Developing a SINTACS-based method to map groundwater multi-pollutant vulnerability using evolutionary algorithms
In this study, the modified SINTACS method, a rating-based groundwater vulnerability approach, was applied to data from the Campanian Plain, southern Italy, to identify groundwater vulnerable areas accurately. To mitigate the subjectivity of SINTACS rating and weighting schemes, a modified SINTACS m...
Saved in:
Published in | Environmental science and pollution research international Vol. 28; no. 7; pp. 7854 - 7869 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, the modified SINTACS method, a rating-based groundwater vulnerability approach, was applied to data from the Campanian Plain, southern Italy, to identify groundwater vulnerable areas accurately. To mitigate the subjectivity of SINTACS rating and weighting schemes, a modified SINTACS model was formulated by optimizing parameter ratings using the Wilcoxon rank-sum test, and the weight scores using the evolutionary algorithms including artificial bee colony (ABC) and genetic algorithm (GA) methods. The validity of the models was verified by analyzing the correlation coefficient between the vulnerability index and nitrate (NO
3
) and sulfate (SO
4
) concentrations found in the groundwater. The correlation coefficients between the pollutant concentrations and the relevant vulnerability index increased significantly from − 0.35 to 0.43 for NO
3
and from − 0.28 to 0.33 for SO
4
after modifying the ratings and weights of typical SINTACS. Besides, a multi-pollutant vulnerability map considering both NO
3
and SO
4
pollutants was produced by amalgamating the best calibrated vulnerability maps based on the obtained correlation values (i.e., the Wilcoxon-ABC-based SINTACS vulnerability map for NO
3
and the Wilcoxon-GA-based SINTACS vulnerability map for SO
4
). The resultant multi-pollutant vulnerability map coincided significantly with a land use map of the study area, where anthropogenic activities represented the main sources of pollution. |
---|---|
AbstractList | In this study, the modified SINTACS method, a rating-based groundwater vulnerability approach, was applied to data from the Campanian Plain, southern Italy, to identify groundwater vulnerable areas accurately. To mitigate the subjectivity of SINTACS rating and weighting schemes, a modified SINTACS model was formulated by optimizing parameter ratings using the Wilcoxon rank-sum test, and the weight scores using the evolutionary algorithms including artificial bee colony (ABC) and genetic algorithm (GA) methods. The validity of the models was verified by analyzing the correlation coefficient between the vulnerability index and nitrate (NO3) and sulfate (SO4) concentrations found in the groundwater. The correlation coefficients between the pollutant concentrations and the relevant vulnerability index increased significantly from - 0.35 to 0.43 for NO3 and from - 0.28 to 0.33 for SO4 after modifying the ratings and weights of typical SINTACS. Besides, a multi-pollutant vulnerability map considering both NO3 and SO4 pollutants was produced by amalgamating the best calibrated vulnerability maps based on the obtained correlation values (i.e., the Wilcoxon-ABC-based SINTACS vulnerability map for NO3 and the Wilcoxon-GA-based SINTACS vulnerability map for SO4). The resultant multi-pollutant vulnerability map coincided significantly with a land use map of the study area, where anthropogenic activities represented the main sources of pollution.In this study, the modified SINTACS method, a rating-based groundwater vulnerability approach, was applied to data from the Campanian Plain, southern Italy, to identify groundwater vulnerable areas accurately. To mitigate the subjectivity of SINTACS rating and weighting schemes, a modified SINTACS model was formulated by optimizing parameter ratings using the Wilcoxon rank-sum test, and the weight scores using the evolutionary algorithms including artificial bee colony (ABC) and genetic algorithm (GA) methods. The validity of the models was verified by analyzing the correlation coefficient between the vulnerability index and nitrate (NO3) and sulfate (SO4) concentrations found in the groundwater. The correlation coefficients between the pollutant concentrations and the relevant vulnerability index increased significantly from - 0.35 to 0.43 for NO3 and from - 0.28 to 0.33 for SO4 after modifying the ratings and weights of typical SINTACS. Besides, a multi-pollutant vulnerability map considering both NO3 and SO4 pollutants was produced by amalgamating the best calibrated vulnerability maps based on the obtained correlation values (i.e., the Wilcoxon-ABC-based SINTACS vulnerability map for NO3 and the Wilcoxon-GA-based SINTACS vulnerability map for SO4). The resultant multi-pollutant vulnerability map coincided significantly with a land use map of the study area, where anthropogenic activities represented the main sources of pollution. In this study, the modified SINTACS method, a rating-based groundwater vulnerability approach, was applied to data from the Campanian Plain, southern Italy, to identify groundwater vulnerable areas accurately. To mitigate the subjectivity of SINTACS rating and weighting schemes, a modified SINTACS model was formulated by optimizing parameter ratings using the Wilcoxon rank-sum test, and the weight scores using the evolutionary algorithms including artificial bee colony (ABC) and genetic algorithm (GA) methods. The validity of the models was verified by analyzing the correlation coefficient between the vulnerability index and nitrate (NO ) and sulfate (SO ) concentrations found in the groundwater. The correlation coefficients between the pollutant concentrations and the relevant vulnerability index increased significantly from - 0.35 to 0.43 for NO and from - 0.28 to 0.33 for SO after modifying the ratings and weights of typical SINTACS. Besides, a multi-pollutant vulnerability map considering both NO and SO pollutants was produced by amalgamating the best calibrated vulnerability maps based on the obtained correlation values (i.e., the Wilcoxon-ABC-based SINTACS vulnerability map for NO and the Wilcoxon-GA-based SINTACS vulnerability map for SO ). The resultant multi-pollutant vulnerability map coincided significantly with a land use map of the study area, where anthropogenic activities represented the main sources of pollution. In this study, the modified SINTACS method, a rating-based groundwater vulnerability approach, was applied to data from the Campanian Plain, southern Italy, to identify groundwater vulnerable areas accurately. To mitigate the subjectivity of SINTACS rating and weighting schemes, a modified SINTACS model was formulated by optimizing parameter ratings using the Wilcoxon rank-sum test, and the weight scores using the evolutionary algorithms including artificial bee colony (ABC) and genetic algorithm (GA) methods. The validity of the models was verified by analyzing the correlation coefficient between the vulnerability index and nitrate (NO 3 ) and sulfate (SO 4 ) concentrations found in the groundwater. The correlation coefficients between the pollutant concentrations and the relevant vulnerability index increased significantly from − 0.35 to 0.43 for NO 3 and from − 0.28 to 0.33 for SO 4 after modifying the ratings and weights of typical SINTACS. Besides, a multi-pollutant vulnerability map considering both NO 3 and SO 4 pollutants was produced by amalgamating the best calibrated vulnerability maps based on the obtained correlation values (i.e., the Wilcoxon-ABC-based SINTACS vulnerability map for NO 3 and the Wilcoxon-GA-based SINTACS vulnerability map for SO 4 ). The resultant multi-pollutant vulnerability map coincided significantly with a land use map of the study area, where anthropogenic activities represented the main sources of pollution. In this study, the modified SINTACS method, a rating-based groundwater vulnerability approach, was applied to data from the Campanian Plain, southern Italy, to identify groundwater vulnerable areas accurately. To mitigate the subjectivity of SINTACS rating and weighting schemes, a modified SINTACS model was formulated by optimizing parameter ratings using the Wilcoxon rank-sum test, and the weight scores using the evolutionary algorithms including artificial bee colony (ABC) and genetic algorithm (GA) methods. The validity of the models was verified by analyzing the correlation coefficient between the vulnerability index and nitrate (NO₃) and sulfate (SO₄) concentrations found in the groundwater. The correlation coefficients between the pollutant concentrations and the relevant vulnerability index increased significantly from − 0.35 to 0.43 for NO₃ and from − 0.28 to 0.33 for SO₄ after modifying the ratings and weights of typical SINTACS. Besides, a multi-pollutant vulnerability map considering both NO₃ and SO₄ pollutants was produced by amalgamating the best calibrated vulnerability maps based on the obtained correlation values (i.e., the Wilcoxon-ABC-based SINTACS vulnerability map for NO₃ and the Wilcoxon-GA-based SINTACS vulnerability map for SO₄). The resultant multi-pollutant vulnerability map coincided significantly with a land use map of the study area, where anthropogenic activities represented the main sources of pollution. In this study, the modified SINTACS method, a rating-based groundwater vulnerability approach, was applied to data from the Campanian Plain, southern Italy, to identify groundwater vulnerable areas accurately. To mitigate the subjectivity of SINTACS rating and weighting schemes, a modified SINTACS model was formulated by optimizing parameter ratings using the Wilcoxon rank-sum test, and the weight scores using the evolutionary algorithms including artificial bee colony (ABC) and genetic algorithm (GA) methods. The validity of the models was verified by analyzing the correlation coefficient between the vulnerability index and nitrate (NO3) and sulfate (SO4) concentrations found in the groundwater. The correlation coefficients between the pollutant concentrations and the relevant vulnerability index increased significantly from − 0.35 to 0.43 for NO3 and from − 0.28 to 0.33 for SO4 after modifying the ratings and weights of typical SINTACS. Besides, a multi-pollutant vulnerability map considering both NO3 and SO4 pollutants was produced by amalgamating the best calibrated vulnerability maps based on the obtained correlation values (i.e., the Wilcoxon-ABC-based SINTACS vulnerability map for NO3 and the Wilcoxon-GA-based SINTACS vulnerability map for SO4). The resultant multi-pollutant vulnerability map coincided significantly with a land use map of the study area, where anthropogenic activities represented the main sources of pollution. |
Author | Kazakis, Nerantzis Gomeh, Zinat Busico, Gianluigi Samany, Najmeh Neysani Barzegar, Rahim Mastrocicco, Micol Jahromi, Maryam Naghdizadegan Aalami, Mohammad Taghi Tedesco, Dario |
Author_xml | – sequence: 1 givenname: Maryam Naghdizadegan surname: Jahromi fullname: Jahromi, Maryam Naghdizadegan organization: Faculty of Geography, Department of Remote Sensing and GIS, University of Tehran – sequence: 2 givenname: Zinat surname: Gomeh fullname: Gomeh, Zinat organization: Faculty of Geography, Department of Remote Sensing and GIS, University of Tehran – sequence: 3 givenname: Gianluigi surname: Busico fullname: Busico, Gianluigi organization: Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli” – sequence: 4 givenname: Rahim surname: Barzegar fullname: Barzegar, Rahim organization: Department of Bioresource Engineering, McGill University, Faculty of Civil Engineering, University of Tabriz – sequence: 5 givenname: Najmeh Neysani surname: Samany fullname: Samany, Najmeh Neysani email: nneysany@ut.ac.ir organization: Faculty of Geography, Department of Remote Sensing and GIS, University of Tehran – sequence: 6 givenname: Mohammad Taghi surname: Aalami fullname: Aalami, Mohammad Taghi organization: Faculty of Civil Engineering, University of Tabriz – sequence: 7 givenname: Dario surname: Tedesco fullname: Tedesco, Dario organization: Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli” – sequence: 8 givenname: Micol surname: Mastrocicco fullname: Mastrocicco, Micol organization: Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli” – sequence: 9 givenname: Nerantzis surname: Kazakis fullname: Kazakis, Nerantzis organization: Department of Geology, Lab. of Engineering Geology & Hydrogeology, Aristotle University of Thessaloniki |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33040292$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1vFSEYhYmpsbfVP-DCkLhxg_I5MyybW6tNGl20rgnMMLc0DIzAXNN_L9PbxqSLunoTeM7h5ZwTcBRisAC8J_gzwbj9kglhokGYYkQI7iTCr8CGNISjlkt5BDZYco4I4_wYnOR8hyspafsGHDOGOaaSbsB8bvfWx9mFHdTw-vLHzdn2Ghmd7QAnW27jAEuEk57hLsUlDH90sQlOiy8OzdH7pehQ4H7xwSZtnHflHi55dbP7WG9dDDrdQ-13MblyO-W34PWofbbvHucp-HXx9Wb7HV39_Ha5PbtCPeeiIC0EH7U0mJnRWGIolVYOshnHBtPRMNF1hrf1RIhmHcOgW4MbIxvSm1Y07BR8OvjOKf5ebC5qcrm33utg45IVFS1ntKOd_D_KBcaEtF1b0Y_P0Lu4pFA_UqlOMNo0fH37wyO1mMkOak5uqimop9gr0B2APsWckx1V74pewypJO68IVmvD6tCwqr2ph4YVrlL6TPrk_qKIHUS5wmFn07-1X1D9Bd3QuJs |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2024_174973 crossref_primary_10_1016_j_gsd_2024_101296 crossref_primary_10_1007_s10661_020_08787_0 crossref_primary_10_1007_s11356_023_30850_9 crossref_primary_10_1038_s41598_024_78812_6 crossref_primary_10_3390_app12189205 crossref_primary_10_1007_s11356_024_34565_3 crossref_primary_10_1016_j_scitotenv_2022_153748 crossref_primary_10_1007_s12665_024_11947_x crossref_primary_10_3389_frwa_2024_1399170 crossref_primary_10_1007_s13762_022_04383_6 crossref_primary_10_1007_s11356_021_15966_0 crossref_primary_10_1016_j_jconhyd_2023_104245 crossref_primary_10_3390_ijgi12060251 crossref_primary_10_1016_j_jenvman_2023_117842 crossref_primary_10_1007_s42979_022_01150_9 crossref_primary_10_1007_s12665_023_10880_9 crossref_primary_10_1016_j_gsd_2024_101321 crossref_primary_10_1088_1755_1315_982_1_012070 crossref_primary_10_1007_s11356_021_14336_0 crossref_primary_10_1007_s11356_022_19620_1 crossref_primary_10_3390_w14121851 crossref_primary_10_1016_j_asoc_2021_107681 crossref_primary_10_1007_s11356_021_16072_x crossref_primary_10_1016_j_gsd_2024_101319 crossref_primary_10_1007_s11629_021_6724_4 crossref_primary_10_1016_j_landusepol_2021_105725 crossref_primary_10_32604_phyton_2024_052513 |
Cites_doi | 10.1016/j.scitotenv.2017.07.257 10.1016/j.jconhyd.2019.103557 10.1111/j.1745-6584.2005.0001.x 10.1007/s12517-016-2756-4 10.1016/j.lisr.2020.101017 10.9790/3021-0705012330 10.1038/scientificamerican0792-66 10.1111/gwat.12919 10.1021/es0113854 10.1016/j.envpol.2017.11.053 10.22201/igeof.00167169p.2004.43.4.1346 10.1007/s007100170010 10.1080/01431161.2018.1447160 10.1016/j.engappai.2014.04.004 10.1007/s10040-016-1471-2 10.1007/s12665-013-2690-7 10.1007/s12665-018-7872-x 10.5194/isprs-archives-XLII-4-W4-407-2017 10.3390/ijerph13111167 10.22201/igeof.00167169p.2004.43.4.776 10.1007/s12665-015-4641-y 10.5194/nhess-4-769-2004 10.1007/978-1-4612-4380-9_16 10.3390/w11020288 10.1016/j.jconhyd.2017.10.008 10.13031/2013.30578 10.4236/jwarp.2010.24034 10.4135/9781412961288 10.1007/s11270-011-0968-5 10.1007/s10040-006-0023-6 10.1016/j.scitotenv.2018.06.184 10.1080/19475705.2012.732119 10.1088/1755-1315/118/1/012018 10.1007/s00477-015-1088-3 10.22201/igeof.00167169p.2018.57.3.2108 10.1007/s00477-015-1063-z 10.5120/ijca2016911384 10.1007/s12517-019-4647-y 10.1016/j.scitotenv.2012.08.037 10.1016/j.cities.2019.04.012 10.22201/igeof.00167169p.2017.56.2.1763 10.4296/cwrj1801025 10.1007/s12665-019-8118-2 10.1016/0304-3800(85)90036-5 10.7551/mitpress/3927.001.0001 10.1080/10934529.2018.1537728 10.5897/IJWREE2016.0688 10.1007/s11356-019-04252-9 10.1007/s12652-020-02364-6 10.1021/bk-1986-0315.ch008 10.1007/s12665-017-6759-6 10.22201/igeof.00167169p.2004.43.4.807 10.2134/jeq1993.00472425002200030014x 10.1007/978-3-642-17390-5 10.4154/GC.2013.09 10.1007/s11629-017-4802-4 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2020 Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7SN 7T7 7TV 7U7 7WY 7WZ 7X7 7XB 87Z 88E 88I 8AO 8C1 8FD 8FI 8FJ 8FK 8FL ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BHPHI C1K CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ K60 K6~ K9. L.- M0C M0S M1P M2P M7N P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQQKQ PQUKI PYCSY Q9U 7X8 7S9 L.6 |
DOI | 10.1007/s11356-020-11089-0 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Pollution Abstracts Toxicology Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ABI/INFORM Global Health & Medical Collection (Alumni) Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Business Collection Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Pollution Abstracts ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest Medical Library ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 1614-7499 |
EndPage | 7869 |
ExternalDocumentID | 33040292 10_1007_s11356_020_11089_0 |
Genre | Journal Article |
GeographicLocations | Italy |
GeographicLocations_xml | – name: Italy |
GroupedDBID | --- -5A -5G -5~ -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 199 1N0 2.D 203 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 53G 5GY 5VS 67M 67Z 6NX 78A 7WY 7X7 7XC 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACSVP ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV L8X LAS LLZTM M0C M1P M2P M4Y MA- ML. N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PATMY PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QOK QOS R89 R9I RHV RNI RNS ROL RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 Y6R YLTOR Z45 Z5O Z7R Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z8P Z8Q Z8S ZMTXR ~02 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7SN 7T7 7TV 7U7 7XB 8FD 8FK ABRTQ C1K FR3 K9. L.- M7N P64 PJZUB PKEHL PPXIY PQEST PQUKI Q9U 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c445t-a554fa9b03bfbe1b229e9d96ff602fb3588b479d955679d9dda7b06b961cb7563 |
IEDL.DBID | 7X7 |
ISSN | 0944-1344 1614-7499 |
IngestDate | Fri Jul 11 02:31:50 EDT 2025 Mon Jul 21 11:35:37 EDT 2025 Sat Jul 26 01:07:48 EDT 2025 Thu Apr 03 07:04:38 EDT 2025 Tue Jul 01 02:11:20 EDT 2025 Thu Apr 24 22:51:49 EDT 2025 Fri Feb 21 02:48:43 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Groundwater vulnerability Multi-pollutant SINTACS Anthropogenic activities Campanian Plain Evolutionary algorithm |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c445t-a554fa9b03bfbe1b229e9d96ff602fb3588b479d955679d9dda7b06b961cb7563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 33040292 |
PQID | 2485326646 |
PQPubID | 54208 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2574328289 proquest_miscellaneous_2450011787 proquest_journals_2485326646 pubmed_primary_33040292 crossref_citationtrail_10_1007_s11356_020_11089_0 crossref_primary_10_1007_s11356_020_11089_0 springer_journals_10_1007_s11356_020_11089_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | Environmental science and pollution research international |
PublicationTitleAbbrev | Environ Sci Pollut Res |
PublicationTitleAlternate | Environ Sci Pollut Res Int |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Kazemzadeh-Zow A, Darvishi Boloorani A, Neysani Samany N, Toomanian A, Pourahmad A (2018) Spatiotemporal modelling of urban quality of life (UQoL) using satellite images and GIS. Int J Remote Sens 39(19):6095–6116 DucciDAquifer Vulnerability assessment methods: the non-independence of parameters problemJournal of Water Resource and Protection201022981:CAS:528:DC%2BC3cXovV2rsb8%3D10.4236/jwarp.2010.24034 Doerfliger N, Zwahlen F, Meylan B, Tripet J-P, Wildberger A (1997) Vulnérabilité des captages en milieu karstique: Nouvelle méthode de délimitation des zones de protection: méthode multicritère EPIK GWA 77:295-302 MarsicoAGiulianoGPennettaLVurroMIntrinsic vulnerability assessment of the south-eastern Murge (Apulia, southern Italy)Natural Hazards and Earth System Science2004476977410.5194/nhess-4-769-2004 Panigrahi BK, Shi Y, Lim M-H (2011) Handbook of swarm intelligence: concepts, principles and applications vol 8. Springer Science & Business Media JafariSMNikooMRGroundwater risk assessment based on optimization framework using DRASTIC methodArabian Journal of Geosciences2016974210.1007/s12517-016-2756-41:CAS:528:DC%2BC28XitFSmt7vL CarselRFMulkeyLALorberMNBaskinLBThe pesticide root zone model (PRZM): A procedure for evaluating pesticide leaching threats to groundwaterEcological Modelling19853049691:CAS:528:DyaL28XhsFGntro%3D10.1016/0304-3800(85)90036-5 Civita M, Forti P, Marini P, Meccheri M, Micheli L, Piccini L, Pranzini G (1991) Carta della vulnerabilità all'inquinamento delle Alpi Apuane 1: 25.000 Selca, Firenze MastrociccoMBusicoGColombaniNDeciphering interannual temperature variations in springs of the Campania region (Italy)Water2019112881:CAS:528:DC%2BC1MXitlelsr%2FF10.3390/w11020288 KapeljSLoborecJKapeljJAssessment of aquifer intrinsic vulnerability by the SINTACS methodGeologia Croatica20136611912810.4154/GC.2013.09 MachiwalDCloutierVGülerCKazakisNA review of GIS-integrated statistical techniques for groundwater quality evaluation and protectionEnvironmental Earth Sciences20187768110.1007/s12665-018-7872-x Goldberg DE (1989) Genetic Algorithms in Search, Optimization, and Machine Learning, Addison Wesley, Reading, MA SUMMARY THE APPLICATIONS OF GA-GENETIC ALGORITHM FOR DEALING WITH SOME OPTIMAL CALCULATIONS IN ECONOMICS Amil A, Avcı P, Çil A, Muhammetoğlu A, Özyurt NN (2019) Significance of validation for karst aquifers’ vulnerability assessments: Antalya Travertine Plateau (Turkey) application. Journal of contaminant hydrology:103557 Foster S (1987) Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy: International Conference, 1987, Noordwijk Aan Zee, the Netherlands Vulnerability of Soil and Groundwater to Pollutants The Hague, Netherlands Organization for Applied Scientific Research. Netherlands Organization for Applied Scientific Research De VivoBRolandiGGansPCalvertABohrsonWSperaFBelkinHNew constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy)Mineralogy and Petrology200173476510.1007/s007100170010 AschonitisVMastrociccoMColombaniNSalemiEKazakisNVoudourisKCastaldelliGAssessment of the intrinsic vulnerability of agricultural land to water and nitrogen losses via deterministic approach and regression analysis WaterAir, & Soil Pollution2012223160516141:CAS:528:DC%2BC38XlvVOltbc%3D10.1007/s11270-011-0968-5 Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes university, engineering faculty, computer TwarakaviNKKaluarachchiJJAquifer vulnerability assessment to heavy metals using ordinal logistic regressionGroundwater2005432002141:CAS:528:DC%2BD2MXpsFGhsLk%3D10.1111/j.1745-6584.2005.0001.x BusicoGMastrociccoMCuocoESirnaMTedescoDProtection from natural and anthropogenic sources: a new rating methodology to delineate “Nitrate Vulnerable Zones”Environmental earth sciences20197810410.1007/s12665-019-8118-21:CAS:528:DC%2BC1MXot1ylsbo%3D MohammadAHAssessing the groundwater vulnerability in the upper aquifers of Zarqa River Basin, Jordan using DRASTIC, SINTACS and GOD methodsInternational Journal of Water Resources and Environmental Engineering2017944531:CAS:528:DC%2BC1cXht12rt77M10.5897/IJWREE2016.0688 Oroji B (2018) Assessing groundwater vulnerability by pollution mapping in Iran: Case study Hamadan-Bahar plain Geofísica internacional 57:161-174 CucchiFFortiPZiniLThe vulnerability of complex karst hydrostructures: problems and perspectivesGeofísica Internacional200443533540 GoldscheiderNKluteMSturmSHötzlHThe PI method–a GIS-based approach to mapping groundwater vulnerability with special consideration of karst aquifersZ Angew Geol200046157166 Salkind NJ (2010) Encyclopedia of research design vol 1. Sage Köppen W, Geiger R (1928) Klimate der Erde. Gotha: Verlag Justus Perthes Wall-map 150cmx200cm NeshatAPradhanBPirastehSShafriHZMEstimating groundwater vulnerability to pollution using a modified DRASTIC model in the Kerman agricultural area, IranEnvironmental earth sciences201471311931311:CAS:528:DC%2BC3sXht1Srsr%2FP10.1007/s12665-013-2690-7 YangJTangZJiaoTMuhammadAMCombining AHP and genetic algorithms approaches to modify DRASTIC model to assess groundwater vulnerability: a case study from Jianghan Plain, ChinaEnvironmental Earth Sciences20177642610.1007/s12665-017-6759-6 JangC-SLinC-WLiangC-PChenJ-SDeveloping a reliable model for aquifer vulnerabilityStochastic environmental research and risk assessment20163017518710.1007/s00477-015-1063-z Forti P et al (1999) Carta Della Vulnerabnilita'integrata All'inquinamento Degli Acquiferi Carsici Della Porzione Meridionale Delle Prealpi Bresciane. Integrated pollution vulnerability map for the karst aquifer of the southern part of the Brescian pre-alp Aller L, Lehr J, Petty R (1987b) DRASTIC: a standardized system to evaluate ground water pollution potential using hydrogeologic settings. National water well Association Worthington, Ohio 43085. Truman Bennett. Bennett and Williams Inc Columbus, Ohio 43229 BarzegarRMoghaddamAAAdamowskiJNazemiAHDelimitation of groundwater zones under contamination risk using a bagged ensemble of optimized DRASTIC frameworksEnvironmental Science and Pollution Research201926832583391:CAS:528:DC%2BC1MXnvFyjsbs%3D10.1007/s11356-019-04252-9 HollandJHGenetic algorithmsScientific american1992267667310.1038/scientificamerican0792-66 KadkhodaieFMoghaddamAABarzegarRGharekhaniMKadkhodaieAOptimizing the DRASTIC vulnerability approach to overcome the subjectivity: a case study from Shabestar plain, IranArabian Journal of Geosciences20191252710.1007/s12517-019-4647-y1:CAS:528:DC%2BC1MXhsFKju7rK Aureli A (1997) Carta della vulnerabilità all’inquinamento degli acquiferi del settore nord occidentale ibleo (Sicilia SE). Scala Haupt R, Haupt S (1998) Practical genetic algorithms. Wiley CucchiFMassariGObertiSPianoCLa vulnerabilità integrata delle falde acquifere della piana isontinaMem Soc Geol It200257551560 SharmaSBhambuPArtificial Bee Colony Algorithm: A SurveyInternational Journal of Computer Applications2016149111910.5120/ijca2016911384 Mitchell M (1998) An introduction to genetic algorithms. MIT press ElçiACalibration of groundwater vulnerability mapping using the generalized reduced gradient methodJournal of contaminant hydrology2017207394910.1016/j.jconhyd.2017.10.0081:CAS:528:DC%2BC2sXhslyqs7vJ WHO G (2011) Guidelines for drinking-water quality World Health Organization 216:303-304 VossCIA finite-element simulation model for saturated-unsaturated, fluid-density-dependent ground-water flow with energy transport or chemically-reactive single-species solute transportWater Resources Investigation Report1984844369 BusicoGKazakisNColombaniNMastrociccoMVoudourisKTedescoDA modified SINTACS method for groundwater vulnerability and pollution risk assessment in highly anthropized regions based on NO3− and SO42− concentrationsScience of the total environment20176091512152310.1016/j.scitotenv.2017.07.2571:CAS:528:DC%2BC2sXht12lsLrO KumarSThirumalaivasanDRadhakrishnanNMathewSGroundwater vulnerability assessment using SINTACS model GeomaticsNatural Hazards and Risk2013433935410.1080/19475705.2012.732119 BarzegarRMoghaddamAABaghbanHA supervised committee machine artificial intelligent for improving DRASTIC method to assess groundwater contamination risk: a case study from Tabriz plain aquifer, IranStochastic environmental research and risk assessment20163088389910.1007/s00477-015-1088-3 LuomaSOkkonenJKorkka-NiemiKComparison of the AVI, modified SINTACS and GALDIT vulnerability methods under future climate-change scenarios for a shallow low-lying coastal aquifer in southern FinlandHydrogeology Journal2017252032221:CAS:528:DC%2BC28XhsFKru77F10.1007/s10040-016-1471-2 NooriRGhahremanzadehHKløveBAdamowskiJFBaghvandAModified-DRASTIC, modified-SINTACS and SI methods for groundwater vulnerability assessment in the southern Tehran aquiferJournal of Environmental Science and Health, Part A201954891001:CAS:528:DC%2BC1MXhtFyr10.1080/10934529.2018.1537728 NolanBTHittKJRuddyBCProbability of nitrate contamination of recently recharged groundwaters in the conterminous United StatesEnvironmental science & technology200236213821451:CAS:528:DC%2BD38XisF2nu7Y%3D10.1021/es0113854 VíasJAndreoBPerlesMCarrascoFVadilloIJiménezPProposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP methodHydrogeology Journal20061491292510.1007/s10040-006-0023-61:CAS:528:DC%2BD28XhtVCntLjP Maria R (2018) Comparative studies of groundwater vulnerability assessment. In: IOP Conference Series: Earth and Environmental Science, vol 1. IOP Publishing, p 012018 Nadizadeh Shorabeh S, Varnaseri AR, Karimi Firozjaei M, Nickravesh F, Neysani Samany N (2020) Spatial modeling of areas suitable for public libraries construction by integration of GIS and multi-attribute decision making: Case study Tehran, Iran. Libr Inf Sci Res 42(2):101017 BusicoGCuocoEKazakisNColombaniNMastrociccoMTedescoDVoudourisKMultivariate statistical analysis to characterize/discriminate between anthropogenic and geogenic trace eleme 11089_CR20 11089_CR62 11089_CR61 11089_CR67 11089_CR66 RF Carsel (11089_CR17) 1985; 30 11089_CR65 S Kumar (11089_CR48) 2013; 4 A Neshat (11089_CR60) 2014; 71 JH Holland (11089_CR34) 1992; 267 G Busico (11089_CR14) 2017; 609 F Cucchi (11089_CR22) 2002; 57 S Kapelj (11089_CR42) 2013; 66 C-P Liang (11089_CR50) 2016; 13 R Noori (11089_CR64) 2019; 54 11089_CR59 BT Nolan (11089_CR63) 2002; 36 11089_CR19 SM Jafari (11089_CR37) 2016; 9 11089_CR31 11089_CR30 F Kadkhodaie (11089_CR41) 2019; 12 11089_CR74 11089_CR73 G Busico (11089_CR15) 2018; 234 V Aschonitis (11089_CR7) 2012; 223 11089_CR33 D Machiwal (11089_CR52) 2018; 77 NK Twarakavi (11089_CR70) 2005; 43 CI Voss (11089_CR72) 1984; 84 H Huan (11089_CR35) 2012; 440 R Barzegar (11089_CR11) 2019; 26 11089_CR26 11089_CR25 AH Mohammad (11089_CR58) 2017; 9 J Yang (11089_CR75) 2017; 76 11089_CR29 11089_CR9 J Hutson (11089_CR36) 1993; 22 11089_CR40 11089_CR5 11089_CR46 11089_CR6 N Kazakis (11089_CR45) 2018; 643 11089_CR8 B De Vivo (11089_CR24) 2001; 73 11089_CR43 11089_CR1 D Ducci (11089_CR27) 2010; 2 DV Stempvoort (11089_CR69) 1993; 18 11089_CR2 S Luoma (11089_CR51) 2017; 25 11089_CR3 11089_CR4 J Vías (11089_CR71) 2006; 14 G Busico (11089_CR16) 2019; 78 A Corniello (11089_CR21) 2004; 43 A Elçi (11089_CR28) 2017; 207 S Sharma (11089_CR68) 2016; 149 M Civita (11089_CR18) 2004; 43 M Mastrocicco (11089_CR55) 2019; 11 11089_CR53 11089_CR13 11089_CR57 11089_CR56 N Goldscheider (11089_CR32) 2000; 46 R Leonard (11089_CR49) 1987; 30 A Marsico (11089_CR54) 2004; 4 F Cucchi (11089_CR23) 2004; 43 C-S Jang (11089_CR38) 2016; 30 R Barzegar (11089_CR12) 2020; 58 H Jarray (11089_CR39) 2017; 56 11089_CR47 N Kazakis (11089_CR44) 2015; 74 R Barzegar (11089_CR10) 2016; 30 |
References_xml | – reference: Nadizadeh Shorabeh S, Varnaseri AR, Karimi Firozjaei M, Nickravesh F, Neysani Samany N (2020) Spatial modeling of areas suitable for public libraries construction by integration of GIS and multi-attribute decision making: Case study Tehran, Iran. Libr Inf Sci Res 42(2):101017 – reference: HutsonJWagenetRA pragmatic field-scale approach for modeling pesticidesJournal of Environmental Quality1993224944991:CAS:528:DyaK2cXisFGrtw%3D%3D10.2134/jeq1993.00472425002200030014x – reference: Oroji B (2018) Assessing groundwater vulnerability by pollution mapping in Iran: Case study Hamadan-Bahar plain Geofísica internacional 57:161-174 – reference: Neysani Samany N (2019) Automatic landmark extraction from geo-tagged social media photos using deep neural network. Cities 93:1–12 – reference: VossCIA finite-element simulation model for saturated-unsaturated, fluid-density-dependent ground-water flow with energy transport or chemically-reactive single-species solute transportWater Resources Investigation Report1984844369 – reference: Doerfliger N, Zwahlen F, Meylan B, Tripet J-P, Wildberger A (1997) Vulnérabilité des captages en milieu karstique: Nouvelle méthode de délimitation des zones de protection: méthode multicritère EPIK GWA 77:295-302 – reference: ElçiACalibration of groundwater vulnerability mapping using the generalized reduced gradient methodJournal of contaminant hydrology2017207394910.1016/j.jconhyd.2017.10.0081:CAS:528:DC%2BC2sXhslyqs7vJ – reference: Foster S (1987) Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy: International Conference, 1987, Noordwijk Aan Zee, the Netherlands Vulnerability of Soil and Groundwater to Pollutants The Hague, Netherlands Organization for Applied Scientific Research. Netherlands Organization for Applied Scientific Research – reference: BusicoGMastrociccoMCuocoESirnaMTedescoDProtection from natural and anthropogenic sources: a new rating methodology to delineate “Nitrate Vulnerable Zones”Environmental earth sciences20197810410.1007/s12665-019-8118-21:CAS:528:DC%2BC1MXot1ylsbo%3D – reference: Jelokhani Niaraki MR, Neysani Samany N, Mohammadi M, Ara Toomanian (2020) A hybrid ridesharing algorithm based on GIS and ant colony optimization through geosocial networks. J Ambient Intell Humaniz Comput 1–21. https://doi.org/10.1007/s12652-020-02364-6 – reference: DucciDAquifer Vulnerability assessment methods: the non-independence of parameters problemJournal of Water Resource and Protection201022981:CAS:528:DC%2BC3cXovV2rsb8%3D10.4236/jwarp.2010.24034 – reference: GoldscheiderNKluteMSturmSHötzlHThe PI method–a GIS-based approach to mapping groundwater vulnerability with special consideration of karst aquifersZ Angew Geol200046157166 – reference: YangJTangZJiaoTMuhammadAMCombining AHP and genetic algorithms approaches to modify DRASTIC model to assess groundwater vulnerability: a case study from Jianghan Plain, ChinaEnvironmental Earth Sciences20177642610.1007/s12665-017-6759-6 – reference: Aller L, Lehr J, Petty R (1987b) DRASTIC: a standardized system to evaluate ground water pollution potential using hydrogeologic settings. National water well Association Worthington, Ohio 43085. Truman Bennett. Bennett and Williams Inc Columbus, Ohio 43229 – reference: MachiwalDCloutierVGülerCKazakisNA review of GIS-integrated statistical techniques for groundwater quality evaluation and protectionEnvironmental Earth Sciences20187768110.1007/s12665-018-7872-x – reference: Wilcoxon F (1992) Individual comparisons by ranking methods. In: Breakthroughs in statistics. Springer, pp 196-202 – reference: Neysani Samany N, Delavar MR, Chrisman N, Malek MR (2014) FIA5: A customized Fuzzy Interval Algebra for modeling spatial relevancy in urban context-aware systems. Eng Appl Artif Intell 33:116–126 – reference: KazakisNChalikakisKMazzilliNOllivierCManakosAVoudourisKManagement and research strategies of karst aquifers in Greece: Literature overview and exemplification based on hydrodynamic modelling and vulnerability assessment of a strategic karst aquiferScience of the Total Environment20186435926091:CAS:528:DC%2BC1cXhtF2qu7fI10.1016/j.scitotenv.2018.06.184 – reference: BarzegarRMoghaddamAAAdamowskiJNazemiAHDelimitation of groundwater zones under contamination risk using a bagged ensemble of optimized DRASTIC frameworksEnvironmental Science and Pollution Research201926832583391:CAS:528:DC%2BC1MXnvFyjsbs%3D10.1007/s11356-019-04252-9 – reference: NooriRGhahremanzadehHKløveBAdamowskiJFBaghvandAModified-DRASTIC, modified-SINTACS and SI methods for groundwater vulnerability assessment in the southern Tehran aquiferJournal of Environmental Science and Health, Part A201954891001:CAS:528:DC%2BC1MXhtFyr10.1080/10934529.2018.1537728 – reference: MohammadAHAssessing the groundwater vulnerability in the upper aquifers of Zarqa River Basin, Jordan using DRASTIC, SINTACS and GOD methodsInternational Journal of Water Resources and Environmental Engineering2017944531:CAS:528:DC%2BC1cXht12rt77M10.5897/IJWREE2016.0688 – reference: BusicoGKazakisNColombaniNMastrociccoMVoudourisKTedescoDA modified SINTACS method for groundwater vulnerability and pollution risk assessment in highly anthropized regions based on NO3− and SO42− concentrationsScience of the total environment20176091512152310.1016/j.scitotenv.2017.07.2571:CAS:528:DC%2BC2sXht12lsLrO – reference: LuomaSOkkonenJKorkka-NiemiKComparison of the AVI, modified SINTACS and GALDIT vulnerability methods under future climate-change scenarios for a shallow low-lying coastal aquifer in southern FinlandHydrogeology Journal2017252032221:CAS:528:DC%2BC28XhsFKru77F10.1007/s10040-016-1471-2 – reference: Mitchell M (1998) An introduction to genetic algorithms. MIT press – reference: KazakisNOikonomidisDVoudourisKSGroundwater vulnerability and pollution risk assessment with disparate models in karstic, porous, and fissured rock aquifers using remote sensing techniques and GIS in Anthemountas basin, GreeceEnvironmental earth sciences2015746199620910.1007/s12665-015-4641-y – reference: Aureli A (1997) Carta della vulnerabilità all’inquinamento degli acquiferi del settore nord occidentale ibleo (Sicilia SE). Scala – reference: LeonardRKniselWStillDGLEAMS: Groundwater loading effects of agricultural management systemsTransactions of the ASAE1987301403141810.13031/2013.30578 – reference: KapeljSLoborecJKapeljJAssessment of aquifer intrinsic vulnerability by the SINTACS methodGeologia Croatica20136611912810.4154/GC.2013.09 – reference: MarsicoAGiulianoGPennettaLVurroMIntrinsic vulnerability assessment of the south-eastern Murge (Apulia, southern Italy)Natural Hazards and Earth System Science2004476977410.5194/nhess-4-769-2004 – reference: Forti P et al (1999) Carta Della Vulnerabnilita'integrata All'inquinamento Degli Acquiferi Carsici Della Porzione Meridionale Delle Prealpi Bresciane. Integrated pollution vulnerability map for the karst aquifer of the southern part of the Brescian pre-alp – reference: Panigrahi BK, Shi Y, Lim M-H (2011) Handbook of swarm intelligence: concepts, principles and applications vol 8. Springer Science & Business Media – reference: JarrayHGroundwater vulnerability based on GIS approach: case study of Zeuss-Koutine aquifer, South-Eastern TunisiaGeofísica internacional2017561571721:CAS:528:DC%2BC1MXntVyrurw%3D – reference: Amil A, Avcı P, Çil A, Muhammetoğlu A, Özyurt NN (2019) Significance of validation for karst aquifers’ vulnerability assessments: Antalya Travertine Plateau (Turkey) application. Journal of contaminant hydrology:103557 – reference: NolanBTHittKJRuddyBCProbability of nitrate contamination of recently recharged groundwaters in the conterminous United StatesEnvironmental science & technology200236213821451:CAS:528:DC%2BD38XisF2nu7Y%3D10.1021/es0113854 – reference: WHO G (2011) Guidelines for drinking-water quality World Health Organization 216:303-304 – reference: Salkind NJ (2010) Encyclopedia of research design vol 1. Sage – reference: KumarSThirumalaivasanDRadhakrishnanNMathewSGroundwater vulnerability assessment using SINTACS model GeomaticsNatural Hazards and Risk2013433935410.1080/19475705.2012.732119 – reference: Asadi Y, Neysani Samany N, Ezimand K (2019) Seismic vulnerability assessment of urban buildings and traffic networks using fuzzy ordered weighted average. Journal of Mountain Science 16(3):677–688 – reference: HuanHWangJTengYAssessment and validation of groundwater vulnerability to nitrate based on a modified DRASTIC model: a case study in Jilin City of northeast ChinaScience of the total environment201244014231:CAS:528:DC%2BC38Xhs1elsLzI10.1016/j.scitotenv.2012.08.037 – reference: BarzegarRMoghaddamAABaghbanHA supervised committee machine artificial intelligent for improving DRASTIC method to assess groundwater contamination risk: a case study from Tabriz plain aquifer, IranStochastic environmental research and risk assessment20163088389910.1007/s00477-015-1088-3 – reference: CucchiFMassariGObertiSPianoCLa vulnerabilità integrata delle falde acquifere della piana isontinaMem Soc Geol It200257551560 – reference: Di Gennaro A et al (2002) I sistemi di terre della Campania Monografia e carta 1 – reference: JafariSMNikooMRGroundwater risk assessment based on optimization framework using DRASTIC methodArabian Journal of Geosciences2016974210.1007/s12517-016-2756-41:CAS:528:DC%2BC28XitFSmt7vL – reference: HollandJHGenetic algorithmsScientific american1992267667310.1038/scientificamerican0792-66 – reference: Busico G, Colombani N, Cuoco E, Mastrocicco M, Sirna M, Tedesco D (2017a) Modifying SINTACS method to assess groundwater vulnerability and pollution risk to nitrate. European Water – reference: Allocca V, Celico F, Celico P, De Vita P, Fabbrocino S, Mattia S, Monacelli G, Musilli I, Piscopo V, Scalise AR, Summa G & Tranfaglia G (2007) Note illustrative della Carta idrogeologica dell’Italia meridionale (Responsabili Scientifici: Celico P., De Vita P., Monacelli G., Tranfaglia G.) - Istituto Poligrafico e Zecca dello Stato, ISBN 88-448-0215-5, p. 211, con carte allegate, ISBN 88-448-0223-6 (3 tavole fuori testo) – reference: KadkhodaieFMoghaddamAABarzegarRGharekhaniMKadkhodaieAOptimizing the DRASTIC vulnerability approach to overcome the subjectivity: a case study from Shabestar plain, IranArabian Journal of Geosciences20191252710.1007/s12517-019-4647-y1:CAS:528:DC%2BC1MXhsFKju7rK – reference: BarzegarRAsghari MoghaddamANorallahiSInamAAdamowskiJAlizadehMRBou NassarJModification of the DRASTIC framework for mapping groundwater vulnerability zonesGroundwater2020584414521:CAS:528:DC%2BC1MXhtlGnsrjI10.1111/gwat.12919 – reference: CivitaMDe MaioMAssessing and mapping groundwater vulnerability to contamination: The Italian combined approachGeofísica internacional2004435135321:CAS:528:DC%2BD2MXjtVGmtbY%3D – reference: MastrociccoMBusicoGColombaniNDeciphering interannual temperature variations in springs of the Campania region (Italy)Water2019112881:CAS:528:DC%2BC1MXitlelsr%2FF10.3390/w11020288 – reference: Corniello A, Ducci D (2000) Pollution vulnerability assessment in karstic aquifers: a case study of the Matese Mountains 30th International Association of r: past achievements and future challenges Cape Town, Balkema, Rotterdam:725-730 – reference: TwarakaviNKKaluarachchiJJAquifer vulnerability assessment to heavy metals using ordinal logistic regressionGroundwater2005432002141:CAS:528:DC%2BD2MXpsFGhsLk%3D10.1111/j.1745-6584.2005.0001.x – reference: Goldberg DE (1989) Genetic Algorithms in Search, Optimization, and Machine Learning, Addison Wesley, Reading, MA SUMMARY THE APPLICATIONS OF GA-GENETIC ALGORITHM FOR DEALING WITH SOME OPTIMAL CALCULATIONS IN ECONOMICS – reference: NeshatAPradhanBPirastehSShafriHZMEstimating groundwater vulnerability to pollution using a modified DRASTIC model in the Kerman agricultural area, IranEnvironmental earth sciences201471311931311:CAS:528:DC%2BC3sXht1Srsr%2FP10.1007/s12665-013-2690-7 – reference: Kazemzadeh-Zow A, Darvishi Boloorani A, Neysani Samany N, Toomanian A, Pourahmad A (2018) Spatiotemporal modelling of urban quality of life (UQoL) using satellite images and GIS. Int J Remote Sens 39(19):6095–6116 – reference: Köppen W, Geiger R (1928) Klimate der Erde. Gotha: Verlag Justus Perthes Wall-map 150cmx200cm – reference: SharmaSBhambuPArtificial Bee Colony Algorithm: A SurveyInternational Journal of Computer Applications2016149111910.5120/ijca2016911384 – reference: Aller L, Bennett T, Lehr J, Petty R, Hackett G (1987a) DRASTIC: a standardized system for evaluating ground water pollution potential using hydrogeologic settings, EPA 600/2-87-035 DRASTIC: a standardized system for evaluating groundwater pollution potential using hydrogeological setting EPA/600/2-87/035 Robert S Kerr Environmental Research Laboratory, USEPA, Ada, OK – reference: BusicoGCuocoEKazakisNColombaniNMastrociccoMTedescoDVoudourisKMultivariate statistical analysis to characterize/discriminate between anthropogenic and geogenic trace elements occurrence in the Campania Plain, Southern ItalyEnvironmental pollution20182342602691:CAS:528:DC%2BC2sXhvVygsLzL10.1016/j.envpol.2017.11.053 – reference: Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes university, engineering faculty, computer… – reference: Mijani N, Neysani Samani N (2017) Comparision of fuzzy-based models in landslide hazard mapping. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-4/W4:407–416 – reference: Aboulouafa M, Taouil H, Ahmed SI, Tairi A, Arouya K, Hsaissoune M (2017) SINTACS and DRASTIC models for groundwater vulnerability assessment and mapping using a GIS and remote sensing techniques: a case study on Berrechid Plain. IOSR Journal of Engineering (IOSRJEN):7 – reference: CornielloADucciDMontiGMAquifer pollution vulnerability in the Sorrento peninsula, southern Italy, evaluated by SINTACS methodGeofísica Internacional2004435755811:CAS:528:DC%2BD2MXjtVGmur8%3D – reference: JangC-SLinC-WLiangC-PChenJ-SDeveloping a reliable model for aquifer vulnerabilityStochastic environmental research and risk assessment20163017518710.1007/s00477-015-1063-z – reference: Ayub S, Cucchi F, Forti P, Zini L (2001) Pollution integrate vulnerability map for the Perolas-Satana, Grilo And Zezo Karst System (Sao Paulo, Brazil) using the point count system sintacs – reference: CarselRFMulkeyLALorberMNBaskinLBThe pesticide root zone model (PRZM): A procedure for evaluating pesticide leaching threats to groundwaterEcological Modelling19853049691:CAS:528:DyaL28XhsFGntro%3D10.1016/0304-3800(85)90036-5 – reference: Maria R (2018) Comparative studies of groundwater vulnerability assessment. In: IOP Conference Series: Earth and Environmental Science, vol 1. IOP Publishing, p 012018 – reference: VíasJAndreoBPerlesMCarrascoFVadilloIJiménezPProposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP methodHydrogeology Journal20061491292510.1007/s10040-006-0023-61:CAS:528:DC%2BD28XhtVCntLjP – reference: Haupt R, Haupt S (1998) Practical genetic algorithms. Wiley – reference: Civita M, Forti P, Marini P, Meccheri M, Micheli L, Piccini L, Pranzini G (1991) Carta della vulnerabilità all'inquinamento delle Alpi Apuane 1: 25.000 Selca, Firenze – reference: CucchiFFortiPZiniLThe vulnerability of complex karst hydrostructures: problems and perspectivesGeofísica Internacional200443533540 – reference: AschonitisVMastrociccoMColombaniNSalemiEKazakisNVoudourisKCastaldelliGAssessment of the intrinsic vulnerability of agricultural land to water and nitrogen losses via deterministic approach and regression analysis WaterAir, & Soil Pollution2012223160516141:CAS:528:DC%2BC38XlvVOltbc%3D10.1007/s11270-011-0968-5 – reference: De VivoBRolandiGGansPCalvertABohrsonWSperaFBelkinHNew constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy)Mineralogy and Petrology200173476510.1007/s007100170010 – reference: LiangC-PJangC-SLiangC-WChenJ-SGroundwater vulnerability assessment of the Pingtung Plain in Southern TaiwanInternational journal of environmental research and public health201613116710.3390/ijerph131111671:CAS:528:DC%2BC1cXptVWqsg%3D%3D – reference: StempvoortDVEwertLWassenaarLAquifer vulnerability index: a GIS-compatible method for groundwater vulnerability mappingCanadian Water Resources Journal199318253710.4296/cwrj1801025 – volume: 609 start-page: 1512 year: 2017 ident: 11089_CR14 publication-title: Science of the total environment doi: 10.1016/j.scitotenv.2017.07.257 – ident: 11089_CR5 doi: 10.1016/j.jconhyd.2019.103557 – ident: 11089_CR20 – ident: 11089_CR43 – volume: 43 start-page: 200 year: 2005 ident: 11089_CR70 publication-title: Groundwater doi: 10.1111/j.1745-6584.2005.0001.x – volume: 9 start-page: 742 year: 2016 ident: 11089_CR37 publication-title: Arabian Journal of Geosciences doi: 10.1007/s12517-016-2756-4 – ident: 11089_CR59 doi: 10.1016/j.lisr.2020.101017 – ident: 11089_CR1 doi: 10.9790/3021-0705012330 – volume: 267 start-page: 66 year: 1992 ident: 11089_CR34 publication-title: Scientific american doi: 10.1038/scientificamerican0792-66 – volume: 58 start-page: 441 year: 2020 ident: 11089_CR12 publication-title: Groundwater doi: 10.1111/gwat.12919 – volume: 36 start-page: 2138 year: 2002 ident: 11089_CR63 publication-title: Environmental science & technology doi: 10.1021/es0113854 – ident: 11089_CR4 – ident: 11089_CR8 – volume: 234 start-page: 260 year: 2018 ident: 11089_CR15 publication-title: Environmental pollution doi: 10.1016/j.envpol.2017.11.053 – volume: 43 start-page: 533 year: 2004 ident: 11089_CR23 publication-title: Geofísica Internacional doi: 10.22201/igeof.00167169p.2004.43.4.1346 – ident: 11089_CR33 – volume: 73 start-page: 47 year: 2001 ident: 11089_CR24 publication-title: Mineralogy and Petrology doi: 10.1007/s007100170010 – ident: 11089_CR46 doi: 10.1080/01431161.2018.1447160 – ident: 11089_CR62 doi: 10.1016/j.engappai.2014.04.004 – ident: 11089_CR47 – volume: 25 start-page: 203 year: 2017 ident: 11089_CR51 publication-title: Hydrogeology Journal doi: 10.1007/s10040-016-1471-2 – volume: 71 start-page: 3119 year: 2014 ident: 11089_CR60 publication-title: Environmental earth sciences doi: 10.1007/s12665-013-2690-7 – volume: 77 start-page: 681 year: 2018 ident: 11089_CR52 publication-title: Environmental Earth Sciences doi: 10.1007/s12665-018-7872-x – ident: 11089_CR19 – ident: 11089_CR56 doi: 10.5194/isprs-archives-XLII-4-W4-407-2017 – volume: 13 start-page: 1167 year: 2016 ident: 11089_CR50 publication-title: International journal of environmental research and public health doi: 10.3390/ijerph13111167 – volume: 57 start-page: 551 year: 2002 ident: 11089_CR22 publication-title: Mem Soc Geol It – ident: 11089_CR73 – volume: 43 start-page: 513 year: 2004 ident: 11089_CR18 publication-title: Geofísica internacional doi: 10.22201/igeof.00167169p.2004.43.4.776 – volume: 74 start-page: 6199 year: 2015 ident: 11089_CR44 publication-title: Environmental earth sciences doi: 10.1007/s12665-015-4641-y – volume: 46 start-page: 157 year: 2000 ident: 11089_CR32 publication-title: Z Angew Geol – volume: 4 start-page: 769 year: 2004 ident: 11089_CR54 publication-title: Natural Hazards and Earth System Science doi: 10.5194/nhess-4-769-2004 – ident: 11089_CR74 doi: 10.1007/978-1-4612-4380-9_16 – ident: 11089_CR29 – volume: 11 start-page: 288 year: 2019 ident: 11089_CR55 publication-title: Water doi: 10.3390/w11020288 – volume: 207 start-page: 39 year: 2017 ident: 11089_CR28 publication-title: Journal of contaminant hydrology doi: 10.1016/j.jconhyd.2017.10.008 – ident: 11089_CR25 – volume: 30 start-page: 1403 year: 1987 ident: 11089_CR49 publication-title: Transactions of the ASAE doi: 10.13031/2013.30578 – volume: 2 start-page: 298 year: 2010 ident: 11089_CR27 publication-title: Journal of Water Resource and Protection doi: 10.4236/jwarp.2010.24034 – ident: 11089_CR67 doi: 10.4135/9781412961288 – volume: 223 start-page: 1605 year: 2012 ident: 11089_CR7 publication-title: Air, & Soil Pollution doi: 10.1007/s11270-011-0968-5 – volume: 14 start-page: 912 year: 2006 ident: 11089_CR71 publication-title: Hydrogeology Journal doi: 10.1007/s10040-006-0023-6 – volume: 643 start-page: 592 year: 2018 ident: 11089_CR45 publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2018.06.184 – volume: 4 start-page: 339 year: 2013 ident: 11089_CR48 publication-title: Natural Hazards and Risk doi: 10.1080/19475705.2012.732119 – ident: 11089_CR53 doi: 10.1088/1755-1315/118/1/012018 – volume: 30 start-page: 883 year: 2016 ident: 11089_CR10 publication-title: Stochastic environmental research and risk assessment doi: 10.1007/s00477-015-1088-3 – ident: 11089_CR65 doi: 10.22201/igeof.00167169p.2018.57.3.2108 – volume: 30 start-page: 175 year: 2016 ident: 11089_CR38 publication-title: Stochastic environmental research and risk assessment doi: 10.1007/s00477-015-1063-z – volume: 149 start-page: 11 year: 2016 ident: 11089_CR68 publication-title: International Journal of Computer Applications doi: 10.5120/ijca2016911384 – ident: 11089_CR26 – volume: 12 start-page: 527 year: 2019 ident: 11089_CR41 publication-title: Arabian Journal of Geosciences doi: 10.1007/s12517-019-4647-y – volume: 440 start-page: 14 year: 2012 ident: 11089_CR35 publication-title: Science of the total environment doi: 10.1016/j.scitotenv.2012.08.037 – ident: 11089_CR31 – ident: 11089_CR61 doi: 10.1016/j.cities.2019.04.012 – volume: 56 start-page: 157 year: 2017 ident: 11089_CR39 publication-title: Geofísica internacional doi: 10.22201/igeof.00167169p.2017.56.2.1763 – volume: 18 start-page: 25 year: 1993 ident: 11089_CR69 publication-title: Canadian Water Resources Journal doi: 10.4296/cwrj1801025 – volume: 78 start-page: 104 year: 2019 ident: 11089_CR16 publication-title: Environmental earth sciences doi: 10.1007/s12665-019-8118-2 – volume: 30 start-page: 49 year: 1985 ident: 11089_CR17 publication-title: Ecological Modelling doi: 10.1016/0304-3800(85)90036-5 – ident: 11089_CR13 – ident: 11089_CR57 doi: 10.7551/mitpress/3927.001.0001 – volume: 54 start-page: 89 year: 2019 ident: 11089_CR64 publication-title: Journal of Environmental Science and Health, Part A doi: 10.1080/10934529.2018.1537728 – volume: 9 start-page: 44 year: 2017 ident: 11089_CR58 publication-title: International Journal of Water Resources and Environmental Engineering doi: 10.5897/IJWREE2016.0688 – volume: 26 start-page: 8325 year: 2019 ident: 11089_CR11 publication-title: Environmental Science and Pollution Research doi: 10.1007/s11356-019-04252-9 – ident: 11089_CR40 doi: 10.1007/s12652-020-02364-6 – ident: 11089_CR2 – volume: 84 start-page: 4369 year: 1984 ident: 11089_CR72 publication-title: Water Resources Investigation Report – ident: 11089_CR9 – ident: 11089_CR30 – ident: 11089_CR3 doi: 10.1021/bk-1986-0315.ch008 – volume: 76 start-page: 426 year: 2017 ident: 11089_CR75 publication-title: Environmental Earth Sciences doi: 10.1007/s12665-017-6759-6 – volume: 43 start-page: 575 year: 2004 ident: 11089_CR21 publication-title: Geofísica Internacional doi: 10.22201/igeof.00167169p.2004.43.4.807 – volume: 22 start-page: 494 year: 1993 ident: 11089_CR36 publication-title: Journal of Environmental Quality doi: 10.2134/jeq1993.00472425002200030014x – ident: 11089_CR66 doi: 10.1007/978-3-642-17390-5 – volume: 66 start-page: 119 year: 2013 ident: 11089_CR42 publication-title: Geologia Croatica doi: 10.4154/GC.2013.09 – ident: 11089_CR6 doi: 10.1007/s11629-017-4802-4 |
SSID | ssj0020927 |
Score | 2.4264672 |
Snippet | In this study, the modified SINTACS method, a rating-based groundwater vulnerability approach, was applied to data from the Campanian Plain, southern Italy, to... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7854 |
SubjectTerms | Algorithms Anthropogenic factors Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Correlation analysis Correlation coefficient Correlation coefficients Earth and Environmental Science Ecotoxicology Environment Environmental Chemistry Environmental Health Environmental Monitoring Environmental Pollutants Environmental science Evolutionary algorithms Gene mapping Genetic algorithms Groundwater Italy Land use Nitrates Nitrates - analysis Parameter modification Pollutants pollution Pollution sources Ratings Research Article sulfates Swarm intelligence Waste Water Technology Water Management Water Pollutants, Chemical - analysis Water Pollution Control |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEF5CcsklNG-lSdhCb-mC9int0eSBU6gvjiE3sSutkoIjG1tOyb_PzuphQlpDTwJpJBbNjGZG-818CH13sfFRPBdEJIYRkSrvUiXPCdO5LjTVToWRQr9GajgRPx_lY9sUtuzQ7t2WZPhSr5vdKJcAmI0JQNc18YX6joTa3VvxhA36MivWDVGrFoJQLkTbKvP3Z3wMR59yzE_7oyHs3H1Be22-iAeNgvfRlqsO0PHtuj3NX2z9c3mI5jd9DxQ2eHw_ehhcjwlEqgI3XNG4nuEXM8fQzVEVf3ymucABVEjmQHoMnML4dTWFWdQBNvuGARn_hN1ra6Nm8YbN9Gm2-F0_vyyP0OTu9uF6SFpOBZILIWtifPpQGm1jbkvrqGVMO68UVZYqZqXlMk2tSPwZKRUcisIkNlZWK5rbRCp-jLarWeVOEaYlT5grga1ciVRQy51L8kLkBU24KUyEaPdqs7wdOA68F9NsPSoZ1JF5dWRBHVkcoav-nnkzbmOj9Hmnsax1vWUGM9p8TqqEitC3_rJ3GtgJMZWbrUBGhmF4abJBRvrkKhSkETpprKFfEvwEiplmEfrRmcd6Af9e79n_iX9FuwwQNAEjfo6268XKXfgUqLaXweLfAQZI_Lo priority: 102 providerName: Springer Nature |
Title | Developing a SINTACS-based method to map groundwater multi-pollutant vulnerability using evolutionary algorithms |
URI | https://link.springer.com/article/10.1007/s11356-020-11089-0 https://www.ncbi.nlm.nih.gov/pubmed/33040292 https://www.proquest.com/docview/2485326646 https://www.proquest.com/docview/2450011787 https://www.proquest.com/docview/2574328289 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLZgu3BB_BoExmQkbmARO44dn1ApHQNEhdgqlVNkx844dGlo06H99_g5biM00Uss2Y5k-b1nP9vfex9Cr12q_S5eccKlZoQXwptUnVWEqUpZRZUTIaXQt6k4m_Ev83weL9zWEVa5XRPDQm2XFdyRv4PUW97VEFy8b38TYI2C19VIoXEXHULqMoB0yflw4EpVT9mqOCc04zwGzfShczTLAX6bEgDCK5L-uzHd8jZvvZSGDej0AbofPUc86kX9EN1xzSN0NBkC1XxjtNT1Y9R-3EVDYY3PP08vRuNzAnuWxT1rNO6W-Eq3GOI6GvvH-5wrHOCFpAX6Y2AXxtebBWSlDgDaGwwY-UvsrqO26tUN1otLP0ndr6v1EzQ7nVyMz0hkVyAV53lHtHckaq1MmpnaOGoYU86LR9S1SFltsrwoDJe-Js8FFNZqaVJhlKCVkbnIjtBBs2zcM4RpnUnmauAtF7zg1GTOycryylKZaasTRLdTW1Yx9TgwYCzKIWkyiKP04iiDOMo0QW92_7R94o29vY-3EiujEa7LQWUS9GrX7M0H3kR045Yb6JOHtHiF3NMn925WOJom6GmvDbshwXVQyhRL0NutegwD-P94n-8f7wt0jwF2JqDDj9FBt9q4l9756cxJ0HD_Lcb0BB2OPv38OvHlh8n0-w9fO2Ojv3wnBN4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuiFchUMBIcAKLxHac-IBQabfape0K0a3UW2onTjlss2EfrfZP8Rvx5LVCFXvrKVLsRCPPjGfGnpkP4L31tbPiqaAi0oyKWDqVynlKmUpVpgJlZdVS6GQkB2fi-3l4vgV_2loYTKts98Rqo86mKZ6Rf8bWW87VkEJ-LX9TRI3C29UWQqMWiyO7unEh2_zL8MDx9wNjh_3x_oA2qAI0FSJcUO0MaK6V8bnJjQ0MY8o6smSeS5_lhodxbETk3oShxEeW6cj40igZpCYKJXf_vQfbgrtQpgfb3_qjHz-7EM9XNUisEoIGXIimTKcu1gt4iAm_PsXUe0X9f03hLf_21t1sZfIOH8HDxlcle7VwPYYtWzyBnf66NM4NNnvD_CmUB139FdHkdDga7-2fUrSSGalxqsliSq50SbCSpMhunJc7I1VCIy0RcBnxjMn1coJ9sKuU3RXBrPxLYq8b_dCzFdGTS8eWxa-r-TM4u5OV34FeMS3sCyBBziNmc0RKlyIWgeHWRmkm0iyIuM60B0G7tEnaNDtHzI1Jsm7TjOxIHDuSih2J78HH7puybvWxcfZuy7GkUft5shZSD951w05h8RZGF3a6xDlh1YgvjjbMCZ1jVwXDHjyvpaEjCQ-gfKaYB59a8VgT8H96X26m9y3cH4xPjpPj4ejoFTxgmLlT5abvQm8xW9rXzvVamDeNvBO4uGsV-wtjRT6p |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGkBAvaPwYCxtgJHgCa7FjO_EDQtO6amVQIW2T-hbsxBkPXRradFP_Nf46fE7SCE30bU-REic65e58Z_u7-xB6b0PtonjGCY81IzyRzqWKKCNMZSpXVFnpWwp9H8vTS_51IiZb6E9XCwOwym5O9BN1Pstgj_wQWm-5VENyeVi0sIgfg-GX6jcBBik4ae3oNBoTObOrW7d8W3weDZyuPzA2PLk4PiUtwwDJOBc10S6YFlqZMDKFsdQwpqwTURaFDFlhIpEkhsfujhASLnmuYxNKoyTNTCxk5L77AD2MI0HBx-JJv9gLVUMXqzgnNOK8LdhpyvZoJAD6GxIA4SsS_hsU72S6d05pffAb7qAnbdaKjxoze4q2bPkM7Z70RXLuYTtLLJ6jarCuxMIan4_GF0fH5wTiZY4bxmpcz_C1rjDUlJT5rct359hDG0kF1MvAbIxvllPoiO3BuysM-PwrbG9aT9HzFdbTK6eU-tf14gW6vJf_vou2y1lp9xCmRRQzWwBnuuQJpyayNs5ynuU0jnSuA0S7X5tmbdtzYN-Ypn3DZlBH6tSRenWkYYA-rt-pmqYfG0cfdBpL2wlgkfbmGqB368fOdeE8Rpd2toQxwrfkS-INY4RL8fyyOEAvG2tYiwRbUSFTLECfOvPoBfi_vK82y_sWPXKOlX4bjc_20WMGEB4PUj9A2_V8aV-7HKw2b7yxY_Tzvr3rL84FQXk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+a+SINTACS-based+method+to+map+groundwater+multi-pollutant+vulnerability+using+evolutionary+algorithms&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Jahromi%2C+Maryam+Naghdizadegan&rft.au=Gomeh+Zinat&rft.au=Busico+Gianluigi&rft.au=Barzegar+Rahim&rft.date=2021-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0944-1344&rft.eissn=1614-7499&rft.volume=28&rft.issue=7&rft.spage=7854&rft.epage=7869&rft_id=info:doi/10.1007%2Fs11356-020-11089-0&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-1344&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-1344&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-1344&client=summon |