Crowdsourcing reproducible seizure forecasting in human and canine epilepsy

SEE MORMANN AND ANDRZEJAK DOI101093/BRAIN/AWW091 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE  : Accurate forecasting of epileptic seizures has the potential to transform clinical epilepsy care. However, progress toward reliable seizure forecasting has been hampered by lack of open access to long dur...

Full description

Saved in:
Bibliographic Details
Published inBrain (London, England : 1878) Vol. 139; no. 6; pp. 1713 - 1722
Main Authors Brinkmann, Benjamin H., Wagenaar, Joost, Abbot, Drew, Adkins, Phillip, Bosshard, Simone C., Chen, Min, Tieng, Quang M., He, Jialune, Muñoz-Almaraz, F. J., Botella-Rocamora, Paloma, Pardo, Juan, Zamora-Martinez, Francisco, Hills, Michael, Wu, Wei, Korshunova, Iryna, Cukierski, Will, Vite, Charles, Patterson, Edward E., Litt, Brian, Worrell, Gregory A.
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SEE MORMANN AND ANDRZEJAK DOI101093/BRAIN/AWW091 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE  : Accurate forecasting of epileptic seizures has the potential to transform clinical epilepsy care. However, progress toward reliable seizure forecasting has been hampered by lack of open access to long duration recordings with an adequate number of seizures for investigators to rigorously compare algorithms and results. A seizure forecasting competition was conducted on kaggle.com using open access chronic ambulatory intracranial electroencephalography from five canines with naturally occurring epilepsy and two humans undergoing prolonged wide bandwidth intracranial electroencephalographic monitoring. Data were provided to participants as 10-min interictal and preictal clips, with approximately half of the 60 GB data bundle labelled (interictal/preictal) for algorithm training and half unlabelled for evaluation. The contestants developed custom algorithms and uploaded their classifications (interictal/preictal) for the unknown testing data, and a randomly selected 40% of data segments were scored and results broadcasted on a public leader board. The contest ran from August to November 2014, and 654 participants submitted 17 856 classifications of the unlabelled test data. The top performing entry scored 0.84 area under the classification curve. Following the contest, additional held-out unlabelled data clips were provided to the top 10 participants and they submitted classifications for the new unseen data. The resulting area under the classification curves were well above chance forecasting, but did show a mean 6.54 ± 2.45% (min, max: 0.30, 20.2) decline in performance. The kaggle.com model using open access data and algorithms generated reproducible research that advanced seizure forecasting. The overall performance from multiple contestants on unseen data was better than a random predictor, and demonstrates the feasibility of seizure forecasting in canine and human epilepsy.media-1vid110.1093/brain/aww045_video_abstractaww045_video_abstract.
AbstractList See Mormann and Andrzejak (doi: 10.1093/brain/aww091 ) for a scientific commentary on this article.   Seizures are thought to arise from an identifiable pre-ictal state. Brinkmann et al . report the results of an online, open-access seizure forecasting competition using intracranial EEG recordings from canines with naturally occurring epilepsy and human patients undergoing presurgical monitoring. The winning algorithms forecast seizures at rates significantly greater than chance. See Mormann and Andrzejak (doi: 10.1093/brain/aww091 ) for a scientific commentary on this article.   Seizures are thought to arise from an identifiable pre-ictal state. Brinkmann et al . report the results of an online, open-access seizure forecasting competition using intracranial EEG recordings from canines with naturally occurring epilepsy and human patients undergoing presurgical monitoring. The winning algorithms forecast seizures at rates significantly greater than chance. See Mormann and Andrzejak (doi: 10.1093/brain/aww091 ) for a scientific commentary on this article.   Accurate forecasting of epileptic seizures has the potential to transform clinical epilepsy care. However, progress toward reliable seizure forecasting has been hampered by lack of open access to long duration recordings with an adequate number of seizures for investigators to rigorously compare algorithms and results. A seizure forecasting competition was conducted on kaggle.com using open access chronic ambulatory intracranial electroencephalography from five canines with naturally occurring epilepsy and two humans undergoing prolonged wide bandwidth intracranial electroencephalographic monitoring. Data were provided to participants as 10-min interictal and preictal clips, with approximately half of the 60 GB data bundle labelled (interictal/preictal) for algorithm training and half unlabelled for evaluation. The contestants developed custom algorithms and uploaded their classifications (interictal/preictal) for the unknown testing data, and a randomly selected 40% of data segments were scored and results broadcasted on a public leader board. The contest ran from August to November 2014, and 654 participants submitted 17 856 classifications of the unlabelled test data. The top performing entry scored 0.84 area under the classification curve. Following the contest, additional held-out unlabelled data clips were provided to the top 10 participants and they submitted classifications for the new unseen data. The resulting area under the classification curves were well above chance forecasting, but did show a mean 6.54 ± 2.45% (min, max: 0.30, 20.2) decline in performance. The kaggle.com model using open access data and algorithms generated reproducible research that advanced seizure forecasting. The overall performance from multiple contestants on unseen data was better than a random predictor, and demonstrates the feasibility of seizure forecasting in canine and human epilepsy.
SEE MORMANN AND ANDRZEJAK DOI101093/BRAIN/AWW091 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE  : Accurate forecasting of epileptic seizures has the potential to transform clinical epilepsy care. However, progress toward reliable seizure forecasting has been hampered by lack of open access to long duration recordings with an adequate number of seizures for investigators to rigorously compare algorithms and results. A seizure forecasting competition was conducted on kaggle.com using open access chronic ambulatory intracranial electroencephalography from five canines with naturally occurring epilepsy and two humans undergoing prolonged wide bandwidth intracranial electroencephalographic monitoring. Data were provided to participants as 10-min interictal and preictal clips, with approximately half of the 60 GB data bundle labelled (interictal/preictal) for algorithm training and half unlabelled for evaluation. The contestants developed custom algorithms and uploaded their classifications (interictal/preictal) for the unknown testing data, and a randomly selected 40% of data segments were scored and results broadcasted on a public leader board. The contest ran from August to November 2014, and 654 participants submitted 17 856 classifications of the unlabelled test data. The top performing entry scored 0.84 area under the classification curve. Following the contest, additional held-out unlabelled data clips were provided to the top 10 participants and they submitted classifications for the new unseen data. The resulting area under the classification curves were well above chance forecasting, but did show a mean 6.54 ± 2.45% (min, max: 0.30, 20.2) decline in performance. The kaggle.com model using open access data and algorithms generated reproducible research that advanced seizure forecasting. The overall performance from multiple contestants on unseen data was better than a random predictor, and demonstrates the feasibility of seizure forecasting in canine and human epilepsy.media-1vid110.1093/brain/aww045_video_abstractaww045_video_abstract.
See Mormann and Andrzejak (doi:10.1093/brain/aww091) for a scientific commentary on this article. Seizures are thought to arise from an identifiable pre-ictal state. Brinkmann et al. report the results of an online, open-access seizure forecasting competition using intracranial EEG recordings from canines with naturally occurring epilepsy and human patients undergoing presurgical monitoring. The winning algorithms forecast seizures at rates significantly greater than chance.See Mormann and Andrzejak (doi:10.1093/brain/aww091) for a scientific commentary on this article. Seizures are thought to arise from an identifiable pre-ictal state. Brinkmann et al. report the results of an online, open-access seizure forecasting competition using intracranial EEG recordings from canines with naturally occurring epilepsy and human patients undergoing presurgical monitoring. The winning algorithms forecast seizures at rates significantly greater than chance. See Mormann and Andrzejak (doi:10.1093/brain/aww091) for a scientific commentary on this article. Accurate forecasting of epileptic seizures has the potential to transform clinical epilepsy care. However, progress toward reliable seizure forecasting has been hampered by lack of open access to long duration recordings with an adequate number of seizures for investigators to rigorously compare algorithms and results. A seizure forecasting competition was conducted on kaggle.com using open access chronic ambulatory intracranial electroencephalography from five canines with naturally occurring epilepsy and two humans undergoing prolonged wide bandwidth intracranial electroencephalographic monitoring. Data were provided to participants as 10-min interictal and preictal clips, with approximately half of the 60 GB data bundle labelled (interictal/preictal) for algorithm training and half unlabelled for evaluation. The contestants developed custom algorithms and uploaded their classifications (interictal/preictal) for the unknown testing data, and a randomly selected 40% of data segments were scored and results broadcasted on a public leader board. The contest ran from August to November 2014, and 654 participants submitted 17 856 classifications of the unlabelled test data. The top performing entry scored 0.84 area under the classification curve. Following the contest, additional held-out unlabelled data clips were provided to the top 10 participants and they submitted classifications for the new unseen data. The resulting area under the classification curves were well above chance forecasting, but did show a mean 6.54 plus or minus 2.45% (min, max: 0.30, 20.2) decline in performance. The kaggle.com model using open access data and algorithms generated reproducible research that advanced seizure forecasting. The overall performance from multiple contestants on unseen data was better than a random predictor, and demonstrates the feasibility of seizure forecasting in canine and human epilepsy.10.1093/brain/aww045_video_abstract aww045_video_abstract
Author Brinkmann, Benjamin H.
Wagenaar, Joost
Tieng, Quang M.
Hills, Michael
Worrell, Gregory A.
Vite, Charles
Litt, Brian
Patterson, Edward E.
Wu, Wei
He, Jialune
Zamora-Martinez, Francisco
Botella-Rocamora, Paloma
Pardo, Juan
Bosshard, Simone C.
Abbot, Drew
Adkins, Phillip
Korshunova, Iryna
Chen, Min
Muñoz-Almaraz, F. J.
Cukierski, Will
Author_xml – sequence: 1
  givenname: Benjamin H.
  surname: Brinkmann
  fullname: Brinkmann, Benjamin H.
– sequence: 2
  givenname: Joost
  surname: Wagenaar
  fullname: Wagenaar, Joost
– sequence: 3
  givenname: Drew
  surname: Abbot
  fullname: Abbot, Drew
– sequence: 4
  givenname: Phillip
  surname: Adkins
  fullname: Adkins, Phillip
– sequence: 5
  givenname: Simone C.
  surname: Bosshard
  fullname: Bosshard, Simone C.
– sequence: 6
  givenname: Min
  surname: Chen
  fullname: Chen, Min
– sequence: 7
  givenname: Quang M.
  surname: Tieng
  fullname: Tieng, Quang M.
– sequence: 8
  givenname: Jialune
  surname: He
  fullname: He, Jialune
– sequence: 9
  givenname: F. J.
  surname: Muñoz-Almaraz
  fullname: Muñoz-Almaraz, F. J.
– sequence: 10
  givenname: Paloma
  surname: Botella-Rocamora
  fullname: Botella-Rocamora, Paloma
– sequence: 11
  givenname: Juan
  surname: Pardo
  fullname: Pardo, Juan
– sequence: 12
  givenname: Francisco
  surname: Zamora-Martinez
  fullname: Zamora-Martinez, Francisco
– sequence: 13
  givenname: Michael
  surname: Hills
  fullname: Hills, Michael
– sequence: 14
  givenname: Wei
  surname: Wu
  fullname: Wu, Wei
– sequence: 15
  givenname: Iryna
  surname: Korshunova
  fullname: Korshunova, Iryna
– sequence: 16
  givenname: Will
  surname: Cukierski
  fullname: Cukierski, Will
– sequence: 17
  givenname: Charles
  surname: Vite
  fullname: Vite, Charles
– sequence: 18
  givenname: Edward E.
  surname: Patterson
  fullname: Patterson, Edward E.
– sequence: 19
  givenname: Brian
  surname: Litt
  fullname: Litt, Brian
– sequence: 20
  givenname: Gregory A.
  surname: Worrell
  fullname: Worrell, Gregory A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27034258$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1rFEEQxRuJmE305lnm6MEx1d89F0EWvzDgRc9NTU9t0jLbPXbPZIl_vbtuIiqCUFCH-r3Ho94ZO0k5EWNPObzk0MmLvmBMF7jbgdIP2IorA63g2pywFQCY1nUaTtlZrV8BuJLCPGKnwoJUQrsV-7gueTfUvJQQ01VTaCp5WELsR2oqxe9LoWaTCwWs8wGIqbletpgaTEMTMMVEDU1xpKnePmYPNzhWenK3z9mXt28-r9-3l5_efVi_vmyDUnpue9JWBwwkOFoDIojB7gfFIKVT1lojkfPOuEGFXm4GIwB7x7XqbKBOSXnOXh19p6Xf0hAozQVHP5W4xXLrM0b_5yXFa3-Vb7wGIYzle4PndwYlf1uozn4ba6BxxER5qZ47cIZzUO7_qO2k4MZ1B_TZ77F-5bl_9h4QRyCUXGuhjQ9xxjnmQ8o4eg7-0Kj_2ag_NroXvfhLdO_7T_wHo6mmIA
CitedBy_id crossref_primary_10_1016_j_nbd_2023_105999
crossref_primary_10_1088_1741_2552_aced21
crossref_primary_10_1111_epi_16555
crossref_primary_10_1109_TNSRE_2023_3260845
crossref_primary_10_1111_epi_17406
crossref_primary_10_3389_fneur_2021_704170
crossref_primary_10_1016_j_engappai_2023_106401
crossref_primary_10_1016_j_ebiom_2018_01_006
crossref_primary_10_1109_TBME_2017_2700086
crossref_primary_10_1088_1741_2552_ab094a
crossref_primary_10_1007_s10309_024_00709_1
crossref_primary_10_1007_s13311_018_00682_4
crossref_primary_10_1109_JSEN_2024_3401771
crossref_primary_10_1109_TBME_2017_2752081
crossref_primary_10_1063_5_0214733
crossref_primary_10_1186_s12911_018_0693_8
crossref_primary_10_1080_21507740_2020_1740352
crossref_primary_10_1097_WNP_0000000000000819
crossref_primary_10_1111_epi_16719
crossref_primary_10_3390_s18061720
crossref_primary_10_1016_j_knosys_2023_110661
crossref_primary_10_1109_TBCAS_2024_3456825
crossref_primary_10_1016_j_eswa_2024_126286
crossref_primary_10_1016_j_seizure_2020_03_010
crossref_primary_10_1038_s41582_018_0055_2
crossref_primary_10_3389_fncir_2021_784085
crossref_primary_10_1016_j_jclinepi_2019_02_007
crossref_primary_10_1111_epi_16541
crossref_primary_10_1109_TNSRE_2022_3217929
crossref_primary_10_3389_fnins_2024_1340164
crossref_primary_10_1088_1741_2552_ab909d
crossref_primary_10_1016_j_measurement_2022_112278
crossref_primary_10_1109_TII_2023_3297323
crossref_primary_10_3389_fneur_2021_690404
crossref_primary_10_1186_s40779_025_00598_z
crossref_primary_10_1590_0102_311x00164017
crossref_primary_10_1109_TFUZZ_2024_3363623
crossref_primary_10_3390_biomedicines10071551
crossref_primary_10_3389_fninf_2017_00043
crossref_primary_10_1109_JSEN_2023_3307223
crossref_primary_10_1016_j_inffus_2024_102697
crossref_primary_10_3389_fnins_2021_825434
crossref_primary_10_3389_fneur_2021_717428
crossref_primary_10_1016_j_yebeh_2023_109415
crossref_primary_10_1016_j_ebiom_2017_11_032
crossref_primary_10_1111_epi_16418
crossref_primary_10_3389_fvets_2022_928009
crossref_primary_10_1016_j_jneumeth_2019_108395
crossref_primary_10_1080_17434440_2021_1994388
crossref_primary_10_1038_s41582_024_00965_9
crossref_primary_10_1016_j_yebeh_2018_06_018
crossref_primary_10_1016_j_bspc_2022_104449
crossref_primary_10_1155_2018_1638097
crossref_primary_10_1016_j_mejo_2023_105810
crossref_primary_10_1109_ACCESS_2024_3447901
crossref_primary_10_1016_j_eplepsyres_2024_107474
crossref_primary_10_1093_brain_awx098
crossref_primary_10_1212_WNL_0000000000006548
crossref_primary_10_1016_S1474_4422_20_30396_3
crossref_primary_10_1088_1741_2552_ac7256
crossref_primary_10_3389_fphy_2021_811681
crossref_primary_10_1111_epi_16485
crossref_primary_10_3389_fvets_2022_889561
crossref_primary_10_1016_j_neuroimage_2018_11_052
crossref_primary_10_3389_fpsyt_2022_1011296
crossref_primary_10_1109_TIM_2023_3334330
crossref_primary_10_1016_j_clinph_2024_09_017
crossref_primary_10_1109_TCDS_2021_3100270
crossref_primary_10_1002_iid3_608
crossref_primary_10_57197_JDR_2024_0101
crossref_primary_10_1016_j_neunet_2018_04_018
crossref_primary_10_1016_j_jiixd_2024_01_003
crossref_primary_10_1016_j_yebeh_2022_108806
crossref_primary_10_1007_s11831_023_09920_1
crossref_primary_10_1007_s41666_024_00160_x
crossref_primary_10_1093_brain_awy210
crossref_primary_10_1007_s12031_022_02006_w
crossref_primary_10_3390_s18061698
crossref_primary_10_1109_ACCESS_2019_2955285
crossref_primary_10_1038_s41467_017_02577_y
crossref_primary_10_1007_s11892_017_0940_x
crossref_primary_10_1109_TBME_2016_2586475
crossref_primary_10_1093_jamiaopen_ooab009
crossref_primary_10_1097_WCO_0000000000000429
crossref_primary_10_3389_fncom_2022_1059565
crossref_primary_10_1142_S0129065721500581
crossref_primary_10_3389_fneur_2021_740743
crossref_primary_10_1016_j_yebeh_2024_109876
crossref_primary_10_1155_2022_1573076
crossref_primary_10_1109_TKDE_2018_2865778
crossref_primary_10_1016_j_bbe_2018_11_007
crossref_primary_10_1142_S0129065721500222
crossref_primary_10_1111_epi_17044
crossref_primary_10_1038_s41582_021_00464_1
crossref_primary_10_1038_s41598_021_81884_3
crossref_primary_10_1142_S0129065723500120
crossref_primary_10_1109_JBHI_2024_3438829
crossref_primary_10_1631_jzus_B2400103
crossref_primary_10_1016_j_bspc_2019_101743
crossref_primary_10_1109_JTEHM_2018_2869398
crossref_primary_10_1109_TCDS_2022_3212019
crossref_primary_10_1088_1741_2552_abdd43
crossref_primary_10_5698_1535_7511_16_3_192
crossref_primary_10_1088_1741_2552_aae5ab
crossref_primary_10_1016_j_clinph_2021_09_022
crossref_primary_10_1088_1741_2552_aa5688
crossref_primary_10_1266_ggs_19_00034
crossref_primary_10_1051_epjnbp_2017001
crossref_primary_10_3389_fnhum_2020_612899
crossref_primary_10_3389_fvets_2022_1014269
crossref_primary_10_1016_j_neunet_2021_03_008
crossref_primary_10_1371_journal_pone_0178808
crossref_primary_10_2196_42723
crossref_primary_10_1371_journal_pbio_2002580
crossref_primary_10_1109_TBCAS_2018_2880148
crossref_primary_10_1016_j_cobme_2017_09_006
crossref_primary_10_1088_1741_2552_ab172d
crossref_primary_10_1109_LSENS_2023_3330327
crossref_primary_10_1016_j_yebeh_2019_106457
crossref_primary_10_1111_epi_17833
crossref_primary_10_3389_fnins_2024_1470640
crossref_primary_10_1016_j_neuroscience_2021_11_017
crossref_primary_10_1007_s11571_023_10026_4
crossref_primary_10_1002_epi4_12704
crossref_primary_10_1016_j_yebeh_2020_107189
crossref_primary_10_1111_epi_17311
crossref_primary_10_1016_j_measurement_2022_111948
crossref_primary_10_1016_j_eplepsyres_2017_06_011
crossref_primary_10_1109_TBME_2017_2785401
crossref_primary_10_1371_journal_pone_0211847
crossref_primary_10_1371_journal_pcbi_1008773
crossref_primary_10_1016_j_bspc_2021_102957
crossref_primary_10_3389_fnins_2017_00734
crossref_primary_10_1002_epi4_13073
crossref_primary_10_1155_2024_8835396
crossref_primary_10_3389_fnins_2024_1468967
crossref_primary_10_1109_OJCAS_2022_3163075
crossref_primary_10_3389_frsip_2023_1175305
crossref_primary_10_1109_TNB_2023_3275037
crossref_primary_10_1109_TBME_2021_3095848
crossref_primary_10_1142_S0129065721500489
crossref_primary_10_1016_j_neunet_2020_04_022
crossref_primary_10_1016_j_neuropharm_2019_107898
crossref_primary_10_1142_S0129065716500465
crossref_primary_10_1093_brain_aww091
crossref_primary_10_3389_fphys_2018_01767
crossref_primary_10_1093_brain_awx173
crossref_primary_10_1016_j_bspc_2022_103555
crossref_primary_10_1038_s41598_021_01449_2
crossref_primary_10_1007_s11571_021_09773_z
crossref_primary_10_1016_j_bspc_2017_02_008
crossref_primary_10_1016_j_pneurobio_2019_01_008
crossref_primary_10_1109_TIM_2023_3261919
crossref_primary_10_1007_s12652_018_1000_3
crossref_primary_10_1093_brain_awac375
crossref_primary_10_1016_j_yebeh_2019_106556
crossref_primary_10_1111_epi_17415
crossref_primary_10_3389_fnins_2022_982541
crossref_primary_10_1109_TNSRE_2023_3346955
crossref_primary_10_3390_s19020219
crossref_primary_10_1111_epi_17252
crossref_primary_10_1016_j_bbe_2020_02_002
crossref_primary_10_1212_WNL_0000000000012570
crossref_primary_10_1016_j_yebeh_2019_04_018
crossref_primary_10_1016_j_jneumeth_2022_109557
crossref_primary_10_1093_braincomms_fcac115
crossref_primary_10_1016_j_ymeth_2021_07_006
crossref_primary_10_1109_TNSRE_2022_3180155
Cites_doi 10.1093/biostatistics/kxq028
10.1016/j.eplepsyres.2011.05.011
10.1002/9783527625192.ch1
10.1093/ilar/ilu021
10.1152/jn.01369.2007
10.1016/S1474-4422(13)70075-9
10.1016/j.jneumeth.2009.03.022
10.1111/j.1467-9868.2005.00503.x
10.1016/j.eplepsyres.2013.06.007
10.1016/0167-2789(88)90081-4
10.1111/j.1528-1157.1989.tb05477.x
10.1088/1741-2560/5/4/004
10.1007/BF00058655
10.1016/j.brainres.2007.10.048
10.1038/nature11556
10.1109/CBMS.1995.465426
10.1212/WNL.35.11.1537
10.1371/journal.pmed.0020124
10.1016/j.clinph.2009.09.002
10.1111/epi.12138
10.1038/nrn3475
10.1016/j.seizure.2011.01.003
10.1016/j.eplepsyres.2011.07.012
10.1093/brain/awl241
10.1006/ebeh.2000.0107
10.1111/jsap.12130
10.1111/j.1751-0813.2005.tb13269.x
10.1016/S1388-2457(03)00347-X
10.1016/j.clinph.2009.05.019
10.1109/5.726791
10.2460/javma.1984.184.09.1117
10.1212/01.wnl.0000252352.26421.13
10.1111/j.1600-0404.1999.tb00676.x
10.1111/j.1528-1167.2009.02397.x
10.1111/j.1528-1157.1999.tb02030.x
10.1007/978-1-4612-2544-7_5
10.1093/brain/awp017
10.1111/j.1528-1167.2011.03231.x
10.1371/journal.pone.0106026
10.1016/0013-4694(70)90143-4
10.1037/h0071325
10.1111/j.1528-1167.2011.03138.x
10.1016/S1474-4422(09)70304-7
10.1111/j.1939-1676.2011.00866.x
10.1016/S1525-5050(02)00686-8
10.1016/j.cmpb.2014.02.007
10.1371/journal.pone.0133900
10.1016/B978-0-12-498150-8.50024-0
10.1007/978-1-4899-2124-6
10.1523/JNEUROSCI.0584-14.2014
10.1371/journal.pone.0081920
ContentType Journal Article
Copyright The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.
The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. 2016
Copyright_xml – notice: The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.
– notice: The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1093/brain/aww045
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList
MEDLINE - Academic
Neurosciences Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1460-2156
EndPage 1722
ExternalDocumentID PMC5022671
27034258
10_1093_brain_aww045
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS092882
– fundername: NINDS NIH HHS
  grantid: U24 NS063930
– fundername: NIEHS NIH HHS
  grantid: K01 ES025436
– fundername: NINDS NIH HHS
  grantid: UH2 NS095495
GroupedDBID ---
-E4
-~X
.2P
.55
.GJ
.I3
.XZ
.ZR
0R~
1CY
1TH
23N
2WC
354
3O-
4.4
41~
482
48X
53G
5GY
5RE
5VS
5WA
5WD
6PF
70D
AABZA
AACZT
AAGKA
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPGJ
AAPNW
AAPQZ
AAPXW
AAQQT
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
AAWTL
AAYJJ
AAYXX
ABDFA
ABDPE
ABEJV
ABEUO
ABGNP
ABIME
ABIVO
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNGD
ABNHQ
ABNKS
ABPIB
ABPQP
ABPTD
ABQLI
ABQNK
ABSMQ
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ABZEO
ACBNA
ACFRR
ACGFS
ACIWK
ACPQN
ACPRK
ACUFI
ACUKT
ACUTJ
ACUTO
ACVCV
ACYHN
ACZBC
ADBBV
ADEYI
ADEZT
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADMTO
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEHUL
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFQV
AFFZL
AFGWE
AFIYH
AFOFC
AFSHK
AFXAL
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGORE
AGQPQ
AGQXC
AGSYK
AGUTN
AHGBF
AHMBA
AHMMS
AHXPO
AI.
AIJHB
AJBYB
AJDVS
AJEEA
AJNCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
ANFBD
APIBT
APJGH
APWMN
AQDSO
AQKUS
ARIXL
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVNTJ
AVWKF
AXUDD
AYOIW
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BR6
BSWAC
BTRTY
BVRKM
BZKNY
C1A
C45
CAG
CDBKE
CITATION
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EIHJH
EJD
ELUNK
EMOBN
ENERS
F5P
F9B
FECEO
FEDTE
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
J5H
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
MBLQV
MBTAY
MHKGH
ML0
MVM
N4W
N9A
NGC
NLBLG
NOMLY
NOYVH
NTWIH
NU-
NVLIB
O0~
O9-
OAUYM
OAWHX
OBFPC
OBOKY
OCZFY
ODMLO
OHH
OHT
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
TCN
TCURE
TEORI
TJX
TLC
TMA
TR2
VH1
VVN
W8F
WH7
WOQ
X7H
X7M
XJT
XOL
YAYTL
YKOAZ
YQJ
YSK
YXANX
ZCG
ZGI
ZKB
ZKX
ZXP
~91
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
ID FETCH-LOGICAL-c445t-be575cace21a7602c2d72d7a2d338477763a11968d4cb3fd620ab815497ce9433
ISSN 0006-8950
IngestDate Thu Aug 21 18:33:31 EDT 2025
Fri Jul 11 00:42:02 EDT 2025
Thu Jul 10 18:16:20 EDT 2025
Mon Jul 21 06:04:52 EDT 2025
Thu Apr 24 22:59:55 EDT 2025
Thu Jul 03 08:28:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords epilepsy
experimental models
refractory epilepsy
intracranial EEG
Language English
License The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c445t-be575cace21a7602c2d72d7a2d338477763a11968d4cb3fd620ab815497ce9433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
See Mormann and Andrzejak (doi:10.1093/brain/aww091) for a scientific commentary on this article.
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5022671
PMID 27034258
PQID 1793216898
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5022671
proquest_miscellaneous_1808611048
proquest_miscellaneous_1793216898
pubmed_primary_27034258
crossref_citationtrail_10_1093_brain_aww045
crossref_primary_10_1093_brain_aww045
PublicationCentury 2000
PublicationDate 2016-06-01
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Brain (London, England : 1878)
PublicationTitleAlternate Brain
PublicationYear 2016
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Breiman (2016070806374414000_139.6.1713.9) 1996; 24
2016070806374414000_139.6.1713.19
Leppik (2016070806374414000_139.6.1713.38) 2011; 52 (Suppl 8)
2016070806374414000_139.6.1713.51
2016070806374414000_139.6.1713.52
2016070806374414000_139.6.1713.53
2016070806374414000_139.6.1713.10
2016070806374414000_139.6.1713.54
2016070806374414000_139.6.1713.11
Kiviranta (2016070806374414000_139.6.1713.32) 2013; 54
2016070806374414000_139.6.1713.55
2016070806374414000_139.6.1713.12
2016070806374414000_139.6.1713.56
2016070806374414000_139.6.1713.13
2016070806374414000_139.6.1713.14
2016070806374414000_139.6.1713.15
2016070806374414000_139.6.1713.16
2016070806374414000_139.6.1713.17
2016070806374414000_139.6.1713.29
Baumgartner (2016070806374414000_139.6.1713.5) 1998; 39
Farnbach (2016070806374414000_139.6.1713.20) 1984; 184
2016070806374414000_139.6.1713.21
2016070806374414000_139.6.1713.23
2016070806374414000_139.6.1713.24
2016070806374414000_139.6.1713.25
2016070806374414000_139.6.1713.26
2016070806374414000_139.6.1713.27
2016070806374414000_139.6.1713.28
Fisher (2016070806374414000_139.6.1713.22) 2000; 1
Platt (2016070806374414000_139.6.1713.50) 1999; 10
2016070806374414000_139.6.1713.30
2016070806374414000_139.6.1713.31
2016070806374414000_139.6.1713.33
2016070806374414000_139.6.1713.34
2016070806374414000_139.6.1713.35
2016070806374414000_139.6.1713.36
2016070806374414000_139.6.1713.37
2016070806374414000_139.6.1713.39
Dowling (2016070806374414000_139.6.1713.18) 1994; 35
2016070806374414000_139.6.1713.40
2016070806374414000_139.6.1713.41
2016070806374414000_139.6.1713.42
2016070806374414000_139.6.1713.4
2016070806374414000_139.6.1713.43
2016070806374414000_139.6.1713.3
2016070806374414000_139.6.1713.44
2016070806374414000_139.6.1713.2
2016070806374414000_139.6.1713.45
2016070806374414000_139.6.1713.1
2016070806374414000_139.6.1713.46
2016070806374414000_139.6.1713.8
2016070806374414000_139.6.1713.47
2016070806374414000_139.6.1713.7
2016070806374414000_139.6.1713.48
2016070806374414000_139.6.1713.6
2016070806374414000_139.6.1713.49
2507304 - Epilepsia. 1989 Sep-Oct;30(5):590-6
21292505 - Seizure. 2011 Jun;20(5):359-68
21967357 - Epilepsia. 2011 Oct;52 Suppl 8:31-4
18036512 - Brain Res. 2008 Jan 10;1188:207-21
4195653 - Electroencephalogr Clin Neurophysiol. 1970 Sep;29(3):306-10
23642342 - Lancet Neurol. 2013 Jun;12(6):563-71
21885253 - Epilepsy Res. 2011 Dec;97(3):243-51
21692794 - Epilepsia. 2011 Oct;52(10):1761-70
12697147 - Epilepsy Behav. 2003 Apr;4(2):198-9; author repyl 199-201
20538873 - Biostatistics. 2010 Jul;11(3):385-8
24936038 - ILAR J. 2014;55(1):182-6
9627329 - J Nucl Med. 1998 Jun;39(6):978-82
27234060 - Brain. 2016 Jun;139(Pt 6):1625-7
18322007 - J Neurophysiol. 2008 May;99(5):2431-42
19837629 - Clin Neurophysiol. 2009 Nov;120(11):1927-40
14744591 - Clin Neurophysiol. 2004 Feb;115(2):477-87
10565573 - Epilepsia. 1999 Nov;40(11):1484-9
12609456 - Epilepsy Behav. 2000 Aug;1(4):S9-S14
4058743 - Neurology. 1985 Nov;35(11):1537-43
23060188 - Nature. 2012 Oct 11;490(7419):187-91
19251759 - Brain. 2009 Apr;132(Pt 4):1013-21
16060722 - PLoS Med. 2005 Aug;2(8):e124
24032479 - J Small Anim Pract. 2013 Oct;54(10):512-20
20808728 - J Stat Softw. 2010;33(1):1-22
25153799 - PLoS One. 2014 Aug 25;9(8):e106026
22295869 - J Vet Intern Med. 2012 Mar-Apr;26(2):341-8
19427545 - J Neurosci Methods. 2009 May 30;180(1):185-92
6725128 - J Am Vet Med Assoc. 1984 May 1;184(9):1117-20
19576849 - Clin Neurophysiol. 2009 Aug;120(8):1465-78
17008335 - Brain. 2007 Feb;130(Pt 2):314-33
23506100 - Epilepsia. 2013 Apr;54(4):571-9
16255282 - Aust Vet J. 2005 Oct;83(10):602-8
10348156 - Acta Neurol Scand. 1999 May;99(5):276-83
18827312 - J Neural Eng. 2008 Dec;5(4):392-401
23962794 - Epilepsy Res. 2013 Oct;106(3):456-60
19889013 - Epilepsia. 2010 Jun;51(6):1069-77
21676591 - Epilepsy Res. 2011 Sep;96(1-2):116-22
26241907 - PLoS One. 2015 Aug 04;10(8):e0133900
25505320 - J Neurosci. 2014 Dec 10;34(50):16671-87
7866967 - Can Vet J. 1994 Nov;35(11):724-5
24657096 - Comput Methods Programs Biomed. 2014 May;114(3):324-36
24416133 - PLoS One. 2014 Jan 08;9(1):e81920
23571845 - Nat Rev Neurosci. 2013 May;14 (5):365-76
19914135 - Lancet Neurol. 2010 Jan;9(1):27-9
17242331 - Neurology. 2007 Jan 23;68(4):262-6
References_xml – ident: 2016070806374414000_139.6.1713.17
  doi: 10.1093/biostatistics/kxq028
– ident: 2016070806374414000_139.6.1713.16
  doi: 10.1016/j.eplepsyres.2011.05.011
– volume: 10
  start-page: 61
  year: 1999
  ident: 2016070806374414000_139.6.1713.50
  article-title: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
  publication-title: Adv Large Margin Classifiers
– ident: 2016070806374414000_139.6.1713.52
  doi: 10.1002/9783527625192.ch1
– ident: 2016070806374414000_139.6.1713.47
  doi: 10.1093/ilar/ilu021
– ident: 2016070806374414000_139.6.1713.8
  doi: 10.1152/jn.01369.2007
– ident: 2016070806374414000_139.6.1713.15
  doi: 10.1016/S1474-4422(13)70075-9
– ident: 2016070806374414000_139.6.1713.10
  doi: 10.1016/j.jneumeth.2009.03.022
– ident: 2016070806374414000_139.6.1713.23
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: 2016070806374414000_139.6.1713.14
  doi: 10.1016/j.eplepsyres.2013.06.007
– volume: 35
  start-page: 724
  year: 1994
  ident: 2016070806374414000_139.6.1713.18
  article-title: Management of canine epilepsy with phenobarbital and potassium bromide
  publication-title: Can Vet J
– ident: 2016070806374414000_139.6.1713.27
  doi: 10.1016/0167-2789(88)90081-4
– ident: 2016070806374414000_139.6.1713.19
  doi: 10.1111/j.1528-1157.1989.tb05477.x
– ident: 2016070806374414000_139.6.1713.40
– ident: 2016070806374414000_139.6.1713.53
  doi: 10.1088/1741-2560/5/4/004
– volume: 24
  start-page: 123
  year: 1996
  ident: 2016070806374414000_139.6.1713.9
  article-title: Bagging predictors
  publication-title: Mach Learn
  doi: 10.1007/BF00058655
– volume: 39
  start-page: 978
  year: 1998
  ident: 2016070806374414000_139.6.1713.5
  article-title: Preictal SPECT in temporal lobe epilepsy: regional cerebral blood flow is increased prior to electroencephalography-seizure onset
  publication-title: J Nucl Med
– ident: 2016070806374414000_139.6.1713.1
  doi: 10.1016/j.brainres.2007.10.048
– ident: 2016070806374414000_139.6.1713.36
  doi: 10.1038/nature11556
– ident: 2016070806374414000_139.6.1713.49
  doi: 10.1109/CBMS.1995.465426
– ident: 2016070806374414000_139.6.1713.41
  doi: 10.1212/WNL.35.11.1537
– ident: 2016070806374414000_139.6.1713.31
  doi: 10.1371/journal.pmed.0020124
– ident: 2016070806374414000_139.6.1713.42
  doi: 10.1016/j.clinph.2009.09.002
– ident: 2016070806374414000_139.6.1713.51
  doi: 10.1111/epi.12138
– ident: 2016070806374414000_139.6.1713.13
  doi: 10.1038/nrn3475
– ident: 2016070806374414000_139.6.1713.39
  doi: 10.1016/j.seizure.2011.01.003
– ident: 2016070806374414000_139.6.1713.54
  doi: 10.1016/j.eplepsyres.2011.07.012
– ident: 2016070806374414000_139.6.1713.43
  doi: 10.1093/brain/awl241
– volume: 1
  start-page: S9
  year: 2000
  ident: 2016070806374414000_139.6.1713.22
  article-title: Epilepsy from the patient's perspective: review of results of a community-based survey
  publication-title: Epilepsy Behav
  doi: 10.1006/ebeh.2000.0107
– volume: 54
  start-page: 512
  year: 2013
  ident: 2016070806374414000_139.6.1713.32
  article-title: Topiramate as an add-on antiepileptic drug in treating refractory canine idiopathic epilepsy
  publication-title: J Small Anim Pract
  doi: 10.1111/jsap.12130
– ident: 2016070806374414000_139.6.1713.25
  doi: 10.1111/j.1751-0813.2005.tb13269.x
– ident: 2016070806374414000_139.6.1713.48
  doi: 10.1016/S1388-2457(03)00347-X
– ident: 2016070806374414000_139.6.1713.3
  doi: 10.1016/j.clinph.2009.05.019
– ident: 2016070806374414000_139.6.1713.37
  doi: 10.1109/5.726791
– volume: 184
  start-page: 1117
  year: 1984
  ident: 2016070806374414000_139.6.1713.20
  article-title: Serum concentrations and efficacy of phenytoin, phenobarbital, and primidone in canine epilepsy
  publication-title: J Am Vet Med Assoc
  doi: 10.2460/javma.1984.184.09.1117
– ident: 2016070806374414000_139.6.1713.26
  doi: 10.1212/01.wnl.0000252352.26421.13
– ident: 2016070806374414000_139.6.1713.7
  doi: 10.1111/j.1600-0404.1999.tb00676.x
– ident: 2016070806374414000_139.6.1713.34
  doi: 10.1111/j.1528-1167.2009.02397.x
– ident: 2016070806374414000_139.6.1713.2
  doi: 10.1111/j.1528-1157.1999.tb02030.x
– ident: 2016070806374414000_139.6.1713.12
  doi: 10.1007/978-1-4612-2544-7_5
– ident: 2016070806374414000_139.6.1713.4
  doi: 10.1093/brain/awp017
– volume: 52 (Suppl 8)
  start-page: 31
  year: 2011
  ident: 2016070806374414000_139.6.1713.38
  article-title: Canine status epilepticus: a translational platform for human therapeutic trials
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1167.2011.03231.x
– ident: 2016070806374414000_139.6.1713.45
  doi: 10.1371/journal.pone.0106026
– ident: 2016070806374414000_139.6.1713.28
  doi: 10.1016/0013-4694(70)90143-4
– ident: 2016070806374414000_139.6.1713.29
  doi: 10.1037/h0071325
– ident: 2016070806374414000_139.6.1713.56
– ident: 2016070806374414000_139.6.1713.46
  doi: 10.1111/j.1528-1167.2011.03138.x
– ident: 2016070806374414000_139.6.1713.35
  doi: 10.1016/S1474-4422(09)70304-7
– ident: 2016070806374414000_139.6.1713.44
  doi: 10.1111/j.1939-1676.2011.00866.x
– ident: 2016070806374414000_139.6.1713.6
  doi: 10.1016/S1525-5050(02)00686-8
– ident: 2016070806374414000_139.6.1713.55
  doi: 10.1016/j.cmpb.2014.02.007
– ident: 2016070806374414000_139.6.1713.11
  doi: 10.1371/journal.pone.0133900
– ident: 2016070806374414000_139.6.1713.33
  doi: 10.1016/B978-0-12-498150-8.50024-0
– ident: 2016070806374414000_139.6.1713.21
  doi: 10.1007/978-1-4899-2124-6
– ident: 2016070806374414000_139.6.1713.24
  doi: 10.1523/JNEUROSCI.0584-14.2014
– ident: 2016070806374414000_139.6.1713.30
  doi: 10.1371/journal.pone.0081920
– reference: 23506100 - Epilepsia. 2013 Apr;54(4):571-9
– reference: 21885253 - Epilepsy Res. 2011 Dec;97(3):243-51
– reference: 17242331 - Neurology. 2007 Jan 23;68(4):262-6
– reference: 18322007 - J Neurophysiol. 2008 May;99(5):2431-42
– reference: 27234060 - Brain. 2016 Jun;139(Pt 6):1625-7
– reference: 25505320 - J Neurosci. 2014 Dec 10;34(50):16671-87
– reference: 12609456 - Epilepsy Behav. 2000 Aug;1(4):S9-S14
– reference: 18827312 - J Neural Eng. 2008 Dec;5(4):392-401
– reference: 19427545 - J Neurosci Methods. 2009 May 30;180(1):185-92
– reference: 16060722 - PLoS Med. 2005 Aug;2(8):e124
– reference: 24032479 - J Small Anim Pract. 2013 Oct;54(10):512-20
– reference: 22295869 - J Vet Intern Med. 2012 Mar-Apr;26(2):341-8
– reference: 24416133 - PLoS One. 2014 Jan 08;9(1):e81920
– reference: 21967357 - Epilepsia. 2011 Oct;52 Suppl 8:31-4
– reference: 21692794 - Epilepsia. 2011 Oct;52(10):1761-70
– reference: 23060188 - Nature. 2012 Oct 11;490(7419):187-91
– reference: 7866967 - Can Vet J. 1994 Nov;35(11):724-5
– reference: 18036512 - Brain Res. 2008 Jan 10;1188:207-21
– reference: 23571845 - Nat Rev Neurosci. 2013 May;14 (5):365-76
– reference: 2507304 - Epilepsia. 1989 Sep-Oct;30(5):590-6
– reference: 23962794 - Epilepsy Res. 2013 Oct;106(3):456-60
– reference: 24657096 - Comput Methods Programs Biomed. 2014 May;114(3):324-36
– reference: 21676591 - Epilepsy Res. 2011 Sep;96(1-2):116-22
– reference: 26241907 - PLoS One. 2015 Aug 04;10(8):e0133900
– reference: 23642342 - Lancet Neurol. 2013 Jun;12(6):563-71
– reference: 19889013 - Epilepsia. 2010 Jun;51(6):1069-77
– reference: 10348156 - Acta Neurol Scand. 1999 May;99(5):276-83
– reference: 17008335 - Brain. 2007 Feb;130(Pt 2):314-33
– reference: 21292505 - Seizure. 2011 Jun;20(5):359-68
– reference: 19251759 - Brain. 2009 Apr;132(Pt 4):1013-21
– reference: 10565573 - Epilepsia. 1999 Nov;40(11):1484-9
– reference: 6725128 - J Am Vet Med Assoc. 1984 May 1;184(9):1117-20
– reference: 9627329 - J Nucl Med. 1998 Jun;39(6):978-82
– reference: 4195653 - Electroencephalogr Clin Neurophysiol. 1970 Sep;29(3):306-10
– reference: 12697147 - Epilepsy Behav. 2003 Apr;4(2):198-9; author repyl 199-201
– reference: 20538873 - Biostatistics. 2010 Jul;11(3):385-8
– reference: 25153799 - PLoS One. 2014 Aug 25;9(8):e106026
– reference: 19837629 - Clin Neurophysiol. 2009 Nov;120(11):1927-40
– reference: 19576849 - Clin Neurophysiol. 2009 Aug;120(8):1465-78
– reference: 24936038 - ILAR J. 2014;55(1):182-6
– reference: 16255282 - Aust Vet J. 2005 Oct;83(10):602-8
– reference: 19914135 - Lancet Neurol. 2010 Jan;9(1):27-9
– reference: 4058743 - Neurology. 1985 Nov;35(11):1537-43
– reference: 14744591 - Clin Neurophysiol. 2004 Feb;115(2):477-87
– reference: 20808728 - J Stat Softw. 2010;33(1):1-22
SSID ssj0014326
Score 2.6004555
Snippet SEE MORMANN AND ANDRZEJAK DOI101093/BRAIN/AWW091 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE  : Accurate forecasting of epileptic seizures has the potential to...
See Mormann and Andrzejak (doi:10.1093/brain/aww091) for a scientific commentary on this article. Seizures are thought to arise from an identifiable pre-ictal...
See Mormann and Andrzejak (doi: 10.1093/brain/aww091 ) for a scientific commentary on this article.   Seizures are thought to arise from an identifiable...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1713
SubjectTerms Aged
Algorithms
Animals
Crowdsourcing
Dogs
Early Diagnosis
Electrodes, Implanted
Electroencephalography
Epilepsy - diagnosis
Female
Forecasting - methods
Humans
Middle Aged
Monitoring, Physiologic - methods
Original
Seizures - diagnosis
Title Crowdsourcing reproducible seizure forecasting in human and canine epilepsy
URI https://www.ncbi.nlm.nih.gov/pubmed/27034258
https://www.proquest.com/docview/1793216898
https://www.proquest.com/docview/1808611048
https://pubmed.ncbi.nlm.nih.gov/PMC5022671
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAviDtjgIwETyhd4ji289gNprFpPG3S3iLbcUWnLa2aVJP2I_jNO74kTUZBAymKosRuk5yT43P9DkKfmGS5ziWN5DSWYKAIOAJrOcrpNElVXIrS9To8-cEOz-jReXY-Gv3qZS2tGjXWNxvrSv6HqnAO6GqrZP-Bst2Pwgk4BvrCHigM-3vReB9s6NK5363Bb_EpLXzrzBZD1WZ2Y2MDoJMaLesmlK74lnyulk1WVsE0CxALi3oY3LVtIzb2-vAOBMFFz4GwtwRz9ir0Wt4z1YW8svhZ47WrHu5f-jzuo_m87vJsJraNmZN5y3V0YmL7g9Wtq-fSZ1i3bomErdOnOlHLIpF7VNmx8dKVsjgCHYMNxK8HMwp81hemCfdlqmFhBlWLbBT6HhBLLZ0r5UBeX8ceoXKIrn1n1etyEX0UPi3c_MLPfoAeEjA7bEeMr9-Pu6gUTV37vu7RQiEFzN51s3f97KGK85vdcjf9tqfPnD5FT4Ihgieeq56hkameo0cnIdXiBToeMBfuMxcOzIV7zIVnFXbMhYFNsGcu3DLXS3R28O10_zAKnTciTWnWRMqAFq-lNiSBLzcmmpQcNknKNAV1hsOiJBOQ3aKkWqXTkpFYKmHR_rg2OU3TV2irmlfmDcI8hdWU8FwxkANMM2DRmOSaKiUZkzrbRl_al1XoAEtvu6NcFpsIs40-d6MXHo7lD-M-tu-9AHlpg2CyMvNVXdgFiSRM5OIvYwQY-qAXUxjz2tOq-zfCLWhmBlf4gIrdAIvXPrxSzX463PYM9GXGk7f3fIYd9Hj9Yb1DW81yZd6DBtyoD44tbwHj3LYb
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crowdsourcing+reproducible+seizure+forecasting+in+human+and+canine+epilepsy&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Brinkmann%2C+Benjamin+H.&rft.au=Wagenaar%2C+Joost&rft.au=Abbot%2C+Drew&rft.au=Adkins%2C+Phillip&rft.date=2016-06-01&rft.issn=0006-8950&rft.eissn=1460-2156&rft.volume=139&rft.issue=6&rft.spage=1713&rft.epage=1722&rft_id=info:doi/10.1093%2Fbrain%2Faww045&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_brain_aww045
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon