GRB 221009A with an Unconventional Precursor: A Typical Two-stage Collapsar Scenario?

As the brightest gamma-ray burst (GRB) ever detected, GRB 221009A may offer a chance that reveals some interesting features that are hidden in those bursts that are not so bright. There seems to be a very weak emission with a flux of 10 −8 ∼ 10 −7 erg cm −2 s −1 between the first pulse ( T 0 ∼ T 0 +...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 957; no. 1; pp. 31 - 39
Main Authors Song, Xin-Ying, Zhang, Shuang-Nan
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 01.11.2023
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As the brightest gamma-ray burst (GRB) ever detected, GRB 221009A may offer a chance that reveals some interesting features that are hidden in those bursts that are not so bright. There seems to be a very weak emission with a flux of 10 −8 ∼ 10 −7 erg cm −2 s −1 between the first pulse ( T 0 ∼ T 0 + 50 s; T 0 is the trigger time) and the main burst (which appears from T 0 + 180 s). Thus, the gap time between them is not really quiescent, and the first pulse could be taken as an unconventional precursor, which may provide a peculiar case study for GRB precursor phenomena. A two-stage collapsar scenario is proposed as the most likely origin for this burst. In this model, the jet for the precursor is produced during the initial core-collapse phase, and should be weak enough not to disrupt the star when it breaks out of the envelope, so that the fallback accretion process and the forming of the disk could continue. We present an approach in which the duration and flux both provide constraints on the luminosity ( L j ) and the Lorentz factor at the breakout time (Γ b ) of this weak jet. The estimated L j ≲ 10 49 erg s −1 and Γ b has an order of 10, which are well consistent with the theoretical prediction. Besides, the weak emission in the gap time could be interpreted as an MHD outflow due to a magnetically driven wind during the period from the proto-neutron-star phase to the forming of the accretion disk in this scenario.
AbstractList As the brightest gamma-ray burst (GRB) ever detected, GRB 221009A may offer a chance that reveals some interesting features that are hidden in those bursts that are not so bright. There seems to be a very weak emission with a flux of 10 −8 ∼ 10 −7 erg cm −2 s −1 between the first pulse ( T 0 ∼ T 0 + 50 s; T 0 is the trigger time) and the main burst (which appears from T 0 + 180 s). Thus, the gap time between them is not really quiescent, and the first pulse could be taken as an unconventional precursor, which may provide a peculiar case study for GRB precursor phenomena. A two-stage collapsar scenario is proposed as the most likely origin for this burst. In this model, the jet for the precursor is produced during the initial core-collapse phase, and should be weak enough not to disrupt the star when it breaks out of the envelope, so that the fallback accretion process and the forming of the disk could continue. We present an approach in which the duration and flux both provide constraints on the luminosity ( L j ) and the Lorentz factor at the breakout time (Γ b ) of this weak jet. The estimated L j ≲ 10 49 erg s −1 and Γ b has an order of 10, which are well consistent with the theoretical prediction. Besides, the weak emission in the gap time could be interpreted as an MHD outflow due to a magnetically driven wind during the period from the proto-neutron-star phase to the forming of the accretion disk in this scenario.
As the brightest gamma-ray burst (GRB) ever detected, GRB 221009A may offer a chance that reveals some interesting features that are hidden in those bursts that are not so bright. There seems to be a very weak emission with a flux of 10−8 ∼ 10−7 erg cm−2 s−1 between the first pulse (T0 ∼ T0 + 50 s; T0 is the trigger time) and the main burst (which appears from T0 + 180 s). Thus, the gap time between them is not really quiescent, and the first pulse could be taken as an unconventional precursor, which may provide a peculiar case study for GRB precursor phenomena. A two-stage collapsar scenario is proposed as the most likely origin for this burst. In this model, the jet for the precursor is produced during the initial core-collapse phase, and should be weak enough not to disrupt the star when it breaks out of the envelope, so that the fallback accretion process and the forming of the disk could continue. We present an approach in which the duration and flux both provide constraints on the luminosity (Lj) and the Lorentz factor at the breakout time (Γb) of this weak jet. The estimated Lj ≲ 1049 erg s−1 and Γb has an order of 10, which are well consistent with the theoretical prediction. Besides, the weak emission in the gap time could be interpreted as an MHD outflow due to a magnetically driven wind during the period from the proto-neutron-star phase to the forming of the accretion disk in this scenario.
As the brightest gamma-ray burst (GRB) ever detected, GRB 221009A may offer a chance that reveals some interesting features that are hidden in those bursts that are not so bright. There seems to be a very weak emission with a flux of 10 ^−8 ∼ 10 ^−7 erg cm ^−2 s ^−1 between the first pulse ( T _0 ∼ T _0 + 50 s; T _0 is the trigger time) and the main burst (which appears from T _0 + 180 s). Thus, the gap time between them is not really quiescent, and the first pulse could be taken as an unconventional precursor, which may provide a peculiar case study for GRB precursor phenomena. A two-stage collapsar scenario is proposed as the most likely origin for this burst. In this model, the jet for the precursor is produced during the initial core-collapse phase, and should be weak enough not to disrupt the star when it breaks out of the envelope, so that the fallback accretion process and the forming of the disk could continue. We present an approach in which the duration and flux both provide constraints on the luminosity ( L _j ) and the Lorentz factor at the breakout time (Γ _b ) of this weak jet. The estimated L _j ≲ 10 ^49 erg s ^−1 and Γ _b has an order of 10, which are well consistent with the theoretical prediction. Besides, the weak emission in the gap time could be interpreted as an MHD outflow due to a magnetically driven wind during the period from the proto-neutron-star phase to the forming of the accretion disk in this scenario.
Author Zhang, Shuang-Nan
Song, Xin-Ying
Author_xml – sequence: 1
  givenname: Xin-Ying
  orcidid: 0000-0002-2176-8778
  surname: Song
  fullname: Song, Xin-Ying
  organization: University of Chinese Academy of Sciences , Chinese Academy of Sciences, Beijing 100049, People's Republic of China
– sequence: 2
  givenname: Shuang-Nan
  orcidid: 0000-0001-5586-1017
  surname: Zhang
  fullname: Zhang, Shuang-Nan
  organization: University of Chinese Academy of Sciences , Chinese Academy of Sciences, Beijing 100049, People's Republic of China
BookMark eNp9kUuLFDEUhYOMYM_o3mVAl5aTdN5upKfRcWBA0W5wF27lMaYpK2VS7TD_3irLB4i6Cjl853DvuafopM99QOgxJc-Z5uqcCqYbzoQ6BxeDV_fQ6pd0glaEEN5Ipj4-QKe1Hubv2pgV2l--v8DrNSXEbPBtGj9h6PG-d7n_Gvox5R46_K4Edyw1lxd4g3d3Q3KTuLvNTR3hJuBt7joYKhT8wYUeSsovH6L7EboaHv14z9D-9avd9k1z_fbyaru5bhznYmxab1zbysAkC1xqLpQTjgvNNGOChkBUlIRyD0EqASC4ocq13guqhdPMszN0teT6DAc7lPQZyp3NkOx3IZcbC2VMrgsWDMgpJULUlLdEg3fOGApRxkBbqaasJ0vWUPKXY6ijPeRjmfavdq011UQyridKLpQrudYSonVphLmosUDqLCV2Poedu7dz93Y5x2Qkfxh_jvsfy9PFkvLwexgYDtZMELWM2sHHCXv2F-yfqd8AVdSpIQ
CitedBy_id crossref_primary_10_11728_cjss2024_04_2024_yg12
crossref_primary_10_3847_1538_4357_ad5554
crossref_primary_10_3847_1538_4357_ad98ec
Cites_doi 10.3847/2041-8213/acd1eb
10.1088/0004-637X/726/2/90
10.1086/311622
10.1086/521099
10.3847/1538-4357/834/1/28
10.3847/2041-8213/ace5b4
10.3847/1538-4357/acc57d
10.1093/mnras/stw2057
10.1086/311644
10.1016/S0927-6505(00)00172-9
10.3847/1538-4357/ac4af2
10.1086/522820
10.1111/j.1365-2966.2009.15079.x
10.1038/nphys2932
10.1086/150558
10.1086/309055
10.1088/0004-637X/764/2/167
10.1093/mnras/stac2764
10.1093/mnras/stu1925
10.1038/s41550-017-0309-8
10.1046/j.1365-8711.2002.05176.x
10.1088/2041-8205/785/1/L6
10.3847/2041-8213/acc84b
10.1086/308371
10.1088/0004-637X/775/1/67
10.3847/1538-4365/ac4d22
10.1111/j.1365-2966.2005.08687.x
10.3847/1538-4357/aadcf8
10.3847/1538-4357/ab40b9
10.1093/mnras/179.3.433
10.1051/0004-6361/200912662
10.1086/319698
ContentType Journal Article
Copyright 2023. The Author(s). Published by the American Astronomical Society.
2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. The Author(s). Published by the American Astronomical Society.
– notice: 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOA
DOI 10.3847/1538-4357/acfed7
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef
Aerospace Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4357
ExternalDocumentID oai_doaj_org_article_a9a6675faf814b08adcc991af6fe1b67
10_3847_1538_4357_acfed7
apjacfed7
GrantInformation_xml – fundername: National Program on Key Research and Development Project
  grantid: 2021YFA0718500
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
TSCCA
WH7
XSW
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
2WC
ID FETCH-LOGICAL-c445t-bd9cbb6e363e468457c5c458383351ee07f6014dae675aa54917cbdd5185c83d3
IEDL.DBID O3W
ISSN 0004-637X
IngestDate Wed Aug 27 01:26:40 EDT 2025
Wed Aug 13 11:26:15 EDT 2025
Tue Jul 01 03:39:41 EDT 2025
Thu Apr 24 23:00:43 EDT 2025
Wed Aug 21 03:35:15 EDT 2024
Tue Oct 31 22:41:29 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-bd9cbb6e363e468457c5c458383351ee07f6014dae675aa54917cbdd5185c83d3
Notes AAS45693
High-Energy Phenomena and Fundamental Physics
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5586-1017
0000-0002-2176-8778
OpenAccessLink https://iopscience.iop.org/article/10.3847/1538-4357/acfed7
PQID 2881806348
PQPubID 4562441
PageCount 9
ParticipantIDs crossref_primary_10_3847_1538_4357_acfed7
doaj_primary_oai_doaj_org_article_a9a6675faf814b08adcc991af6fe1b67
proquest_journals_2881806348
iop_journals_10_3847_1538_4357_acfed7
crossref_citationtrail_10_3847_1538_4357_acfed7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2023
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Lesage (apjacfed7bib17) 2023; 952
Fermi-LAT Team (apjacfed7bib4) 2022; 32637
de Ugarte Postigo (apjacfed7bib9) 2022; 32648
Li (apjacfed7bib19) 2022; 928
Dichiara (apjacfed7bib10) 2022; 32632
Bernardini (apjacfed7bib2) 2013; 775
Wei (apjacfed7bib37) 2016; 463
Uhm (apjacfed7bib35) 2014; 10
Song (apjacfed7bib31) 2022b; 517
Huang (apjacfed7bib12) 2022; 32677
Song (apjacfed7bib32) 2022a; 259
Svinkin (apjacfed7bib33) 2022; 31604
Tan (apjacfed7bib34) 2022; 15660
LeBlanc (apjacfed7bib15) 1970; 161
Li (apjacfed7bib18) 2019; 884
Frederiks (apjacfed7bib11) 2023; 949
Burgess (apjacfed7bib6) 2014; 445
Liu (apjacfed7bib22) 2022; 32751
Lipunov (apjacfed7bib20) 2007; 665
Burlon (apjacfed7bib7) 2009; 505
Lipunova (apjacfed7bib21) 2009; 397
Nakar (apjacfed7bib25) 2017; 834
Siegel (apjacfed7bib30) 2014; 785
Scargle (apjacfed7bib29) 2013; 764
Zhang (apjacfed7bib41) 2018; 2
Wheeler (apjacfed7bib38) 2000; 537
Blandford (apjacfed7bib5) 1977; 179
Ren (apjacfed7bib28) 2023; 947
Zhang (apjacfed7bib40) 2011; 726
Cheng (apjacfed7bib8) 2001; 16
Wang (apjacfed7bib36) 2007; 670
An (apjacfed7bib1) 2023
Preece (apjacfed7bib26) 1998; 506
Kluźniak (apjacfed7bib13) 1998; 505
Fermi Gamma-ray Burst Monitor Team (apjacfed7bib16) 2022; 31565
Mészáros (apjacfed7bib24) 2000; 530
Lazzati (apjacfed7bib14) 2005; 357
Ramirez-Ruiz (apjacfed7bib27) 2002; 331
Bi (apjacfed7bib3) 2018; 866
Yang (apjacfed7bib39) 2023; 947
MacFadyen (apjacfed7bib23) 2001; 550
References_xml – volume: 949
  start-page: L7
  year: 2023
  ident: apjacfed7bib11
  publication-title: ApJL
  doi: 10.3847/2041-8213/acd1eb
– volume: 726
  start-page: 90
  year: 2011
  ident: apjacfed7bib40
  publication-title: ApJ
  doi: 10.1088/0004-637X/726/2/90
– volume: 505
  start-page: L113
  year: 1998
  ident: apjacfed7bib13
  publication-title: ApJL
  doi: 10.1086/311622
– volume: 665
  start-page: L97
  year: 2007
  ident: apjacfed7bib20
  publication-title: ApJL
  doi: 10.1086/521099
– volume: 834
  start-page: 28
  year: 2017
  ident: apjacfed7bib25
  publication-title: ApJ
  doi: 10.3847/1538-4357/834/1/28
– volume: 31565
  start-page: 1
  year: 2022
  ident: apjacfed7bib16
  publication-title: GCN
– volume: 952
  start-page: L42
  year: 2023
  ident: apjacfed7bib17
  publication-title: ApJL
  doi: 10.3847/2041-8213/ace5b4
– volume: 947
  start-page: 53
  year: 2023
  ident: apjacfed7bib28
  publication-title: ApJ
  doi: 10.3847/1538-4357/acc57d
– volume: 463
  start-page: 1144
  year: 2016
  ident: apjacfed7bib37
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2057
– year: 2023
  ident: apjacfed7bib1
– volume: 506
  start-page: L23
  year: 1998
  ident: apjacfed7bib26
  publication-title: ApJL
  doi: 10.1086/311644
– volume: 16
  start-page: 67
  year: 2001
  ident: apjacfed7bib8
  publication-title: APh
  doi: 10.1016/S0927-6505(00)00172-9
– volume: 928
  start-page: 152
  year: 2022
  ident: apjacfed7bib19
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac4af2
– volume: 670
  start-page: 1247
  year: 2007
  ident: apjacfed7bib36
  publication-title: ApJ
  doi: 10.1086/522820
– volume: 32637
  start-page: 1
  year: 2022
  ident: apjacfed7bib4
  publication-title: GCN
– volume: 397
  start-page: 1695
  year: 2009
  ident: apjacfed7bib21
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15079.x
– volume: 10
  start-page: 351
  year: 2014
  ident: apjacfed7bib35
  publication-title: NatPh
  doi: 10.1038/nphys2932
– volume: 161
  start-page: 541
  year: 1970
  ident: apjacfed7bib15
  publication-title: ApJ
  doi: 10.1086/150558
– volume: 537
  start-page: 810
  year: 2000
  ident: apjacfed7bib38
  publication-title: ApJ
  doi: 10.1086/309055
– volume: 764
  start-page: 167
  year: 2013
  ident: apjacfed7bib29
  publication-title: ApJ
  doi: 10.1088/0004-637X/764/2/167
– volume: 517
  start-page: 2088
  year: 2022b
  ident: apjacfed7bib31
  publication-title: MNRAS
  doi: 10.1093/mnras/stac2764
– volume: 445
  start-page: 2589
  year: 2014
  ident: apjacfed7bib6
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1925
– volume: 2
  start-page: 69
  year: 2018
  ident: apjacfed7bib41
  publication-title: NatAs
  doi: 10.1038/s41550-017-0309-8
– volume: 331
  start-page: 197
  year: 2002
  ident: apjacfed7bib27
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2002.05176.x
– volume: 31604
  start-page: 1
  year: 2022
  ident: apjacfed7bib33
  publication-title: GCN
– volume: 15660
  start-page: 1
  year: 2022
  ident: apjacfed7bib34
  publication-title: ATel
– volume: 785
  start-page: L6
  year: 2014
  ident: apjacfed7bib30
  publication-title: ApJL
  doi: 10.1088/2041-8205/785/1/L6
– volume: 947
  start-page: L11
  year: 2023
  ident: apjacfed7bib39
  publication-title: ApJL
  doi: 10.3847/2041-8213/acc84b
– volume: 530
  start-page: 292
  year: 2000
  ident: apjacfed7bib24
  publication-title: ApJ
  doi: 10.1086/308371
– volume: 775
  start-page: 67
  year: 2013
  ident: apjacfed7bib2
  publication-title: ApJ
  doi: 10.1088/0004-637X/775/1/67
– volume: 259
  start-page: 46
  year: 2022a
  ident: apjacfed7bib32
  publication-title: ApJS
  doi: 10.3847/1538-4365/ac4d22
– volume: 357
  start-page: 722
  year: 2005
  ident: apjacfed7bib14
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.08687.x
– volume: 866
  start-page: 97
  year: 2018
  ident: apjacfed7bib3
  publication-title: ApJ
  doi: 10.3847/1538-4357/aadcf8
– volume: 32677
  start-page: 1
  year: 2022
  ident: apjacfed7bib12
  publication-title: GCN
– volume: 884
  start-page: 109
  year: 2019
  ident: apjacfed7bib18
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab40b9
– volume: 32648
  start-page: 1
  year: 2022
  ident: apjacfed7bib9
  publication-title: GCN
– volume: 32632
  start-page: 1
  year: 2022
  ident: apjacfed7bib10
  publication-title: GCN
– volume: 179
  start-page: 433
  year: 1977
  ident: apjacfed7bib5
  publication-title: MNRAS
  doi: 10.1093/mnras/179.3.433
– volume: 505
  start-page: 569
  year: 2009
  ident: apjacfed7bib7
  publication-title: A&A
  doi: 10.1051/0004-6361/200912662
– volume: 32751
  start-page: 1
  year: 2022
  ident: apjacfed7bib22
  publication-title: GCN
– volume: 550
  start-page: 410
  year: 2001
  ident: apjacfed7bib23
  publication-title: ApJ
  doi: 10.1086/319698
SSID ssj0004299
Score 2.4671202
Snippet As the brightest gamma-ray burst (GRB) ever detected, GRB 221009A may offer a chance that reveals some interesting features that are hidden in those bursts...
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 31
SubjectTerms Accretion disks
Astrophysics
Collapsars
Emission
Gamma ray bursts
Gamma rays
Lorentz factor
Luminosity
Precursors
Star formation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEA9FEPoiVls8q5IHW_BhudtNNtnti5ziB4UWsR74FiZfUml3l9sT6X_vJNmzimBf-hZ2Z9kwM8nMb5KZIWQfbYC0zvvMCqgybiVkoL3IKuDGgyusiOlj376L8xn_el1eP2n1Fe6EpfLAiXFjqEGgU-vBVznXkwqsMejTgBfe5VrEPHK0eUswtcyIxF02HUoy3H7HcVmjYyDHYLyz8pkRirX60bT8bLsXG3K0MqfrZG1wD-k0TesdeeOaDbI17UPAuv39h36mcZziEf0GWb1Io00yO7s8ogVCq0k9pSG6SqGhs-bprXJ6MQ_R9b6df6FTigg0CIhe3bcZuog3joYgAnQ9zOkP4xoE0e3hezI7Pbk6Ps-GngmZ4bxcZNrWRmvhmGCOi4qX0pQmno0yVubOTaRHCMYtOGQqAKLDXBptbYl221TMsg9kpWkbt0UoekbgEU25wmiua611yQrrCyk910LzERkvmajMUFA89LX4pRBYBLarwHYV2K4S20fk4PGLLhXTeIX2KMjlkS6UwY4PUDnUoBzqX8oxIp9QqmpYlv0rP9t9Rgfdrarxba5YrjrrR2RnqRd_iYoq5MkLxqvt_zHXj-RtaGWf8hx3yMpifud20eFZ6L2o2w-6rv3K
  priority: 102
  providerName: Directory of Open Access Journals
Title GRB 221009A with an Unconventional Precursor: A Typical Two-stage Collapsar Scenario?
URI https://iopscience.iop.org/article/10.3847/1538-4357/acfed7
https://www.proquest.com/docview/2881806348
https://doaj.org/article/a9a6675faf814b08adcc991af6fe1b67
Volume 957
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKERIXBIWqSx_ygSJxSHcTO7YDB7RFlBYJuoKu2Js1fiEhSKLNVoh_zzhOt1SgiktkJRPbGY89840zY0KeoQ6QzoeQOQEq405CBiaITAG3AXzhRB8-9uGjOJ3z94tysUFerWNhmnZY-o-wmBIFJxbG-c1wLR33cxS1vByDDd7JO-QuU0JF5HXOvlwHRRbVYPvyTDC5SHuU_6zhhk7qU_ejpsHm_1qfe6Vz8pA8GKxFOk19e0Q2fL1FdqZd9F83P37R57QvJ_dEt0XuzVLpMZm_-3RMC0Rak2pKo7OVQk3n9Z8_mdPZMjrbu2b5kk4pAtI4XvTiZ5OhxfjV0-hTgLaDJf1sfY2Yunn9hMxP3l68Oc2GIxQyy3m5yoyrrDHCM8E8F4qX0pa23yplrMy9n8iAiIw78AgcABAs5tIa50pU41Yxx7bJZt3UfodQNJQgILjyhTXcVMaYkhUuFFIGboThIzK-YqK2Q37xeMzFd404I7JdR7bryHad2D4iL9ZvtCm3xi20x3Fc1nQxK3Z_AyVEDxKioQKB3xEgqJybiQJnLdq_EETwuRFYySGOqh5maXdLY_s36KD9pit8mmuW69aFEdm7kotrokLFsHnBuHr6n83skvvx8PoU2bhHNlfLS7-PJs7KHPSuAbyenc8OerH-DWv49wg
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDI9gCMQLggHasQ3yAEg8lLs2adLuBd2AY3yNE-zEvUXOFxJibXU9NPHf4yTdxgSaeItaN00dJ_bPqW1CHqMOkNZ5n1kBVcathAy0F1kF3HhwhRUxfOzjoThY8HfLcjnUOY2xMG03bP3PsZkSBScWhvXNcC8dxzWKWl6OwXhn5biz_iq5VjIhQu2GT-zreWBkUQ_2L88Ek8t0TvnPXi7opZi-H7UNDuGvPToqntltcmuwGOk0je8OueKaTbI17YMPuz3-RZ_S2E4uin6TXJ-n1l2yePN5nxaItib1lAaHK4WGLpo_fzSn81VwuPftao9OKYLSMGf06KTN0Gr85mjwK0DXw4p-Ma5BXN2-uEcWs9dHLw-yoYxCZjgv15m2tdFaOCaY46LipTSliceljJW5cxPpEZVxCw7BAwACxlwabW2JqtxUzLL7ZKNpG7dFKBpL4BFgucJormutdckK6wspPddC8xEZnzJRmSHHeCh18UMh1ghsV4HtKrBdJbaPyLOzJ7qUX-MS2v0wL2d0ITN2vIBSogYpUVCDwO_w4Kuc60kF1hi0gcEL73ItsJMnOKtqWKn9JS_bvUAH3XdV491csVyhxI3IzqlcnBMVVQidF4xXD_7zNY_Ijfmrmfrw9vD9NrkZatmnQMcdsrFe_XS7aPGs9cMo1b8BCBn4-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GRB+221009A+with+an+Unconventional+Precursor%3A+A+Typical+Two-stage+Collapsar+Scenario%3F&rft.jtitle=The+Astrophysical+journal&rft.au=Song%2C+Xin-Ying&rft.au=Zhang%2C+Shuang-Nan&rft.date=2023-11-01&rft.pub=The+American+Astronomical+Society&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=957&rft.issue=1&rft_id=info:doi/10.3847%2F1538-4357%2Facfed7&rft.externalDocID=apjacfed7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon