In-situ electropolymerization of porous conducting polyaniline fibrous network for solid-state supercapacitor

[Display omitted] •Insight into the growth mechanism of porous conducting polyaniline fibrous network.•Realization of controllable loading capacity of PANI combined with high specific surface area.•Solid-state supercapacitor device assembled delivers mass capacitance of 149.3 F g−1.•Low self-dischar...

Full description

Saved in:
Bibliographic Details
Published inApplied surface science Vol. 469; pp. 446 - 455
Main Authors He, Yapeng, Wang, Xue, Huang, Hui, Zhang, Panpan, Chen, Buming, Guo, Zhongcheng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Insight into the growth mechanism of porous conducting polyaniline fibrous network.•Realization of controllable loading capacity of PANI combined with high specific surface area.•Solid-state supercapacitor device assembled delivers mass capacitance of 149.3 F g−1.•Low self-discharge with weak leakage current and distinct cycling stability. Polyaniline (PANI) is considered as an attractive electrode material in energy storage devices. Here, self-supported porous conducting PANI fibrous network is in-situ deposited on carbon paper (CP) via a facile electropolymerization method for solid-state supercapacitor. We also explicate the possible growth mechanism of nanofiber network based on the morphology evolution. Combined with high specific surface area (42.2–96.3 m2 g−1), controllable loading capacity (10 μg cm−2 cycle−1) and superior conductivity (1.13–1.98 S cm−1), the composite electrodes are further proved with FTIR, Raman, XPS and UV–Vis spectra. The capacitance performances are systematically investigated via cyclic voltammetry, galvanostatic charge/discharge curves and electrochemical impedance spectroscopy. As-prepared CP/PANI-80 hybrid electrode exhibits mass capacitance of 455.1 F g−1 under 0.5 A g−1 with pseudo-capacitive contribution ∼58.4%. Meanwhile, the gravimetric capacitances of composite electrodes follow a decline trend with increase of loading capacity as the effective utilization rate and specific surface area of active PANI. Then, the solid-state supercapacitor device assembled delivers mass capacitance of 149.3 F g−1 and presents admirable energy density of 13.3 Wh kg−1 with power density 80 W kg−1 in PVA/H2SO4 electrolyte. Moreover, solid-state device exhibits favorable self-discharge behavior with low leakage current as small as 27.5 µA, distinct long time cycling stability with capacitance retention of 81.6% after 4000 continuous cycles. Above encouraging results could illustrate the great promise of this method and tremendous potential of PANI fibrous network electrodes in solid-state energy-storage systems.
AbstractList [Display omitted] •Insight into the growth mechanism of porous conducting polyaniline fibrous network.•Realization of controllable loading capacity of PANI combined with high specific surface area.•Solid-state supercapacitor device assembled delivers mass capacitance of 149.3 F g−1.•Low self-discharge with weak leakage current and distinct cycling stability. Polyaniline (PANI) is considered as an attractive electrode material in energy storage devices. Here, self-supported porous conducting PANI fibrous network is in-situ deposited on carbon paper (CP) via a facile electropolymerization method for solid-state supercapacitor. We also explicate the possible growth mechanism of nanofiber network based on the morphology evolution. Combined with high specific surface area (42.2–96.3 m2 g−1), controllable loading capacity (10 μg cm−2 cycle−1) and superior conductivity (1.13–1.98 S cm−1), the composite electrodes are further proved with FTIR, Raman, XPS and UV–Vis spectra. The capacitance performances are systematically investigated via cyclic voltammetry, galvanostatic charge/discharge curves and electrochemical impedance spectroscopy. As-prepared CP/PANI-80 hybrid electrode exhibits mass capacitance of 455.1 F g−1 under 0.5 A g−1 with pseudo-capacitive contribution ∼58.4%. Meanwhile, the gravimetric capacitances of composite electrodes follow a decline trend with increase of loading capacity as the effective utilization rate and specific surface area of active PANI. Then, the solid-state supercapacitor device assembled delivers mass capacitance of 149.3 F g−1 and presents admirable energy density of 13.3 Wh kg−1 with power density 80 W kg−1 in PVA/H2SO4 electrolyte. Moreover, solid-state device exhibits favorable self-discharge behavior with low leakage current as small as 27.5 µA, distinct long time cycling stability with capacitance retention of 81.6% after 4000 continuous cycles. Above encouraging results could illustrate the great promise of this method and tremendous potential of PANI fibrous network electrodes in solid-state energy-storage systems.
Author Guo, Zhongcheng
Wang, Xue
He, Yapeng
Zhang, Panpan
Chen, Buming
Huang, Hui
Author_xml – sequence: 1
  givenname: Yapeng
  orcidid: 0000-0002-1394-2860
  surname: He
  fullname: He, Yapeng
  organization: Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
– sequence: 2
  givenname: Xue
  surname: Wang
  fullname: Wang, Xue
  organization: Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
– sequence: 3
  givenname: Hui
  surname: Huang
  fullname: Huang, Hui
  email: huihuanghan@kmust.edu.cn
  organization: Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
– sequence: 4
  givenname: Panpan
  surname: Zhang
  fullname: Zhang, Panpan
  organization: Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
– sequence: 5
  givenname: Buming
  surname: Chen
  fullname: Chen, Buming
  organization: Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
– sequence: 6
  givenname: Zhongcheng
  surname: Guo
  fullname: Guo, Zhongcheng
  email: guozhch@vip.163.com
  organization: Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
BookMark eNqFkM9KxDAQxoOs4Lr6Bh7yAq1JmnZbD4Is_llY8KLnkCYTydpNSpIq69Pb7nryoDAw8M18HzO_czRz3gFCV5TklNDqepvLPg5R5YzQOp_UmpygOa2XRVaWNZ-h-bjWZLwo2Bk6j3FLCGXjdI52a5dFmwYMHagUfO-7_Q6C_ZLJeoe9wb0PfohYeacHlax7w9OOdLazDrCx7WHsIH368I6NDzj6zuosJpkAx6GHoGQvlU0-XKBTI7sIlz99gV4f7l9WT9nm-XG9uttkivMyZbKqSmMYMbwwrZGaUcloW_OmMbQkTBOteDVWw6Eta8mAFHq5ZLKgWmtJZbFA_Jirgo8xgBF9sDsZ9oISMSETW3FEJiZkB7Umo-3ml228-gAiBWm7_8y3RzOMj31YCCIqC06BtmFEK7S3fwd8A-v_kRc
CitedBy_id crossref_primary_10_1016_j_colsurfa_2022_129796
crossref_primary_10_1016_j_jallcom_2022_163710
crossref_primary_10_1007_s10853_021_05920_3
crossref_primary_10_1016_j_ijhydene_2020_06_116
crossref_primary_10_1149_1945_7111_ac275d
crossref_primary_10_1016_j_ijbiomac_2021_10_108
crossref_primary_10_1007_s10854_021_07393_1
crossref_primary_10_1021_acsami_0c10933
crossref_primary_10_1007_s11664_020_08085_y
crossref_primary_10_1016_j_synthmet_2024_117545
crossref_primary_10_1016_j_est_2019_02_007
crossref_primary_10_1149_2162_8777_abdd84
crossref_primary_10_1021_acsami_4c09356
crossref_primary_10_1002_app_48524
crossref_primary_10_1016_j_electacta_2021_139330
crossref_primary_10_1080_25740881_2024_2321619
crossref_primary_10_1016_j_jallcom_2021_159931
crossref_primary_10_1016_j_est_2022_104937
crossref_primary_10_1002_elan_202060499
crossref_primary_10_1016_j_mtchem_2020_100249
crossref_primary_10_1016_j_jpowsour_2020_229219
crossref_primary_10_1002_slct_202001733
crossref_primary_10_1016_j_mssp_2020_105291
crossref_primary_10_1016_j_jiec_2021_11_004
crossref_primary_10_1016_j_electacta_2020_135628
crossref_primary_10_1016_j_est_2023_110367
crossref_primary_10_1007_s10854_020_04025_y
crossref_primary_10_1016_j_est_2024_110703
crossref_primary_10_1149_2_0871913jes
crossref_primary_10_1016_j_matchemphys_2023_127646
crossref_primary_10_1039_D3TC03119E
crossref_primary_10_1016_j_cej_2021_134483
crossref_primary_10_1016_j_electacta_2022_141378
crossref_primary_10_1080_15583724_2023_2220131
crossref_primary_10_1002_ente_202201077
crossref_primary_10_1039_D3MH00883E
crossref_primary_10_1002_aenm_202000181
crossref_primary_10_1016_j_apsusc_2021_152397
crossref_primary_10_1016_j_electacta_2020_136712
crossref_primary_10_1016_j_est_2024_115153
crossref_primary_10_1016_j_energy_2019_06_144
crossref_primary_10_1016_j_colsurfa_2020_125172
crossref_primary_10_1016_j_electacta_2021_138953
crossref_primary_10_1002_er_7589
crossref_primary_10_1016_j_jpcs_2019_02_020
crossref_primary_10_1016_j_est_2022_104599
crossref_primary_10_1007_s11664_022_09768_4
crossref_primary_10_1021_acsanm_3c02021
crossref_primary_10_1016_j_est_2023_106738
crossref_primary_10_1016_j_electacta_2019_135465
crossref_primary_10_1016_j_jelechem_2020_114491
crossref_primary_10_1021_acsanm_3c02028
crossref_primary_10_1016_j_ijhydene_2019_07_045
crossref_primary_10_1016_j_mssp_2021_106077
crossref_primary_10_1016_j_electacta_2022_141800
crossref_primary_10_1002_pat_4624
crossref_primary_10_1016_j_compstruct_2023_117797
crossref_primary_10_1016_j_electacta_2022_140914
crossref_primary_10_1007_s12221_023_00141_8
crossref_primary_10_1016_j_electacta_2020_136448
crossref_primary_10_1016_j_electacta_2019_135259
crossref_primary_10_1016_j_ijhydene_2020_10_126
crossref_primary_10_1149_1945_7111_ac3f1e
crossref_primary_10_1002_mame_202100040
crossref_primary_10_1016_j_carbon_2021_10_066
crossref_primary_10_1021_acsami_3c14396
crossref_primary_10_1016_j_jpowsour_2020_228681
crossref_primary_10_1109_ACCESS_2020_3012730
crossref_primary_10_1002_adfm_202104256
crossref_primary_10_1016_j_jcis_2021_03_169
crossref_primary_10_1002_jssc_70076
crossref_primary_10_1016_j_electacta_2021_138818
crossref_primary_10_1016_j_jelechem_2020_114188
crossref_primary_10_1080_10601325_2022_2138765
crossref_primary_10_1016_j_jmst_2019_10_003
crossref_primary_10_1016_j_ijbiomac_2024_132772
crossref_primary_10_1007_s00339_019_2883_3
crossref_primary_10_1016_j_electacta_2020_135881
crossref_primary_10_1016_j_apsusc_2020_146086
crossref_primary_10_1016_j_ijbiomac_2024_133151
crossref_primary_10_1016_j_apcatb_2019_117774
crossref_primary_10_1016_j_est_2023_109672
crossref_primary_10_1016_j_est_2024_113471
crossref_primary_10_1016_j_rser_2020_110185
crossref_primary_10_1016_j_jclepro_2022_131030
crossref_primary_10_1016_j_cej_2022_134845
crossref_primary_10_1016_j_est_2023_108941
crossref_primary_10_1080_15421406_2022_2148421
crossref_primary_10_1016_j_est_2022_104965
crossref_primary_10_1016_j_elstat_2019_103396
crossref_primary_10_1088_1748_605X_ab3010
Cites_doi 10.1039/C5TA00829H
10.1039/C7TA05134D
10.1016/j.rser.2008.09.028
10.1016/j.cej.2018.05.090
10.1016/j.electacta.2016.03.115
10.1016/j.jpowsour.2015.12.056
10.1016/j.electacta.2018.06.158
10.1039/C5EE03149D
10.1142/S1793292018500133
10.1021/nn1006539
10.1016/j.energy.2017.10.107
10.1016/j.jpowsour.2017.02.054
10.1002/adma.201703044
10.1016/j.carbon.2014.07.004
10.1016/j.nanoen.2018.01.015
10.1016/j.jpowsour.2010.06.084
10.1016/j.apsusc.2016.09.119
10.1016/j.cej.2012.07.102
10.1016/j.electacta.2016.11.026
10.1002/admt.201600282
10.1002/aenm.201100488
10.1039/C7EE00488E
10.1016/j.carbon.2017.10.088
10.1039/C4TA00734D
10.1016/j.compositesb.2017.02.028
10.1021/nn303530k
10.1021/nn1000035
10.1016/j.nanoen.2013.09.002
10.1016/j.matlet.2018.01.112
10.1016/j.matlet.2005.11.047
10.1039/C6TA11224B
10.1039/C7TA01990D
10.1021/nl1019672
10.1016/j.electacta.2015.03.181
10.1016/j.cej.2018.03.079
10.1039/c2ta01283a
10.1002/cssc.201403486
10.1002/aelm.201800179
10.1039/c2ee24203f
10.1039/C1CS15060J
10.1039/C5TA03057A
10.1016/j.jallcom.2016.10.253
10.1016/j.rser.2016.06.029
10.1016/j.electacta.2018.06.182
10.1016/j.synthmet.2017.07.023
10.1126/science.1249625
10.1016/j.jpowsour.2013.06.119
10.1021/acsami.6b05933
10.1016/j.ijhydene.2009.04.005
10.1038/nmat2612
10.1039/C6NJ02266A
10.1021/jacs.5b01613
10.1016/j.jpowsour.2015.06.053
ContentType Journal Article
Copyright 2018
Copyright_xml – notice: 2018
DBID AAYXX
CITATION
DOI 10.1016/j.apsusc.2018.10.180
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5584
EndPage 455
ExternalDocumentID 10_1016_j_apsusc_2018_10_180
S016943321832957X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SPG
SSK
SSM
SSQ
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
NDZJH
R2-
SEW
SSH
WUQ
ID FETCH-LOGICAL-c445t-a665ff20f43fbfad21a21b8499f1502d0dc46c4694eb58a2e03d772a31ddda1a3
IEDL.DBID .~1
ISSN 0169-4332
IngestDate Tue Jul 01 02:09:20 EDT 2025
Thu Apr 24 22:52:25 EDT 2025
Fri Feb 23 02:25:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Solid-state supercapacitor
Conducting polyaniline
Fibrous network structure
Electropolymerization method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-a665ff20f43fbfad21a21b8499f1502d0dc46c4694eb58a2e03d772a31ddda1a3
ORCID 0000-0002-1394-2860
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_apsusc_2018_10_180
crossref_citationtrail_10_1016_j_apsusc_2018_10_180
elsevier_sciencedirect_doi_10_1016_j_apsusc_2018_10_180
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied surface science
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cong, Ren, Wang, Yu (b0115) 2013; 6
Li, Dai, Xiao, Yang, Shen, Zhang, Cai (b0035) 2016; 9
Zheng, Lv, Na, Liu, Jin, Yuan (b0250) 2017; 5
Li, Lou, Han, Chen, Jiang, Shen (b0170) 2017; 2
Zhang, Meng, Wang, Qin, Jin, Cao (b0185) 2018; 217
Hemmati, Saboori (b0020) 2016; 65
Xiong, Li, Dang, Zhao, Li, Lv (b0205) 2016; 306
Gupta, Miura (b0130) 2006; 60
Wang, Feng, Ren, Piao, Zhong, Wang, Li, Chen, Wang (b0100) 2015; 137
Hadjipaschalis, Poullikkas, Efthimiou (b0005) 2009; 13
Meng, Liu, Chen, Hu, Fan (b0225) 2010; 10
Eftekhari, Li, Yang (b0070) 2017; 347
Fathabadi (b0025) 2018; 143
Yao, Yuan, Xiao, Zhang, Qi, Zhou, Zhou, Hu, Chen (b0110) 2013; 2
Wang, Wang, Kong, Lv, Teng, Zhu (b0090) 2017; 29
Wang, Xu, Fu, Wang, Yang, Jiao (b0155) 2016; 222
Yu, Zhao, Li, Zhang (b0210) 2017; 393
Liu, Xu, Lu, Xiong, Ouyang, Zhao, Wang, Qin, Hong, Tang, Chen (b0120) 2018; 283
Das, Bera, Maitra, Karan, Paria, Halder, Si, Bera, Khatua (b0220) 2017; 5
Xiong, Li, Zhao, Dang, Li, Ji, Jin, Jiao, Shang, Zhang (b0045) 2017; 116
Xie, Liu, Zhao, Tsang, Lau, Huang, Chai (b0230) 2014; 2
Xiong, Li, Zhao, Dang, Ji, Li, Etesami (b0060) 2018; 13
Bavio, Acosta, Kessler (b0175) 2014; 245
Simon, Gogotsi, Dunn (b0010) 2014; 343
Yang, Hao, Yuan, Niu, Xia (b0165) 2014; 78
Brezesinski, Wang, Tolbert, Dunn (b0190) 2010; 9
Hui, Chai, Lin, Song, Sun, Li, Niu, Luo (b0195) 2016; 199
Kurra, Wang, Alshareef (b0075) 2015; 3
Wu, Xu, Yao, Liu, Shi (b0240) 2010; 4
Wang, Zhang, Zhang (b0030) 2012; 41
Chen, Lu, Yu, Lou (b0015) 2017; 10
Xiao, Li, Yang, Gao, Jin, Ni, Zhan, Zhang, Cao, Zhong, Gong, Yen, Mai, Chen, Huo, Chueh, Wang, Zhou (b0215) 2012; 6
Gao, Song, Li (b0150) 2015; 3
Heydari, Gholivand (b0235) 2017; 41
Li, Liu, Huang, Bu, Xu (b0255) 2017; 5
Zhang, Feng, Wu, Wang, Zhang, Xia, Dong, Li, Zhang (b0050) 2009; 34
Qu, Lu, Su, Cui, He, Zhang, Cai, Zhang, Feng, Zhuang (b0200) 2018; 127
Zhang, Lin, Lin, Yin, Lu, Liu, Zhao (b0040) 2015; 8
Huang, Su, Zhang, Xu, Chu, Hu, Liu, Chen, Liu, Deng, Gu, Zhang, Yang (b0105) 2018; 4
Wang, Wang, Liu, Yu, Hou, Chen, Shen (b0260) 2013; 1
Snook, Kao, Best (b0065) 2011; 196
Ayad, Zaghlol (b0140) 2012; 204–206
Xu, Wang, Zu, Han, Wei (b0125) 2010; 4
Singh, Sarkar, Karmakar, Mandal, Khan (b0145) 2016; 8
Xu, Li, Wang (b0135) 2015; 294
Sun, Zhai, Liang, Savilov, Xia (b0055) 2018; 45
Wang, Du, An, Li, Gao, Hao, Guan (b0245) 2017; 232
Chu, Zhang, Su, Liu, Gu, Huang, Zhang, Deng, Zheng, Yang (b0080) 2018; 349
Shen, Li, Li, Li, Qian, Su, Yang (b0095) 2018; 283
Xin, Wang, Liu, Zhang, Wang, Huang, Zang (b0160) 2015; 167
Wang, Zou, Quan, Yu, Wu, Jiang, Wei (b0265) 2011; 1
Xiong, Li, Zhu, Zhao, Dang, Li, Ji, Shang, Khan (b0085) 2017; 695
Gong, Li, Huang, Zhang, Gao, Zhou (b0180) 2018; 344
Liu (10.1016/j.apsusc.2018.10.180_b0120) 2018; 283
Li (10.1016/j.apsusc.2018.10.180_b0255) 2017; 5
Zhang (10.1016/j.apsusc.2018.10.180_b0185) 2018; 217
Das (10.1016/j.apsusc.2018.10.180_b0220) 2017; 5
Sun (10.1016/j.apsusc.2018.10.180_b0055) 2018; 45
Zhang (10.1016/j.apsusc.2018.10.180_b0040) 2015; 8
Shen (10.1016/j.apsusc.2018.10.180_b0095) 2018; 283
Yao (10.1016/j.apsusc.2018.10.180_b0110) 2013; 2
Bavio (10.1016/j.apsusc.2018.10.180_b0175) 2014; 245
Wang (10.1016/j.apsusc.2018.10.180_b0155) 2016; 222
Xie (10.1016/j.apsusc.2018.10.180_b0230) 2014; 2
Wang (10.1016/j.apsusc.2018.10.180_b0265) 2011; 1
Wang (10.1016/j.apsusc.2018.10.180_b0030) 2012; 41
Li (10.1016/j.apsusc.2018.10.180_b0035) 2016; 9
Xu (10.1016/j.apsusc.2018.10.180_b0135) 2015; 294
Ayad (10.1016/j.apsusc.2018.10.180_b0140) 2012; 204–206
Simon (10.1016/j.apsusc.2018.10.180_b0010) 2014; 343
Xiong (10.1016/j.apsusc.2018.10.180_b0045) 2017; 116
Xiong (10.1016/j.apsusc.2018.10.180_b0205) 2016; 306
Singh (10.1016/j.apsusc.2018.10.180_b0145) 2016; 8
Cong (10.1016/j.apsusc.2018.10.180_b0115) 2013; 6
Hui (10.1016/j.apsusc.2018.10.180_b0195) 2016; 199
Xiong (10.1016/j.apsusc.2018.10.180_b0060) 2018; 13
Wang (10.1016/j.apsusc.2018.10.180_b0245) 2017; 232
Qu (10.1016/j.apsusc.2018.10.180_b0200) 2018; 127
Huang (10.1016/j.apsusc.2018.10.180_b0105) 2018; 4
Wu (10.1016/j.apsusc.2018.10.180_b0240) 2010; 4
Chen (10.1016/j.apsusc.2018.10.180_b0015) 2017; 10
Zheng (10.1016/j.apsusc.2018.10.180_b0250) 2017; 5
Fathabadi (10.1016/j.apsusc.2018.10.180_b0025) 2018; 143
Zhang (10.1016/j.apsusc.2018.10.180_b0050) 2009; 34
Heydari (10.1016/j.apsusc.2018.10.180_b0235) 2017; 41
Hemmati (10.1016/j.apsusc.2018.10.180_b0020) 2016; 65
Brezesinski (10.1016/j.apsusc.2018.10.180_b0190) 2010; 9
Meng (10.1016/j.apsusc.2018.10.180_b0225) 2010; 10
Wang (10.1016/j.apsusc.2018.10.180_b0090) 2017; 29
Xu (10.1016/j.apsusc.2018.10.180_b0125) 2010; 4
Gupta (10.1016/j.apsusc.2018.10.180_b0130) 2006; 60
Xiong (10.1016/j.apsusc.2018.10.180_b0085) 2017; 695
Hadjipaschalis (10.1016/j.apsusc.2018.10.180_b0005) 2009; 13
Yang (10.1016/j.apsusc.2018.10.180_b0165) 2014; 78
Chu (10.1016/j.apsusc.2018.10.180_b0080) 2018; 349
Li (10.1016/j.apsusc.2018.10.180_b0170) 2017; 2
Eftekhari (10.1016/j.apsusc.2018.10.180_b0070) 2017; 347
Wang (10.1016/j.apsusc.2018.10.180_b0260) 2013; 1
Yu (10.1016/j.apsusc.2018.10.180_b0210) 2017; 393
Snook (10.1016/j.apsusc.2018.10.180_b0065) 2011; 196
Kurra (10.1016/j.apsusc.2018.10.180_b0075) 2015; 3
Wang (10.1016/j.apsusc.2018.10.180_b0100) 2015; 137
Xiao (10.1016/j.apsusc.2018.10.180_b0215) 2012; 6
Xin (10.1016/j.apsusc.2018.10.180_b0160) 2015; 167
Gao (10.1016/j.apsusc.2018.10.180_b0150) 2015; 3
Gong (10.1016/j.apsusc.2018.10.180_b0180) 2018; 344
References_xml – volume: 232
  start-page: 87
  year: 2017
  end-page: 95
  ident: b0245
  article-title: Synthesis of oriented coral-like polyaniline nano-arrays for flexible all-solid-state supercapacitor
  publication-title: Synth. Met.
– volume: 5
  start-page: 12969
  year: 2017
  end-page: 12976
  ident: b0250
  article-title: Nanocellulose-mediated hybrid polyaniline electrodes for high performance flexible supercapacitors
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 1600282
  year: 2017
  ident: b0170
  article-title: Highly stretchable micro-supercapacitor arrays with hybrid MWCNT/PANI electrodes
  publication-title: Adv. Mater. Technol.
– volume: 349
  start-page: 168
  year: 2018
  end-page: 175
  ident: b0080
  article-title: A novel stretchable supercapacitor electrode with high linear capacitance
  publication-title: Chem. Eng. J.
– volume: 4
  start-page: 1963
  year: 2010
  end-page: 1970
  ident: b0240
  article-title: Supercapacitors based on flexible graphene/polyaniline nanofiber composite films
  publication-title: ACS Nano
– volume: 344
  start-page: 290
  year: 2018
  end-page: 298
  ident: b0180
  article-title: Shape-controlled synthesis of Ni-CeO
  publication-title: Chem. Eng. J.
– volume: 306
  start-page: 602
  year: 2016
  end-page: 610
  ident: b0205
  article-title: Two-step approach of fabrication of three-dimensional MnO
  publication-title: J. Power Sources
– volume: 13
  start-page: 1850013
  year: 2018
  ident: b0060
  article-title: Three-dimensional graphene/MnO
  publication-title: Nano
– volume: 3
  start-page: 7368
  year: 2015
  end-page: 7374
  ident: b0075
  article-title: All conducting polymer electrodes for asymmetric solid-state supercapacitors
  publication-title: J. Mater. Chem. A
– volume: 167
  start-page: 254
  year: 2015
  end-page: 261
  ident: b0160
  article-title: Preparation of self-supporting graphene on flexible graphite sheet and electrodeposition of polyaniline for supercapacitor
  publication-title: Electrochim. Acta
– volume: 2
  start-page: 9142
  year: 2014
  end-page: 9149
  ident: b0230
  article-title: Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 146
  year: 2010
  ident: b0190
  article-title: Ordered mesoporous alpha-MoO
  publication-title: Nature Mater.
– volume: 204–206
  start-page: 79
  year: 2012
  end-page: 86
  ident: b0140
  article-title: Nanostructured crosslinked polyaniline with high surface area: synthesis, characterization and adsorption for organic dye
  publication-title: Chem. Eng. J.
– volume: 2
  start-page: 1071
  year: 2013
  end-page: 1078
  ident: b0110
  article-title: Paper-based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes
  publication-title: Nano Energy
– volume: 13
  start-page: 1513
  year: 2009
  end-page: 1522
  ident: b0005
  article-title: Overview of current and future energy storage technologies for electric power applications
  publication-title: Renew. Sust. Energy Rev.
– volume: 4
  start-page: 1800179
  year: 2018
  ident: b0105
  article-title: Extraordinary areal and volumetric performance of flexible solid-state micro-supercapacitors based on highly conductive dreestanding Ti
  publication-title: Adv. Electron. Mater.
– volume: 41
  start-page: 797
  year: 2012
  end-page: 828
  ident: b0030
  article-title: A review of electrode materials for electrochemical supercapacitors
  publication-title: Chem. Soc. Rev.
– volume: 347
  start-page: 86
  year: 2017
  end-page: 107
  ident: b0070
  article-title: Polyaniline supercapacitors
  publication-title: J. Power Sources
– volume: 9
  start-page: 102
  year: 2016
  end-page: 106
  ident: b0035
  article-title: Nitrogen-doped activated carbon for high energy hybrid supercapacitor
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 5019
  year: 2010
  end-page: 5026
  ident: b0125
  article-title: Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage
  publication-title: ACS Nano
– volume: 294
  start-page: 16
  year: 2015
  end-page: 21
  ident: b0135
  article-title: Polyaniline nanofibers with a high specific surface area and an improved pore structure for supercapacitors
  publication-title: J. Power Sources
– volume: 1
  start-page: 2468
  year: 2013
  end-page: 2473
  ident: b0260
  article-title: NiCo
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 9200
  year: 2012
  end-page: 9206
  ident: b0215
  article-title: Fiber-based all-solid-state flexible supercapacitors for self-powered systems
  publication-title: ACS Nano
– volume: 222
  start-page: 701
  year: 2016
  end-page: 708
  ident: b0155
  article-title: A highly conductive and hierarchical PANI micro/nanostructure and its supercapacitor application
  publication-title: Electrochim. Acta
– volume: 5
  start-page: 22242
  year: 2017
  end-page: 22254
  ident: b0220
  article-title: Fabrication of an advanced asymmetric supercapacitor based on a microcubical PB@MnO
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 20786
  year: 2016
  end-page: 20792
  ident: b0145
  article-title: High-performance supercapacitor electrode based on vobalt oxide-manganese dioxide-nickel oxide ternary 1D hybrid nanotubes
  publication-title: ACS Appl. Mater. Interfaces
– volume: 34
  start-page: 4889
  year: 2009
  end-page: 4899
  ident: b0050
  article-title: Progress of electrochemical capacitor electrode materials: a review
  publication-title: Int. J. Hydrogen Energy
– volume: 10
  start-page: 4025
  year: 2010
  end-page: 4031
  ident: b0225
  article-title: Highly flexible and all-solid-state paperlike polymer supercapacitors
  publication-title: Nano Lett.
– volume: 283
  start-page: 410
  year: 2018
  end-page: 418
  ident: b0095
  article-title: High-performance aqueous symmetric supercapacitor based on polyaniline/vertical graphene/Ti multilayer electrodes
  publication-title: Electrochim. Acta
– volume: 245
  start-page: 475
  year: 2014
  end-page: 481
  ident: b0175
  article-title: Synthesis and characterization of polyaniline and polyaniline - carbon nanotubes nanostructures for electrochemical supercapacitors
  publication-title: J. Power Sources
– volume: 8
  start-page: 2114
  year: 2015
  end-page: 2122
  ident: b0040
  article-title: 3 D Hierarchical porous carbon for supercapacitors prepared from lignin through a dacile template-free method
  publication-title: ChemSusChem
– volume: 60
  start-page: 1466
  year: 2006
  end-page: 1469
  ident: b0130
  article-title: High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline
  publication-title: Mater. Lett.
– volume: 393
  start-page: 37
  year: 2017
  end-page: 45
  ident: b0210
  article-title: Controllable growth of polyaniline nanowire arrays on hierarchical macro/mesoporous graphene foams for high-performance flexible supercapacitors
  publication-title: Appl. Surf. Sci.
– volume: 116
  start-page: 7
  year: 2017
  end-page: 15
  ident: b0045
  article-title: Reduced graphene oxide-carbon nanotube grown on carbon fiber as binder-free electrode for flexible high-performance fiber supercapacitors
  publication-title: Compos. Part B: Eng.
– volume: 10
  start-page: 1777
  year: 2017
  end-page: 1783
  ident: b0015
  article-title: Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors
  publication-title: Energy Environ. Sci.
– volume: 143
  start-page: 467
  year: 2018
  end-page: 477
  ident: b0025
  article-title: Novel fuel cell/battery/supercapacitor hybrid power source for fuel cell hybrid electric vehicles
  publication-title: Energy
– volume: 6
  start-page: 1185
  year: 2013
  end-page: 1191
  ident: b0115
  article-title: Flexible graphene-polyaniline composite paper for high-performance supercapacitor
  publication-title: Energy Environ. Sci.
– volume: 41
  start-page: 237
  year: 2017
  end-page: 244
  ident: b0235
  article-title: An all-solid-state asymmetric device based on a polyaniline hydrogel for a high energy flexible supercapacitor
  publication-title: New J. Chem.
– volume: 45
  start-page: 390
  year: 2018
  end-page: 397
  ident: b0055
  article-title: Boosted crystalline/amorphous Fe
  publication-title: Nano Energy
– volume: 1
  start-page: 1068
  year: 2011
  end-page: 1072
  ident: b0265
  article-title: An all-solid-state flexible micro-supercapacitor on a chip
  publication-title: Adv. Energy Mater.
– volume: 127
  start-page: 77
  year: 2018
  end-page: 84
  ident: b0200
  article-title: Hierarchical-graphene-coupled polyaniline aerogels for electrochemical energy storage
  publication-title: Carbon
– volume: 78
  start-page: 279
  year: 2014
  end-page: 287
  ident: b0165
  article-title: In situ preparation of caterpillar-like polyaniline/carbon nanotube hybrids with core shell structure for high performance supercapacitors
  publication-title: Carbon
– volume: 343
  start-page: 1210
  year: 2014
  end-page: 1211
  ident: b0010
  article-title: Where do batteries end and supercapacitors begin?
  publication-title: Science
– volume: 65
  start-page: 11
  year: 2016
  end-page: 23
  ident: b0020
  article-title: Emergence of hybrid energy storage systems in renewable energy and transport applications – a review
  publication-title: Renew. Sust. Energy Rev.
– volume: 217
  start-page: 312
  year: 2018
  end-page: 315
  ident: b0185
  article-title: Preparation and electrochemical investigation of polyaniline nanowires for high performance supercapacitor
  publication-title: Mater. Lett.
– volume: 137
  start-page: 4920
  year: 2015
  end-page: 4923
  ident: b0100
  article-title: Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI
  publication-title: J. Am. Chem. Soc.
– volume: 283
  start-page: 366
  year: 2018
  end-page: 373
  ident: b0120
  article-title: A high performance all-solid-state flexible supercapacitor based on carbon nanotube fiber/carbon nanotubes/polyaniline with a double core-sheathed structure
  publication-title: Electrochim. Acta
– volume: 196
  start-page: 1
  year: 2011
  end-page: 12
  ident: b0065
  article-title: Conducting-polymer-based supercapacitor devices and electrodes
  publication-title: J. Power Sources
– volume: 695
  start-page: 1248
  year: 2017
  end-page: 1259
  ident: b0085
  article-title: Two-step approach of fabrication of interconnected nanoporous 3D reduced graphene oxide-carbon nanotube-polyaniline hybrid as a binder-free supercapacitor electrode
  publication-title: J. Alloys Compd.
– volume: 3
  start-page: 14833
  year: 2015
  end-page: 14844
  ident: b0150
  article-title: Microstructural design of hybrid CoO@NiO and graphene nano-architectures for flexible high performance supercapacitors
  publication-title: J. Mater. Chem. A
– volume: 199
  start-page: 234
  year: 2016
  end-page: 241
  ident: b0195
  article-title: Electrodeposited conducting polyaniline nanowire arrays aligned on carbon nanotubes network for high performance supercapacitors and sensors
  publication-title: Electrochim. Acta
– volume: 5
  start-page: 5466
  year: 2017
  end-page: 5474
  ident: b0255
  article-title: Integration of ultrathin graphene/polyaniline composite nanosheets with a robust 3D graphene framework for highly flexible all-solid-state supercapacitors with superior energy density and exceptional cycling stability
  publication-title: J. Mater. Chem. A
– volume: 29
  start-page: 1703044
  year: 2017
  ident: b0090
  article-title: Conducting-polymer-based materials for electrochemical energy conversion and storage
  publication-title: Adv. Mater.
– volume: 3
  start-page: 7368
  year: 2015
  ident: 10.1016/j.apsusc.2018.10.180_b0075
  article-title: All conducting polymer electrodes for asymmetric solid-state supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA00829H
– volume: 5
  start-page: 22242
  year: 2017
  ident: 10.1016/j.apsusc.2018.10.180_b0220
  article-title: Fabrication of an advanced asymmetric supercapacitor based on a microcubical PB@MnO2 hybrid and PANI/GNP composite with excellent electrochemical behaviour
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA05134D
– volume: 13
  start-page: 1513
  year: 2009
  ident: 10.1016/j.apsusc.2018.10.180_b0005
  article-title: Overview of current and future energy storage technologies for electric power applications
  publication-title: Renew. Sust. Energy Rev.
  doi: 10.1016/j.rser.2008.09.028
– volume: 349
  start-page: 168
  year: 2018
  ident: 10.1016/j.apsusc.2018.10.180_b0080
  article-title: A novel stretchable supercapacitor electrode with high linear capacitance
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.05.090
– volume: 199
  start-page: 234
  year: 2016
  ident: 10.1016/j.apsusc.2018.10.180_b0195
  article-title: Electrodeposited conducting polyaniline nanowire arrays aligned on carbon nanotubes network for high performance supercapacitors and sensors
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.03.115
– volume: 306
  start-page: 602
  year: 2016
  ident: 10.1016/j.apsusc.2018.10.180_b0205
  article-title: Two-step approach of fabrication of three-dimensional MnO2-graphene-carbon nanotube hybrid as a binder-free supercapacitor electrode
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.12.056
– volume: 283
  start-page: 366
  year: 2018
  ident: 10.1016/j.apsusc.2018.10.180_b0120
  article-title: A high performance all-solid-state flexible supercapacitor based on carbon nanotube fiber/carbon nanotubes/polyaniline with a double core-sheathed structure
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.06.158
– volume: 9
  start-page: 102
  year: 2016
  ident: 10.1016/j.apsusc.2018.10.180_b0035
  article-title: Nitrogen-doped activated carbon for high energy hybrid supercapacitor
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03149D
– volume: 13
  start-page: 1850013
  year: 2018
  ident: 10.1016/j.apsusc.2018.10.180_b0060
  article-title: Three-dimensional graphene/MnO2 nanowalls hybrid for high-efficiency electrochemical supercapacitors
  publication-title: Nano
  doi: 10.1142/S1793292018500133
– volume: 4
  start-page: 5019
  year: 2010
  ident: 10.1016/j.apsusc.2018.10.180_b0125
  article-title: Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage
  publication-title: ACS Nano
  doi: 10.1021/nn1006539
– volume: 143
  start-page: 467
  year: 2018
  ident: 10.1016/j.apsusc.2018.10.180_b0025
  article-title: Novel fuel cell/battery/supercapacitor hybrid power source for fuel cell hybrid electric vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2017.10.107
– volume: 347
  start-page: 86
  year: 2017
  ident: 10.1016/j.apsusc.2018.10.180_b0070
  article-title: Polyaniline supercapacitors
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.02.054
– volume: 29
  start-page: 1703044
  year: 2017
  ident: 10.1016/j.apsusc.2018.10.180_b0090
  article-title: Conducting-polymer-based materials for electrochemical energy conversion and storage
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703044
– volume: 78
  start-page: 279
  year: 2014
  ident: 10.1016/j.apsusc.2018.10.180_b0165
  article-title: In situ preparation of caterpillar-like polyaniline/carbon nanotube hybrids with core shell structure for high performance supercapacitors
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.07.004
– volume: 45
  start-page: 390
  year: 2018
  ident: 10.1016/j.apsusc.2018.10.180_b0055
  article-title: Boosted crystalline/amorphous Fe2O3-δ core/shell heterostructure for flexible solid-state pseudocapacitors in large scale
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.01.015
– volume: 196
  start-page: 1
  year: 2011
  ident: 10.1016/j.apsusc.2018.10.180_b0065
  article-title: Conducting-polymer-based supercapacitor devices and electrodes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.06.084
– volume: 393
  start-page: 37
  year: 2017
  ident: 10.1016/j.apsusc.2018.10.180_b0210
  article-title: Controllable growth of polyaniline nanowire arrays on hierarchical macro/mesoporous graphene foams for high-performance flexible supercapacitors
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.09.119
– volume: 204–206
  start-page: 79
  year: 2012
  ident: 10.1016/j.apsusc.2018.10.180_b0140
  article-title: Nanostructured crosslinked polyaniline with high surface area: synthesis, characterization and adsorption for organic dye
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.07.102
– volume: 222
  start-page: 701
  year: 2016
  ident: 10.1016/j.apsusc.2018.10.180_b0155
  article-title: A highly conductive and hierarchical PANI micro/nanostructure and its supercapacitor application
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.11.026
– volume: 2
  start-page: 1600282
  year: 2017
  ident: 10.1016/j.apsusc.2018.10.180_b0170
  article-title: Highly stretchable micro-supercapacitor arrays with hybrid MWCNT/PANI electrodes
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201600282
– volume: 1
  start-page: 1068
  year: 2011
  ident: 10.1016/j.apsusc.2018.10.180_b0265
  article-title: An all-solid-state flexible micro-supercapacitor on a chip
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201100488
– volume: 10
  start-page: 1777
  year: 2017
  ident: 10.1016/j.apsusc.2018.10.180_b0015
  article-title: Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE00488E
– volume: 127
  start-page: 77
  year: 2018
  ident: 10.1016/j.apsusc.2018.10.180_b0200
  article-title: Hierarchical-graphene-coupled polyaniline aerogels for electrochemical energy storage
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.10.088
– volume: 2
  start-page: 9142
  year: 2014
  ident: 10.1016/j.apsusc.2018.10.180_b0230
  article-title: Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA00734D
– volume: 116
  start-page: 7
  year: 2017
  ident: 10.1016/j.apsusc.2018.10.180_b0045
  article-title: Reduced graphene oxide-carbon nanotube grown on carbon fiber as binder-free electrode for flexible high-performance fiber supercapacitors
  publication-title: Compos. Part B: Eng.
  doi: 10.1016/j.compositesb.2017.02.028
– volume: 6
  start-page: 9200
  year: 2012
  ident: 10.1016/j.apsusc.2018.10.180_b0215
  article-title: Fiber-based all-solid-state flexible supercapacitors for self-powered systems
  publication-title: ACS Nano
  doi: 10.1021/nn303530k
– volume: 4
  start-page: 1963
  year: 2010
  ident: 10.1016/j.apsusc.2018.10.180_b0240
  article-title: Supercapacitors based on flexible graphene/polyaniline nanofiber composite films
  publication-title: ACS Nano
  doi: 10.1021/nn1000035
– volume: 2
  start-page: 1071
  year: 2013
  ident: 10.1016/j.apsusc.2018.10.180_b0110
  article-title: Paper-based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.09.002
– volume: 217
  start-page: 312
  year: 2018
  ident: 10.1016/j.apsusc.2018.10.180_b0185
  article-title: Preparation and electrochemical investigation of polyaniline nanowires for high performance supercapacitor
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.01.112
– volume: 60
  start-page: 1466
  year: 2006
  ident: 10.1016/j.apsusc.2018.10.180_b0130
  article-title: High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2005.11.047
– volume: 5
  start-page: 5466
  year: 2017
  ident: 10.1016/j.apsusc.2018.10.180_b0255
  article-title: Integration of ultrathin graphene/polyaniline composite nanosheets with a robust 3D graphene framework for highly flexible all-solid-state supercapacitors with superior energy density and exceptional cycling stability
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA11224B
– volume: 5
  start-page: 12969
  year: 2017
  ident: 10.1016/j.apsusc.2018.10.180_b0250
  article-title: Nanocellulose-mediated hybrid polyaniline electrodes for high performance flexible supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01990D
– volume: 10
  start-page: 4025
  year: 2010
  ident: 10.1016/j.apsusc.2018.10.180_b0225
  article-title: Highly flexible and all-solid-state paperlike polymer supercapacitors
  publication-title: Nano Lett.
  doi: 10.1021/nl1019672
– volume: 167
  start-page: 254
  year: 2015
  ident: 10.1016/j.apsusc.2018.10.180_b0160
  article-title: Preparation of self-supporting graphene on flexible graphite sheet and electrodeposition of polyaniline for supercapacitor
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.03.181
– volume: 344
  start-page: 290
  year: 2018
  ident: 10.1016/j.apsusc.2018.10.180_b0180
  article-title: Shape-controlled synthesis of Ni-CeO2@PANI nanocomposites and their synergetic effects on supercapacitors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.03.079
– volume: 1
  start-page: 2468
  year: 2013
  ident: 10.1016/j.apsusc.2018.10.180_b0260
  article-title: NiCo2O4 nanowire arrays supported on Ni foam for high-performance flexible all-solid-state supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c2ta01283a
– volume: 8
  start-page: 2114
  year: 2015
  ident: 10.1016/j.apsusc.2018.10.180_b0040
  article-title: 3 D Hierarchical porous carbon for supercapacitors prepared from lignin through a dacile template-free method
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201403486
– volume: 4
  start-page: 1800179
  year: 2018
  ident: 10.1016/j.apsusc.2018.10.180_b0105
  article-title: Extraordinary areal and volumetric performance of flexible solid-state micro-supercapacitors based on highly conductive dreestanding Ti3C2Tx films
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201800179
– volume: 6
  start-page: 1185
  year: 2013
  ident: 10.1016/j.apsusc.2018.10.180_b0115
  article-title: Flexible graphene-polyaniline composite paper for high-performance supercapacitor
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee24203f
– volume: 41
  start-page: 797
  year: 2012
  ident: 10.1016/j.apsusc.2018.10.180_b0030
  article-title: A review of electrode materials for electrochemical supercapacitors
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15060J
– volume: 3
  start-page: 14833
  year: 2015
  ident: 10.1016/j.apsusc.2018.10.180_b0150
  article-title: Microstructural design of hybrid CoO@NiO and graphene nano-architectures for flexible high performance supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA03057A
– volume: 695
  start-page: 1248
  year: 2017
  ident: 10.1016/j.apsusc.2018.10.180_b0085
  article-title: Two-step approach of fabrication of interconnected nanoporous 3D reduced graphene oxide-carbon nanotube-polyaniline hybrid as a binder-free supercapacitor electrode
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.10.253
– volume: 65
  start-page: 11
  year: 2016
  ident: 10.1016/j.apsusc.2018.10.180_b0020
  article-title: Emergence of hybrid energy storage systems in renewable energy and transport applications – a review
  publication-title: Renew. Sust. Energy Rev.
  doi: 10.1016/j.rser.2016.06.029
– volume: 283
  start-page: 410
  year: 2018
  ident: 10.1016/j.apsusc.2018.10.180_b0095
  article-title: High-performance aqueous symmetric supercapacitor based on polyaniline/vertical graphene/Ti multilayer electrodes
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.06.182
– volume: 232
  start-page: 87
  year: 2017
  ident: 10.1016/j.apsusc.2018.10.180_b0245
  article-title: Synthesis of oriented coral-like polyaniline nano-arrays for flexible all-solid-state supercapacitor
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2017.07.023
– volume: 343
  start-page: 1210
  year: 2014
  ident: 10.1016/j.apsusc.2018.10.180_b0010
  article-title: Where do batteries end and supercapacitors begin?
  publication-title: Science
  doi: 10.1126/science.1249625
– volume: 245
  start-page: 475
  year: 2014
  ident: 10.1016/j.apsusc.2018.10.180_b0175
  article-title: Synthesis and characterization of polyaniline and polyaniline - carbon nanotubes nanostructures for electrochemical supercapacitors
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.06.119
– volume: 8
  start-page: 20786
  year: 2016
  ident: 10.1016/j.apsusc.2018.10.180_b0145
  article-title: High-performance supercapacitor electrode based on vobalt oxide-manganese dioxide-nickel oxide ternary 1D hybrid nanotubes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b05933
– volume: 34
  start-page: 4889
  year: 2009
  ident: 10.1016/j.apsusc.2018.10.180_b0050
  article-title: Progress of electrochemical capacitor electrode materials: a review
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.04.005
– volume: 9
  start-page: 146
  year: 2010
  ident: 10.1016/j.apsusc.2018.10.180_b0190
  article-title: Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors
  publication-title: Nature Mater.
  doi: 10.1038/nmat2612
– volume: 41
  start-page: 237
  year: 2017
  ident: 10.1016/j.apsusc.2018.10.180_b0235
  article-title: An all-solid-state asymmetric device based on a polyaniline hydrogel for a high energy flexible supercapacitor
  publication-title: New J. Chem.
  doi: 10.1039/C6NJ02266A
– volume: 137
  start-page: 4920
  year: 2015
  ident: 10.1016/j.apsusc.2018.10.180_b0100
  article-title: Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b01613
– volume: 294
  start-page: 16
  year: 2015
  ident: 10.1016/j.apsusc.2018.10.180_b0135
  article-title: Polyaniline nanofibers with a high specific surface area and an improved pore structure for supercapacitors
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.06.053
SSID ssj0012873
Score 2.5601392
Snippet [Display omitted] •Insight into the growth mechanism of porous conducting polyaniline fibrous network.•Realization of controllable loading capacity of PANI...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 446
SubjectTerms Conducting polyaniline
Electropolymerization method
Fibrous network structure
Solid-state supercapacitor
Title In-situ electropolymerization of porous conducting polyaniline fibrous network for solid-state supercapacitor
URI https://dx.doi.org/10.1016/j.apsusc.2018.10.180
Volume 469
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXvQgPvFNDl7jtmnapsdFlFVhL7qwt5I0Hahot-x2D1787c70sSiIgtBLkwyUyXQe5JsvjF0Z7cBqFwiAMBQK4kRY8LVQvgfGGks0ZoS2mETjqXqYhbMBu-l7YQhW2fn-1qc33robGXbaHFZFMXwiHhFi3yKjTMJ4Rh3sKiYrv_5YwzzQ_banzLiYuoNk3z7XYLwMVqJLIjL09TWNEjnkT-HpS8i522U7Xa7IR-3n7LFBXu6z7S8Mggfs7b4Uy6Je8e46m2r--k5nMG1zJZ8Dx_wai3uOZS8xu6IQpzWmLCi_5IDVMk2XLRqcYwrL0RoLJ5pOI75cVfkiw4Ca4Z-_OGTTu9vnm7HoblAQmVJhLUwUhQDSAxWABeOkb6RvNVY5gImgdJ7LVIRPonIbaiNzL3CYbpvAd84Z3wRHbKOcl_kx4zIKM8hxXyFJVKxtIsFJ7SVWQYZljTlhQa-4NOvoxemWi9e0x5G9pK26U1J3M6q9EybWUlVLr_HH-rjfk_SbmaQYAX6VPP235BnbwrekBZ6ds416scovMBOp7WVjapdsc3T_OJ58As1I4yk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB6S9JDkUNo8aNKXDslRWVuWvfKhh9I27DaPSxPYmyNZHnBIvct6l5BL_lT_YGf8CAmUFgoBnySNsUfDzDdo5hPAgTUenfGRRIxjqXGYSoehkToM0DrrmMaMqy3Ok9Gl_j6JJyvwq--F4bLKzve3Pr3x1t3IoNPmYFaWgx_MI8LsW2yUaTycdJWVJ8XdLeVt9afxV9rkQ6WOv118GcnuagGZax0vpE2SGFEFqCN0aL0KrQqdIfiPhJCUD3yuE3pSXbjYWFUEkSccaqPQe29DG9F7V-GFJnfB1yYc3T_UlZC_b4-16eu4HUn1_XpNUZml1Ldm5sTQHPEos1H-KR4-inHHr-BlB07F5_b_X8NKUW3B5iPKwm34Oa5kXS6Wors_Zza9ueNDn7abU0xREKCfLmtBeTZTyZKQ4DW2KhnQCqT0nKertvxcEGYWZP6ll01rk6iXs2KeUwTPydXMd-DyWfS6C2vVtCregFBJnGNBhoRpqofGpQq9MkHqNOaUR9k9iHrFZXnHZ87XatxkfeHaddaqO2N1N6Mm2AP5IDVr-Tz-sX7Y70n2xC4zCjl_ldz_b8mPsD66ODvNTsfnJ29hg2bSturtHawt5sviPcGghfvQmJ2Aq-e2899o3x-M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-situ+electropolymerization+of+porous+conducting+polyaniline+fibrous+network+for+solid-state+supercapacitor&rft.jtitle=Applied+surface+science&rft.au=He%2C+Yapeng&rft.au=Wang%2C+Xue&rft.au=Huang%2C+Hui&rft.au=Zhang%2C+Panpan&rft.date=2019-03-01&rft.pub=Elsevier+B.V&rft.issn=0169-4332&rft.eissn=1873-5584&rft.volume=469&rft.spage=446&rft.epage=455&rft_id=info:doi/10.1016%2Fj.apsusc.2018.10.180&rft.externalDocID=S016943321832957X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-4332&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-4332&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-4332&client=summon