In-situ electropolymerization of porous conducting polyaniline fibrous network for solid-state supercapacitor
[Display omitted] •Insight into the growth mechanism of porous conducting polyaniline fibrous network.•Realization of controllable loading capacity of PANI combined with high specific surface area.•Solid-state supercapacitor device assembled delivers mass capacitance of 149.3 F g−1.•Low self-dischar...
Saved in:
Published in | Applied surface science Vol. 469; pp. 446 - 455 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Insight into the growth mechanism of porous conducting polyaniline fibrous network.•Realization of controllable loading capacity of PANI combined with high specific surface area.•Solid-state supercapacitor device assembled delivers mass capacitance of 149.3 F g−1.•Low self-discharge with weak leakage current and distinct cycling stability.
Polyaniline (PANI) is considered as an attractive electrode material in energy storage devices. Here, self-supported porous conducting PANI fibrous network is in-situ deposited on carbon paper (CP) via a facile electropolymerization method for solid-state supercapacitor. We also explicate the possible growth mechanism of nanofiber network based on the morphology evolution. Combined with high specific surface area (42.2–96.3 m2 g−1), controllable loading capacity (10 μg cm−2 cycle−1) and superior conductivity (1.13–1.98 S cm−1), the composite electrodes are further proved with FTIR, Raman, XPS and UV–Vis spectra. The capacitance performances are systematically investigated via cyclic voltammetry, galvanostatic charge/discharge curves and electrochemical impedance spectroscopy. As-prepared CP/PANI-80 hybrid electrode exhibits mass capacitance of 455.1 F g−1 under 0.5 A g−1 with pseudo-capacitive contribution ∼58.4%. Meanwhile, the gravimetric capacitances of composite electrodes follow a decline trend with increase of loading capacity as the effective utilization rate and specific surface area of active PANI. Then, the solid-state supercapacitor device assembled delivers mass capacitance of 149.3 F g−1 and presents admirable energy density of 13.3 Wh kg−1 with power density 80 W kg−1 in PVA/H2SO4 electrolyte. Moreover, solid-state device exhibits favorable self-discharge behavior with low leakage current as small as 27.5 µA, distinct long time cycling stability with capacitance retention of 81.6% after 4000 continuous cycles. Above encouraging results could illustrate the great promise of this method and tremendous potential of PANI fibrous network electrodes in solid-state energy-storage systems. |
---|---|
AbstractList | [Display omitted]
•Insight into the growth mechanism of porous conducting polyaniline fibrous network.•Realization of controllable loading capacity of PANI combined with high specific surface area.•Solid-state supercapacitor device assembled delivers mass capacitance of 149.3 F g−1.•Low self-discharge with weak leakage current and distinct cycling stability.
Polyaniline (PANI) is considered as an attractive electrode material in energy storage devices. Here, self-supported porous conducting PANI fibrous network is in-situ deposited on carbon paper (CP) via a facile electropolymerization method for solid-state supercapacitor. We also explicate the possible growth mechanism of nanofiber network based on the morphology evolution. Combined with high specific surface area (42.2–96.3 m2 g−1), controllable loading capacity (10 μg cm−2 cycle−1) and superior conductivity (1.13–1.98 S cm−1), the composite electrodes are further proved with FTIR, Raman, XPS and UV–Vis spectra. The capacitance performances are systematically investigated via cyclic voltammetry, galvanostatic charge/discharge curves and electrochemical impedance spectroscopy. As-prepared CP/PANI-80 hybrid electrode exhibits mass capacitance of 455.1 F g−1 under 0.5 A g−1 with pseudo-capacitive contribution ∼58.4%. Meanwhile, the gravimetric capacitances of composite electrodes follow a decline trend with increase of loading capacity as the effective utilization rate and specific surface area of active PANI. Then, the solid-state supercapacitor device assembled delivers mass capacitance of 149.3 F g−1 and presents admirable energy density of 13.3 Wh kg−1 with power density 80 W kg−1 in PVA/H2SO4 electrolyte. Moreover, solid-state device exhibits favorable self-discharge behavior with low leakage current as small as 27.5 µA, distinct long time cycling stability with capacitance retention of 81.6% after 4000 continuous cycles. Above encouraging results could illustrate the great promise of this method and tremendous potential of PANI fibrous network electrodes in solid-state energy-storage systems. |
Author | Guo, Zhongcheng Wang, Xue He, Yapeng Zhang, Panpan Chen, Buming Huang, Hui |
Author_xml | – sequence: 1 givenname: Yapeng orcidid: 0000-0002-1394-2860 surname: He fullname: He, Yapeng organization: Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China – sequence: 2 givenname: Xue surname: Wang fullname: Wang, Xue organization: Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China – sequence: 3 givenname: Hui surname: Huang fullname: Huang, Hui email: huihuanghan@kmust.edu.cn organization: Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China – sequence: 4 givenname: Panpan surname: Zhang fullname: Zhang, Panpan organization: Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China – sequence: 5 givenname: Buming surname: Chen fullname: Chen, Buming organization: Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China – sequence: 6 givenname: Zhongcheng surname: Guo fullname: Guo, Zhongcheng email: guozhch@vip.163.com organization: Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China |
BookMark | eNqFkM9KxDAQxoOs4Lr6Bh7yAq1JmnZbD4Is_llY8KLnkCYTydpNSpIq69Pb7nryoDAw8M18HzO_czRz3gFCV5TklNDqepvLPg5R5YzQOp_UmpygOa2XRVaWNZ-h-bjWZLwo2Bk6j3FLCGXjdI52a5dFmwYMHagUfO-7_Q6C_ZLJeoe9wb0PfohYeacHlax7w9OOdLazDrCx7WHsIH368I6NDzj6zuosJpkAx6GHoGQvlU0-XKBTI7sIlz99gV4f7l9WT9nm-XG9uttkivMyZbKqSmMYMbwwrZGaUcloW_OmMbQkTBOteDVWw6Eta8mAFHq5ZLKgWmtJZbFA_Jirgo8xgBF9sDsZ9oISMSETW3FEJiZkB7Umo-3ml228-gAiBWm7_8y3RzOMj31YCCIqC06BtmFEK7S3fwd8A-v_kRc |
CitedBy_id | crossref_primary_10_1016_j_colsurfa_2022_129796 crossref_primary_10_1016_j_jallcom_2022_163710 crossref_primary_10_1007_s10853_021_05920_3 crossref_primary_10_1016_j_ijhydene_2020_06_116 crossref_primary_10_1149_1945_7111_ac275d crossref_primary_10_1016_j_ijbiomac_2021_10_108 crossref_primary_10_1007_s10854_021_07393_1 crossref_primary_10_1021_acsami_0c10933 crossref_primary_10_1007_s11664_020_08085_y crossref_primary_10_1016_j_synthmet_2024_117545 crossref_primary_10_1016_j_est_2019_02_007 crossref_primary_10_1149_2162_8777_abdd84 crossref_primary_10_1021_acsami_4c09356 crossref_primary_10_1002_app_48524 crossref_primary_10_1016_j_electacta_2021_139330 crossref_primary_10_1080_25740881_2024_2321619 crossref_primary_10_1016_j_jallcom_2021_159931 crossref_primary_10_1016_j_est_2022_104937 crossref_primary_10_1002_elan_202060499 crossref_primary_10_1016_j_mtchem_2020_100249 crossref_primary_10_1016_j_jpowsour_2020_229219 crossref_primary_10_1002_slct_202001733 crossref_primary_10_1016_j_mssp_2020_105291 crossref_primary_10_1016_j_jiec_2021_11_004 crossref_primary_10_1016_j_electacta_2020_135628 crossref_primary_10_1016_j_est_2023_110367 crossref_primary_10_1007_s10854_020_04025_y crossref_primary_10_1016_j_est_2024_110703 crossref_primary_10_1149_2_0871913jes crossref_primary_10_1016_j_matchemphys_2023_127646 crossref_primary_10_1039_D3TC03119E crossref_primary_10_1016_j_cej_2021_134483 crossref_primary_10_1016_j_electacta_2022_141378 crossref_primary_10_1080_15583724_2023_2220131 crossref_primary_10_1002_ente_202201077 crossref_primary_10_1039_D3MH00883E crossref_primary_10_1002_aenm_202000181 crossref_primary_10_1016_j_apsusc_2021_152397 crossref_primary_10_1016_j_electacta_2020_136712 crossref_primary_10_1016_j_est_2024_115153 crossref_primary_10_1016_j_energy_2019_06_144 crossref_primary_10_1016_j_colsurfa_2020_125172 crossref_primary_10_1016_j_electacta_2021_138953 crossref_primary_10_1002_er_7589 crossref_primary_10_1016_j_jpcs_2019_02_020 crossref_primary_10_1016_j_est_2022_104599 crossref_primary_10_1007_s11664_022_09768_4 crossref_primary_10_1021_acsanm_3c02021 crossref_primary_10_1016_j_est_2023_106738 crossref_primary_10_1016_j_electacta_2019_135465 crossref_primary_10_1016_j_jelechem_2020_114491 crossref_primary_10_1021_acsanm_3c02028 crossref_primary_10_1016_j_ijhydene_2019_07_045 crossref_primary_10_1016_j_mssp_2021_106077 crossref_primary_10_1016_j_electacta_2022_141800 crossref_primary_10_1002_pat_4624 crossref_primary_10_1016_j_compstruct_2023_117797 crossref_primary_10_1016_j_electacta_2022_140914 crossref_primary_10_1007_s12221_023_00141_8 crossref_primary_10_1016_j_electacta_2020_136448 crossref_primary_10_1016_j_electacta_2019_135259 crossref_primary_10_1016_j_ijhydene_2020_10_126 crossref_primary_10_1149_1945_7111_ac3f1e crossref_primary_10_1002_mame_202100040 crossref_primary_10_1016_j_carbon_2021_10_066 crossref_primary_10_1021_acsami_3c14396 crossref_primary_10_1016_j_jpowsour_2020_228681 crossref_primary_10_1109_ACCESS_2020_3012730 crossref_primary_10_1002_adfm_202104256 crossref_primary_10_1016_j_jcis_2021_03_169 crossref_primary_10_1002_jssc_70076 crossref_primary_10_1016_j_electacta_2021_138818 crossref_primary_10_1016_j_jelechem_2020_114188 crossref_primary_10_1080_10601325_2022_2138765 crossref_primary_10_1016_j_jmst_2019_10_003 crossref_primary_10_1016_j_ijbiomac_2024_132772 crossref_primary_10_1007_s00339_019_2883_3 crossref_primary_10_1016_j_electacta_2020_135881 crossref_primary_10_1016_j_apsusc_2020_146086 crossref_primary_10_1016_j_ijbiomac_2024_133151 crossref_primary_10_1016_j_apcatb_2019_117774 crossref_primary_10_1016_j_est_2023_109672 crossref_primary_10_1016_j_est_2024_113471 crossref_primary_10_1016_j_rser_2020_110185 crossref_primary_10_1016_j_jclepro_2022_131030 crossref_primary_10_1016_j_cej_2022_134845 crossref_primary_10_1016_j_est_2023_108941 crossref_primary_10_1080_15421406_2022_2148421 crossref_primary_10_1016_j_est_2022_104965 crossref_primary_10_1016_j_elstat_2019_103396 crossref_primary_10_1088_1748_605X_ab3010 |
Cites_doi | 10.1039/C5TA00829H 10.1039/C7TA05134D 10.1016/j.rser.2008.09.028 10.1016/j.cej.2018.05.090 10.1016/j.electacta.2016.03.115 10.1016/j.jpowsour.2015.12.056 10.1016/j.electacta.2018.06.158 10.1039/C5EE03149D 10.1142/S1793292018500133 10.1021/nn1006539 10.1016/j.energy.2017.10.107 10.1016/j.jpowsour.2017.02.054 10.1002/adma.201703044 10.1016/j.carbon.2014.07.004 10.1016/j.nanoen.2018.01.015 10.1016/j.jpowsour.2010.06.084 10.1016/j.apsusc.2016.09.119 10.1016/j.cej.2012.07.102 10.1016/j.electacta.2016.11.026 10.1002/admt.201600282 10.1002/aenm.201100488 10.1039/C7EE00488E 10.1016/j.carbon.2017.10.088 10.1039/C4TA00734D 10.1016/j.compositesb.2017.02.028 10.1021/nn303530k 10.1021/nn1000035 10.1016/j.nanoen.2013.09.002 10.1016/j.matlet.2018.01.112 10.1016/j.matlet.2005.11.047 10.1039/C6TA11224B 10.1039/C7TA01990D 10.1021/nl1019672 10.1016/j.electacta.2015.03.181 10.1016/j.cej.2018.03.079 10.1039/c2ta01283a 10.1002/cssc.201403486 10.1002/aelm.201800179 10.1039/c2ee24203f 10.1039/C1CS15060J 10.1039/C5TA03057A 10.1016/j.jallcom.2016.10.253 10.1016/j.rser.2016.06.029 10.1016/j.electacta.2018.06.182 10.1016/j.synthmet.2017.07.023 10.1126/science.1249625 10.1016/j.jpowsour.2013.06.119 10.1021/acsami.6b05933 10.1016/j.ijhydene.2009.04.005 10.1038/nmat2612 10.1039/C6NJ02266A 10.1021/jacs.5b01613 10.1016/j.jpowsour.2015.06.053 |
ContentType | Journal Article |
Copyright | 2018 |
Copyright_xml | – notice: 2018 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.apsusc.2018.10.180 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-5584 |
EndPage | 455 |
ExternalDocumentID | 10_1016_j_apsusc_2018_10_180 S016943321832957X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCB SDF SDG SDP SES SMS SPC SPCBC SPD SPG SSK SSM SSQ SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB G-2 HMV HVGLF HZ~ NDZJH R2- SEW SSH WUQ |
ID | FETCH-LOGICAL-c445t-a665ff20f43fbfad21a21b8499f1502d0dc46c4694eb58a2e03d772a31ddda1a3 |
IEDL.DBID | .~1 |
ISSN | 0169-4332 |
IngestDate | Tue Jul 01 02:09:20 EDT 2025 Thu Apr 24 22:52:25 EDT 2025 Fri Feb 23 02:25:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Solid-state supercapacitor Conducting polyaniline Fibrous network structure Electropolymerization method |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c445t-a665ff20f43fbfad21a21b8499f1502d0dc46c4694eb58a2e03d772a31ddda1a3 |
ORCID | 0000-0002-1394-2860 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1016_j_apsusc_2018_10_180 crossref_citationtrail_10_1016_j_apsusc_2018_10_180 elsevier_sciencedirect_doi_10_1016_j_apsusc_2018_10_180 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Applied surface science |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Cong, Ren, Wang, Yu (b0115) 2013; 6 Li, Dai, Xiao, Yang, Shen, Zhang, Cai (b0035) 2016; 9 Zheng, Lv, Na, Liu, Jin, Yuan (b0250) 2017; 5 Li, Lou, Han, Chen, Jiang, Shen (b0170) 2017; 2 Zhang, Meng, Wang, Qin, Jin, Cao (b0185) 2018; 217 Hemmati, Saboori (b0020) 2016; 65 Xiong, Li, Dang, Zhao, Li, Lv (b0205) 2016; 306 Gupta, Miura (b0130) 2006; 60 Wang, Feng, Ren, Piao, Zhong, Wang, Li, Chen, Wang (b0100) 2015; 137 Hadjipaschalis, Poullikkas, Efthimiou (b0005) 2009; 13 Meng, Liu, Chen, Hu, Fan (b0225) 2010; 10 Eftekhari, Li, Yang (b0070) 2017; 347 Fathabadi (b0025) 2018; 143 Yao, Yuan, Xiao, Zhang, Qi, Zhou, Zhou, Hu, Chen (b0110) 2013; 2 Wang, Wang, Kong, Lv, Teng, Zhu (b0090) 2017; 29 Wang, Xu, Fu, Wang, Yang, Jiao (b0155) 2016; 222 Yu, Zhao, Li, Zhang (b0210) 2017; 393 Liu, Xu, Lu, Xiong, Ouyang, Zhao, Wang, Qin, Hong, Tang, Chen (b0120) 2018; 283 Das, Bera, Maitra, Karan, Paria, Halder, Si, Bera, Khatua (b0220) 2017; 5 Xiong, Li, Zhao, Dang, Li, Ji, Jin, Jiao, Shang, Zhang (b0045) 2017; 116 Xie, Liu, Zhao, Tsang, Lau, Huang, Chai (b0230) 2014; 2 Xiong, Li, Zhao, Dang, Ji, Li, Etesami (b0060) 2018; 13 Bavio, Acosta, Kessler (b0175) 2014; 245 Simon, Gogotsi, Dunn (b0010) 2014; 343 Yang, Hao, Yuan, Niu, Xia (b0165) 2014; 78 Brezesinski, Wang, Tolbert, Dunn (b0190) 2010; 9 Hui, Chai, Lin, Song, Sun, Li, Niu, Luo (b0195) 2016; 199 Kurra, Wang, Alshareef (b0075) 2015; 3 Wu, Xu, Yao, Liu, Shi (b0240) 2010; 4 Wang, Zhang, Zhang (b0030) 2012; 41 Chen, Lu, Yu, Lou (b0015) 2017; 10 Xiao, Li, Yang, Gao, Jin, Ni, Zhan, Zhang, Cao, Zhong, Gong, Yen, Mai, Chen, Huo, Chueh, Wang, Zhou (b0215) 2012; 6 Gao, Song, Li (b0150) 2015; 3 Heydari, Gholivand (b0235) 2017; 41 Li, Liu, Huang, Bu, Xu (b0255) 2017; 5 Zhang, Feng, Wu, Wang, Zhang, Xia, Dong, Li, Zhang (b0050) 2009; 34 Qu, Lu, Su, Cui, He, Zhang, Cai, Zhang, Feng, Zhuang (b0200) 2018; 127 Zhang, Lin, Lin, Yin, Lu, Liu, Zhao (b0040) 2015; 8 Huang, Su, Zhang, Xu, Chu, Hu, Liu, Chen, Liu, Deng, Gu, Zhang, Yang (b0105) 2018; 4 Wang, Wang, Liu, Yu, Hou, Chen, Shen (b0260) 2013; 1 Snook, Kao, Best (b0065) 2011; 196 Ayad, Zaghlol (b0140) 2012; 204–206 Xu, Wang, Zu, Han, Wei (b0125) 2010; 4 Singh, Sarkar, Karmakar, Mandal, Khan (b0145) 2016; 8 Xu, Li, Wang (b0135) 2015; 294 Sun, Zhai, Liang, Savilov, Xia (b0055) 2018; 45 Wang, Du, An, Li, Gao, Hao, Guan (b0245) 2017; 232 Chu, Zhang, Su, Liu, Gu, Huang, Zhang, Deng, Zheng, Yang (b0080) 2018; 349 Shen, Li, Li, Li, Qian, Su, Yang (b0095) 2018; 283 Xin, Wang, Liu, Zhang, Wang, Huang, Zang (b0160) 2015; 167 Wang, Zou, Quan, Yu, Wu, Jiang, Wei (b0265) 2011; 1 Xiong, Li, Zhu, Zhao, Dang, Li, Ji, Shang, Khan (b0085) 2017; 695 Gong, Li, Huang, Zhang, Gao, Zhou (b0180) 2018; 344 Liu (10.1016/j.apsusc.2018.10.180_b0120) 2018; 283 Li (10.1016/j.apsusc.2018.10.180_b0255) 2017; 5 Zhang (10.1016/j.apsusc.2018.10.180_b0185) 2018; 217 Das (10.1016/j.apsusc.2018.10.180_b0220) 2017; 5 Sun (10.1016/j.apsusc.2018.10.180_b0055) 2018; 45 Zhang (10.1016/j.apsusc.2018.10.180_b0040) 2015; 8 Shen (10.1016/j.apsusc.2018.10.180_b0095) 2018; 283 Yao (10.1016/j.apsusc.2018.10.180_b0110) 2013; 2 Bavio (10.1016/j.apsusc.2018.10.180_b0175) 2014; 245 Wang (10.1016/j.apsusc.2018.10.180_b0155) 2016; 222 Xie (10.1016/j.apsusc.2018.10.180_b0230) 2014; 2 Wang (10.1016/j.apsusc.2018.10.180_b0265) 2011; 1 Wang (10.1016/j.apsusc.2018.10.180_b0030) 2012; 41 Li (10.1016/j.apsusc.2018.10.180_b0035) 2016; 9 Xu (10.1016/j.apsusc.2018.10.180_b0135) 2015; 294 Ayad (10.1016/j.apsusc.2018.10.180_b0140) 2012; 204–206 Simon (10.1016/j.apsusc.2018.10.180_b0010) 2014; 343 Xiong (10.1016/j.apsusc.2018.10.180_b0045) 2017; 116 Xiong (10.1016/j.apsusc.2018.10.180_b0205) 2016; 306 Singh (10.1016/j.apsusc.2018.10.180_b0145) 2016; 8 Cong (10.1016/j.apsusc.2018.10.180_b0115) 2013; 6 Hui (10.1016/j.apsusc.2018.10.180_b0195) 2016; 199 Xiong (10.1016/j.apsusc.2018.10.180_b0060) 2018; 13 Wang (10.1016/j.apsusc.2018.10.180_b0245) 2017; 232 Qu (10.1016/j.apsusc.2018.10.180_b0200) 2018; 127 Huang (10.1016/j.apsusc.2018.10.180_b0105) 2018; 4 Wu (10.1016/j.apsusc.2018.10.180_b0240) 2010; 4 Chen (10.1016/j.apsusc.2018.10.180_b0015) 2017; 10 Zheng (10.1016/j.apsusc.2018.10.180_b0250) 2017; 5 Fathabadi (10.1016/j.apsusc.2018.10.180_b0025) 2018; 143 Zhang (10.1016/j.apsusc.2018.10.180_b0050) 2009; 34 Heydari (10.1016/j.apsusc.2018.10.180_b0235) 2017; 41 Hemmati (10.1016/j.apsusc.2018.10.180_b0020) 2016; 65 Brezesinski (10.1016/j.apsusc.2018.10.180_b0190) 2010; 9 Meng (10.1016/j.apsusc.2018.10.180_b0225) 2010; 10 Wang (10.1016/j.apsusc.2018.10.180_b0090) 2017; 29 Xu (10.1016/j.apsusc.2018.10.180_b0125) 2010; 4 Gupta (10.1016/j.apsusc.2018.10.180_b0130) 2006; 60 Xiong (10.1016/j.apsusc.2018.10.180_b0085) 2017; 695 Hadjipaschalis (10.1016/j.apsusc.2018.10.180_b0005) 2009; 13 Yang (10.1016/j.apsusc.2018.10.180_b0165) 2014; 78 Chu (10.1016/j.apsusc.2018.10.180_b0080) 2018; 349 Li (10.1016/j.apsusc.2018.10.180_b0170) 2017; 2 Eftekhari (10.1016/j.apsusc.2018.10.180_b0070) 2017; 347 Wang (10.1016/j.apsusc.2018.10.180_b0260) 2013; 1 Yu (10.1016/j.apsusc.2018.10.180_b0210) 2017; 393 Snook (10.1016/j.apsusc.2018.10.180_b0065) 2011; 196 Kurra (10.1016/j.apsusc.2018.10.180_b0075) 2015; 3 Wang (10.1016/j.apsusc.2018.10.180_b0100) 2015; 137 Xiao (10.1016/j.apsusc.2018.10.180_b0215) 2012; 6 Xin (10.1016/j.apsusc.2018.10.180_b0160) 2015; 167 Gao (10.1016/j.apsusc.2018.10.180_b0150) 2015; 3 Gong (10.1016/j.apsusc.2018.10.180_b0180) 2018; 344 |
References_xml | – volume: 232 start-page: 87 year: 2017 end-page: 95 ident: b0245 article-title: Synthesis of oriented coral-like polyaniline nano-arrays for flexible all-solid-state supercapacitor publication-title: Synth. Met. – volume: 5 start-page: 12969 year: 2017 end-page: 12976 ident: b0250 article-title: Nanocellulose-mediated hybrid polyaniline electrodes for high performance flexible supercapacitors publication-title: J. Mater. Chem. A – volume: 2 start-page: 1600282 year: 2017 ident: b0170 article-title: Highly stretchable micro-supercapacitor arrays with hybrid MWCNT/PANI electrodes publication-title: Adv. Mater. Technol. – volume: 349 start-page: 168 year: 2018 end-page: 175 ident: b0080 article-title: A novel stretchable supercapacitor electrode with high linear capacitance publication-title: Chem. Eng. J. – volume: 4 start-page: 1963 year: 2010 end-page: 1970 ident: b0240 article-title: Supercapacitors based on flexible graphene/polyaniline nanofiber composite films publication-title: ACS Nano – volume: 344 start-page: 290 year: 2018 end-page: 298 ident: b0180 article-title: Shape-controlled synthesis of Ni-CeO publication-title: Chem. Eng. J. – volume: 306 start-page: 602 year: 2016 end-page: 610 ident: b0205 article-title: Two-step approach of fabrication of three-dimensional MnO publication-title: J. Power Sources – volume: 13 start-page: 1850013 year: 2018 ident: b0060 article-title: Three-dimensional graphene/MnO publication-title: Nano – volume: 3 start-page: 7368 year: 2015 end-page: 7374 ident: b0075 article-title: All conducting polymer electrodes for asymmetric solid-state supercapacitors publication-title: J. Mater. Chem. A – volume: 167 start-page: 254 year: 2015 end-page: 261 ident: b0160 article-title: Preparation of self-supporting graphene on flexible graphite sheet and electrodeposition of polyaniline for supercapacitor publication-title: Electrochim. Acta – volume: 2 start-page: 9142 year: 2014 end-page: 9149 ident: b0230 article-title: Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode publication-title: J. Mater. Chem. A – volume: 9 start-page: 146 year: 2010 ident: b0190 article-title: Ordered mesoporous alpha-MoO publication-title: Nature Mater. – volume: 204–206 start-page: 79 year: 2012 end-page: 86 ident: b0140 article-title: Nanostructured crosslinked polyaniline with high surface area: synthesis, characterization and adsorption for organic dye publication-title: Chem. Eng. J. – volume: 2 start-page: 1071 year: 2013 end-page: 1078 ident: b0110 article-title: Paper-based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes publication-title: Nano Energy – volume: 13 start-page: 1513 year: 2009 end-page: 1522 ident: b0005 article-title: Overview of current and future energy storage technologies for electric power applications publication-title: Renew. Sust. Energy Rev. – volume: 4 start-page: 1800179 year: 2018 ident: b0105 article-title: Extraordinary areal and volumetric performance of flexible solid-state micro-supercapacitors based on highly conductive dreestanding Ti publication-title: Adv. Electron. Mater. – volume: 41 start-page: 797 year: 2012 end-page: 828 ident: b0030 article-title: A review of electrode materials for electrochemical supercapacitors publication-title: Chem. Soc. Rev. – volume: 347 start-page: 86 year: 2017 end-page: 107 ident: b0070 article-title: Polyaniline supercapacitors publication-title: J. Power Sources – volume: 9 start-page: 102 year: 2016 end-page: 106 ident: b0035 article-title: Nitrogen-doped activated carbon for high energy hybrid supercapacitor publication-title: Energy Environ. Sci. – volume: 4 start-page: 5019 year: 2010 end-page: 5026 ident: b0125 article-title: Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage publication-title: ACS Nano – volume: 294 start-page: 16 year: 2015 end-page: 21 ident: b0135 article-title: Polyaniline nanofibers with a high specific surface area and an improved pore structure for supercapacitors publication-title: J. Power Sources – volume: 1 start-page: 2468 year: 2013 end-page: 2473 ident: b0260 article-title: NiCo publication-title: J. Mater. Chem. A – volume: 6 start-page: 9200 year: 2012 end-page: 9206 ident: b0215 article-title: Fiber-based all-solid-state flexible supercapacitors for self-powered systems publication-title: ACS Nano – volume: 222 start-page: 701 year: 2016 end-page: 708 ident: b0155 article-title: A highly conductive and hierarchical PANI micro/nanostructure and its supercapacitor application publication-title: Electrochim. Acta – volume: 5 start-page: 22242 year: 2017 end-page: 22254 ident: b0220 article-title: Fabrication of an advanced asymmetric supercapacitor based on a microcubical PB@MnO publication-title: J. Mater. Chem. A – volume: 8 start-page: 20786 year: 2016 end-page: 20792 ident: b0145 article-title: High-performance supercapacitor electrode based on vobalt oxide-manganese dioxide-nickel oxide ternary 1D hybrid nanotubes publication-title: ACS Appl. Mater. Interfaces – volume: 34 start-page: 4889 year: 2009 end-page: 4899 ident: b0050 article-title: Progress of electrochemical capacitor electrode materials: a review publication-title: Int. J. Hydrogen Energy – volume: 10 start-page: 4025 year: 2010 end-page: 4031 ident: b0225 article-title: Highly flexible and all-solid-state paperlike polymer supercapacitors publication-title: Nano Lett. – volume: 283 start-page: 410 year: 2018 end-page: 418 ident: b0095 article-title: High-performance aqueous symmetric supercapacitor based on polyaniline/vertical graphene/Ti multilayer electrodes publication-title: Electrochim. Acta – volume: 245 start-page: 475 year: 2014 end-page: 481 ident: b0175 article-title: Synthesis and characterization of polyaniline and polyaniline - carbon nanotubes nanostructures for electrochemical supercapacitors publication-title: J. Power Sources – volume: 8 start-page: 2114 year: 2015 end-page: 2122 ident: b0040 article-title: 3 D Hierarchical porous carbon for supercapacitors prepared from lignin through a dacile template-free method publication-title: ChemSusChem – volume: 60 start-page: 1466 year: 2006 end-page: 1469 ident: b0130 article-title: High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline publication-title: Mater. Lett. – volume: 393 start-page: 37 year: 2017 end-page: 45 ident: b0210 article-title: Controllable growth of polyaniline nanowire arrays on hierarchical macro/mesoporous graphene foams for high-performance flexible supercapacitors publication-title: Appl. Surf. Sci. – volume: 116 start-page: 7 year: 2017 end-page: 15 ident: b0045 article-title: Reduced graphene oxide-carbon nanotube grown on carbon fiber as binder-free electrode for flexible high-performance fiber supercapacitors publication-title: Compos. Part B: Eng. – volume: 10 start-page: 1777 year: 2017 end-page: 1783 ident: b0015 article-title: Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors publication-title: Energy Environ. Sci. – volume: 143 start-page: 467 year: 2018 end-page: 477 ident: b0025 article-title: Novel fuel cell/battery/supercapacitor hybrid power source for fuel cell hybrid electric vehicles publication-title: Energy – volume: 6 start-page: 1185 year: 2013 end-page: 1191 ident: b0115 article-title: Flexible graphene-polyaniline composite paper for high-performance supercapacitor publication-title: Energy Environ. Sci. – volume: 41 start-page: 237 year: 2017 end-page: 244 ident: b0235 article-title: An all-solid-state asymmetric device based on a polyaniline hydrogel for a high energy flexible supercapacitor publication-title: New J. Chem. – volume: 45 start-page: 390 year: 2018 end-page: 397 ident: b0055 article-title: Boosted crystalline/amorphous Fe publication-title: Nano Energy – volume: 1 start-page: 1068 year: 2011 end-page: 1072 ident: b0265 article-title: An all-solid-state flexible micro-supercapacitor on a chip publication-title: Adv. Energy Mater. – volume: 127 start-page: 77 year: 2018 end-page: 84 ident: b0200 article-title: Hierarchical-graphene-coupled polyaniline aerogels for electrochemical energy storage publication-title: Carbon – volume: 78 start-page: 279 year: 2014 end-page: 287 ident: b0165 article-title: In situ preparation of caterpillar-like polyaniline/carbon nanotube hybrids with core shell structure for high performance supercapacitors publication-title: Carbon – volume: 343 start-page: 1210 year: 2014 end-page: 1211 ident: b0010 article-title: Where do batteries end and supercapacitors begin? publication-title: Science – volume: 65 start-page: 11 year: 2016 end-page: 23 ident: b0020 article-title: Emergence of hybrid energy storage systems in renewable energy and transport applications – a review publication-title: Renew. Sust. Energy Rev. – volume: 217 start-page: 312 year: 2018 end-page: 315 ident: b0185 article-title: Preparation and electrochemical investigation of polyaniline nanowires for high performance supercapacitor publication-title: Mater. Lett. – volume: 137 start-page: 4920 year: 2015 end-page: 4923 ident: b0100 article-title: Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI publication-title: J. Am. Chem. Soc. – volume: 283 start-page: 366 year: 2018 end-page: 373 ident: b0120 article-title: A high performance all-solid-state flexible supercapacitor based on carbon nanotube fiber/carbon nanotubes/polyaniline with a double core-sheathed structure publication-title: Electrochim. Acta – volume: 196 start-page: 1 year: 2011 end-page: 12 ident: b0065 article-title: Conducting-polymer-based supercapacitor devices and electrodes publication-title: J. Power Sources – volume: 695 start-page: 1248 year: 2017 end-page: 1259 ident: b0085 article-title: Two-step approach of fabrication of interconnected nanoporous 3D reduced graphene oxide-carbon nanotube-polyaniline hybrid as a binder-free supercapacitor electrode publication-title: J. Alloys Compd. – volume: 3 start-page: 14833 year: 2015 end-page: 14844 ident: b0150 article-title: Microstructural design of hybrid CoO@NiO and graphene nano-architectures for flexible high performance supercapacitors publication-title: J. Mater. Chem. A – volume: 199 start-page: 234 year: 2016 end-page: 241 ident: b0195 article-title: Electrodeposited conducting polyaniline nanowire arrays aligned on carbon nanotubes network for high performance supercapacitors and sensors publication-title: Electrochim. Acta – volume: 5 start-page: 5466 year: 2017 end-page: 5474 ident: b0255 article-title: Integration of ultrathin graphene/polyaniline composite nanosheets with a robust 3D graphene framework for highly flexible all-solid-state supercapacitors with superior energy density and exceptional cycling stability publication-title: J. Mater. Chem. A – volume: 29 start-page: 1703044 year: 2017 ident: b0090 article-title: Conducting-polymer-based materials for electrochemical energy conversion and storage publication-title: Adv. Mater. – volume: 3 start-page: 7368 year: 2015 ident: 10.1016/j.apsusc.2018.10.180_b0075 article-title: All conducting polymer electrodes for asymmetric solid-state supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C5TA00829H – volume: 5 start-page: 22242 year: 2017 ident: 10.1016/j.apsusc.2018.10.180_b0220 article-title: Fabrication of an advanced asymmetric supercapacitor based on a microcubical PB@MnO2 hybrid and PANI/GNP composite with excellent electrochemical behaviour publication-title: J. Mater. Chem. A doi: 10.1039/C7TA05134D – volume: 13 start-page: 1513 year: 2009 ident: 10.1016/j.apsusc.2018.10.180_b0005 article-title: Overview of current and future energy storage technologies for electric power applications publication-title: Renew. Sust. Energy Rev. doi: 10.1016/j.rser.2008.09.028 – volume: 349 start-page: 168 year: 2018 ident: 10.1016/j.apsusc.2018.10.180_b0080 article-title: A novel stretchable supercapacitor electrode with high linear capacitance publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.05.090 – volume: 199 start-page: 234 year: 2016 ident: 10.1016/j.apsusc.2018.10.180_b0195 article-title: Electrodeposited conducting polyaniline nanowire arrays aligned on carbon nanotubes network for high performance supercapacitors and sensors publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.03.115 – volume: 306 start-page: 602 year: 2016 ident: 10.1016/j.apsusc.2018.10.180_b0205 article-title: Two-step approach of fabrication of three-dimensional MnO2-graphene-carbon nanotube hybrid as a binder-free supercapacitor electrode publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.12.056 – volume: 283 start-page: 366 year: 2018 ident: 10.1016/j.apsusc.2018.10.180_b0120 article-title: A high performance all-solid-state flexible supercapacitor based on carbon nanotube fiber/carbon nanotubes/polyaniline with a double core-sheathed structure publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.06.158 – volume: 9 start-page: 102 year: 2016 ident: 10.1016/j.apsusc.2018.10.180_b0035 article-title: Nitrogen-doped activated carbon for high energy hybrid supercapacitor publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03149D – volume: 13 start-page: 1850013 year: 2018 ident: 10.1016/j.apsusc.2018.10.180_b0060 article-title: Three-dimensional graphene/MnO2 nanowalls hybrid for high-efficiency electrochemical supercapacitors publication-title: Nano doi: 10.1142/S1793292018500133 – volume: 4 start-page: 5019 year: 2010 ident: 10.1016/j.apsusc.2018.10.180_b0125 article-title: Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage publication-title: ACS Nano doi: 10.1021/nn1006539 – volume: 143 start-page: 467 year: 2018 ident: 10.1016/j.apsusc.2018.10.180_b0025 article-title: Novel fuel cell/battery/supercapacitor hybrid power source for fuel cell hybrid electric vehicles publication-title: Energy doi: 10.1016/j.energy.2017.10.107 – volume: 347 start-page: 86 year: 2017 ident: 10.1016/j.apsusc.2018.10.180_b0070 article-title: Polyaniline supercapacitors publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.02.054 – volume: 29 start-page: 1703044 year: 2017 ident: 10.1016/j.apsusc.2018.10.180_b0090 article-title: Conducting-polymer-based materials for electrochemical energy conversion and storage publication-title: Adv. Mater. doi: 10.1002/adma.201703044 – volume: 78 start-page: 279 year: 2014 ident: 10.1016/j.apsusc.2018.10.180_b0165 article-title: In situ preparation of caterpillar-like polyaniline/carbon nanotube hybrids with core shell structure for high performance supercapacitors publication-title: Carbon doi: 10.1016/j.carbon.2014.07.004 – volume: 45 start-page: 390 year: 2018 ident: 10.1016/j.apsusc.2018.10.180_b0055 article-title: Boosted crystalline/amorphous Fe2O3-δ core/shell heterostructure for flexible solid-state pseudocapacitors in large scale publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.01.015 – volume: 196 start-page: 1 year: 2011 ident: 10.1016/j.apsusc.2018.10.180_b0065 article-title: Conducting-polymer-based supercapacitor devices and electrodes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.06.084 – volume: 393 start-page: 37 year: 2017 ident: 10.1016/j.apsusc.2018.10.180_b0210 article-title: Controllable growth of polyaniline nanowire arrays on hierarchical macro/mesoporous graphene foams for high-performance flexible supercapacitors publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.09.119 – volume: 204–206 start-page: 79 year: 2012 ident: 10.1016/j.apsusc.2018.10.180_b0140 article-title: Nanostructured crosslinked polyaniline with high surface area: synthesis, characterization and adsorption for organic dye publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.07.102 – volume: 222 start-page: 701 year: 2016 ident: 10.1016/j.apsusc.2018.10.180_b0155 article-title: A highly conductive and hierarchical PANI micro/nanostructure and its supercapacitor application publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.11.026 – volume: 2 start-page: 1600282 year: 2017 ident: 10.1016/j.apsusc.2018.10.180_b0170 article-title: Highly stretchable micro-supercapacitor arrays with hybrid MWCNT/PANI electrodes publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201600282 – volume: 1 start-page: 1068 year: 2011 ident: 10.1016/j.apsusc.2018.10.180_b0265 article-title: An all-solid-state flexible micro-supercapacitor on a chip publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201100488 – volume: 10 start-page: 1777 year: 2017 ident: 10.1016/j.apsusc.2018.10.180_b0015 article-title: Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors publication-title: Energy Environ. Sci. doi: 10.1039/C7EE00488E – volume: 127 start-page: 77 year: 2018 ident: 10.1016/j.apsusc.2018.10.180_b0200 article-title: Hierarchical-graphene-coupled polyaniline aerogels for electrochemical energy storage publication-title: Carbon doi: 10.1016/j.carbon.2017.10.088 – volume: 2 start-page: 9142 year: 2014 ident: 10.1016/j.apsusc.2018.10.180_b0230 article-title: Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode publication-title: J. Mater. Chem. A doi: 10.1039/C4TA00734D – volume: 116 start-page: 7 year: 2017 ident: 10.1016/j.apsusc.2018.10.180_b0045 article-title: Reduced graphene oxide-carbon nanotube grown on carbon fiber as binder-free electrode for flexible high-performance fiber supercapacitors publication-title: Compos. Part B: Eng. doi: 10.1016/j.compositesb.2017.02.028 – volume: 6 start-page: 9200 year: 2012 ident: 10.1016/j.apsusc.2018.10.180_b0215 article-title: Fiber-based all-solid-state flexible supercapacitors for self-powered systems publication-title: ACS Nano doi: 10.1021/nn303530k – volume: 4 start-page: 1963 year: 2010 ident: 10.1016/j.apsusc.2018.10.180_b0240 article-title: Supercapacitors based on flexible graphene/polyaniline nanofiber composite films publication-title: ACS Nano doi: 10.1021/nn1000035 – volume: 2 start-page: 1071 year: 2013 ident: 10.1016/j.apsusc.2018.10.180_b0110 article-title: Paper-based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes publication-title: Nano Energy doi: 10.1016/j.nanoen.2013.09.002 – volume: 217 start-page: 312 year: 2018 ident: 10.1016/j.apsusc.2018.10.180_b0185 article-title: Preparation and electrochemical investigation of polyaniline nanowires for high performance supercapacitor publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.01.112 – volume: 60 start-page: 1466 year: 2006 ident: 10.1016/j.apsusc.2018.10.180_b0130 article-title: High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline publication-title: Mater. Lett. doi: 10.1016/j.matlet.2005.11.047 – volume: 5 start-page: 5466 year: 2017 ident: 10.1016/j.apsusc.2018.10.180_b0255 article-title: Integration of ultrathin graphene/polyaniline composite nanosheets with a robust 3D graphene framework for highly flexible all-solid-state supercapacitors with superior energy density and exceptional cycling stability publication-title: J. Mater. Chem. A doi: 10.1039/C6TA11224B – volume: 5 start-page: 12969 year: 2017 ident: 10.1016/j.apsusc.2018.10.180_b0250 article-title: Nanocellulose-mediated hybrid polyaniline electrodes for high performance flexible supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C7TA01990D – volume: 10 start-page: 4025 year: 2010 ident: 10.1016/j.apsusc.2018.10.180_b0225 article-title: Highly flexible and all-solid-state paperlike polymer supercapacitors publication-title: Nano Lett. doi: 10.1021/nl1019672 – volume: 167 start-page: 254 year: 2015 ident: 10.1016/j.apsusc.2018.10.180_b0160 article-title: Preparation of self-supporting graphene on flexible graphite sheet and electrodeposition of polyaniline for supercapacitor publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.03.181 – volume: 344 start-page: 290 year: 2018 ident: 10.1016/j.apsusc.2018.10.180_b0180 article-title: Shape-controlled synthesis of Ni-CeO2@PANI nanocomposites and their synergetic effects on supercapacitors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.03.079 – volume: 1 start-page: 2468 year: 2013 ident: 10.1016/j.apsusc.2018.10.180_b0260 article-title: NiCo2O4 nanowire arrays supported on Ni foam for high-performance flexible all-solid-state supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/c2ta01283a – volume: 8 start-page: 2114 year: 2015 ident: 10.1016/j.apsusc.2018.10.180_b0040 article-title: 3 D Hierarchical porous carbon for supercapacitors prepared from lignin through a dacile template-free method publication-title: ChemSusChem doi: 10.1002/cssc.201403486 – volume: 4 start-page: 1800179 year: 2018 ident: 10.1016/j.apsusc.2018.10.180_b0105 article-title: Extraordinary areal and volumetric performance of flexible solid-state micro-supercapacitors based on highly conductive dreestanding Ti3C2Tx films publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201800179 – volume: 6 start-page: 1185 year: 2013 ident: 10.1016/j.apsusc.2018.10.180_b0115 article-title: Flexible graphene-polyaniline composite paper for high-performance supercapacitor publication-title: Energy Environ. Sci. doi: 10.1039/c2ee24203f – volume: 41 start-page: 797 year: 2012 ident: 10.1016/j.apsusc.2018.10.180_b0030 article-title: A review of electrode materials for electrochemical supercapacitors publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15060J – volume: 3 start-page: 14833 year: 2015 ident: 10.1016/j.apsusc.2018.10.180_b0150 article-title: Microstructural design of hybrid CoO@NiO and graphene nano-architectures for flexible high performance supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C5TA03057A – volume: 695 start-page: 1248 year: 2017 ident: 10.1016/j.apsusc.2018.10.180_b0085 article-title: Two-step approach of fabrication of interconnected nanoporous 3D reduced graphene oxide-carbon nanotube-polyaniline hybrid as a binder-free supercapacitor electrode publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.10.253 – volume: 65 start-page: 11 year: 2016 ident: 10.1016/j.apsusc.2018.10.180_b0020 article-title: Emergence of hybrid energy storage systems in renewable energy and transport applications – a review publication-title: Renew. Sust. Energy Rev. doi: 10.1016/j.rser.2016.06.029 – volume: 283 start-page: 410 year: 2018 ident: 10.1016/j.apsusc.2018.10.180_b0095 article-title: High-performance aqueous symmetric supercapacitor based on polyaniline/vertical graphene/Ti multilayer electrodes publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.06.182 – volume: 232 start-page: 87 year: 2017 ident: 10.1016/j.apsusc.2018.10.180_b0245 article-title: Synthesis of oriented coral-like polyaniline nano-arrays for flexible all-solid-state supercapacitor publication-title: Synth. Met. doi: 10.1016/j.synthmet.2017.07.023 – volume: 343 start-page: 1210 year: 2014 ident: 10.1016/j.apsusc.2018.10.180_b0010 article-title: Where do batteries end and supercapacitors begin? publication-title: Science doi: 10.1126/science.1249625 – volume: 245 start-page: 475 year: 2014 ident: 10.1016/j.apsusc.2018.10.180_b0175 article-title: Synthesis and characterization of polyaniline and polyaniline - carbon nanotubes nanostructures for electrochemical supercapacitors publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.06.119 – volume: 8 start-page: 20786 year: 2016 ident: 10.1016/j.apsusc.2018.10.180_b0145 article-title: High-performance supercapacitor electrode based on vobalt oxide-manganese dioxide-nickel oxide ternary 1D hybrid nanotubes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b05933 – volume: 34 start-page: 4889 year: 2009 ident: 10.1016/j.apsusc.2018.10.180_b0050 article-title: Progress of electrochemical capacitor electrode materials: a review publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.04.005 – volume: 9 start-page: 146 year: 2010 ident: 10.1016/j.apsusc.2018.10.180_b0190 article-title: Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors publication-title: Nature Mater. doi: 10.1038/nmat2612 – volume: 41 start-page: 237 year: 2017 ident: 10.1016/j.apsusc.2018.10.180_b0235 article-title: An all-solid-state asymmetric device based on a polyaniline hydrogel for a high energy flexible supercapacitor publication-title: New J. Chem. doi: 10.1039/C6NJ02266A – volume: 137 start-page: 4920 year: 2015 ident: 10.1016/j.apsusc.2018.10.180_b0100 article-title: Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b01613 – volume: 294 start-page: 16 year: 2015 ident: 10.1016/j.apsusc.2018.10.180_b0135 article-title: Polyaniline nanofibers with a high specific surface area and an improved pore structure for supercapacitors publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.06.053 |
SSID | ssj0012873 |
Score | 2.5601392 |
Snippet | [Display omitted]
•Insight into the growth mechanism of porous conducting polyaniline fibrous network.•Realization of controllable loading capacity of PANI... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 446 |
SubjectTerms | Conducting polyaniline Electropolymerization method Fibrous network structure Solid-state supercapacitor |
Title | In-situ electropolymerization of porous conducting polyaniline fibrous network for solid-state supercapacitor |
URI | https://dx.doi.org/10.1016/j.apsusc.2018.10.180 |
Volume | 469 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXvQgPvFNDl7jtmnapsdFlFVhL7qwt5I0Hahot-x2D1787c70sSiIgtBLkwyUyXQe5JsvjF0Z7cBqFwiAMBQK4kRY8LVQvgfGGks0ZoS2mETjqXqYhbMBu-l7YQhW2fn-1qc33robGXbaHFZFMXwiHhFi3yKjTMJ4Rh3sKiYrv_5YwzzQ_banzLiYuoNk3z7XYLwMVqJLIjL09TWNEjnkT-HpS8i522U7Xa7IR-3n7LFBXu6z7S8Mggfs7b4Uy6Je8e46m2r--k5nMG1zJZ8Dx_wai3uOZS8xu6IQpzWmLCi_5IDVMk2XLRqcYwrL0RoLJ5pOI75cVfkiw4Ca4Z-_OGTTu9vnm7HoblAQmVJhLUwUhQDSAxWABeOkb6RvNVY5gImgdJ7LVIRPonIbaiNzL3CYbpvAd84Z3wRHbKOcl_kx4zIKM8hxXyFJVKxtIsFJ7SVWQYZljTlhQa-4NOvoxemWi9e0x5G9pK26U1J3M6q9EybWUlVLr_HH-rjfk_SbmaQYAX6VPP235BnbwrekBZ6ds416scovMBOp7WVjapdsc3T_OJ58As1I4yk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB6S9JDkUNo8aNKXDslRWVuWvfKhh9I27DaPSxPYmyNZHnBIvct6l5BL_lT_YGf8CAmUFgoBnySNsUfDzDdo5hPAgTUenfGRRIxjqXGYSoehkToM0DrrmMaMqy3Ok9Gl_j6JJyvwq--F4bLKzve3Pr3x1t3IoNPmYFaWgx_MI8LsW2yUaTycdJWVJ8XdLeVt9afxV9rkQ6WOv118GcnuagGZax0vpE2SGFEFqCN0aL0KrQqdIfiPhJCUD3yuE3pSXbjYWFUEkSccaqPQe29DG9F7V-GFJnfB1yYc3T_UlZC_b4-16eu4HUn1_XpNUZml1Ldm5sTQHPEos1H-KR4-inHHr-BlB07F5_b_X8NKUW3B5iPKwm34Oa5kXS6Wors_Zza9ueNDn7abU0xREKCfLmtBeTZTyZKQ4DW2KhnQCqT0nKertvxcEGYWZP6ll01rk6iXs2KeUwTPydXMd-DyWfS6C2vVtCregFBJnGNBhoRpqofGpQq9MkHqNOaUR9k9iHrFZXnHZ87XatxkfeHaddaqO2N1N6Mm2AP5IDVr-Tz-sX7Y70n2xC4zCjl_ldz_b8mPsD66ODvNTsfnJ29hg2bSturtHawt5sviPcGghfvQmJ2Aq-e2899o3x-M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-situ+electropolymerization+of+porous+conducting+polyaniline+fibrous+network+for+solid-state+supercapacitor&rft.jtitle=Applied+surface+science&rft.au=He%2C+Yapeng&rft.au=Wang%2C+Xue&rft.au=Huang%2C+Hui&rft.au=Zhang%2C+Panpan&rft.date=2019-03-01&rft.pub=Elsevier+B.V&rft.issn=0169-4332&rft.eissn=1873-5584&rft.volume=469&rft.spage=446&rft.epage=455&rft_id=info:doi/10.1016%2Fj.apsusc.2018.10.180&rft.externalDocID=S016943321832957X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-4332&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-4332&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-4332&client=summon |