079&rft.externalDocID=S0378775314005795 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon |