GRB 221009A with an Unconventional Precursor: A Typical Two-stage Collapsar Scenario?
As the brightest gamma-ray burst (GRB) ever detected, GRB 221009A may offer a chance that reveals some interesting features that are hidden in those bursts that are not so bright. There seems to be a very weak emission with a flux of 10 −8 ∼ 10 −7 erg cm −2 s −1 between the first pulse ( T 0 ∼ T 0 +...
Saved in:
Published in | The Astrophysical journal Vol. 957; no. 1; pp. 31 - 39 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
01.11.2023
IOP Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As the brightest gamma-ray burst (GRB) ever detected, GRB 221009A may offer a chance that reveals some interesting features that are hidden in those bursts that are not so bright. There seems to be a very weak emission with a flux of 10
−8
∼ 10
−7
erg cm
−2
s
−1
between the first pulse (
T
0
∼
T
0
+ 50 s;
T
0
is the trigger time) and the main burst (which appears from
T
0
+ 180 s). Thus, the gap time between them is not really quiescent, and the first pulse could be taken as an unconventional precursor, which may provide a peculiar case study for GRB precursor phenomena. A two-stage collapsar scenario is proposed as the most likely origin for this burst. In this model, the jet for the precursor is produced during the initial core-collapse phase, and should be weak enough not to disrupt the star when it breaks out of the envelope, so that the fallback accretion process and the forming of the disk could continue. We present an approach in which the duration and flux both provide constraints on the luminosity (
L
j
) and the Lorentz factor at the breakout time (Γ
b
) of this weak jet. The estimated
L
j
≲ 10
49
erg s
−1
and Γ
b
has an order of 10, which are well consistent with the theoretical prediction. Besides, the weak emission in the gap time could be interpreted as an MHD outflow due to a magnetically driven wind during the period from the proto-neutron-star phase to the forming of the accretion disk in this scenario. |
---|---|
AbstractList | As the brightest gamma-ray burst (GRB) ever detected, GRB 221009A may offer a chance that reveals some interesting features that are hidden in those bursts that are not so bright. There seems to be a very weak emission with a flux of 10
−8
∼ 10
−7
erg cm
−2
s
−1
between the first pulse (
T
0
∼
T
0
+ 50 s;
T
0
is the trigger time) and the main burst (which appears from
T
0
+ 180 s). Thus, the gap time between them is not really quiescent, and the first pulse could be taken as an unconventional precursor, which may provide a peculiar case study for GRB precursor phenomena. A two-stage collapsar scenario is proposed as the most likely origin for this burst. In this model, the jet for the precursor is produced during the initial core-collapse phase, and should be weak enough not to disrupt the star when it breaks out of the envelope, so that the fallback accretion process and the forming of the disk could continue. We present an approach in which the duration and flux both provide constraints on the luminosity (
L
j
) and the Lorentz factor at the breakout time (Γ
b
) of this weak jet. The estimated
L
j
≲ 10
49
erg s
−1
and Γ
b
has an order of 10, which are well consistent with the theoretical prediction. Besides, the weak emission in the gap time could be interpreted as an MHD outflow due to a magnetically driven wind during the period from the proto-neutron-star phase to the forming of the accretion disk in this scenario. As the brightest gamma-ray burst (GRB) ever detected, GRB 221009A may offer a chance that reveals some interesting features that are hidden in those bursts that are not so bright. There seems to be a very weak emission with a flux of 10−8 ∼ 10−7 erg cm−2 s−1 between the first pulse (T0 ∼ T0 + 50 s; T0 is the trigger time) and the main burst (which appears from T0 + 180 s). Thus, the gap time between them is not really quiescent, and the first pulse could be taken as an unconventional precursor, which may provide a peculiar case study for GRB precursor phenomena. A two-stage collapsar scenario is proposed as the most likely origin for this burst. In this model, the jet for the precursor is produced during the initial core-collapse phase, and should be weak enough not to disrupt the star when it breaks out of the envelope, so that the fallback accretion process and the forming of the disk could continue. We present an approach in which the duration and flux both provide constraints on the luminosity (Lj) and the Lorentz factor at the breakout time (Γb) of this weak jet. The estimated Lj ≲ 1049 erg s−1 and Γb has an order of 10, which are well consistent with the theoretical prediction. Besides, the weak emission in the gap time could be interpreted as an MHD outflow due to a magnetically driven wind during the period from the proto-neutron-star phase to the forming of the accretion disk in this scenario. As the brightest gamma-ray burst (GRB) ever detected, GRB 221009A may offer a chance that reveals some interesting features that are hidden in those bursts that are not so bright. There seems to be a very weak emission with a flux of 10 ^−8 ∼ 10 ^−7 erg cm ^−2 s ^−1 between the first pulse ( T _0 ∼ T _0 + 50 s; T _0 is the trigger time) and the main burst (which appears from T _0 + 180 s). Thus, the gap time between them is not really quiescent, and the first pulse could be taken as an unconventional precursor, which may provide a peculiar case study for GRB precursor phenomena. A two-stage collapsar scenario is proposed as the most likely origin for this burst. In this model, the jet for the precursor is produced during the initial core-collapse phase, and should be weak enough not to disrupt the star when it breaks out of the envelope, so that the fallback accretion process and the forming of the disk could continue. We present an approach in which the duration and flux both provide constraints on the luminosity ( L _j ) and the Lorentz factor at the breakout time (Γ _b ) of this weak jet. The estimated L _j ≲ 10 ^49 erg s ^−1 and Γ _b has an order of 10, which are well consistent with the theoretical prediction. Besides, the weak emission in the gap time could be interpreted as an MHD outflow due to a magnetically driven wind during the period from the proto-neutron-star phase to the forming of the accretion disk in this scenario. |
Author | Zhang, Shuang-Nan Song, Xin-Ying |
Author_xml | – sequence: 1 givenname: Xin-Ying orcidid: 0000-0002-2176-8778 surname: Song fullname: Song, Xin-Ying organization: University of Chinese Academy of Sciences , Chinese Academy of Sciences, Beijing 100049, People's Republic of China – sequence: 2 givenname: Shuang-Nan orcidid: 0000-0001-5586-1017 surname: Zhang fullname: Zhang, Shuang-Nan organization: University of Chinese Academy of Sciences , Chinese Academy of Sciences, Beijing 100049, People's Republic of China |
BookMark | eNp9kUuLFDEUhYOMYM_o3mVAl5aTdN5upKfRcWBA0W5wF27lMaYpK2VS7TD_3irLB4i6Cjl853DvuafopM99QOgxJc-Z5uqcCqYbzoQ6BxeDV_fQ6pd0glaEEN5Ipj4-QKe1Hubv2pgV2l--v8DrNSXEbPBtGj9h6PG-d7n_Gvox5R46_K4Edyw1lxd4g3d3Q3KTuLvNTR3hJuBt7joYKhT8wYUeSsovH6L7EboaHv14z9D-9avd9k1z_fbyaru5bhznYmxab1zbysAkC1xqLpQTjgvNNGOChkBUlIRyD0EqASC4ocq13guqhdPMszN0teT6DAc7lPQZyp3NkOx3IZcbC2VMrgsWDMgpJULUlLdEg3fOGApRxkBbqaasJ0vWUPKXY6ijPeRjmfavdq011UQyridKLpQrudYSonVphLmosUDqLCV2Poedu7dz93Y5x2Qkfxh_jvsfy9PFkvLwexgYDtZMELWM2sHHCXv2F-yfqd8AVdSpIQ |
CitedBy_id | crossref_primary_10_11728_cjss2024_04_2024_yg12 crossref_primary_10_3847_1538_4357_ad5554 crossref_primary_10_3847_1538_4357_ad98ec |
Cites_doi | 10.3847/2041-8213/acd1eb 10.1088/0004-637X/726/2/90 10.1086/311622 10.1086/521099 10.3847/1538-4357/834/1/28 10.3847/2041-8213/ace5b4 10.3847/1538-4357/acc57d 10.1093/mnras/stw2057 10.1086/311644 10.1016/S0927-6505(00)00172-9 10.3847/1538-4357/ac4af2 10.1086/522820 10.1111/j.1365-2966.2009.15079.x 10.1038/nphys2932 10.1086/150558 10.1086/309055 10.1088/0004-637X/764/2/167 10.1093/mnras/stac2764 10.1093/mnras/stu1925 10.1038/s41550-017-0309-8 10.1046/j.1365-8711.2002.05176.x 10.1088/2041-8205/785/1/L6 10.3847/2041-8213/acc84b 10.1086/308371 10.1088/0004-637X/775/1/67 10.3847/1538-4365/ac4d22 10.1111/j.1365-2966.2005.08687.x 10.3847/1538-4357/aadcf8 10.3847/1538-4357/ab40b9 10.1093/mnras/179.3.433 10.1051/0004-6361/200912662 10.1086/319698 |
ContentType | Journal Article |
Copyright | 2023. The Author(s). Published by the American Astronomical Society. 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. The Author(s). Published by the American Astronomical Society. – notice: 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 7TG 8FD H8D KL. L7M DOA |
DOI | 10.3847/1538-4357/acfed7 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1538-4357 |
ExternalDocumentID | oai_doaj_org_article_a9a6675faf814b08adcc991af6fe1b67 10_3847_1538_4357_acfed7 apjacfed7 |
GrantInformation_xml | – fundername: National Program on Key Research and Development Project grantid: 2021YFA0718500 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 4.4 6J9 85S AAFWJ AAGCD AAJIO ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 TSCCA WH7 XSW AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M 2WC |
ID | FETCH-LOGICAL-c445t-bd9cbb6e363e468457c5c458383351ee07f6014dae675aa54917cbdd5185c83d3 |
IEDL.DBID | O3W |
ISSN | 0004-637X |
IngestDate | Wed Aug 27 01:26:40 EDT 2025 Wed Aug 13 11:26:15 EDT 2025 Tue Jul 01 03:39:41 EDT 2025 Thu Apr 24 23:00:43 EDT 2025 Wed Aug 21 03:35:15 EDT 2024 Tue Oct 31 22:41:29 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c445t-bd9cbb6e363e468457c5c458383351ee07f6014dae675aa54917cbdd5185c83d3 |
Notes | AAS45693 High-Energy Phenomena and Fundamental Physics ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5586-1017 0000-0002-2176-8778 |
OpenAccessLink | https://iopscience.iop.org/article/10.3847/1538-4357/acfed7 |
PQID | 2881806348 |
PQPubID | 4562441 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_3847_1538_4357_acfed7 doaj_primary_oai_doaj_org_article_a9a6675faf814b08adcc991af6fe1b67 proquest_journals_2881806348 iop_journals_10_3847_1538_4357_acfed7 crossref_citationtrail_10_3847_1538_4357_acfed7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2023 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Lesage (apjacfed7bib17) 2023; 952 Fermi-LAT Team (apjacfed7bib4) 2022; 32637 de Ugarte Postigo (apjacfed7bib9) 2022; 32648 Li (apjacfed7bib19) 2022; 928 Dichiara (apjacfed7bib10) 2022; 32632 Bernardini (apjacfed7bib2) 2013; 775 Wei (apjacfed7bib37) 2016; 463 Uhm (apjacfed7bib35) 2014; 10 Song (apjacfed7bib31) 2022b; 517 Huang (apjacfed7bib12) 2022; 32677 Song (apjacfed7bib32) 2022a; 259 Svinkin (apjacfed7bib33) 2022; 31604 Tan (apjacfed7bib34) 2022; 15660 LeBlanc (apjacfed7bib15) 1970; 161 Li (apjacfed7bib18) 2019; 884 Frederiks (apjacfed7bib11) 2023; 949 Burgess (apjacfed7bib6) 2014; 445 Liu (apjacfed7bib22) 2022; 32751 Lipunov (apjacfed7bib20) 2007; 665 Burlon (apjacfed7bib7) 2009; 505 Lipunova (apjacfed7bib21) 2009; 397 Nakar (apjacfed7bib25) 2017; 834 Siegel (apjacfed7bib30) 2014; 785 Scargle (apjacfed7bib29) 2013; 764 Zhang (apjacfed7bib41) 2018; 2 Wheeler (apjacfed7bib38) 2000; 537 Blandford (apjacfed7bib5) 1977; 179 Ren (apjacfed7bib28) 2023; 947 Zhang (apjacfed7bib40) 2011; 726 Cheng (apjacfed7bib8) 2001; 16 Wang (apjacfed7bib36) 2007; 670 An (apjacfed7bib1) 2023 Preece (apjacfed7bib26) 1998; 506 Kluźniak (apjacfed7bib13) 1998; 505 Fermi Gamma-ray Burst Monitor Team (apjacfed7bib16) 2022; 31565 Mészáros (apjacfed7bib24) 2000; 530 Lazzati (apjacfed7bib14) 2005; 357 Ramirez-Ruiz (apjacfed7bib27) 2002; 331 Bi (apjacfed7bib3) 2018; 866 Yang (apjacfed7bib39) 2023; 947 MacFadyen (apjacfed7bib23) 2001; 550 |
References_xml | – volume: 949 start-page: L7 year: 2023 ident: apjacfed7bib11 publication-title: ApJL doi: 10.3847/2041-8213/acd1eb – volume: 726 start-page: 90 year: 2011 ident: apjacfed7bib40 publication-title: ApJ doi: 10.1088/0004-637X/726/2/90 – volume: 505 start-page: L113 year: 1998 ident: apjacfed7bib13 publication-title: ApJL doi: 10.1086/311622 – volume: 665 start-page: L97 year: 2007 ident: apjacfed7bib20 publication-title: ApJL doi: 10.1086/521099 – volume: 834 start-page: 28 year: 2017 ident: apjacfed7bib25 publication-title: ApJ doi: 10.3847/1538-4357/834/1/28 – volume: 31565 start-page: 1 year: 2022 ident: apjacfed7bib16 publication-title: GCN – volume: 952 start-page: L42 year: 2023 ident: apjacfed7bib17 publication-title: ApJL doi: 10.3847/2041-8213/ace5b4 – volume: 947 start-page: 53 year: 2023 ident: apjacfed7bib28 publication-title: ApJ doi: 10.3847/1538-4357/acc57d – volume: 463 start-page: 1144 year: 2016 ident: apjacfed7bib37 publication-title: MNRAS doi: 10.1093/mnras/stw2057 – year: 2023 ident: apjacfed7bib1 – volume: 506 start-page: L23 year: 1998 ident: apjacfed7bib26 publication-title: ApJL doi: 10.1086/311644 – volume: 16 start-page: 67 year: 2001 ident: apjacfed7bib8 publication-title: APh doi: 10.1016/S0927-6505(00)00172-9 – volume: 928 start-page: 152 year: 2022 ident: apjacfed7bib19 publication-title: ApJ doi: 10.3847/1538-4357/ac4af2 – volume: 670 start-page: 1247 year: 2007 ident: apjacfed7bib36 publication-title: ApJ doi: 10.1086/522820 – volume: 32637 start-page: 1 year: 2022 ident: apjacfed7bib4 publication-title: GCN – volume: 397 start-page: 1695 year: 2009 ident: apjacfed7bib21 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.15079.x – volume: 10 start-page: 351 year: 2014 ident: apjacfed7bib35 publication-title: NatPh doi: 10.1038/nphys2932 – volume: 161 start-page: 541 year: 1970 ident: apjacfed7bib15 publication-title: ApJ doi: 10.1086/150558 – volume: 537 start-page: 810 year: 2000 ident: apjacfed7bib38 publication-title: ApJ doi: 10.1086/309055 – volume: 764 start-page: 167 year: 2013 ident: apjacfed7bib29 publication-title: ApJ doi: 10.1088/0004-637X/764/2/167 – volume: 517 start-page: 2088 year: 2022b ident: apjacfed7bib31 publication-title: MNRAS doi: 10.1093/mnras/stac2764 – volume: 445 start-page: 2589 year: 2014 ident: apjacfed7bib6 publication-title: MNRAS doi: 10.1093/mnras/stu1925 – volume: 2 start-page: 69 year: 2018 ident: apjacfed7bib41 publication-title: NatAs doi: 10.1038/s41550-017-0309-8 – volume: 331 start-page: 197 year: 2002 ident: apjacfed7bib27 publication-title: MNRAS doi: 10.1046/j.1365-8711.2002.05176.x – volume: 31604 start-page: 1 year: 2022 ident: apjacfed7bib33 publication-title: GCN – volume: 15660 start-page: 1 year: 2022 ident: apjacfed7bib34 publication-title: ATel – volume: 785 start-page: L6 year: 2014 ident: apjacfed7bib30 publication-title: ApJL doi: 10.1088/2041-8205/785/1/L6 – volume: 947 start-page: L11 year: 2023 ident: apjacfed7bib39 publication-title: ApJL doi: 10.3847/2041-8213/acc84b – volume: 530 start-page: 292 year: 2000 ident: apjacfed7bib24 publication-title: ApJ doi: 10.1086/308371 – volume: 775 start-page: 67 year: 2013 ident: apjacfed7bib2 publication-title: ApJ doi: 10.1088/0004-637X/775/1/67 – volume: 259 start-page: 46 year: 2022a ident: apjacfed7bib32 publication-title: ApJS doi: 10.3847/1538-4365/ac4d22 – volume: 357 start-page: 722 year: 2005 ident: apjacfed7bib14 publication-title: MNRAS doi: 10.1111/j.1365-2966.2005.08687.x – volume: 866 start-page: 97 year: 2018 ident: apjacfed7bib3 publication-title: ApJ doi: 10.3847/1538-4357/aadcf8 – volume: 32677 start-page: 1 year: 2022 ident: apjacfed7bib12 publication-title: GCN – volume: 884 start-page: 109 year: 2019 ident: apjacfed7bib18 publication-title: ApJ doi: 10.3847/1538-4357/ab40b9 – volume: 32648 start-page: 1 year: 2022 ident: apjacfed7bib9 publication-title: GCN – volume: 32632 start-page: 1 year: 2022 ident: apjacfed7bib10 publication-title: GCN – volume: 179 start-page: 433 year: 1977 ident: apjacfed7bib5 publication-title: MNRAS doi: 10.1093/mnras/179.3.433 – volume: 505 start-page: 569 year: 2009 ident: apjacfed7bib7 publication-title: A&A doi: 10.1051/0004-6361/200912662 – volume: 32751 start-page: 1 year: 2022 ident: apjacfed7bib22 publication-title: GCN – volume: 550 start-page: 410 year: 2001 ident: apjacfed7bib23 publication-title: ApJ doi: 10.1086/319698 |
SSID | ssj0004299 |
Score | 2.4671202 |
Snippet | As the brightest gamma-ray burst (GRB) ever detected, GRB 221009A may offer a chance that reveals some interesting features that are hidden in those bursts... |
SourceID | doaj proquest crossref iop |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 31 |
SubjectTerms | Accretion disks Astrophysics Collapsars Emission Gamma ray bursts Gamma rays Lorentz factor Luminosity Precursors Star formation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEA9FEPoiVls8q5IHW_BhudtNNtnti5ziB4UWsR74FiZfUml3l9sT6X_vJNmzimBf-hZ2Z9kwM8nMb5KZIWQfbYC0zvvMCqgybiVkoL3IKuDGgyusiOlj376L8xn_el1eP2n1Fe6EpfLAiXFjqEGgU-vBVznXkwqsMejTgBfe5VrEPHK0eUswtcyIxF02HUoy3H7HcVmjYyDHYLyz8pkRirX60bT8bLsXG3K0MqfrZG1wD-k0TesdeeOaDbI17UPAuv39h36mcZziEf0GWb1Io00yO7s8ogVCq0k9pSG6SqGhs-bprXJ6MQ_R9b6df6FTigg0CIhe3bcZuog3joYgAnQ9zOkP4xoE0e3hezI7Pbk6Ps-GngmZ4bxcZNrWRmvhmGCOi4qX0pQmno0yVubOTaRHCMYtOGQqAKLDXBptbYl221TMsg9kpWkbt0UoekbgEU25wmiua611yQrrCyk910LzERkvmajMUFA89LX4pRBYBLarwHYV2K4S20fk4PGLLhXTeIX2KMjlkS6UwY4PUDnUoBzqX8oxIp9QqmpYlv0rP9t9Rgfdrarxba5YrjrrR2RnqRd_iYoq5MkLxqvt_zHXj-RtaGWf8hx3yMpifud20eFZ6L2o2w-6rv3K priority: 102 providerName: Directory of Open Access Journals |
Title | GRB 221009A with an Unconventional Precursor: A Typical Two-stage Collapsar Scenario? |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/acfed7 https://www.proquest.com/docview/2881806348 https://doaj.org/article/a9a6675faf814b08adcc991af6fe1b67 |
Volume | 957 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKERIXBIWqSx_ygSJxSHcTO7YDB7RFlBYJuoKu2Js1fiEhSKLNVoh_zzhOt1SgiktkJRPbGY89840zY0KeoQ6QzoeQOQEq405CBiaITAG3AXzhRB8-9uGjOJ3z94tysUFerWNhmnZY-o-wmBIFJxbG-c1wLR33cxS1vByDDd7JO-QuU0JF5HXOvlwHRRbVYPvyTDC5SHuU_6zhhk7qU_ejpsHm_1qfe6Vz8pA8GKxFOk19e0Q2fL1FdqZd9F83P37R57QvJ_dEt0XuzVLpMZm_-3RMC0Rak2pKo7OVQk3n9Z8_mdPZMjrbu2b5kk4pAtI4XvTiZ5OhxfjV0-hTgLaDJf1sfY2Yunn9hMxP3l68Oc2GIxQyy3m5yoyrrDHCM8E8F4qX0pa23yplrMy9n8iAiIw78AgcABAs5tIa50pU41Yxx7bJZt3UfodQNJQgILjyhTXcVMaYkhUuFFIGboThIzK-YqK2Q37xeMzFd404I7JdR7bryHad2D4iL9ZvtCm3xi20x3Fc1nQxK3Z_AyVEDxKioQKB3xEgqJybiQJnLdq_EETwuRFYySGOqh5maXdLY_s36KD9pit8mmuW69aFEdm7kotrokLFsHnBuHr6n83skvvx8PoU2bhHNlfLS7-PJs7KHPSuAbyenc8OerH-DWv49wg |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDI9gCMQLggHasQ3yAEg8lLs2adLuBd2AY3yNE-zEvUXOFxJibXU9NPHf4yTdxgSaeItaN00dJ_bPqW1CHqMOkNZ5n1kBVcathAy0F1kF3HhwhRUxfOzjoThY8HfLcjnUOY2xMG03bP3PsZkSBScWhvXNcC8dxzWKWl6OwXhn5biz_iq5VjIhQu2GT-zreWBkUQ_2L88Ek8t0TvnPXi7opZi-H7UNDuGvPToqntltcmuwGOk0je8OueKaTbI17YMPuz3-RZ_S2E4uin6TXJ-n1l2yePN5nxaItib1lAaHK4WGLpo_fzSn81VwuPftao9OKYLSMGf06KTN0Gr85mjwK0DXw4p-Ma5BXN2-uEcWs9dHLw-yoYxCZjgv15m2tdFaOCaY46LipTSliceljJW5cxPpEZVxCw7BAwACxlwabW2JqtxUzLL7ZKNpG7dFKBpL4BFgucJormutdckK6wspPddC8xEZnzJRmSHHeCh18UMh1ghsV4HtKrBdJbaPyLOzJ7qUX-MS2v0wL2d0ITN2vIBSogYpUVCDwO_w4Kuc60kF1hi0gcEL73ItsJMnOKtqWKn9JS_bvUAH3XdV491csVyhxI3IzqlcnBMVVQidF4xXD_7zNY_Ijfmrmfrw9vD9NrkZatmnQMcdsrFe_XS7aPGs9cMo1b8BCBn4-Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GRB+221009A+with+an+Unconventional+Precursor%3A+A+Typical+Two-stage+Collapsar+Scenario%3F&rft.jtitle=The+Astrophysical+journal&rft.au=Song%2C+Xin-Ying&rft.au=Zhang%2C+Shuang-Nan&rft.date=2023-11-01&rft.pub=The+American+Astronomical+Society&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=957&rft.issue=1&rft_id=info:doi/10.3847%2F1538-4357%2Facfed7&rft.externalDocID=apjacfed7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |