Crowdsourcing reproducible seizure forecasting in human and canine epilepsy
SEE MORMANN AND ANDRZEJAK DOI101093/BRAIN/AWW091 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE : Accurate forecasting of epileptic seizures has the potential to transform clinical epilepsy care. However, progress toward reliable seizure forecasting has been hampered by lack of open access to long dur...
Saved in:
Published in | Brain (London, England : 1878) Vol. 139; no. 6; pp. 1713 - 1722 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | SEE MORMANN AND ANDRZEJAK DOI101093/BRAIN/AWW091 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE : Accurate forecasting of epileptic seizures has the potential to transform clinical epilepsy care. However, progress toward reliable seizure forecasting has been hampered by lack of open access to long duration recordings with an adequate number of seizures for investigators to rigorously compare algorithms and results. A seizure forecasting competition was conducted on kaggle.com using open access chronic ambulatory intracranial electroencephalography from five canines with naturally occurring epilepsy and two humans undergoing prolonged wide bandwidth intracranial electroencephalographic monitoring. Data were provided to participants as 10-min interictal and preictal clips, with approximately half of the 60 GB data bundle labelled (interictal/preictal) for algorithm training and half unlabelled for evaluation. The contestants developed custom algorithms and uploaded their classifications (interictal/preictal) for the unknown testing data, and a randomly selected 40% of data segments were scored and results broadcasted on a public leader board. The contest ran from August to November 2014, and 654 participants submitted 17 856 classifications of the unlabelled test data. The top performing entry scored 0.84 area under the classification curve. Following the contest, additional held-out unlabelled data clips were provided to the top 10 participants and they submitted classifications for the new unseen data. The resulting area under the classification curves were well above chance forecasting, but did show a mean 6.54 ± 2.45% (min, max: 0.30, 20.2) decline in performance. The kaggle.com model using open access data and algorithms generated reproducible research that advanced seizure forecasting. The overall performance from multiple contestants on unseen data was better than a random predictor, and demonstrates the feasibility of seizure forecasting in canine and human epilepsy.media-1vid110.1093/brain/aww045_video_abstractaww045_video_abstract. |
---|---|
AbstractList | See Mormann and Andrzejak (doi:
10.1093/brain/aww091
) for a scientific commentary on this article.
Seizures are thought to arise from an identifiable pre-ictal state. Brinkmann
et al
. report the results of an online, open-access seizure forecasting competition using intracranial EEG recordings from canines with naturally occurring epilepsy and human patients undergoing presurgical monitoring. The winning algorithms forecast seizures at rates significantly greater than chance.
See Mormann and Andrzejak (doi:
10.1093/brain/aww091
) for a scientific commentary on this article.
Seizures are thought to arise from an identifiable pre-ictal state. Brinkmann
et al
. report the results of an online, open-access seizure forecasting competition using intracranial EEG recordings from canines with naturally occurring epilepsy and human patients undergoing presurgical monitoring. The winning algorithms forecast seizures at rates significantly greater than chance.
See Mormann and Andrzejak (doi:
10.1093/brain/aww091
) for a scientific commentary on this article.
Accurate forecasting of epileptic seizures has the potential to transform clinical epilepsy care. However, progress toward reliable seizure forecasting has been hampered by lack of open access to long duration recordings with an adequate number of seizures for investigators to rigorously compare algorithms and results. A seizure forecasting competition was conducted on kaggle.com using open access chronic ambulatory intracranial electroencephalography from five canines with naturally occurring epilepsy and two humans undergoing prolonged wide bandwidth intracranial electroencephalographic monitoring. Data were provided to participants as 10-min interictal and preictal clips, with approximately half of the 60 GB data bundle labelled (interictal/preictal) for algorithm training and half unlabelled for evaluation. The contestants developed custom algorithms and uploaded their classifications (interictal/preictal) for the unknown testing data, and a randomly selected 40% of data segments were scored and results broadcasted on a public leader board. The contest ran from August to November 2014, and 654 participants submitted 17 856 classifications of the unlabelled test data. The top performing entry scored 0.84 area under the classification curve. Following the contest, additional held-out unlabelled data clips were provided to the top 10 participants and they submitted classifications for the new unseen data. The resulting area under the classification curves were well above chance forecasting, but did show a mean 6.54 ± 2.45% (min, max: 0.30, 20.2) decline in performance. The kaggle.com model using open access data and algorithms generated reproducible research that advanced seizure forecasting. The overall performance from multiple contestants on unseen data was better than a random predictor, and demonstrates the feasibility of seizure forecasting in canine and human epilepsy. SEE MORMANN AND ANDRZEJAK DOI101093/BRAIN/AWW091 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE : Accurate forecasting of epileptic seizures has the potential to transform clinical epilepsy care. However, progress toward reliable seizure forecasting has been hampered by lack of open access to long duration recordings with an adequate number of seizures for investigators to rigorously compare algorithms and results. A seizure forecasting competition was conducted on kaggle.com using open access chronic ambulatory intracranial electroencephalography from five canines with naturally occurring epilepsy and two humans undergoing prolonged wide bandwidth intracranial electroencephalographic monitoring. Data were provided to participants as 10-min interictal and preictal clips, with approximately half of the 60 GB data bundle labelled (interictal/preictal) for algorithm training and half unlabelled for evaluation. The contestants developed custom algorithms and uploaded their classifications (interictal/preictal) for the unknown testing data, and a randomly selected 40% of data segments were scored and results broadcasted on a public leader board. The contest ran from August to November 2014, and 654 participants submitted 17 856 classifications of the unlabelled test data. The top performing entry scored 0.84 area under the classification curve. Following the contest, additional held-out unlabelled data clips were provided to the top 10 participants and they submitted classifications for the new unseen data. The resulting area under the classification curves were well above chance forecasting, but did show a mean 6.54 ± 2.45% (min, max: 0.30, 20.2) decline in performance. The kaggle.com model using open access data and algorithms generated reproducible research that advanced seizure forecasting. The overall performance from multiple contestants on unseen data was better than a random predictor, and demonstrates the feasibility of seizure forecasting in canine and human epilepsy.media-1vid110.1093/brain/aww045_video_abstractaww045_video_abstract. See Mormann and Andrzejak (doi:10.1093/brain/aww091) for a scientific commentary on this article. Seizures are thought to arise from an identifiable pre-ictal state. Brinkmann et al. report the results of an online, open-access seizure forecasting competition using intracranial EEG recordings from canines with naturally occurring epilepsy and human patients undergoing presurgical monitoring. The winning algorithms forecast seizures at rates significantly greater than chance.See Mormann and Andrzejak (doi:10.1093/brain/aww091) for a scientific commentary on this article. Seizures are thought to arise from an identifiable pre-ictal state. Brinkmann et al. report the results of an online, open-access seizure forecasting competition using intracranial EEG recordings from canines with naturally occurring epilepsy and human patients undergoing presurgical monitoring. The winning algorithms forecast seizures at rates significantly greater than chance. See Mormann and Andrzejak (doi:10.1093/brain/aww091) for a scientific commentary on this article. Accurate forecasting of epileptic seizures has the potential to transform clinical epilepsy care. However, progress toward reliable seizure forecasting has been hampered by lack of open access to long duration recordings with an adequate number of seizures for investigators to rigorously compare algorithms and results. A seizure forecasting competition was conducted on kaggle.com using open access chronic ambulatory intracranial electroencephalography from five canines with naturally occurring epilepsy and two humans undergoing prolonged wide bandwidth intracranial electroencephalographic monitoring. Data were provided to participants as 10-min interictal and preictal clips, with approximately half of the 60 GB data bundle labelled (interictal/preictal) for algorithm training and half unlabelled for evaluation. The contestants developed custom algorithms and uploaded their classifications (interictal/preictal) for the unknown testing data, and a randomly selected 40% of data segments were scored and results broadcasted on a public leader board. The contest ran from August to November 2014, and 654 participants submitted 17 856 classifications of the unlabelled test data. The top performing entry scored 0.84 area under the classification curve. Following the contest, additional held-out unlabelled data clips were provided to the top 10 participants and they submitted classifications for the new unseen data. The resulting area under the classification curves were well above chance forecasting, but did show a mean 6.54 plus or minus 2.45% (min, max: 0.30, 20.2) decline in performance. The kaggle.com model using open access data and algorithms generated reproducible research that advanced seizure forecasting. The overall performance from multiple contestants on unseen data was better than a random predictor, and demonstrates the feasibility of seizure forecasting in canine and human epilepsy.10.1093/brain/aww045_video_abstract aww045_video_abstract |
Author | Brinkmann, Benjamin H. Wagenaar, Joost Tieng, Quang M. Hills, Michael Worrell, Gregory A. Vite, Charles Litt, Brian Patterson, Edward E. Wu, Wei He, Jialune Zamora-Martinez, Francisco Botella-Rocamora, Paloma Pardo, Juan Bosshard, Simone C. Abbot, Drew Adkins, Phillip Korshunova, Iryna Chen, Min Muñoz-Almaraz, F. J. Cukierski, Will |
Author_xml | – sequence: 1 givenname: Benjamin H. surname: Brinkmann fullname: Brinkmann, Benjamin H. – sequence: 2 givenname: Joost surname: Wagenaar fullname: Wagenaar, Joost – sequence: 3 givenname: Drew surname: Abbot fullname: Abbot, Drew – sequence: 4 givenname: Phillip surname: Adkins fullname: Adkins, Phillip – sequence: 5 givenname: Simone C. surname: Bosshard fullname: Bosshard, Simone C. – sequence: 6 givenname: Min surname: Chen fullname: Chen, Min – sequence: 7 givenname: Quang M. surname: Tieng fullname: Tieng, Quang M. – sequence: 8 givenname: Jialune surname: He fullname: He, Jialune – sequence: 9 givenname: F. J. surname: Muñoz-Almaraz fullname: Muñoz-Almaraz, F. J. – sequence: 10 givenname: Paloma surname: Botella-Rocamora fullname: Botella-Rocamora, Paloma – sequence: 11 givenname: Juan surname: Pardo fullname: Pardo, Juan – sequence: 12 givenname: Francisco surname: Zamora-Martinez fullname: Zamora-Martinez, Francisco – sequence: 13 givenname: Michael surname: Hills fullname: Hills, Michael – sequence: 14 givenname: Wei surname: Wu fullname: Wu, Wei – sequence: 15 givenname: Iryna surname: Korshunova fullname: Korshunova, Iryna – sequence: 16 givenname: Will surname: Cukierski fullname: Cukierski, Will – sequence: 17 givenname: Charles surname: Vite fullname: Vite, Charles – sequence: 18 givenname: Edward E. surname: Patterson fullname: Patterson, Edward E. – sequence: 19 givenname: Brian surname: Litt fullname: Litt, Brian – sequence: 20 givenname: Gregory A. surname: Worrell fullname: Worrell, Gregory A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27034258$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1rFEEQxRuJmE305lnm6MEx1d89F0EWvzDgRc9NTU9t0jLbPXbPZIl_vbtuIiqCUFCH-r3Ho94ZO0k5EWNPObzk0MmLvmBMF7jbgdIP2IorA63g2pywFQCY1nUaTtlZrV8BuJLCPGKnwoJUQrsV-7gueTfUvJQQ01VTaCp5WELsR2oqxe9LoWaTCwWs8wGIqbletpgaTEMTMMVEDU1xpKnePmYPNzhWenK3z9mXt28-r9-3l5_efVi_vmyDUnpue9JWBwwkOFoDIojB7gfFIKVT1lojkfPOuEGFXm4GIwB7x7XqbKBOSXnOXh19p6Xf0hAozQVHP5W4xXLrM0b_5yXFa3-Vb7wGIYzle4PndwYlf1uozn4ba6BxxER5qZ47cIZzUO7_qO2k4MZ1B_TZ77F-5bl_9h4QRyCUXGuhjQ9xxjnmQ8o4eg7-0Kj_2ag_NroXvfhLdO_7T_wHo6mmIA |
CitedBy_id | crossref_primary_10_1016_j_nbd_2023_105999 crossref_primary_10_1088_1741_2552_aced21 crossref_primary_10_1111_epi_16555 crossref_primary_10_1109_TNSRE_2023_3260845 crossref_primary_10_1111_epi_17406 crossref_primary_10_3389_fneur_2021_704170 crossref_primary_10_1016_j_engappai_2023_106401 crossref_primary_10_1016_j_ebiom_2018_01_006 crossref_primary_10_1109_TBME_2017_2700086 crossref_primary_10_1088_1741_2552_ab094a crossref_primary_10_1007_s10309_024_00709_1 crossref_primary_10_1007_s13311_018_00682_4 crossref_primary_10_1109_JSEN_2024_3401771 crossref_primary_10_1109_TBME_2017_2752081 crossref_primary_10_1063_5_0214733 crossref_primary_10_1186_s12911_018_0693_8 crossref_primary_10_1080_21507740_2020_1740352 crossref_primary_10_1097_WNP_0000000000000819 crossref_primary_10_1111_epi_16719 crossref_primary_10_3390_s18061720 crossref_primary_10_1016_j_knosys_2023_110661 crossref_primary_10_1109_TBCAS_2024_3456825 crossref_primary_10_1016_j_eswa_2024_126286 crossref_primary_10_1016_j_seizure_2020_03_010 crossref_primary_10_1038_s41582_018_0055_2 crossref_primary_10_3389_fncir_2021_784085 crossref_primary_10_1016_j_jclinepi_2019_02_007 crossref_primary_10_1111_epi_16541 crossref_primary_10_1109_TNSRE_2022_3217929 crossref_primary_10_3389_fnins_2024_1340164 crossref_primary_10_1088_1741_2552_ab909d crossref_primary_10_1016_j_measurement_2022_112278 crossref_primary_10_1109_TII_2023_3297323 crossref_primary_10_3389_fneur_2021_690404 crossref_primary_10_1186_s40779_025_00598_z crossref_primary_10_1590_0102_311x00164017 crossref_primary_10_1109_TFUZZ_2024_3363623 crossref_primary_10_3390_biomedicines10071551 crossref_primary_10_3389_fninf_2017_00043 crossref_primary_10_1109_JSEN_2023_3307223 crossref_primary_10_1016_j_inffus_2024_102697 crossref_primary_10_3389_fnins_2021_825434 crossref_primary_10_3389_fneur_2021_717428 crossref_primary_10_1016_j_yebeh_2023_109415 crossref_primary_10_1016_j_ebiom_2017_11_032 crossref_primary_10_1111_epi_16418 crossref_primary_10_3389_fvets_2022_928009 crossref_primary_10_1016_j_jneumeth_2019_108395 crossref_primary_10_1080_17434440_2021_1994388 crossref_primary_10_1038_s41582_024_00965_9 crossref_primary_10_1016_j_yebeh_2018_06_018 crossref_primary_10_1016_j_bspc_2022_104449 crossref_primary_10_1155_2018_1638097 crossref_primary_10_1016_j_mejo_2023_105810 crossref_primary_10_1109_ACCESS_2024_3447901 crossref_primary_10_1016_j_eplepsyres_2024_107474 crossref_primary_10_1093_brain_awx098 crossref_primary_10_1212_WNL_0000000000006548 crossref_primary_10_1016_S1474_4422_20_30396_3 crossref_primary_10_1088_1741_2552_ac7256 crossref_primary_10_3389_fphy_2021_811681 crossref_primary_10_1111_epi_16485 crossref_primary_10_3389_fvets_2022_889561 crossref_primary_10_1016_j_neuroimage_2018_11_052 crossref_primary_10_3389_fpsyt_2022_1011296 crossref_primary_10_1109_TIM_2023_3334330 crossref_primary_10_1016_j_clinph_2024_09_017 crossref_primary_10_1109_TCDS_2021_3100270 crossref_primary_10_1002_iid3_608 crossref_primary_10_57197_JDR_2024_0101 crossref_primary_10_1016_j_neunet_2018_04_018 crossref_primary_10_1016_j_jiixd_2024_01_003 crossref_primary_10_1016_j_yebeh_2022_108806 crossref_primary_10_1007_s11831_023_09920_1 crossref_primary_10_1007_s41666_024_00160_x crossref_primary_10_1093_brain_awy210 crossref_primary_10_1007_s12031_022_02006_w crossref_primary_10_3390_s18061698 crossref_primary_10_1109_ACCESS_2019_2955285 crossref_primary_10_1038_s41467_017_02577_y crossref_primary_10_1007_s11892_017_0940_x crossref_primary_10_1109_TBME_2016_2586475 crossref_primary_10_1093_jamiaopen_ooab009 crossref_primary_10_1097_WCO_0000000000000429 crossref_primary_10_3389_fncom_2022_1059565 crossref_primary_10_1142_S0129065721500581 crossref_primary_10_3389_fneur_2021_740743 crossref_primary_10_1016_j_yebeh_2024_109876 crossref_primary_10_1155_2022_1573076 crossref_primary_10_1109_TKDE_2018_2865778 crossref_primary_10_1016_j_bbe_2018_11_007 crossref_primary_10_1142_S0129065721500222 crossref_primary_10_1111_epi_17044 crossref_primary_10_1038_s41582_021_00464_1 crossref_primary_10_1038_s41598_021_81884_3 crossref_primary_10_1142_S0129065723500120 crossref_primary_10_1109_JBHI_2024_3438829 crossref_primary_10_1631_jzus_B2400103 crossref_primary_10_1016_j_bspc_2019_101743 crossref_primary_10_1109_JTEHM_2018_2869398 crossref_primary_10_1109_TCDS_2022_3212019 crossref_primary_10_1088_1741_2552_abdd43 crossref_primary_10_5698_1535_7511_16_3_192 crossref_primary_10_1088_1741_2552_aae5ab crossref_primary_10_1016_j_clinph_2021_09_022 crossref_primary_10_1088_1741_2552_aa5688 crossref_primary_10_1266_ggs_19_00034 crossref_primary_10_1051_epjnbp_2017001 crossref_primary_10_3389_fnhum_2020_612899 crossref_primary_10_3389_fvets_2022_1014269 crossref_primary_10_1016_j_neunet_2021_03_008 crossref_primary_10_1371_journal_pone_0178808 crossref_primary_10_2196_42723 crossref_primary_10_1371_journal_pbio_2002580 crossref_primary_10_1109_TBCAS_2018_2880148 crossref_primary_10_1016_j_cobme_2017_09_006 crossref_primary_10_1088_1741_2552_ab172d crossref_primary_10_1109_LSENS_2023_3330327 crossref_primary_10_1016_j_yebeh_2019_106457 crossref_primary_10_1111_epi_17833 crossref_primary_10_3389_fnins_2024_1470640 crossref_primary_10_1016_j_neuroscience_2021_11_017 crossref_primary_10_1007_s11571_023_10026_4 crossref_primary_10_1002_epi4_12704 crossref_primary_10_1016_j_yebeh_2020_107189 crossref_primary_10_1111_epi_17311 crossref_primary_10_1016_j_measurement_2022_111948 crossref_primary_10_1016_j_eplepsyres_2017_06_011 crossref_primary_10_1109_TBME_2017_2785401 crossref_primary_10_1371_journal_pone_0211847 crossref_primary_10_1371_journal_pcbi_1008773 crossref_primary_10_1016_j_bspc_2021_102957 crossref_primary_10_3389_fnins_2017_00734 crossref_primary_10_1002_epi4_13073 crossref_primary_10_1155_2024_8835396 crossref_primary_10_3389_fnins_2024_1468967 crossref_primary_10_1109_OJCAS_2022_3163075 crossref_primary_10_3389_frsip_2023_1175305 crossref_primary_10_1109_TNB_2023_3275037 crossref_primary_10_1109_TBME_2021_3095848 crossref_primary_10_1142_S0129065721500489 crossref_primary_10_1016_j_neunet_2020_04_022 crossref_primary_10_1016_j_neuropharm_2019_107898 crossref_primary_10_1142_S0129065716500465 crossref_primary_10_1093_brain_aww091 crossref_primary_10_3389_fphys_2018_01767 crossref_primary_10_1093_brain_awx173 crossref_primary_10_1016_j_bspc_2022_103555 crossref_primary_10_1038_s41598_021_01449_2 crossref_primary_10_1007_s11571_021_09773_z crossref_primary_10_1016_j_bspc_2017_02_008 crossref_primary_10_1016_j_pneurobio_2019_01_008 crossref_primary_10_1109_TIM_2023_3261919 crossref_primary_10_1007_s12652_018_1000_3 crossref_primary_10_1093_brain_awac375 crossref_primary_10_1016_j_yebeh_2019_106556 crossref_primary_10_1111_epi_17415 crossref_primary_10_3389_fnins_2022_982541 crossref_primary_10_1109_TNSRE_2023_3346955 crossref_primary_10_3390_s19020219 crossref_primary_10_1111_epi_17252 crossref_primary_10_1016_j_bbe_2020_02_002 crossref_primary_10_1212_WNL_0000000000012570 crossref_primary_10_1016_j_yebeh_2019_04_018 crossref_primary_10_1016_j_jneumeth_2022_109557 crossref_primary_10_1093_braincomms_fcac115 crossref_primary_10_1016_j_ymeth_2021_07_006 crossref_primary_10_1109_TNSRE_2022_3180155 |
Cites_doi | 10.1093/biostatistics/kxq028 10.1016/j.eplepsyres.2011.05.011 10.1002/9783527625192.ch1 10.1093/ilar/ilu021 10.1152/jn.01369.2007 10.1016/S1474-4422(13)70075-9 10.1016/j.jneumeth.2009.03.022 10.1111/j.1467-9868.2005.00503.x 10.1016/j.eplepsyres.2013.06.007 10.1016/0167-2789(88)90081-4 10.1111/j.1528-1157.1989.tb05477.x 10.1088/1741-2560/5/4/004 10.1007/BF00058655 10.1016/j.brainres.2007.10.048 10.1038/nature11556 10.1109/CBMS.1995.465426 10.1212/WNL.35.11.1537 10.1371/journal.pmed.0020124 10.1016/j.clinph.2009.09.002 10.1111/epi.12138 10.1038/nrn3475 10.1016/j.seizure.2011.01.003 10.1016/j.eplepsyres.2011.07.012 10.1093/brain/awl241 10.1006/ebeh.2000.0107 10.1111/jsap.12130 10.1111/j.1751-0813.2005.tb13269.x 10.1016/S1388-2457(03)00347-X 10.1016/j.clinph.2009.05.019 10.1109/5.726791 10.2460/javma.1984.184.09.1117 10.1212/01.wnl.0000252352.26421.13 10.1111/j.1600-0404.1999.tb00676.x 10.1111/j.1528-1167.2009.02397.x 10.1111/j.1528-1157.1999.tb02030.x 10.1007/978-1-4612-2544-7_5 10.1093/brain/awp017 10.1111/j.1528-1167.2011.03231.x 10.1371/journal.pone.0106026 10.1016/0013-4694(70)90143-4 10.1037/h0071325 10.1111/j.1528-1167.2011.03138.x 10.1016/S1474-4422(09)70304-7 10.1111/j.1939-1676.2011.00866.x 10.1016/S1525-5050(02)00686-8 10.1016/j.cmpb.2014.02.007 10.1371/journal.pone.0133900 10.1016/B978-0-12-498150-8.50024-0 10.1007/978-1-4899-2124-6 10.1523/JNEUROSCI.0584-14.2014 10.1371/journal.pone.0081920 |
ContentType | Journal Article |
Copyright | The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. 2016 |
Copyright_xml | – notice: The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. – notice: The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
DOI | 10.1093/brain/aww045 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | MEDLINE - Academic Neurosciences Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1460-2156 |
EndPage | 1722 |
ExternalDocumentID | PMC5022671 27034258 10_1093_brain_aww045 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS092882 – fundername: NINDS NIH HHS grantid: U24 NS063930 – fundername: NIEHS NIH HHS grantid: K01 ES025436 – fundername: NINDS NIH HHS grantid: UH2 NS095495 |
GroupedDBID | --- -E4 -~X .2P .55 .GJ .I3 .XZ .ZR 0R~ 1CY 1TH 23N 2WC 354 3O- 4.4 41~ 482 48X 53G 5GY 5RE 5VS 5WA 5WD 6PF 70D AABZA AACZT AAGKA AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPGJ AAPNW AAPQZ AAPXW AAQQT AARHZ AAUAY AAUQX AAVAP AAVLN AAWDT AAWTL AAYJJ AAYXX ABDFA ABDPE ABEJV ABEUO ABGNP ABIME ABIVO ABIXL ABJNI ABKDP ABLJU ABMNT ABNGD ABNHQ ABNKS ABPIB ABPQP ABPTD ABQLI ABQNK ABSMQ ABVGC ABWST ABXVV ABXZS ABZBJ ABZEO ACBNA ACFRR ACGFS ACIWK ACPQN ACPRK ACUFI ACUKT ACUTJ ACUTO ACVCV ACYHN ACZBC ADBBV ADEYI ADEZT ADGKP ADGZP ADHKW ADHZD ADIPN ADMTO ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEHUL AEJOX AEKPW AEKSI AELWJ AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFQV AFFZL AFGWE AFIYH AFOFC AFSHK AFXAL AFYAG AGINJ AGKEF AGKRT AGMDO AGORE AGQPQ AGQXC AGSYK AGUTN AHGBF AHMBA AHMMS AHXPO AI. AIJHB AJBYB AJDVS AJEEA AJNCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX ANFBD APIBT APJGH APWMN AQDSO AQKUS ARIXL ASAOO ASPBG ATDFG ATGXG ATTQO AVNTJ AVWKF AXUDD AYOIW AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BR6 BSWAC BTRTY BVRKM BZKNY C1A C45 CAG CDBKE CITATION COF CS3 CXTWN CZ4 DAKXR DFGAJ DIK DILTD DU5 D~K E3Z EBS EE~ EIHJH EJD ELUNK EMOBN ENERS F5P F9B FECEO FEDTE FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 J5H JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z MBLQV MBTAY MHKGH ML0 MVM N4W N9A NGC NLBLG NOMLY NOYVH NTWIH NU- NVLIB O0~ O9- OAUYM OAWHX OBFPC OBOKY OCZFY ODMLO OHH OHT OJQWA OJZSN OK1 OPAEJ OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO TCN TCURE TEORI TJX TLC TMA TR2 VH1 VVN W8F WH7 WOQ X7H X7M XJT XOL YAYTL YKOAZ YQJ YSK YXANX ZCG ZGI ZKB ZKX ZXP ~91 CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c445t-be575cace21a7602c2d72d7a2d338477763a11968d4cb3fd620ab815497ce9433 |
ISSN | 0006-8950 |
IngestDate | Thu Aug 21 18:33:31 EDT 2025 Fri Jul 11 00:42:02 EDT 2025 Thu Jul 10 18:16:20 EDT 2025 Mon Jul 21 06:04:52 EDT 2025 Thu Apr 24 22:59:55 EDT 2025 Thu Jul 03 08:28:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | epilepsy experimental models refractory epilepsy intracranial EEG |
Language | English |
License | The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c445t-be575cace21a7602c2d72d7a2d338477763a11968d4cb3fd620ab815497ce9433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 See Mormann and Andrzejak (doi:10.1093/brain/aww091) for a scientific commentary on this article. |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5022671 |
PMID | 27034258 |
PQID | 1793216898 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5022671 proquest_miscellaneous_1808611048 proquest_miscellaneous_1793216898 pubmed_primary_27034258 crossref_citationtrail_10_1093_brain_aww045 crossref_primary_10_1093_brain_aww045 |
PublicationCentury | 2000 |
PublicationDate | 2016-06-01 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Brain (London, England : 1878) |
PublicationTitleAlternate | Brain |
PublicationYear | 2016 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Breiman (2016070806374414000_139.6.1713.9) 1996; 24 2016070806374414000_139.6.1713.19 Leppik (2016070806374414000_139.6.1713.38) 2011; 52 (Suppl 8) 2016070806374414000_139.6.1713.51 2016070806374414000_139.6.1713.52 2016070806374414000_139.6.1713.53 2016070806374414000_139.6.1713.10 2016070806374414000_139.6.1713.54 2016070806374414000_139.6.1713.11 Kiviranta (2016070806374414000_139.6.1713.32) 2013; 54 2016070806374414000_139.6.1713.55 2016070806374414000_139.6.1713.12 2016070806374414000_139.6.1713.56 2016070806374414000_139.6.1713.13 2016070806374414000_139.6.1713.14 2016070806374414000_139.6.1713.15 2016070806374414000_139.6.1713.16 2016070806374414000_139.6.1713.17 2016070806374414000_139.6.1713.29 Baumgartner (2016070806374414000_139.6.1713.5) 1998; 39 Farnbach (2016070806374414000_139.6.1713.20) 1984; 184 2016070806374414000_139.6.1713.21 2016070806374414000_139.6.1713.23 2016070806374414000_139.6.1713.24 2016070806374414000_139.6.1713.25 2016070806374414000_139.6.1713.26 2016070806374414000_139.6.1713.27 2016070806374414000_139.6.1713.28 Fisher (2016070806374414000_139.6.1713.22) 2000; 1 Platt (2016070806374414000_139.6.1713.50) 1999; 10 2016070806374414000_139.6.1713.30 2016070806374414000_139.6.1713.31 2016070806374414000_139.6.1713.33 2016070806374414000_139.6.1713.34 2016070806374414000_139.6.1713.35 2016070806374414000_139.6.1713.36 2016070806374414000_139.6.1713.37 2016070806374414000_139.6.1713.39 Dowling (2016070806374414000_139.6.1713.18) 1994; 35 2016070806374414000_139.6.1713.40 2016070806374414000_139.6.1713.41 2016070806374414000_139.6.1713.42 2016070806374414000_139.6.1713.4 2016070806374414000_139.6.1713.43 2016070806374414000_139.6.1713.3 2016070806374414000_139.6.1713.44 2016070806374414000_139.6.1713.2 2016070806374414000_139.6.1713.45 2016070806374414000_139.6.1713.1 2016070806374414000_139.6.1713.46 2016070806374414000_139.6.1713.8 2016070806374414000_139.6.1713.47 2016070806374414000_139.6.1713.7 2016070806374414000_139.6.1713.48 2016070806374414000_139.6.1713.6 2016070806374414000_139.6.1713.49 2507304 - Epilepsia. 1989 Sep-Oct;30(5):590-6 21292505 - Seizure. 2011 Jun;20(5):359-68 21967357 - Epilepsia. 2011 Oct;52 Suppl 8:31-4 18036512 - Brain Res. 2008 Jan 10;1188:207-21 4195653 - Electroencephalogr Clin Neurophysiol. 1970 Sep;29(3):306-10 23642342 - Lancet Neurol. 2013 Jun;12(6):563-71 21885253 - Epilepsy Res. 2011 Dec;97(3):243-51 21692794 - Epilepsia. 2011 Oct;52(10):1761-70 12697147 - Epilepsy Behav. 2003 Apr;4(2):198-9; author repyl 199-201 20538873 - Biostatistics. 2010 Jul;11(3):385-8 24936038 - ILAR J. 2014;55(1):182-6 9627329 - J Nucl Med. 1998 Jun;39(6):978-82 27234060 - Brain. 2016 Jun;139(Pt 6):1625-7 18322007 - J Neurophysiol. 2008 May;99(5):2431-42 19837629 - Clin Neurophysiol. 2009 Nov;120(11):1927-40 14744591 - Clin Neurophysiol. 2004 Feb;115(2):477-87 10565573 - Epilepsia. 1999 Nov;40(11):1484-9 12609456 - Epilepsy Behav. 2000 Aug;1(4):S9-S14 4058743 - Neurology. 1985 Nov;35(11):1537-43 23060188 - Nature. 2012 Oct 11;490(7419):187-91 19251759 - Brain. 2009 Apr;132(Pt 4):1013-21 16060722 - PLoS Med. 2005 Aug;2(8):e124 24032479 - J Small Anim Pract. 2013 Oct;54(10):512-20 20808728 - J Stat Softw. 2010;33(1):1-22 25153799 - PLoS One. 2014 Aug 25;9(8):e106026 22295869 - J Vet Intern Med. 2012 Mar-Apr;26(2):341-8 19427545 - J Neurosci Methods. 2009 May 30;180(1):185-92 6725128 - J Am Vet Med Assoc. 1984 May 1;184(9):1117-20 19576849 - Clin Neurophysiol. 2009 Aug;120(8):1465-78 17008335 - Brain. 2007 Feb;130(Pt 2):314-33 23506100 - Epilepsia. 2013 Apr;54(4):571-9 16255282 - Aust Vet J. 2005 Oct;83(10):602-8 10348156 - Acta Neurol Scand. 1999 May;99(5):276-83 18827312 - J Neural Eng. 2008 Dec;5(4):392-401 23962794 - Epilepsy Res. 2013 Oct;106(3):456-60 19889013 - Epilepsia. 2010 Jun;51(6):1069-77 21676591 - Epilepsy Res. 2011 Sep;96(1-2):116-22 26241907 - PLoS One. 2015 Aug 04;10(8):e0133900 25505320 - J Neurosci. 2014 Dec 10;34(50):16671-87 7866967 - Can Vet J. 1994 Nov;35(11):724-5 24657096 - Comput Methods Programs Biomed. 2014 May;114(3):324-36 24416133 - PLoS One. 2014 Jan 08;9(1):e81920 23571845 - Nat Rev Neurosci. 2013 May;14 (5):365-76 19914135 - Lancet Neurol. 2010 Jan;9(1):27-9 17242331 - Neurology. 2007 Jan 23;68(4):262-6 |
References_xml | – ident: 2016070806374414000_139.6.1713.17 doi: 10.1093/biostatistics/kxq028 – ident: 2016070806374414000_139.6.1713.16 doi: 10.1016/j.eplepsyres.2011.05.011 – volume: 10 start-page: 61 year: 1999 ident: 2016070806374414000_139.6.1713.50 article-title: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods publication-title: Adv Large Margin Classifiers – ident: 2016070806374414000_139.6.1713.52 doi: 10.1002/9783527625192.ch1 – ident: 2016070806374414000_139.6.1713.47 doi: 10.1093/ilar/ilu021 – ident: 2016070806374414000_139.6.1713.8 doi: 10.1152/jn.01369.2007 – ident: 2016070806374414000_139.6.1713.15 doi: 10.1016/S1474-4422(13)70075-9 – ident: 2016070806374414000_139.6.1713.10 doi: 10.1016/j.jneumeth.2009.03.022 – ident: 2016070806374414000_139.6.1713.23 doi: 10.1111/j.1467-9868.2005.00503.x – ident: 2016070806374414000_139.6.1713.14 doi: 10.1016/j.eplepsyres.2013.06.007 – volume: 35 start-page: 724 year: 1994 ident: 2016070806374414000_139.6.1713.18 article-title: Management of canine epilepsy with phenobarbital and potassium bromide publication-title: Can Vet J – ident: 2016070806374414000_139.6.1713.27 doi: 10.1016/0167-2789(88)90081-4 – ident: 2016070806374414000_139.6.1713.19 doi: 10.1111/j.1528-1157.1989.tb05477.x – ident: 2016070806374414000_139.6.1713.40 – ident: 2016070806374414000_139.6.1713.53 doi: 10.1088/1741-2560/5/4/004 – volume: 24 start-page: 123 year: 1996 ident: 2016070806374414000_139.6.1713.9 article-title: Bagging predictors publication-title: Mach Learn doi: 10.1007/BF00058655 – volume: 39 start-page: 978 year: 1998 ident: 2016070806374414000_139.6.1713.5 article-title: Preictal SPECT in temporal lobe epilepsy: regional cerebral blood flow is increased prior to electroencephalography-seizure onset publication-title: J Nucl Med – ident: 2016070806374414000_139.6.1713.1 doi: 10.1016/j.brainres.2007.10.048 – ident: 2016070806374414000_139.6.1713.36 doi: 10.1038/nature11556 – ident: 2016070806374414000_139.6.1713.49 doi: 10.1109/CBMS.1995.465426 – ident: 2016070806374414000_139.6.1713.41 doi: 10.1212/WNL.35.11.1537 – ident: 2016070806374414000_139.6.1713.31 doi: 10.1371/journal.pmed.0020124 – ident: 2016070806374414000_139.6.1713.42 doi: 10.1016/j.clinph.2009.09.002 – ident: 2016070806374414000_139.6.1713.51 doi: 10.1111/epi.12138 – ident: 2016070806374414000_139.6.1713.13 doi: 10.1038/nrn3475 – ident: 2016070806374414000_139.6.1713.39 doi: 10.1016/j.seizure.2011.01.003 – ident: 2016070806374414000_139.6.1713.54 doi: 10.1016/j.eplepsyres.2011.07.012 – ident: 2016070806374414000_139.6.1713.43 doi: 10.1093/brain/awl241 – volume: 1 start-page: S9 year: 2000 ident: 2016070806374414000_139.6.1713.22 article-title: Epilepsy from the patient's perspective: review of results of a community-based survey publication-title: Epilepsy Behav doi: 10.1006/ebeh.2000.0107 – volume: 54 start-page: 512 year: 2013 ident: 2016070806374414000_139.6.1713.32 article-title: Topiramate as an add-on antiepileptic drug in treating refractory canine idiopathic epilepsy publication-title: J Small Anim Pract doi: 10.1111/jsap.12130 – ident: 2016070806374414000_139.6.1713.25 doi: 10.1111/j.1751-0813.2005.tb13269.x – ident: 2016070806374414000_139.6.1713.48 doi: 10.1016/S1388-2457(03)00347-X – ident: 2016070806374414000_139.6.1713.3 doi: 10.1016/j.clinph.2009.05.019 – ident: 2016070806374414000_139.6.1713.37 doi: 10.1109/5.726791 – volume: 184 start-page: 1117 year: 1984 ident: 2016070806374414000_139.6.1713.20 article-title: Serum concentrations and efficacy of phenytoin, phenobarbital, and primidone in canine epilepsy publication-title: J Am Vet Med Assoc doi: 10.2460/javma.1984.184.09.1117 – ident: 2016070806374414000_139.6.1713.26 doi: 10.1212/01.wnl.0000252352.26421.13 – ident: 2016070806374414000_139.6.1713.7 doi: 10.1111/j.1600-0404.1999.tb00676.x – ident: 2016070806374414000_139.6.1713.34 doi: 10.1111/j.1528-1167.2009.02397.x – ident: 2016070806374414000_139.6.1713.2 doi: 10.1111/j.1528-1157.1999.tb02030.x – ident: 2016070806374414000_139.6.1713.12 doi: 10.1007/978-1-4612-2544-7_5 – ident: 2016070806374414000_139.6.1713.4 doi: 10.1093/brain/awp017 – volume: 52 (Suppl 8) start-page: 31 year: 2011 ident: 2016070806374414000_139.6.1713.38 article-title: Canine status epilepticus: a translational platform for human therapeutic trials publication-title: Epilepsia doi: 10.1111/j.1528-1167.2011.03231.x – ident: 2016070806374414000_139.6.1713.45 doi: 10.1371/journal.pone.0106026 – ident: 2016070806374414000_139.6.1713.28 doi: 10.1016/0013-4694(70)90143-4 – ident: 2016070806374414000_139.6.1713.29 doi: 10.1037/h0071325 – ident: 2016070806374414000_139.6.1713.56 – ident: 2016070806374414000_139.6.1713.46 doi: 10.1111/j.1528-1167.2011.03138.x – ident: 2016070806374414000_139.6.1713.35 doi: 10.1016/S1474-4422(09)70304-7 – ident: 2016070806374414000_139.6.1713.44 doi: 10.1111/j.1939-1676.2011.00866.x – ident: 2016070806374414000_139.6.1713.6 doi: 10.1016/S1525-5050(02)00686-8 – ident: 2016070806374414000_139.6.1713.55 doi: 10.1016/j.cmpb.2014.02.007 – ident: 2016070806374414000_139.6.1713.11 doi: 10.1371/journal.pone.0133900 – ident: 2016070806374414000_139.6.1713.33 doi: 10.1016/B978-0-12-498150-8.50024-0 – ident: 2016070806374414000_139.6.1713.21 doi: 10.1007/978-1-4899-2124-6 – ident: 2016070806374414000_139.6.1713.24 doi: 10.1523/JNEUROSCI.0584-14.2014 – ident: 2016070806374414000_139.6.1713.30 doi: 10.1371/journal.pone.0081920 – reference: 23506100 - Epilepsia. 2013 Apr;54(4):571-9 – reference: 21885253 - Epilepsy Res. 2011 Dec;97(3):243-51 – reference: 17242331 - Neurology. 2007 Jan 23;68(4):262-6 – reference: 18322007 - J Neurophysiol. 2008 May;99(5):2431-42 – reference: 27234060 - Brain. 2016 Jun;139(Pt 6):1625-7 – reference: 25505320 - J Neurosci. 2014 Dec 10;34(50):16671-87 – reference: 12609456 - Epilepsy Behav. 2000 Aug;1(4):S9-S14 – reference: 18827312 - J Neural Eng. 2008 Dec;5(4):392-401 – reference: 19427545 - J Neurosci Methods. 2009 May 30;180(1):185-92 – reference: 16060722 - PLoS Med. 2005 Aug;2(8):e124 – reference: 24032479 - J Small Anim Pract. 2013 Oct;54(10):512-20 – reference: 22295869 - J Vet Intern Med. 2012 Mar-Apr;26(2):341-8 – reference: 24416133 - PLoS One. 2014 Jan 08;9(1):e81920 – reference: 21967357 - Epilepsia. 2011 Oct;52 Suppl 8:31-4 – reference: 21692794 - Epilepsia. 2011 Oct;52(10):1761-70 – reference: 23060188 - Nature. 2012 Oct 11;490(7419):187-91 – reference: 7866967 - Can Vet J. 1994 Nov;35(11):724-5 – reference: 18036512 - Brain Res. 2008 Jan 10;1188:207-21 – reference: 23571845 - Nat Rev Neurosci. 2013 May;14 (5):365-76 – reference: 2507304 - Epilepsia. 1989 Sep-Oct;30(5):590-6 – reference: 23962794 - Epilepsy Res. 2013 Oct;106(3):456-60 – reference: 24657096 - Comput Methods Programs Biomed. 2014 May;114(3):324-36 – reference: 21676591 - Epilepsy Res. 2011 Sep;96(1-2):116-22 – reference: 26241907 - PLoS One. 2015 Aug 04;10(8):e0133900 – reference: 23642342 - Lancet Neurol. 2013 Jun;12(6):563-71 – reference: 19889013 - Epilepsia. 2010 Jun;51(6):1069-77 – reference: 10348156 - Acta Neurol Scand. 1999 May;99(5):276-83 – reference: 17008335 - Brain. 2007 Feb;130(Pt 2):314-33 – reference: 21292505 - Seizure. 2011 Jun;20(5):359-68 – reference: 19251759 - Brain. 2009 Apr;132(Pt 4):1013-21 – reference: 10565573 - Epilepsia. 1999 Nov;40(11):1484-9 – reference: 6725128 - J Am Vet Med Assoc. 1984 May 1;184(9):1117-20 – reference: 9627329 - J Nucl Med. 1998 Jun;39(6):978-82 – reference: 4195653 - Electroencephalogr Clin Neurophysiol. 1970 Sep;29(3):306-10 – reference: 12697147 - Epilepsy Behav. 2003 Apr;4(2):198-9; author repyl 199-201 – reference: 20538873 - Biostatistics. 2010 Jul;11(3):385-8 – reference: 25153799 - PLoS One. 2014 Aug 25;9(8):e106026 – reference: 19837629 - Clin Neurophysiol. 2009 Nov;120(11):1927-40 – reference: 19576849 - Clin Neurophysiol. 2009 Aug;120(8):1465-78 – reference: 24936038 - ILAR J. 2014;55(1):182-6 – reference: 16255282 - Aust Vet J. 2005 Oct;83(10):602-8 – reference: 19914135 - Lancet Neurol. 2010 Jan;9(1):27-9 – reference: 4058743 - Neurology. 1985 Nov;35(11):1537-43 – reference: 14744591 - Clin Neurophysiol. 2004 Feb;115(2):477-87 – reference: 20808728 - J Stat Softw. 2010;33(1):1-22 |
SSID | ssj0014326 |
Score | 2.6004555 |
Snippet | SEE MORMANN AND ANDRZEJAK DOI101093/BRAIN/AWW091 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE : Accurate forecasting of epileptic seizures has the potential to... See Mormann and Andrzejak (doi:10.1093/brain/aww091) for a scientific commentary on this article. Seizures are thought to arise from an identifiable pre-ictal... See Mormann and Andrzejak (doi: 10.1093/brain/aww091 ) for a scientific commentary on this article. Seizures are thought to arise from an identifiable... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1713 |
SubjectTerms | Aged Algorithms Animals Crowdsourcing Dogs Early Diagnosis Electrodes, Implanted Electroencephalography Epilepsy - diagnosis Female Forecasting - methods Humans Middle Aged Monitoring, Physiologic - methods Original Seizures - diagnosis |
Title | Crowdsourcing reproducible seizure forecasting in human and canine epilepsy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27034258 https://www.proquest.com/docview/1793216898 https://www.proquest.com/docview/1808611048 https://pubmed.ncbi.nlm.nih.gov/PMC5022671 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAviDtjgIwETyhd4ji289gNprFpPG3S3iLbcUWnLa2aVJP2I_jNO74kTUZBAymKosRuk5yT43P9DkKfmGS5ziWN5DSWYKAIOAJrOcrpNElVXIrS9To8-cEOz-jReXY-Gv3qZS2tGjXWNxvrSv6HqnAO6GqrZP-Bst2Pwgk4BvrCHigM-3vReB9s6NK5363Bb_EpLXzrzBZD1WZ2Y2MDoJMaLesmlK74lnyulk1WVsE0CxALi3oY3LVtIzb2-vAOBMFFz4GwtwRz9ir0Wt4z1YW8svhZ47WrHu5f-jzuo_m87vJsJraNmZN5y3V0YmL7g9Wtq-fSZ1i3bomErdOnOlHLIpF7VNmx8dKVsjgCHYMNxK8HMwp81hemCfdlqmFhBlWLbBT6HhBLLZ0r5UBeX8ceoXKIrn1n1etyEX0UPi3c_MLPfoAeEjA7bEeMr9-Pu6gUTV37vu7RQiEFzN51s3f97KGK85vdcjf9tqfPnD5FT4Ihgieeq56hkameo0cnIdXiBToeMBfuMxcOzIV7zIVnFXbMhYFNsGcu3DLXS3R28O10_zAKnTciTWnWRMqAFq-lNiSBLzcmmpQcNknKNAV1hsOiJBOQ3aKkWqXTkpFYKmHR_rg2OU3TV2irmlfmDcI8hdWU8FwxkANMM2DRmOSaKiUZkzrbRl_al1XoAEtvu6NcFpsIs40-d6MXHo7lD-M-tu-9AHlpg2CyMvNVXdgFiSRM5OIvYwQY-qAXUxjz2tOq-zfCLWhmBlf4gIrdAIvXPrxSzX463PYM9GXGk7f3fIYd9Hj9Yb1DW81yZd6DBtyoD44tbwHj3LYb |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crowdsourcing+reproducible+seizure+forecasting+in+human+and+canine+epilepsy&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Brinkmann%2C+Benjamin+H.&rft.au=Wagenaar%2C+Joost&rft.au=Abbot%2C+Drew&rft.au=Adkins%2C+Phillip&rft.date=2016-06-01&rft.issn=0006-8950&rft.eissn=1460-2156&rft.volume=139&rft.issue=6&rft.spage=1713&rft.epage=1722&rft_id=info:doi/10.1093%2Fbrain%2Faww045&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_brain_aww045 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon |