Habitability of Earth-like Stagnant Lid Planets: Climate Evolution and Recovery from Snowball States

Coupled models of mantle thermal evolution, volcanism, outgassing, weathering, and climate evolution for Earth-like (in terms of size and composition) stagnant lid planets are used to assess their prospects for habitability. The results indicate that planetary CO2 budgets ranging from 3 orders of ma...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 875; no. 1; pp. 72 - 91
Main Author Foley, Bradford J.
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 10.04.2019
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Coupled models of mantle thermal evolution, volcanism, outgassing, weathering, and climate evolution for Earth-like (in terms of size and composition) stagnant lid planets are used to assess their prospects for habitability. The results indicate that planetary CO2 budgets ranging from 3 orders of magnitude lower than Earth's to 1 order of magnitude larger, along with radiogenic heating budgets as large or larger than Earth's, allow for habitable climates lasting 1-5 Gyr. The ability of stagnant lid planets to recover from potential snowball states is also explored; recovery is found to depend on whether atmosphere-ocean chemical exchange is possible. For a "hard" snowball with no exchange, recovery is unlikely, as most CO2 outgassing takes place via metamorphic decarbonation of the crust, which occurs below the ice layer. However, for a "soft" snowball where there is exchange between atmosphere and ocean, planets can readily recover. For both hard and soft snowball states, there is a minimum CO2 budget needed for recovery; below this limit, any snowball state would be permanent. Thus, there is the possibility for hysteresis in stagnant lid planet climate evolution, where planets with low CO2 budgets that start off in a snowball climate will be permanently stuck in this state, while otherwise identical planets that start with a temperate climate will be capable of maintaining this climate for 1 Gyr or more. Finally, the model results have important implications for future exoplanet missions, as they can guide observations to planets most likely to possess habitable climates.
AbstractList Abstract Coupled models of mantle thermal evolution, volcanism, outgassing, weathering, and climate evolution for Earth-like (in terms of size and composition) stagnant lid planets are used to assess their prospects for habitability. The results indicate that planetary CO 2 budgets ranging from ≈3 orders of magnitude lower than Earth’s to ≈1 order of magnitude larger, along with radiogenic heating budgets as large or larger than Earth’s, allow for habitable climates lasting 1–5 Gyr. The ability of stagnant lid planets to recover from potential snowball states is also explored; recovery is found to depend on whether atmosphere–ocean chemical exchange is possible. For a “hard” snowball with no exchange, recovery is unlikely, as most CO 2 outgassing takes place via metamorphic decarbonation of the crust, which occurs below the ice layer. However, for a “soft” snowball where there is exchange between atmosphere and ocean, planets can readily recover. For both hard and soft snowball states, there is a minimum CO 2 budget needed for recovery; below this limit, any snowball state would be permanent. Thus, there is the possibility for hysteresis in stagnant lid planet climate evolution, where planets with low CO 2 budgets that start off in a snowball climate will be permanently stuck in this state, while otherwise identical planets that start with a temperate climate will be capable of maintaining this climate for 1 Gyr or more. Finally, the model results have important implications for future exoplanet missions, as they can guide observations to planets most likely to possess habitable climates.
Coupled models of mantle thermal evolution, volcanism, outgassing, weathering, and climate evolution for Earth-like (in terms of size and composition) stagnant lid planets are used to assess their prospects for habitability. The results indicate that planetary CO2 budgets ranging from 3 orders of magnitude lower than Earth's to 1 order of magnitude larger, along with radiogenic heating budgets as large or larger than Earth's, allow for habitable climates lasting 1-5 Gyr. The ability of stagnant lid planets to recover from potential snowball states is also explored; recovery is found to depend on whether atmosphere-ocean chemical exchange is possible. For a "hard" snowball with no exchange, recovery is unlikely, as most CO2 outgassing takes place via metamorphic decarbonation of the crust, which occurs below the ice layer. However, for a "soft" snowball where there is exchange between atmosphere and ocean, planets can readily recover. For both hard and soft snowball states, there is a minimum CO2 budget needed for recovery; below this limit, any snowball state would be permanent. Thus, there is the possibility for hysteresis in stagnant lid planet climate evolution, where planets with low CO2 budgets that start off in a snowball climate will be permanently stuck in this state, while otherwise identical planets that start with a temperate climate will be capable of maintaining this climate for 1 Gyr or more. Finally, the model results have important implications for future exoplanet missions, as they can guide observations to planets most likely to possess habitable climates.
Coupled models of mantle thermal evolution, volcanism, outgassing, weathering, and climate evolution for Earth-like (in terms of size and composition) stagnant lid planets are used to assess their prospects for habitability. The results indicate that planetary CO2 budgets ranging from ≈3 orders of magnitude lower than Earth’s to ≈1 order of magnitude larger, along with radiogenic heating budgets as large or larger than Earth’s, allow for habitable climates lasting 1–5 Gyr. The ability of stagnant lid planets to recover from potential snowball states is also explored; recovery is found to depend on whether atmosphere–ocean chemical exchange is possible. For a “hard” snowball with no exchange, recovery is unlikely, as most CO2 outgassing takes place via metamorphic decarbonation of the crust, which occurs below the ice layer. However, for a “soft” snowball where there is exchange between atmosphere and ocean, planets can readily recover. For both hard and soft snowball states, there is a minimum CO2 budget needed for recovery; below this limit, any snowball state would be permanent. Thus, there is the possibility for hysteresis in stagnant lid planet climate evolution, where planets with low CO2 budgets that start off in a snowball climate will be permanently stuck in this state, while otherwise identical planets that start with a temperate climate will be capable of maintaining this climate for 1 Gyr or more. Finally, the model results have important implications for future exoplanet missions, as they can guide observations to planets most likely to possess habitable climates.
Author Foley, Bradford J.
Author_xml – sequence: 1
  givenname: Bradford J.
  orcidid: 0000-0002-6943-3192
  surname: Foley
  fullname: Foley, Bradford J.
  email: bjf5382@psu.edu
  organization: Pennsylvania State University Department of Geosciences, University Park, PA 16802, USA
BookMark eNp9kM1Lw0AQxRepYFu9e1zQo7H7kU223qRUKxQUq-BtmSS7mpruxs220v_ehIhexMMwzPB7b5g3QgPrrEbolJJLLuN0QgWXUcxFOoGMGE4P0PBnNUBDQkgcJTx9OUKjpll3I5tOh6hYQFaGtqoy7LEzeA4-vEVV-a7xKsCrBRvwsizwQwVWh-YKz6pyA0Hj-c5V21A6i8EW-FHnbqf9HhvvNnhl3WcGVdVZBN0co0MDVaNPvvsYPd_Mn2aLaHl_eze7XkZ5HIsQgWBGFBK4pJzlBSNgciAZiJgVGowWVLRcTmSSToGy3BQGTKIF4zKTKY35GJ31vrV3H1vdBLV2W2_bk4rxREw5lYK2FOmp3Lum8dqo2rcv-b2iRHVZqi441QWn-ixbyUUvKV396_kPfv4HDvVayVQoqlKm6sLwL4OThEM
CitedBy_id crossref_primary_10_1063_5_0105170
crossref_primary_10_1029_2021JE006895
crossref_primary_10_1038_s41598_021_99240_w
crossref_primary_10_3847_2041_8213_abc251
crossref_primary_10_1029_2021JE007123
crossref_primary_10_1029_2022CN000193
crossref_primary_10_1007_s11084_022_09622_x
crossref_primary_10_1093_mnras_stac724
crossref_primary_10_1186_s40623_021_01499_w
crossref_primary_10_2138_rmg_2024_90_15
crossref_primary_10_3847_2041_8213_ac886b
crossref_primary_10_3847_1538_4357_ab9362
crossref_primary_10_1007_s11214_023_00953_3
crossref_primary_10_1051_0004_6361_202140375
crossref_primary_10_3847_1538_3881_ac366b
crossref_primary_10_1144_jgs2023_212
crossref_primary_10_1051_0004_6361_201935091
crossref_primary_10_3847_2041_8213_ac6596
crossref_primary_10_3847_PSJ_abaab5
crossref_primary_10_1051_0004_6361_202346950
crossref_primary_10_3847_1538_3881_acbfaf
crossref_primary_10_1107_S1600576721008554
crossref_primary_10_1093_gji_ggac259
crossref_primary_10_3390_universe5070171
crossref_primary_10_1093_gji_ggab366
crossref_primary_10_3847_1538_4357_ac69cb
crossref_primary_10_1017_S1473550419000132
crossref_primary_10_1029_2021GC009910
crossref_primary_10_1051_0004_6361_202141112
crossref_primary_10_1051_0004_6361_202039664
Cites_doi 10.1002/2015GC006210
10.1146/annurev.astro.41.071601.170049
10.1051/0004-6361/201730728
10.1016/j.icarus.2010.06.030
10.1016/j.epsl.2008.03.062
10.1016/j.pepi.2017.05.010
10.1016/0019-1035(91)90103-Z
10.1002/ggge.20113
10.1016/j.epsl.2006.06.014
10.1016/j.icarus.2011.09.030
10.1029/2006JE002793
10.1016/j.icarus.2013.07.025
10.1007/BF00320827
10.1016/S0031-9201(96)03229-3
10.1029/2006JE002799
10.1016/0019-1035(79)90178-7
10.2475/ajs.283.7.641
10.1088/0004-637X/812/1/36
10.1098/rsta.2017.0078
10.1038/nature02408
10.1089/ast.2017.1695
10.1086/659427
10.1016/j.icarus.2010.12.005
10.1006/icar.1999.6088
10.1016/0012-821X(92)90223-I
10.3847/0004-637X/827/2/120
10.1088/0004-637X/756/2/178
10.1006/icar.1993.1010
10.1046/j.1365-3121.2002.00408.x
10.1016/j.pepi.2014.08.004
10.1007/s11214-007-9225-z
10.1111/j.1365-246X.2009.04272.x
10.1016/j.epsl.2015.07.046
10.1016/j.epsl.2016.08.044
10.1088/0067-0049/210/2/19
10.1038/ncomms15423
10.1002/2017JE005286
10.1016/0377-0273(84)90039-8
10.1029/2000JB900197
10.1016/0016-7037(89)90189-0
10.1146/annurev-earth-042711-105503
10.1126/science.260.5109.771
10.1038/359226a0
10.1086/589831
10.1016/0009-2541(94)90126-0
10.1073/pnas.1721296115
10.1016/B978-044452748-6.00161-9
10.1029/2001JE001801
10.1029/2000JE001247
10.1016/j.epsl.2011.06.014
10.1130/0091-7613(1997)025<0955:TNFMBA>2.3.CO;2
10.1007/BF00151270
10.1016/0019-1035(83)90241-5
10.1016/S0012-821X(01)00347-8
10.1051/0004-6361/201731513
10.1029/164GM03
10.1073/pnas.1304196111
10.1029/JC086iC10p09776
10.1016/j.epsl.2015.01.027
10.1016/S0009-2541(99)00043-1
10.1029/2012GC004334
10.1029/98JE01047
10.3847/1538-4357/aab767
10.1029/2006JE002782
10.1088/0004-637X/790/2/107
10.1038/nature12163
10.1002/2014JB011121
10.1038/ngeo1305
10.1016/S0016-7037(96)00385-7
10.1016/0019-1035(87)90147-3
10.1002/2016JE005089
10.1016/j.icarus.2010.12.028
ContentType Journal Article
Copyright 2019. The American Astronomical Society. All rights reserved.
Copyright IOP Publishing Apr 10, 2019
Copyright_xml – notice: 2019. The American Astronomical Society. All rights reserved.
– notice: Copyright IOP Publishing Apr 10, 2019
DBID AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOI 10.3847/1538-4357/ab0f31
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
DocumentTitleAlternate Habitability of Earth-like Stagnant Lid Planets: Climate Evolution and Recovery from Snowball States
EISSN 1538-4357
ExternalDocumentID 10_3847_1538_4357_ab0f31
apjab0f31
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
EJD
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
WH7
XSW
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
ID FETCH-LOGICAL-c445t-a52f5d8a38132cd20afca0ba542deafe515445c08679a12cfdfaf6e5238b87143
IEDL.DBID O3W
ISSN 0004-637X
IngestDate Thu Oct 10 16:49:37 EDT 2024
Fri Aug 23 03:43:55 EDT 2024
Wed Aug 21 03:33:03 EDT 2024
Thu Jan 07 13:49:50 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-a52f5d8a38132cd20afca0ba542deafe515445c08679a12cfdfaf6e5238b87143
Notes AAS15433
The Solar System, Exoplanets, and Astrobiology
ORCID 0000-0002-6943-3192
OpenAccessLink https://iopscience.iop.org/article/10.3847/1538-4357/ab0f31/pdf
PQID 2365931851
PQPubID 4562441
PageCount 20
ParticipantIDs iop_journals_10_3847_1538_4357_ab0f31
crossref_primary_10_3847_1538_4357_ab0f31
proquest_journals_2365931851
PublicationCentury 2000
PublicationDate 2019-04-10
PublicationDateYYYYMMDD 2019-04-10
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-10
  day: 10
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2019
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Donnadieu (apjab0f31bib14) 2004; 428
Kasting (apjab0f31bib41) 1993; 101
Pollack (apjab0f31bib54) 1987; 71
Solomatov (apjab0f31bib61) 2000
Solomatov (apjab0f31bib62) 2000; 105
Karato (apjab0f31bib38) 2011; 212
Foley (apjab0f31bib22) 2014; 119
Krissansen-Totton (apjab0f31bib46) 2017; 8
Tajika (apjab0f31bib67) 2008; 680
Foley (apjab0f31bib21) 2015; 812
Franck (apjab0f31bib26) 1999; 159
Berner (apjab0f31bib5) 1997; 25
Krissansen-Totton (apjab0f31bib45) 2018; 115
Berner (apjab0f31bib6) 1983; 283
Dorn (apjab0f31bib15) 2018; 614
Menou (apjab0f31bib49) 2015; 429
Hamano (apjab0f31bib30) 2013; 497
Spohn (apjab0f31bib63) 1991; 90
Haqq-Misra (apjab0f31bib31) 2016; 827
Sleep (apjab0f31bib60) 2001; 106
Gough (apjab0f31bib28) 1981; 74
Caldeira (apjab0f31bib10) 1992; 359
Batalha (apjab0f31bib3) 2016; 455
Foley (apjab0f31bib24) 2018; 18
Crisp (apjab0f31bib13) 1984; 20
Karato (apjab0f31bib39) 1993; 260
Brady (apjab0f31bib7) 1997; 61
Stamenkovic (apjab0f31bib64) 2011; 216
Abe (apjab0f31bib2) 1997; 100
Tosi (apjab0f31bib69) 2017; 605
Morschhauser (apjab0f31bib51) 2011; 212
Gale (apjab0f31bib27) 2013; 14
Hart (apjab0f31bib32) 1993; 113
Tajika (apjab0f31bib68) 1992; 113
Driscoll (apjab0f31bib17) 2014; 236
Reese (apjab0f31bib57) 2007; 112
Zahnle (apjab0f31bib73) 2007; 129
Kadoya (apjab0f31bib37) 2014; 790
Staudigel (apjab0f31bib65) 1989; 53
Coogan (apjab0f31bib11) 2015; 415
Hauri (apjab0f31bib34) 2006; 248
Schubert (apjab0f31bib59) 1979; 38
Elkins-Tanton (apjab0f31bib18) 2008; 271
Noack (apjab0f31bib52) 2017; 269
Driscoll (apjab0f31bib16) 2013; 226
Kump (apjab0f31bib47) 2018; 376
Hauck (apjab0f31bib33) 2002; 107
Reese (apjab0f31bib55) 1998; 103
Elkins-Tanton (apjab0f31bib19) 2012; 40
Coogan (apjab0f31bib12) 2013; 14
Kasting (apjab0f31bib40) 2003; 41
Hauri (apjab0f31bib35) 1994; 117
Fraeman (apjab0f31bib25) 2010; 210
Mills (apjab0f31bib50) 2011; 4
Foley (apjab0f31bib23) 2016; 17
Korenaga (apjab0f31bib44) 2009; 179
Burke (apjab0f31bib9) 2014; 210
Hoffman (apjab0f31bib36) 2002; 14
O’Neill (apjab0f31bib53) 2007; 112
Elkins-Tanton (apjab0f31bib20) 2007; 112
Valencia (apjab0f31bib70) 2018; 857
Stevenson (apjab0f31bib66) 1983; 54
Wright (apjab0f31bib72) 2011; 123
Breuer (apjab0f31bib8) 2007
Salvador (apjab0f31bib58) 2017; 122
Korenaga (apjab0f31bib43) 2006
Batalha (apjab0f31bib4) 2014; 111
Abbot (apjab0f31bib1) 2012; 756
Reese (apjab0f31bib56) 1999; 139
Lenardic (apjab0f31bib48) 2016; 121
Kerrick (apjab0f31bib42) 2001; 189
Walker (apjab0f31bib71) 1981; 86
Grott (apjab0f31bib29) 2011; 308
References_xml – volume: 17
  start-page: 1885
  year: 2016
  ident: apjab0f31bib23
  publication-title: GGG
  doi: 10.1002/2015GC006210
  contributor:
    fullname: Foley
– volume: 41
  start-page: 429
  year: 2003
  ident: apjab0f31bib40
  publication-title: ARA&A
  doi: 10.1146/annurev.astro.41.071601.170049
  contributor:
    fullname: Kasting
– volume: 605
  start-page: A71
  year: 2017
  ident: apjab0f31bib69
  publication-title: A&A
  doi: 10.1051/0004-6361/201730728
  contributor:
    fullname: Tosi
– volume: 210
  start-page: 43
  year: 2010
  ident: apjab0f31bib25
  publication-title: Icar
  doi: 10.1016/j.icarus.2010.06.030
  contributor:
    fullname: Fraeman
– volume: 271
  start-page: 181
  year: 2008
  ident: apjab0f31bib18
  publication-title: E&PSL
  doi: 10.1016/j.epsl.2008.03.062
  contributor:
    fullname: Elkins-Tanton
– volume: 269
  start-page: 40
  year: 2017
  ident: apjab0f31bib52
  publication-title: PEPI
  doi: 10.1016/j.pepi.2017.05.010
  contributor:
    fullname: Noack
– volume: 90
  start-page: 222
  year: 1991
  ident: apjab0f31bib63
  publication-title: Icar
  doi: 10.1016/0019-1035(91)90103-Z
  contributor:
    fullname: Spohn
– volume: 14
  start-page: 1771
  year: 2013
  ident: apjab0f31bib12
  publication-title: GGG
  doi: 10.1002/ggge.20113
  contributor:
    fullname: Coogan
– volume: 248
  start-page: 715
  year: 2006
  ident: apjab0f31bib34
  publication-title: E&PSL
  doi: 10.1016/j.epsl.2006.06.014
  contributor:
    fullname: Hauri
– volume: 216
  start-page: 572
  year: 2011
  ident: apjab0f31bib64
  publication-title: Icar
  doi: 10.1016/j.icarus.2011.09.030
  contributor:
    fullname: Stamenkovic
– volume: 112
  start-page: E04S06
  year: 2007
  ident: apjab0f31bib20
  publication-title: JGRE
  doi: 10.1029/2006JE002793
  contributor:
    fullname: Elkins-Tanton
– volume: 226
  start-page: 1447
  year: 2013
  ident: apjab0f31bib16
  publication-title: Icar
  doi: 10.1016/j.icarus.2013.07.025
  contributor:
    fullname: Driscoll
– volume: 113
  start-page: 1
  year: 1993
  ident: apjab0f31bib32
  publication-title: CoMP
  doi: 10.1007/BF00320827
  contributor:
    fullname: Hart
– volume: 100
  start-page: 27
  year: 1997
  ident: apjab0f31bib2
  publication-title: PEPI
  doi: 10.1016/S0031-9201(96)03229-3
  contributor:
    fullname: Abe
– volume: 112
  year: 2007
  ident: apjab0f31bib53
  publication-title: JGRE
  doi: 10.1029/2006JE002799
  contributor:
    fullname: O’Neill
– volume: 38
  start-page: 192
  year: 1979
  ident: apjab0f31bib59
  publication-title: Icar
  doi: 10.1016/0019-1035(79)90178-7
  contributor:
    fullname: Schubert
– volume: 283
  start-page: 641
  year: 1983
  ident: apjab0f31bib6
  publication-title: AmJS
  doi: 10.2475/ajs.283.7.641
  contributor:
    fullname: Berner
– volume: 812
  start-page: 36
  year: 2015
  ident: apjab0f31bib21
  publication-title: ApJ
  doi: 10.1088/0004-637X/812/1/36
  contributor:
    fullname: Foley
– volume: 376
  year: 2018
  ident: apjab0f31bib47
  publication-title: RSPTA
  doi: 10.1098/rsta.2017.0078
  contributor:
    fullname: Kump
– volume: 428
  start-page: 303
  year: 2004
  ident: apjab0f31bib14
  publication-title: Natur
  doi: 10.1038/nature02408
  contributor:
    fullname: Donnadieu
– volume: 18
  start-page: 873
  year: 2018
  ident: apjab0f31bib24
  publication-title: AsBio
  doi: 10.1089/ast.2017.1695
  contributor:
    fullname: Foley
– volume: 123
  start-page: 412
  year: 2011
  ident: apjab0f31bib72
  publication-title: PASP
  doi: 10.1086/659427
  contributor:
    fullname: Wright
– volume: 212
  start-page: 14
  year: 2011
  ident: apjab0f31bib38
  publication-title: Icar
  doi: 10.1016/j.icarus.2010.12.005
  contributor:
    fullname: Karato
– volume: 139
  start-page: 67
  year: 1999
  ident: apjab0f31bib56
  publication-title: Icar
  doi: 10.1006/icar.1999.6088
  contributor:
    fullname: Reese
– volume: 113
  start-page: 251
  year: 1992
  ident: apjab0f31bib68
  publication-title: E&PSL
  doi: 10.1016/0012-821X(92)90223-I
  contributor:
    fullname: Tajika
– volume: 827
  start-page: 120
  year: 2016
  ident: apjab0f31bib31
  publication-title: ApJ
  doi: 10.3847/0004-637X/827/2/120
  contributor:
    fullname: Haqq-Misra
– volume: 756
  start-page: 178
  year: 2012
  ident: apjab0f31bib1
  publication-title: ApJ
  doi: 10.1088/0004-637X/756/2/178
  contributor:
    fullname: Abbot
– volume: 101
  start-page: 108
  year: 1993
  ident: apjab0f31bib41
  publication-title: Icar
  doi: 10.1006/icar.1993.1010
  contributor:
    fullname: Kasting
– volume: 14
  start-page: 129
  year: 2002
  ident: apjab0f31bib36
  publication-title: TeNov
  doi: 10.1046/j.1365-3121.2002.00408.x
  contributor:
    fullname: Hoffman
– volume: 236
  start-page: 36
  year: 2014
  ident: apjab0f31bib17
  publication-title: PEPI
  doi: 10.1016/j.pepi.2014.08.004
  contributor:
    fullname: Driscoll
– volume: 129
  start-page: 35
  year: 2007
  ident: apjab0f31bib73
  publication-title: SSRv
  doi: 10.1007/s11214-007-9225-z
  contributor:
    fullname: Zahnle
– volume: 179
  start-page: 154
  year: 2009
  ident: apjab0f31bib44
  publication-title: GeoJI
  doi: 10.1111/j.1365-246X.2009.04272.x
  contributor:
    fullname: Korenaga
– volume: 429
  start-page: 20
  year: 2015
  ident: apjab0f31bib49
  publication-title: E&PSL
  doi: 10.1016/j.epsl.2015.07.046
  contributor:
    fullname: Menou
– volume: 455
  start-page: 7
  year: 2016
  ident: apjab0f31bib3
  publication-title: E&PSL
  doi: 10.1016/j.epsl.2016.08.044
  contributor:
    fullname: Batalha
– volume: 210
  start-page: 19
  year: 2014
  ident: apjab0f31bib9
  publication-title: ApJS
  doi: 10.1088/0067-0049/210/2/19
  contributor:
    fullname: Burke
– volume: 8
  start-page: 15423
  year: 2017
  ident: apjab0f31bib46
  publication-title: NatCo
  doi: 10.1038/ncomms15423
  contributor:
    fullname: Krissansen-Totton
– volume: 122
  start-page: 1458
  year: 2017
  ident: apjab0f31bib58
  publication-title: JGRE
  doi: 10.1002/2017JE005286
  contributor:
    fullname: Salvador
– volume: 20
  start-page: 177
  year: 1984
  ident: apjab0f31bib13
  publication-title: JVGR
  doi: 10.1016/0377-0273(84)90039-8
  contributor:
    fullname: Crisp
– volume: 105
  start-page: 21795
  year: 2000
  ident: apjab0f31bib62
  publication-title: JGR
  doi: 10.1029/2000JB900197
  contributor:
    fullname: Solomatov
– volume: 53
  start-page: 3091
  year: 1989
  ident: apjab0f31bib65
  publication-title: GeCoA
  doi: 10.1016/0016-7037(89)90189-0
  contributor:
    fullname: Staudigel
– volume: 40
  start-page: 113
  year: 2012
  ident: apjab0f31bib19
  publication-title: AREPS
  doi: 10.1146/annurev-earth-042711-105503
  contributor:
    fullname: Elkins-Tanton
– volume: 260
  start-page: 771
  year: 1993
  ident: apjab0f31bib39
  publication-title: Sci
  doi: 10.1126/science.260.5109.771
  contributor:
    fullname: Karato
– volume: 359
  start-page: 226
  year: 1992
  ident: apjab0f31bib10
  publication-title: Natur
  doi: 10.1038/359226a0
  contributor:
    fullname: Caldeira
– volume: 680
  start-page: L53
  year: 2008
  ident: apjab0f31bib67
  publication-title: ApJL
  doi: 10.1086/589831
  contributor:
    fullname: Tajika
– volume: 117
  start-page: 149
  year: 1994
  ident: apjab0f31bib35
  publication-title: ChGeo
  doi: 10.1016/0009-2541(94)90126-0
  contributor:
    fullname: Hauri
– volume: 115
  start-page: 4105
  year: 2018
  ident: apjab0f31bib45
  publication-title: PNAS
  doi: 10.1073/pnas.1721296115
  contributor:
    fullname: Krissansen-Totton
– start-page: 299
  year: 2007
  ident: apjab0f31bib8
  doi: 10.1016/B978-044452748-6.00161-9
  contributor:
    fullname: Breuer
– start-page: 555
  year: 2000
  ident: apjab0f31bib61
  contributor:
    fullname: Solomatov
– volume: 107
  start-page: 6
  year: 2002
  ident: apjab0f31bib33
  publication-title: JGRE
  doi: 10.1029/2001JE001801
  contributor:
    fullname: Hauck
– volume: 106
  start-page: 1373
  year: 2001
  ident: apjab0f31bib60
  publication-title: JGR
  doi: 10.1029/2000JE001247
  contributor:
    fullname: Sleep
– volume: 308
  start-page: 391
  year: 2011
  ident: apjab0f31bib29
  publication-title: E&PSL
  doi: 10.1016/j.epsl.2011.06.014
  contributor:
    fullname: Grott
– volume: 25
  start-page: 955
  year: 1997
  ident: apjab0f31bib5
  publication-title: Geo
  doi: 10.1130/0091-7613(1997)025<0955:TNFMBA>2.3.CO;2
  contributor:
    fullname: Berner
– volume: 74
  start-page: 21
  year: 1981
  ident: apjab0f31bib28
  publication-title: SoPh
  doi: 10.1007/BF00151270
  contributor:
    fullname: Gough
– volume: 54
  start-page: 466
  year: 1983
  ident: apjab0f31bib66
  publication-title: Icar
  doi: 10.1016/0019-1035(83)90241-5
  contributor:
    fullname: Stevenson
– volume: 189
  start-page: 19
  year: 2001
  ident: apjab0f31bib42
  publication-title: E&PSL
  doi: 10.1016/S0012-821X(01)00347-8
  contributor:
    fullname: Kerrick
– volume: 614
  start-page: A18
  year: 2018
  ident: apjab0f31bib15
  publication-title: A&A
  doi: 10.1051/0004-6361/201731513
  contributor:
    fullname: Dorn
– start-page: 7
  year: 2006
  ident: apjab0f31bib43
  doi: 10.1029/164GM03
  contributor:
    fullname: Korenaga
– volume: 111
  start-page: 12647
  year: 2014
  ident: apjab0f31bib4
  publication-title: PNAS
  doi: 10.1073/pnas.1304196111
  contributor:
    fullname: Batalha
– volume: 86
  start-page: 9776
  year: 1981
  ident: apjab0f31bib71
  publication-title: JGR
  doi: 10.1029/JC086iC10p09776
  contributor:
    fullname: Walker
– volume: 415
  start-page: 38
  year: 2015
  ident: apjab0f31bib11
  publication-title: E&PSL
  doi: 10.1016/j.epsl.2015.01.027
  contributor:
    fullname: Coogan
– volume: 159
  start-page: 305
  year: 1999
  ident: apjab0f31bib26
  publication-title: ChGeo
  doi: 10.1016/S0009-2541(99)00043-1
  contributor:
    fullname: Franck
– volume: 14
  start-page: 489
  year: 2013
  ident: apjab0f31bib27
  publication-title: GGG
  doi: 10.1029/2012GC004334
  contributor:
    fullname: Gale
– volume: 103
  start-page: 13643
  year: 1998
  ident: apjab0f31bib55
  publication-title: JGR
  doi: 10.1029/98JE01047
  contributor:
    fullname: Reese
– volume: 857
  start-page: 106
  year: 2018
  ident: apjab0f31bib70
  publication-title: ApJ
  doi: 10.3847/1538-4357/aab767
  contributor:
    fullname: Valencia
– volume: 112
  start-page: E04S04
  year: 2007
  ident: apjab0f31bib57
  publication-title: JGRE
  doi: 10.1029/2006JE002782
  contributor:
    fullname: Reese
– volume: 790
  start-page: 107
  year: 2014
  ident: apjab0f31bib37
  publication-title: ApJ
  doi: 10.1088/0004-637X/790/2/107
  contributor:
    fullname: Kadoya
– volume: 497
  start-page: 607
  year: 2013
  ident: apjab0f31bib30
  publication-title: Natur
  doi: 10.1038/nature12163
  contributor:
    fullname: Hamano
– volume: 119
  start-page: 8538
  year: 2014
  ident: apjab0f31bib22
  publication-title: JGRB
  doi: 10.1002/2014JB011121
  contributor:
    fullname: Foley
– volume: 4
  start-page: 861
  year: 2011
  ident: apjab0f31bib50
  publication-title: NatGe
  doi: 10.1038/ngeo1305
  contributor:
    fullname: Mills
– volume: 61
  start-page: 965
  year: 1997
  ident: apjab0f31bib7
  publication-title: GeCoA
  doi: 10.1016/S0016-7037(96)00385-7
  contributor:
    fullname: Brady
– volume: 71
  start-page: 203
  year: 1987
  ident: apjab0f31bib54
  publication-title: Icar
  doi: 10.1016/0019-1035(87)90147-3
  contributor:
    fullname: Pollack
– volume: 121
  start-page: 1831
  year: 2016
  ident: apjab0f31bib48
  publication-title: JGRE
  doi: 10.1002/2016JE005089
  contributor:
    fullname: Lenardic
– volume: 212
  start-page: 541
  year: 2011
  ident: apjab0f31bib51
  publication-title: Icar
  doi: 10.1016/j.icarus.2010.12.028
  contributor:
    fullname: Morschhauser
SSID ssj0004299
Score 2.5345132
Snippet Coupled models of mantle thermal evolution, volcanism, outgassing, weathering, and climate evolution for Earth-like (in terms of size and composition) stagnant...
Abstract Coupled models of mantle thermal evolution, volcanism, outgassing, weathering, and climate evolution for Earth-like (in terms of size and composition)...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Publisher
StartPage 72
SubjectTerms astrobiology
Astrophysics
Atmosphere
Atmospheric models
Budgets
Carbon dioxide
Climate
Climate models
Climatic evolution
Decarbonation
Earth
Earth mantle
Extrasolar planets
Habitability
Heat exchange
Oceans
Organic chemistry
Outgassing
Planetary composition
Planetary evolution
Planets
planets and satellites: physical evolution
planets and satellites: terrestrial planets
Recovery
Temperate climates
Thermal evolution
Volcanic activity
Weathering
Title Habitability of Earth-like Stagnant Lid Planets: Climate Evolution and Recovery from Snowball States
URI https://iopscience.iop.org/article/10.3847/1538-4357/ab0f31
https://www.proquest.com/docview/2365931851
Volume 875
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5tQ0i8TDBAK2yTHwCJB7PUjp0GnqapU0HAJsFE36zzr1HokooWUP97znHGNIEQb36w4uTL2ffdne8O4EkKlmlVSa6d1Lx0XnKsKuSoR67wHrWPyQ_57r2enJdvpmq6Aa9-58K0i_7of0HDXCg4Q5j2t6Sz9LDbo6Tlq0O0RUw51LdkipaRMJ_KT9dJkaLuuW_JtaymOUb51yfc0EmbtO4fB3OnbU7uwnZPE9lRfql7sBGaHdg9WibHdXu5Zs9YN85-ieUO3D7Lo_vgJ2jJ3u_uvK5ZG9mYvuwzn8--BkbM8iJdfGFvZ56ldkVhtXzJjuczoq2BjX_0Ysiw8SzZpSTma5YSUNiHpv1pcT5nmZw-gPOT8cfjCe9bKXBXlmrFUYmo_AhJP0vhvCgwOiwsqlL4gDGoriiPK1L5PRwKF33EqANZqSM7Si3SH8JW0zZhF5isg7VOy1BYUUbr6lD7xBoqraIIJQ7g-RWYZpErZhiyNBLwJgFvEvAmAz-Ap4S26bfN8h_z9m_Mw8UXQ4aWGZpKmIWPA9i7-l_Xk4TUqk7J4cNH_7nMY7hDfKgLFg2LPdhaffse9olzrOwBbL4-PTvoJOwX4tvRRw
link.rule.ids 315,783,787,27936,27937,38877,38902,53854,53880
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELa2IRAvEwzQyjbwAyDxYJrYsdPsbRqtCowxCSb6Zp1_QVmXVLTb1P-ec5xpmkATb344xcmX8913tu-OkFfxsEzJUjBlhWKFdYJBWQIDNbCZc6BciPuQn4_V-LT4OJGTrs9pmwvTzDvT_w6HqVBwgjCub4G2tN-uUfTyZR9MFkTen7uwTu7JWNYEFfqL-H6TGMmrjv8WTIlyks4p__mUW35pHef-yzi3Hmf0iGx2VJEepBd7TNZ8vUW2DxZx87o5X9E3tB2nvYnFFrl_kkZPiBuDwZi_vfe6ok2gQ_y6n2w2PfMU2eWPePmFHk0djS2L_HKxTw9nU6Sung4vO1WkUDsaY1NU9RWNSSj0a91cGZjNaCKoT8npaPjtcMy6dgrMFoVcMpA8SDcA9NGCW8czCBYyA7LgzkPwsi3MY7NYgg9yboMLEJTHSHVgBrFN-jOyUTe13yZUVN4Yq4TPDC-CsZWvXGQOpZKB-wJ65O01mHqeqmZojDYi8DoCryPwOgHfI68Rbd0tncUdcnu35GD-S2OwpXNdco0q0CO71__rRogLJauYIJ4__89pXpIHJ-9H-ujD8acd8hDpUXt2lGe7ZGP5-8LvIQVZmhetmv0BELLUOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Habitability+of+Earth-like+Stagnant+Lid+Planets%3A+Climate+Evolution+and+Recovery+from+Snowball+States&rft.jtitle=The+Astrophysical+journal&rft.au=Foley%2C+Bradford+J&rft.date=2019-04-10&rft.pub=IOP+Publishing&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=875&rft.issue=1&rft_id=info:doi/10.3847%2F1538-4357%2Fab0f31&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon