Halo Expansion in Cosmological Hydro Simulations: Toward a Baryonic Solution of the Cusp/Core Problem in Massive Spirals

A clear prediction of the cold dark matter (CDM) model is the existence of cuspy dark matter halo density profiles on all mass scales. This is not in agreement with the observed rotation curves of spiral galaxies, challenging on small scales the otherwise successful CDM paradigm. In this work we emp...

Full description

Saved in:
Bibliographic Details
Published inAstrophysical journal. Letters Vol. 744; no. 1; pp. L9 - 5
Main Authors Macciò, A. V, Stinson, G, Brook, C. B, Wadsley, J, Couchman, H. M. P, Shen, S, Gibson, B. K, Quinn, T
Format Journal Article
LanguageEnglish
Published United States IOP Publishing 01.01.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A clear prediction of the cold dark matter (CDM) model is the existence of cuspy dark matter halo density profiles on all mass scales. This is not in agreement with the observed rotation curves of spiral galaxies, challenging on small scales the otherwise successful CDM paradigm. In this work we employ high-resolution cosmological hydrodynamical simulations to study the effects of dissipative processes on the inner distribution of dark matter in Milky Way like objects (M [approx =] 10 super(12) M sub([sm circle in circle])). Our simulations include supernova feedback, and the effects of the radiation pressure of massive stars before they explode as supernovae. The increased stellar feedback results in the expansion of the dark matter halo instead of contraction with respect to N-body simulations. Baryons are able to erase the dark matter cuspy distribution, creating a flat, cored, dark matter density profile in the central several kiloparsecs of a massive Milky-Way-like halo. The profile is well fit by a Burkert profile, with fitting parameters consistent with the observations. In addition, we obtain flat rotation curves as well as extended, exponential stellar disk profiles. While the stellar disk we obtain is still partially too thick to resemble the Milky Way thin disk, this pilot study shows that there is enough energy available in the baryonic component to alter the dark matter distribution even in massive disk galaxies, providing a possible solution to the long-standing problem of cusps versus cores.
AbstractList A clear prediction of the cold dark matter (CDM) model is the existence of cuspy dark matter halo density profiles on all mass scales. This is not in agreement with the observed rotation curves of spiral galaxies, challenging on small scales the otherwise successful CDM paradigm. In this work we employ high-resolution cosmological hydrodynamical simulations to study the effects of dissipative processes on the inner distribution of dark matter in Milky Way like objects (M [approx =] 10 super(12) M sub([sm circle in circle])). Our simulations include supernova feedback, and the effects of the radiation pressure of massive stars before they explode as supernovae. The increased stellar feedback results in the expansion of the dark matter halo instead of contraction with respect to N-body simulations. Baryons are able to erase the dark matter cuspy distribution, creating a flat, cored, dark matter density profile in the central several kiloparsecs of a massive Milky-Way-like halo. The profile is well fit by a Burkert profile, with fitting parameters consistent with the observations. In addition, we obtain flat rotation curves as well as extended, exponential stellar disk profiles. While the stellar disk we obtain is still partially too thick to resemble the Milky Way thin disk, this pilot study shows that there is enough energy available in the baryonic component to alter the dark matter distribution even in massive disk galaxies, providing a possible solution to the long-standing problem of cusps versus cores.
A clear prediction of the cold dark matter (CDM) model is the existence of cuspy dark matter halo density profiles on all mass scales. This is not in agreement with the observed rotation curves of spiral galaxies, challenging on small scales the otherwise successful CDM paradigm. In this work we employ high-resolution cosmological hydrodynamical simulations to study the effects of dissipative processes on the inner distribution of dark matter in Milky Way like objects (M Almost-Equal-To 10{sup 12} M{sub Sun }). Our simulations include supernova feedback, and the effects of the radiation pressure of massive stars before they explode as supernovae. The increased stellar feedback results in the expansion of the dark matter halo instead of contraction with respect to N-body simulations. Baryons are able to erase the dark matter cuspy distribution, creating a flat, cored, dark matter density profile in the central several kiloparsecs of a massive Milky-Way-like halo. The profile is well fit by a Burkert profile, with fitting parameters consistent with the observations. In addition, we obtain flat rotation curves as well as extended, exponential stellar disk profiles. While the stellar disk we obtain is still partially too thick to resemble the Milky Way thin disk, this pilot study shows that there is enough energy available in the baryonic component to alter the dark matter distribution even in massive disk galaxies, providing a possible solution to the long-standing problem of cusps versus cores.
A clear prediction of the cold dark matter (CDM) model is the existence of cuspy dark matter halo density profiles on all mass scales. This is not in agreement with the observed rotation curves of spiral galaxies, challenging on small scales the otherwise successful CDM paradigm. In this work we employ high-resolution cosmological hydrodynamical simulations to study the effects of dissipative processes on the inner distribution of dark matter in Milky Way like objects (M 1012 M ). Our simulations include supernova feedback, and the effects of the radiation pressure of massive stars before they explode as supernovae. The increased stellar feedback results in the expansion of the dark matter halo instead of contraction with respect to N-body simulations. Baryons are able to erase the dark matter cuspy distribution, creating a flat, cored, dark matter density profile in the central several kiloparsecs of a massive Milky-Way-like halo. The profile is well fit by a Burkert profile, with fitting parameters consistent with the observations. In addition, we obtain flat rotation curves as well as extended, exponential stellar disk profiles. While the stellar disk we obtain is still partially too thick to resemble the Milky Way thin disk, this pilot study shows that there is enough energy available in the baryonic component to alter the dark matter distribution even in massive disk galaxies, providing a possible solution to the long-standing problem of cusps versus cores.
Author Stinson, G
Brook, C. B
Wadsley, J
Gibson, B. K
Macciò, A. V
Shen, S
Quinn, T
Couchman, H. M. P
Author_xml – sequence: 1
  fullname: Macciò, A. V
– sequence: 2
  fullname: Stinson, G
– sequence: 3
  fullname: Brook, C. B
– sequence: 4
  fullname: Wadsley, J
– sequence: 5
  fullname: Couchman, H. M. P
– sequence: 6
  fullname: Shen, S
– sequence: 7
  fullname: Gibson, B. K
– sequence: 8
  fullname: Quinn, T
BackLink https://www.osti.gov/biblio/22047255$$D View this record in Osti.gov
BookMark eNqN0U1v1DAQBmALFYm28Ac4WeIAHEL8mbW50ajtIi0CacvZ8joONXIywU6g_fc42opLJeA0lueZOcx7hk5GGD1CLyl5R4lSNSOCVooRWW-EqGm900_Q6cMn5Sd_3kQ-Q2c5fyeEkYaqU3S3tRHw5d1kxxxgxGHELeQBInwLzka8ve8S4H0YlmjnAvJ7fAO_bOqwxRc23cMYHN5DXNYmhh7Ptx63S57qFpLHXxIcoh_WtZ9szuGnx_spJBvzc_S0L8W_eKjn6OvV5U27rXafrz-2H3aVE0LOlW2axjuqLdeEuabnHT0clFXCa32QznGqOfVS0o5xQZhQ1DXEM-acFZZwx8_Rq-NeyHMw2YXZu1sH4-jdbFg5y4ZJWdTro5oS_Fh8ns0QsvMx2tHDko1mZKM5F6rIN3-VtNkoQqloxL-pJJJLWgIslB2pS5Bz8r2ZUhjKfQ0lZk3YrAGaNUBTEjbU7HQZqo5DAab_828f-8fOTF3PfwPeZrQI
CitedBy_id crossref_primary_10_1093_mnras_stu857
crossref_primary_10_4236_ns_2012_45038
crossref_primary_10_1088_0004_637X_757_1_87
crossref_primary_10_1088_1475_7516_2023_08_063
crossref_primary_10_1088_1475_7516_2015_09_008
crossref_primary_10_1103_RevModPhys_93_015003
crossref_primary_10_1111_j_1365_2966_2012_21469_x
crossref_primary_10_1088_2041_8205_788_1_L15
crossref_primary_10_1093_mnras_stt2489
crossref_primary_10_1093_mnras_stv1680
crossref_primary_10_1093_mnras_stt2003
crossref_primary_10_1088_0004_637X_800_1_15
crossref_primary_10_1111_j_1365_2966_2012_21284_x
crossref_primary_10_1093_mnras_sty771
crossref_primary_10_1093_mnras_stw1537
crossref_primary_10_3847_2041_8213_ac236a
crossref_primary_10_1093_mnras_stx2660
crossref_primary_10_1103_PhysRevD_107_103011
crossref_primary_10_1155_2014_869425
crossref_primary_10_1134_S1063773713090065
crossref_primary_10_1093_mnras_stt245
crossref_primary_10_1134_S1063772912090041
crossref_primary_10_1093_mnras_sts028
crossref_primary_10_1093_mnras_stu729
crossref_primary_10_1093_mnras_stae850
crossref_primary_10_1111_j_1365_2966_2012_21182_x
crossref_primary_10_1111_j_1365_2966_2012_21495_x
crossref_primary_10_1093_mnras_sts262
crossref_primary_10_1088_1475_7516_2013_10_029
crossref_primary_10_1088_1475_7516_2023_05_012
crossref_primary_10_1111_j_1365_2966_2012_20696_x
crossref_primary_10_3390_galaxies9040123
crossref_primary_10_1051_0004_6361_201834096
crossref_primary_10_3847_1538_4357_abb0ea
crossref_primary_10_1088_0004_637X_763_1_19
crossref_primary_10_1088_0004_637X_776_1_39
crossref_primary_10_3390_universe7120462
crossref_primary_10_1088_1674_4527_17_7_74
crossref_primary_10_1093_mnras_stt1600
crossref_primary_10_3390_universe8120652
crossref_primary_10_1093_mnras_stu440
crossref_primary_10_1093_mnras_stx678
crossref_primary_10_1088_1475_7516_2015_03_041
crossref_primary_10_1088_0004_637X_766_1_56
crossref_primary_10_1088_0004_637X_770_2_127
crossref_primary_10_1093_mnras_stw2040
crossref_primary_10_1093_mnras_sts651
crossref_primary_10_1093_mnras_stv1504
crossref_primary_10_1111_j_1365_2966_2012_20879_x
crossref_primary_10_1088_1742_6596_866_1_012007
crossref_primary_10_1088_0004_637X_773_2_173
crossref_primary_10_1088_0004_637X_773_2_172
crossref_primary_10_1088_0004_637X_765_1_22
crossref_primary_10_1111_j_1365_2966_2012_21353_x
crossref_primary_10_1051_0004_6361_201937079
crossref_primary_10_1016_j_crhy_2012_06_002
crossref_primary_10_1093_mnras_stz327
crossref_primary_10_1093_mnras_stu399
crossref_primary_10_1088_0004_637X_793_1_46
crossref_primary_10_3847_0004_637X_824_1_57
crossref_primary_10_1093_mnras_stt2144
crossref_primary_10_1051_0004_6361_201936439
crossref_primary_10_1093_mnras_stu2466
crossref_primary_10_1093_mnras_stac3017
crossref_primary_10_1103_PhysRevD_96_083002
crossref_primary_10_1007_s10509_016_2703_6
crossref_primary_10_1088_0004_637X_765_1_10
crossref_primary_10_1111_j_1365_2966_2012_21951_x
crossref_primary_10_1016_j_aop_2014_08_003
crossref_primary_10_1093_mnras_staa316
crossref_primary_10_1051_0004_6361_201936272
crossref_primary_10_3847_2041_8213_ab9815
crossref_primary_10_1088_0004_637X_761_2_91
crossref_primary_10_1093_mnras_stx651
crossref_primary_10_1093_mnras_stt690
crossref_primary_10_3390_galaxies5010017
crossref_primary_10_1088_1475_7516_2014_06_024
crossref_primary_10_1093_mnras_staa2059
crossref_primary_10_1093_mnras_stx2099
crossref_primary_10_1093_mnras_stv2667
crossref_primary_10_1016_j_physrep_2015_09_002
crossref_primary_10_1038_nature12953
crossref_primary_10_1093_mnrasl_slaa094
crossref_primary_10_1093_mnrasl_slu047
crossref_primary_10_1093_mnras_stu419
crossref_primary_10_1103_RevModPhys_86_47
crossref_primary_10_1093_mnras_sts078
crossref_primary_10_1093_mnras_stt608
crossref_primary_10_1093_mnras_stv2856
crossref_primary_10_1103_PhysRevD_94_043516
crossref_primary_10_1103_PhysRevD_96_083014
crossref_primary_10_1093_mnras_stu1201
crossref_primary_10_1103_PhysRevD_95_063003
crossref_primary_10_1088_0004_637X_786_2_87
crossref_primary_10_1103_PhysRevD_98_123004
crossref_primary_10_1088_0004_6256_147_6_135
crossref_primary_10_1093_mnras_stt562
crossref_primary_10_1140_epjp_s13360_020_00650_y
crossref_primary_10_1017_S174392131300481X
crossref_primary_10_1093_mnras_sts067
crossref_primary_10_1088_1475_7516_2013_10_061
crossref_primary_10_1093_mnras_stv1755
crossref_primary_10_1088_1475_7516_2012_10_047
crossref_primary_10_3906_fiz_1711_13
crossref_primary_10_1088_0004_637X_789_1_63
crossref_primary_10_1093_mnras_sty1690
crossref_primary_10_1103_PhysRevD_90_043004
crossref_primary_10_1051_0004_6361_201730402
crossref_primary_10_1093_mnras_staa2790
crossref_primary_10_1093_mnrasl_slt093
crossref_primary_10_1093_mnras_stt1883
crossref_primary_10_1088_0004_637X_767_1_22
crossref_primary_10_1093_mnras_stx352
crossref_primary_10_1103_PhysRevD_88_103501
crossref_primary_10_1007_s10509_015_2626_7
crossref_primary_10_1088_0004_637X_783_1_7
crossref_primary_10_1088_1475_7516_2012_11_004
crossref_primary_10_1093_mnras_stv2165
crossref_primary_10_1093_mnras_stad597
crossref_primary_10_1093_mnras_stu912
crossref_primary_10_1088_2041_8205_769_1_L2
crossref_primary_10_1093_mnras_stu2037
crossref_primary_10_1093_mnras_stw1398
crossref_primary_10_1088_1475_7516_2014_03_038
crossref_primary_10_1088_0004_637X_761_1_71
crossref_primary_10_1093_mnras_stw2804
crossref_primary_10_1093_mnras_stw374
crossref_primary_10_1093_mnras_stx2282
crossref_primary_10_1103_PhysRevD_99_123027
crossref_primary_10_1093_mnras_stw1954
crossref_primary_10_1088_1475_7516_2012_08_027
crossref_primary_10_1111_j_1365_2966_2012_21522_x
crossref_primary_10_1093_mnras_stz889
crossref_primary_10_1007_s10509_016_2803_3
crossref_primary_10_1051_0004_6361_201526470
crossref_primary_10_1093_mnrasl_slv049
crossref_primary_10_1088_0954_3899_41_6_063101
crossref_primary_10_1093_mnras_stz3306
crossref_primary_10_1103_PhysRevD_109_124056
crossref_primary_10_1093_mnras_stx2048
crossref_primary_10_3390_universe8020076
crossref_primary_10_1093_mnras_stt1891
crossref_primary_10_1093_mnrasl_slaa058
crossref_primary_10_1080_00107514_2016_1175160
crossref_primary_10_1088_1475_7516_2015_07_047
crossref_primary_10_1088_2041_8205_755_2_L35
crossref_primary_10_1093_mnras_staa198
crossref_primary_10_1093_mnras_stw2532
crossref_primary_10_1093_mnras_sty1153
crossref_primary_10_3390_galaxies10010005
crossref_primary_10_1093_mnras_stad109
crossref_primary_10_1016_j_physrep_2018_10_002
crossref_primary_10_1088_1674_4527_12_8_004
crossref_primary_10_1093_mnras_stw1688
crossref_primary_10_1051_0004_6361_201425279
crossref_primary_10_1093_mnras_stx2171
crossref_primary_10_1093_mnras_stu1738
crossref_primary_10_1111_j_1365_2966_2012_21113_x
crossref_primary_10_1111_j_1365_2966_2012_21306_x
Cites_doi 10.1111/j.1365-2966.2010.17704.x
10.1086/382871
10.1111/j.1365-2966.2011.19038.x
10.1111/j.1365-2966.2004.08114.x
10.1111/j.1365-2966.2010.17187.x
10.1126/science.1148666
10.1086/422709
10.1111/j.1365-2966.2008.14029.x
10.1086/523256
10.1111/j.1365-2966.2005.09601.x
10.1111/j.1365-2966.2005.09525.x
10.1111/j.1365-2966.2010.17047.x
10.1038/nature08640
10.1086/424914
10.1088/0004-637X/692/2/1321
10.1086/163867
10.1086/522193
10.1093/mnras/283.3.L72
10.1086/322516
10.1086/509314
10.1086/309560
10.1111/j.1365-2966.2006.11097.x
10.1111/j.1365-2966.2006.11266.x
10.1086/164050
10.1111/j.1365-2966.2009.15133.x
10.1111/j.1365-2966.2009.15004.x
10.1111/j.1365-2966.2010.17637.x
10.1111/j.1365-2966.2011.19740.x
10.1111/j.1365-2966.2007.12545.x
10.1086/378316
10.1111/j.1365-2966.2010.17530.x
10.1088/0004-6256/136/6/2761
10.1086/377226
10.1088/0004-637X/710/2/903
10.1086/312747
10.1111/j.1365-2966.2006.11283.x
10.1086/376392
10.1088/2041-8205/736/1/L2
10.1016/j.newast.2003.08.004
10.1038/nature04944
10.1086/309175
10.1111/j.1365-2966.2008.14066.x
10.1111/j.1365-2966.2005.09976.x
10.1093/mnras/262.3.545
10.1086/304888
10.1088/0004-637X/742/1/16
10.1088/0067-0049/192/2/18
10.1111/j.1365-2966.2009.14764.x
10.1088/0004-637X/742/2/76
10.1093/mnras/183.3.341
ContentType Journal Article
DBID AAYXX
CITATION
7TG
KL.
8FD
H8D
L7M
OTOTI
DOI 10.1088/2041-8205/744/1/L9
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Meteorological & Geoastrophysical Abstracts - Academic

Technology Research Database
Meteorological & Geoastrophysical Abstracts - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 2041-8213
EndPage 5
ExternalDocumentID 22047255
10_1088_2041_8205_744_1_L9
GroupedDBID 02
1JI
4.4
8RP
AAGCD
AAJIO
ACGFS
ADIYS
AEFHF
AENEX
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
EBS
EJD
IOP
KOT
N5L
O3W
O43
RIN
ROL
RPA
SY9
T37
2FS
6J9
6TJ
AAFWJ
AAYXX
ABHWH
ACHIP
AFPKN
AKPSB
CITATION
CRLBU
FRP
GROUPED_DOAJ
IJHAN
OK1
PJBAE
~02
7TG
KL.
8FD
H8D
L7M
OTOTI
ID FETCH-LOGICAL-c445t-a666ec19a3902c6f3d1bb8a84e99b5cc31931e551d23402481c60e22cca4a03c3
IEDL.DBID IOP
ISSN 2041-8205
IngestDate Fri May 19 01:41:40 EDT 2023
Fri Aug 16 08:55:56 EDT 2024
Fri Jun 28 02:58:16 EDT 2024
Fri Jun 28 03:53:08 EDT 2024
Fri Aug 23 02:45:48 EDT 2024
Tue Nov 10 14:15:07 EST 2020
Mon May 13 15:59:14 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-a666ec19a3902c6f3d1bb8a84e99b5cc31931e551d23402481c60e22cca4a03c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 1505351108
PQPubID 23462
PageCount 5
ParticipantIDs crossref_primary_10_1088_2041_8205_744_1_L9
iop_primary_10_1088_2041_8205_744_1_L9
proquest_miscellaneous_920793348
proquest_miscellaneous_1505351108
osti_scitechconnect_22047255
proquest_miscellaneous_1678011464
PublicationCentury 2000
PublicationDate 2012-01-01
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Astrophysical journal. Letters
PublicationYear 2012
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 44
45
46
48
49
Brook (4) 2004; 612
Oh (36) 2008; 136
Navarro (32) 1996; 283
Gnedin (17) 2004; 616
Gnedin (18) 2007; 671
Salucci (42) 2000; 537
Abadi (1) 2003; 597
Dutton (13) 2007; 654
50
52
10
11
12
Ogiya (35) 2011; 736
15
Navarro (34) 2000; 538
19
Trujillo-Gomez (51) 2011; 742
Prada (40) 2011
Guedes (21) 2011; 742
Spergel (47) 2003; 148
Courteau (8) 2007; 671
Navarro (33) 1997; 490
2
Robertson (41) 2004; 606
3
5
El-Zant (14) 2001; 560
7
9
20
Komatsu (22) 2011; 192
Kuzio de Naray (24) 2009; 692
25
26
27
28
29
Gnedin (16) 2011
White (53) 1978; 183
31
Moster (30) 2010; 710
37
38
Kroupa (23) 1993; 262
Pontzen (39) 2011
Burkert (6) 1995; 447
43
References_xml – ident: 31
  doi: 10.1111/j.1365-2966.2010.17704.x
– volume: 606
  start-page: 32
  issn: 0004-637X
  year: 2004
  ident: 41
  publication-title: ApJ
  doi: 10.1086/382871
  contributor:
    fullname: Robertson
– ident: 12
  doi: 10.1111/j.1365-2966.2011.19038.x
– ident: 29
  doi: 10.1111/j.1365-2966.2004.08114.x
– ident: 50
  doi: 10.1111/j.1365-2966.2010.17187.x
– ident: 28
  doi: 10.1126/science.1148666
– year: 2011
  ident: 39
  contributor:
    fullname: Pontzen
– volume: 612
  start-page: 894
  issn: 0004-637X
  year: 2004
  ident: 4
  publication-title: ApJ
  doi: 10.1086/422709
  contributor:
    fullname: Brook
– ident: 25
  doi: 10.1111/j.1365-2966.2008.14029.x
– volume: 671
  start-page: 1115
  issn: 0004-637X
  year: 2007
  ident: 18
  publication-title: ApJ
  doi: 10.1086/523256
  contributor:
    fullname: Gnedin
– ident: 10
  doi: 10.1111/j.1365-2966.2005.09601.x
– ident: 37
  doi: 10.1111/j.1365-2966.2005.09525.x
– ident: 45
  doi: 10.1111/j.1365-2966.2010.17047.x
– ident: 19
  doi: 10.1038/nature08640
– volume: 616
  start-page: 16
  issn: 0004-637X
  year: 2004
  ident: 17
  publication-title: ApJ
  doi: 10.1086/424914
  contributor:
    fullname: Gnedin
– volume: 692
  start-page: 1321
  issn: 0004-637X
  year: 2009
  ident: 24
  publication-title: ApJ
  doi: 10.1088/0004-637X/692/2/1321
  contributor:
    fullname: Kuzio de Naray
– ident: 3
  doi: 10.1086/163867
– volume: 671
  start-page: 203
  issn: 0004-637X
  year: 2007
  ident: 8
  publication-title: ApJ
  doi: 10.1086/522193
  contributor:
    fullname: Courteau
– volume: 283
  start-page: L72
  issn: 0035-8711
  year: 1996
  ident: 32
  publication-title: MNRAS
  doi: 10.1093/mnras/283.3.L72
  contributor:
    fullname: Navarro
– volume: 560
  start-page: 636
  issn: 0004-637X
  year: 2001
  ident: 14
  publication-title: ApJ
  doi: 10.1086/322516
  contributor:
    fullname: El-Zant
– volume: 654
  start-page: 27
  issn: 0004-637X
  year: 2007
  ident: 13
  publication-title: ApJ
  doi: 10.1086/509314
  contributor:
    fullname: Dutton
– volume: 447
  start-page: L25
  issn: 1538-4357
  year: 1995
  ident: 6
  publication-title: ApJ
  doi: 10.1086/309560
  contributor:
    fullname: Burkert
– ident: 49
  doi: 10.1111/j.1365-2966.2006.11097.x
– ident: 20
  doi: 10.1111/j.1365-2966.2006.11266.x
– ident: 9
  doi: 10.1086/164050
– ident: 43
  doi: 10.1111/j.1365-2966.2009.15133.x
– ident: 11
  doi: 10.1111/j.1365-2966.2009.15004.x
– ident: 38
  doi: 10.1111/j.1365-2966.2010.17637.x
– ident: 5
  doi: 10.1111/j.1365-2966.2011.19740.x
– ident: 46
  doi: 10.1111/j.1365-2966.2007.12545.x
– volume: 597
  start-page: 21
  issn: 0004-637X
  year: 2003
  ident: 1
  publication-title: ApJ
  doi: 10.1086/378316
  contributor:
    fullname: Abadi
– year: 2011
  ident: 40
  contributor:
    fullname: Prada
– ident: 2
  doi: 10.1111/j.1365-2966.2010.17530.x
– volume: 136
  start-page: 2761
  issn: 1538-3881
  year: 2008
  ident: 36
  publication-title: AJ
  doi: 10.1088/0004-6256/136/6/2761
  contributor:
    fullname: Oh
– volume: 148
  start-page: 175
  issn: 0067-0049
  year: 2003
  ident: 47
  publication-title: ApJS
  doi: 10.1086/377226
  contributor:
    fullname: Spergel
– volume: 710
  start-page: 903
  issn: 0004-637X
  year: 2010
  ident: 30
  publication-title: ApJ
  doi: 10.1088/0004-637X/710/2/903
  contributor:
    fullname: Moster
– volume: 537
  start-page: L9
  issn: 1538-4357
  year: 2000
  ident: 42
  publication-title: ApJ
  doi: 10.1086/312747
  contributor:
    fullname: Salucci
– ident: 15
  doi: 10.1111/j.1365-2966.2006.11283.x
– ident: 7
  doi: 10.1086/376392
– volume: 736
  start-page: L2
  issn: 2041-8205
  year: 2011
  ident: 35
  publication-title: ApJ
  doi: 10.1088/2041-8205/736/1/L2
  contributor:
    fullname: Ogiya
– ident: 52
  doi: 10.1016/j.newast.2003.08.004
– year: 2011
  ident: 16
  contributor:
    fullname: Gnedin
– ident: 27
  doi: 10.1038/nature04944
– volume: 538
  start-page: 477
  issn: 0004-637X
  year: 2000
  ident: 34
  publication-title: ApJ
  doi: 10.1086/309175
  contributor:
    fullname: Navarro
– ident: 48
  doi: 10.1111/j.1365-2966.2008.14066.x
– ident: 26
  doi: 10.1111/j.1365-2966.2005.09976.x
– volume: 262
  start-page: 545
  issn: 0035-8711
  year: 1993
  ident: 23
  publication-title: MNRAS
  doi: 10.1093/mnras/262.3.545
  contributor:
    fullname: Kroupa
– volume: 490
  start-page: 493
  issn: 0004-637X
  year: 1997
  ident: 33
  publication-title: ApJ
  doi: 10.1086/304888
  contributor:
    fullname: Navarro
– volume: 742
  start-page: 16
  issn: 0004-637X
  year: 2011
  ident: 51
  publication-title: ApJ
  doi: 10.1088/0004-637X/742/1/16
  contributor:
    fullname: Trujillo-Gomez
– volume: 192
  start-page: 18
  issn: 0067-0049
  year: 2011
  ident: 22
  publication-title: ApJS
  doi: 10.1088/0067-0049/192/2/18
  contributor:
    fullname: Komatsu
– ident: 44
  doi: 10.1111/j.1365-2966.2009.14764.x
– volume: 742
  start-page: 76
  issn: 0004-637X
  year: 2011
  ident: 21
  publication-title: ApJ
  doi: 10.1088/0004-637X/742/2/76
  contributor:
    fullname: Guedes
– volume: 183
  start-page: 341
  issn: 0035-8711
  year: 1978
  ident: 53
  publication-title: MNRAS
  doi: 10.1093/mnras/183.3.341
  contributor:
    fullname: White
SSID ssj0020618
Score 2.4934504
Snippet A clear prediction of the cold dark matter (CDM) model is the existence of cuspy dark matter halo density profiles on all mass scales. This is not in agreement...
SourceID osti
proquest
crossref
iop
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Publisher
StartPage L9
SubjectTerms ASTROPHYSICS
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
BARYONS
Computer simulation
COMPUTERIZED SIMULATION
COSMOLOGY
Cusps
Dark matter
DENSITY
DIAGRAMS
Disks
Feedback
HYDRODYNAMICS
Mathematical models
MATHEMATICAL SOLUTIONS
MILKY WAY
NONLUMINOUS MATTER
RADIATION PRESSURE
ROTATION
SUPERNOVAE
Title Halo Expansion in Cosmological Hydro Simulations: Toward a Baryonic Solution of the Cusp/Core Problem in Massive Spirals
URI http://iopscience.iop.org/2041-8205/744/1/L9
https://search.proquest.com/docview/1505351108
https://search.proquest.com/docview/1678011464
https://search.proquest.com/docview/920793348
https://www.osti.gov/biblio/22047255
Volume 744
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBddn_ayj26j3rpxHaMvw0ksS561ty60hNGshbasb0KWZQhtrBA70Oyv350_Rke2khejh8NG8n38dCf9jrFPTkRKFioJE4wWobCJIw5Ig84wtiJPCXJQvmP6I5lci-838maH9a3kZn7Ref4BDptKPh-JKMQ4JYdfhBhGwzO6rUcUJ3Rb7_ziz-4KA1PTfq4X727IoBX94xV_RaEn-Cn0yB5tasMjN2Hm9Dmb9pd12tMlt4NVnQ3sr03uxq1m8II96_AmHLcK8pLtuHKP7R9XlAH38zUcQTNuExzVK3Y_MXceTu7RSVAeDWYljH01710kTNb50sPlbN61_aq-wlVz8hYMfDPLNTHtQp9rA18AAkwYr6rFcOyXDi7a_jX02inCdnS1cEml_rvqNbs-PbkaT8KuO0NohZB1aHDj42ykTKxG3CZFnEdZlppUOKUyaS3adhw5BGQ5jwUxp0U2GTnOUWWEQU2I37Dd0pdun0FBJIKFlNYR1481SipRJIj9uY2NEDxgn_u_pRctCYduiudpqmlxNS2uxsXVkT5TATvCld9K8ONDwU0BvciLgB2QYmj8qcSqa-n4ka0150SzKWXADnuF0WiYVG0xpfOrSiPSllSlHaWPyCBUoB1pIgIG_5FRnDgMY5G-3XZe79hThHW8TRQdsN16uXLvETrV2YfGZPB5Hv_8DervDTM
link.rule.ids 230,315,786,790,891,1564,27659,27955,27956,53939,53965
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZokRAXVF5qoNABoV5QyMaPEHNrt10tsC2V2gpultdxpErdeLXZlbr_vjN5IKoC6s2HiZN47JnPM-PPjH3wMtWq1FmcobeIpcs8cUBaNIbCySInyEHxjuOTbHwhv_1SfTVhcxYmzDvT_wmbLVFwO4RdQVyO23WZxui4VPJZyiRNJjqZF-UGe6iEzqiq74f4-XvPhe6quZSuf6Y7N_P3fm75pg18P9rpgCvtjp1unM9oiz3pUCPst9_4lD3w1TO2vV9THDvM1rAHTbsNU9TP2fXYXgU4usalTtEwuKxgGOpZb-hgvC4WAc4uZ93lXfUXOG_qZ8HCgV2siS8X-ogZhBIQJsJwVc-TYVh4OG1voaFujxF8o8GEM0rYX9Uv2MXo6Hw4jrs7FmInpVrGFrcv3qXaCj3gLitFkU6nuc2l13qqnMMVKlKPsKrgQhL_WeqygeccFS8t6lO8ZJtVqPw2g5KoAEulnCfGHme10rLMEMFzJ6yUPGIf-9E185ZKwzQp8Dw3pAtDujCoC5OaiY7YHirgXoLv_xS8K2BwdkRshxRpcG4RN66jIiK3NJwTWaZSEXvXK9jg8qKcia18WNUG8bKiXOsg_48MOnzaV2YyYvAPGc2JiVDI_NV9_2uXPTo9HJnJ15Pvr9ljxGm8jfzssM3lYuXfIBZaTt82s_0GL5P7kg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HALO+EXPANSION+IN+COSMOLOGICAL+HYDRO+SIMULATIONS%3A+TOWARD+A+BARYONIC+SOLUTION+OF+THE+CUSP%2FCORE+PROBLEM+IN+MASSIVE+SPIRALS&rft.jtitle=Astrophysical+journal.+Letters&rft.au=Maccio%2C+A+V&rft.au=Stinson%2C+G&rft.au=Brook%2C+C+B&rft.au=Wadsley%2C+J&rft.date=2012-01-01&rft.issn=2041-8205&rft.eissn=2041-8213&rft.volume=744&rft.issue=1&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1088%2F2041-8205%2F744%2F1%2FL9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-8205&client=summon