Wood-reinforced composites by stereolithography with the stress whitening behavior
[Display omitted] •First study on wood-flour-included composite by stereolithography.•Enhanced mechanical properties of the printed composites.•Stress-whitening was first found after the uniaxial drawing. In this study, poplar wood flour at various concentrations (1–10 wt%) is incorporated into a me...
Saved in:
Published in | Materials & design Vol. 206; no. n/a; p. 109773 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.08.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•First study on wood-flour-included composite by stereolithography.•Enhanced mechanical properties of the printed composites.•Stress-whitening was first found after the uniaxial drawing.
In this study, poplar wood flour at various concentrations (1–10 wt%) is incorporated into a methacrylate-based resin via solution blending to fabricate wood-reinforced composites using stereolithography apparatus (SLA) 3D printing. Differential scanning calorimetry (DSC) along with Fourier transform infrared spectroscopy (FTIR) analysis shows the presence of a small amount of residual monomer in the printed samples. For the printed composites, the glass transition temperature (Tg) from dynamic mechanical analysis (DMA) decreases as more wood flour is incorporated, which indicates an increase in free volume occupied by polymer chains. The tensile strength is improved up to 17.3% from 21.1 MPa (no wood flour) to 24.7 MPa (1.0 wt% wood flour). The highest Young’s modulus reaches 323.8 MPa (2.0 wt% wood flour), which is 1.9-fold of that of the sample without wood flour. Moreover, the composites show “stress whitening” with the addition of wood flour during the uniaxial drawing. Morphology analysis of the tested samples show that the formation of microcraze and microvoids likely causing the stress whitening. This is the first study that demonstrates wood flour can be utilized in SLA 3D printed wood plastic composites (WPC) which can reinforce the printed products with a modest loading amount. |
---|---|
AbstractList | In this study, poplar wood flour at various concentrations (1–10 wt%) is incorporated into a methacrylate-based resin via solution blending to fabricate wood-reinforced composites using stereolithography apparatus (SLA) 3D printing. Differential scanning calorimetry (DSC) along with Fourier transform infrared spectroscopy (FTIR) analysis shows the presence of a small amount of residual monomer in the printed samples. For the printed composites, the glass transition temperature (Tg) from dynamic mechanical analysis (DMA) decreases as more wood flour is incorporated, which indicates an increase in free volume occupied by polymer chains. The tensile strength is improved up to 17.3% from 21.1 MPa (no wood flour) to 24.7 MPa (1.0 wt% wood flour). The highest Young’s modulus reaches 323.8 MPa (2.0 wt% wood flour), which is 1.9-fold of that of the sample without wood flour. Moreover, the composites show “stress whitening” with the addition of wood flour during the uniaxial drawing. Morphology analysis of the tested samples show that the formation of microcraze and microvoids likely causing the stress whitening. This is the first study that demonstrates wood flour can be utilized in SLA 3D printed wood plastic composites (WPC) which can reinforce the printed products with a modest loading amount. In this study, poplar wood flour at various concentrations (1–10 wt%) is incorporated into a methacrylate-based resin via solution blending to fabricate wood-reinforced composites using stereolithography apparatus (SLA) 3D printing. Differential scanning calorimetry (DSC) along with Fourier transform infrared spectroscopy (FTIR) analysis shows the presence of a small amount of residual monomer in the printed samples. For the printed composites, the glass transition temperature (Tg) from dynamic mechanical analysis (DMA) decreases as more wood flour is incorporated, which indicates an increase in free volume occupied by polymer chains. The tensile strength is improved up to 17.3% from 21.1 MPa (no wood flour) to 24.7 MPa (1.0 wt% wood flour). The highest Young’s modulus reaches 323.8 MPa (2.0 wt% wood flour), which is 1.9-fold of that of the sample without wood flour. Moreover, the composites show “stress whitening” with the addition of wood flour during the uniaxial drawing. Morphology analysis of the tested samples show that the formation of microcraze and microvoids likely causing the stress whitening. This is the first study that demonstrates wood flour can be utilized in SLA 3D printed wood plastic composites (WPC) which can reinforce the printed products with a modest loading amount. [Display omitted] •First study on wood-flour-included composite by stereolithography.•Enhanced mechanical properties of the printed composites.•Stress-whitening was first found after the uniaxial drawing. In this study, poplar wood flour at various concentrations (1–10 wt%) is incorporated into a methacrylate-based resin via solution blending to fabricate wood-reinforced composites using stereolithography apparatus (SLA) 3D printing. Differential scanning calorimetry (DSC) along with Fourier transform infrared spectroscopy (FTIR) analysis shows the presence of a small amount of residual monomer in the printed samples. For the printed composites, the glass transition temperature (Tg) from dynamic mechanical analysis (DMA) decreases as more wood flour is incorporated, which indicates an increase in free volume occupied by polymer chains. The tensile strength is improved up to 17.3% from 21.1 MPa (no wood flour) to 24.7 MPa (1.0 wt% wood flour). The highest Young’s modulus reaches 323.8 MPa (2.0 wt% wood flour), which is 1.9-fold of that of the sample without wood flour. Moreover, the composites show “stress whitening” with the addition of wood flour during the uniaxial drawing. Morphology analysis of the tested samples show that the formation of microcraze and microvoids likely causing the stress whitening. This is the first study that demonstrates wood flour can be utilized in SLA 3D printed wood plastic composites (WPC) which can reinforce the printed products with a modest loading amount. |
ArticleNumber | 109773 |
Author | Ragauskas, Arthur J. Li, Mi Zhang, Shuyang Meng, Xianzhi Bhagia, Samarthya |
Author_xml | – sequence: 1 givenname: Shuyang surname: Zhang fullname: Zhang, Shuyang organization: Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN 37996, USA – sequence: 2 givenname: Samarthya surname: Bhagia fullname: Bhagia, Samarthya organization: Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA – sequence: 3 givenname: Mi surname: Li fullname: Li, Mi organization: Department of Forestry, Wildlife and Fisheries, Center for Renewable Carbon, The University of Tennessee Institution of Agriculture, Knoxville, TN 37996, USA – sequence: 4 givenname: Xianzhi surname: Meng fullname: Meng, Xianzhi organization: Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN 37996, USA – sequence: 5 givenname: Arthur J. surname: Ragauskas fullname: Ragauskas, Arthur J. email: aragausk@utk.edu organization: Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN 37996, USA |
BackLink | https://www.osti.gov/servlets/purl/1797630$$D View this record in Osti.gov |
BookMark | eNqFkUtrGzEUhUVJoU7af9DFkP24eo5GWRRCSNpAoBBSuhR63PHI2JKRRIL_feVO6SKLZiXp3nM-Xemco7OYIiD0meA1wWT4sl3vTfVQ1hRT0kpKSvYOrcgoWc-JkmdohenAe0Kl-IDOS9liTKlkfIUef6Xk-wwhTik78J1L-0MqoULp7LErFTKkXahz2mRzmI_dS9t3dYbWylBK9zI3bQxx01mYzXNI-SN6P5ldgU9_1wv08-726eZ7__Dj2_3N9UPvOBe1V0CFGAbKRgtGcWOHkXjiJgLSEUKpolwZO3nllCfj6EVrCYklgJkmKyZ2ge4Xrk9mqw857E0-6mSC_lNIeaNNrsHtQFOKLfFuMJwJ3g6KscEIqqR148itaqzLhZVKDbq49iY3uxQjuKqJVHJguIn4InI5lZJh-ncpwfoUhN7qJQh9CkIvQTTb1Stbw5saUqzZhN1b5q-LGdpPPgfIp-EgtqRCPs3mU_g_4Dfaealn |
CitedBy_id | crossref_primary_10_1080_2374068X_2023_2226919 crossref_primary_10_3390_coatings13071291 crossref_primary_10_3390_polym16192827 crossref_primary_10_1088_2631_8695_ad4aec crossref_primary_10_3390_ma16144955 crossref_primary_10_1016_j_reactfunctpolym_2025_106161 crossref_primary_10_3390_polym15244728 crossref_primary_10_1007_s10570_024_05916_7 crossref_primary_10_3390_polym14091903 crossref_primary_10_1007_s10692_024_10511_4 crossref_primary_10_1016_j_indcrop_2022_115832 crossref_primary_10_3390_polym15122692 crossref_primary_10_1007_s42114_025_01273_6 crossref_primary_10_1002_adfm_202414222 crossref_primary_10_1186_s11671_023_03938_x crossref_primary_10_1016_j_indcrop_2023_117179 crossref_primary_10_1007_s10853_024_09925_6 crossref_primary_10_1016_j_compscitech_2024_110487 crossref_primary_10_1016_j_cej_2023_148449 crossref_primary_10_3390_chemengineering5040078 crossref_primary_10_1016_j_coco_2023_101506 crossref_primary_10_1002_app_56280 crossref_primary_10_5604_01_3001_0054_8755 crossref_primary_10_1039_D4MH01680G crossref_primary_10_1007_s00107_022_01877_5 crossref_primary_10_1021_acsapm_1c01816 crossref_primary_10_3390_coatings14101240 crossref_primary_10_1016_j_matdes_2022_111200 crossref_primary_10_1016_j_jmbbm_2022_105408 crossref_primary_10_1155_2022_7253136 |
Cites_doi | 10.1002/admt.201900158 10.1016/j.msea.2005.11.032 10.1063/1.1731549 10.1016/j.mtcomm.2017.12.016 10.1021/acsabm.9b00675 10.1021/acs.chemrev.7b00074 10.1002/adfm.201701807 10.1007/s00107-015-0987-9 10.1108/RPJ-06-2018-0149 10.1016/j.carbpol.2017.04.001 10.1002/mame.201600553 10.1021/acsomega.9b02455 10.1007/s00107-017-1274-8 10.1049/el.2016.2505 10.1021/acsami.9b12071 10.1021/acsami.6b16174 10.3390/ma12182896 10.1039/D0RA03620J 10.1021/ja950416q 10.1021/acs.macromol.6b00215 10.1021/acssuschemeng.9b06390 10.1016/S0032-3861(98)00089-5 10.1016/j.mimet.2018.01.004 10.1002/pc.20578 10.1021/ma300556z 10.1002/pol.1984.170220304 10.1021/acsapm.9b01143 10.1021/jp973374w 10.1016/j.matdes.2019.108349 10.1021/jp990258f 10.1080/1023666X.2019.1651547 10.1016/j.carbpol.2020.116881 10.1177/0954406219861664 10.1002/polb.24610 10.1080/15583724.2017.1380039 10.1016/j.matdes.2016.02.018 10.1007/s11632-013-0112-2 10.1021/acssuschemeng.6b00603 10.1039/C6RA07877J 10.1007/s00170-019-04085-3 10.3390/polym11111778 |
ContentType | Journal Article |
Copyright | 2021 The Authors |
Copyright_xml | – notice: 2021 The Authors |
CorporateAuthor | Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) |
CorporateAuthor_xml | – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) |
DBID | 6I. AAFTH AAYXX CITATION OIOZB OTOTI DOA |
DOI | 10.1016/j.matdes.2021.109773 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef OSTI.GOV - Hybrid OSTI.GOV DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) (Open Access) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4197 |
ExternalDocumentID | oai_doaj_org_article_220b1dc6a43542209336a5297bc884b9 1797630 10_1016_j_matdes_2021_109773 S0264127521003269 |
GroupedDBID | --K --M -~X .~1 0R~ 0SF 1B1 1~. 29M 4.4 457 4G. 5GY 5VS 6I. 7-5 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAFTH AAIAV AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BCNDV BJAXD BKOJK BLXMC EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W JJJVA KOM M41 MAGPM MO0 NCXOZ O9- OAUVE OK1 P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEW SMS SPC SSM SST SSZ T5K WUQ ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH AALMO ABPIF ABPTK OIOZB OTOTI EFKBS |
ID | FETCH-LOGICAL-c445t-9e25566238bea94ab681d1cf1e7c11229249abfd9c9d188d5cf15707eeaffb5f3 |
IEDL.DBID | AIKHN |
ISSN | 0264-1275 |
IngestDate | Wed Aug 27 01:27:16 EDT 2025 Fri May 19 01:57:45 EDT 2023 Tue Jul 01 02:24:02 EDT 2025 Thu Apr 24 23:08:48 EDT 2025 Fri Feb 23 02:38:05 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | n/a |
Keywords | Stress whitening Stereolithography Wood plastic composites 3D printing |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c445t-9e25566238bea94ab681d1cf1e7c11229249abfd9c9d188d5cf15707eeaffb5f3 |
Notes | USDOE AC05-00OR22725 |
ORCID | 0000000175231266 0000000294951880 000000023536554X |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0264127521003269 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_220b1dc6a43542209336a5297bc884b9 osti_scitechconnect_1797630 crossref_primary_10_1016_j_matdes_2021_109773 crossref_citationtrail_10_1016_j_matdes_2021_109773 elsevier_sciencedirect_doi_10_1016_j_matdes_2021_109773 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Materials & design |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Manapat, Mangadlao, Tiu, Tritchler, Advincula (b0095) 2017; 9 Guit, Tavares, Hul, Ye, Loos, Jager, Folkersma, Voet (b0085) 2020; 2 Kariz, Sernek, Kuzman (b0035) 2016; 74 Yang, Wu, Wang, Xu, Feng (b0180) 2018; 56 Meng, Sun, Kosa, Huang, Pu, Ragauskas (b0170) 2016; 4 Fowkes, Tischler, Wolfe, Lannigan, Ademu-John, Halliwell (b0190) 1984; 22 Rosenthal, Henneberger, Gutkes, Bues (b0030) 2018; 76 Ji, Zhang, Bhagia, Yoo, Ragauskas (b0210) 2020; 10 Bhagia, Ragauskas (b0140) 2020; 8 Turnbull, Cohen (b0225) 1961; 34 Kariz, Sernek, Kuzman (b0040) 2018; 63 Li, Pan, Liu, Tao, Shi (b0065) 2019; 12 Cuello, Marchand, Laurans, Grand-Perret, Lainé-Prade, Pilate, Déjardin (b0165) 2020; 11 Zhang, Li, Hao, Ragauskas (b0100) 2019; 4 Odent, Wallin, Pan, Kruemplestaedter, Shepherd, Giannelis (b0115) 2017; 27 Feng, Yang, Chmely, Wang, Wang, Xie (b0230) 2017; 169 Guessasma, Belhabib, Nouri (b0055) 2019; 11 Zhao, Tekinalp, Meng, Ker, Benson, Pu, Ragauskas, Wang, Li, Webb (b0125) 2019; 2 Nazir, Jeng (b0010) 2020; 234 Cornet, Wittner, Tofani, Tavernier (b0150) 2018; 145 Cubero, Orozco, Hobza, Luque (b0205) 1999; 103 Le Duigou, Castro, Bevan, Martin (b0070) 2016; 96 Mirzaee, Noghanian (b0060) 2016; 52 Sano, Matsuzaki, Ueda, Todoroki, Hirano (b0110) 2018; 24 Ligon, Liska, Stampfl, Gurr, Mülhaupt (b0015) 2017; 117 Yang, An, Liu, Tang, Cao, Xu, Liu (b0090) 2020; 250 Kazarian, Vincent, Bright, Liotta, Eckert (b0195) 1996; 118 Hadal, Yuan, Jog, Misra (b0245) 2006; 418 Chen, Liu, Liu, Hu, Zhang, Xue, Xiao, Liu (b0185) 2012; 45 Chan, Vandi, Pratt, Halley, Richardson, Werker, Laycock (b0005) 2018; 58 Nazir, Jeng (b0020) 2020; 186 Hobza, Špirko, Selzle, Schlag (b0200) 1998; 102 Ecker, Haider, Burzic, Huber, Eder, Hild (b0235) 2019; 25 Kim, Michler (b0240) 1998; 39 Manapat, Chen, Ye, Advincula (b0080) 2017; 302 Sutton, Rajan, Harper, Chmely (b0175) 2018 ASTM, ASTM D7028-07(2015), Standard Test Method for Glass Transition Temperature (DMA Tg) of Polymer Matrix Composites by Dynamic Mechanical Analysis (DMA), ASTM International, West Conshohocken, PA, 2015, www.astm.org. Nazir, Abate, Kumar, Jeng (b0025) 2019; 104 Bhagia, Lowden, Erdman, Rodriguez, Haga, Solano, Gallego, Pu, Muchero, Kunc, Ragauskas (b0120) 2020; 21 White, Lipson (b0220) 2016; 49 Nourbakhsh, Ashori (b0130) 2008; 29 Correa, Papadopoulou, Guberan, Jhaveri, Reichert, Menges, Tibbits (b0135) 2015; 2 Strobl (b0250) 2007 Kam, Layani, Minerbi, Orbaum, Ben Harush, Shoseyov, Magdassi (b0075) 2019; 4 Palaganas, Palaganas, Ramos, David (b0105) 2019; 11 Hu, Li, Yi, Guo, Li (b0155) 2016; 11 Wang, Ren, Che, Chang, Gou (b0160) 2013; 15 Shao, Dou, Li, Yin, Yang (b0145) 2016; 6 Ayrilmis, Kariz, Kuzman (b0045) 2019; 24 Kariz, Sernek, Obucina, Kuzman (b0050) 2018; 14 Ji (10.1016/j.matdes.2021.109773_b0210) 2020; 10 Li (10.1016/j.matdes.2021.109773_b0065) 2019; 12 Kariz (10.1016/j.matdes.2021.109773_b0050) 2018; 14 Meng (10.1016/j.matdes.2021.109773_b0170) 2016; 4 Hobza (10.1016/j.matdes.2021.109773_b0200) 1998; 102 Hu (10.1016/j.matdes.2021.109773_b0155) 2016; 11 10.1016/j.matdes.2021.109773_b0215 Fowkes (10.1016/j.matdes.2021.109773_b0190) 1984; 22 Cuello (10.1016/j.matdes.2021.109773_b0165) 2020; 11 Kim (10.1016/j.matdes.2021.109773_b0240) 1998; 39 Kariz (10.1016/j.matdes.2021.109773_b0040) 2018; 63 Kam (10.1016/j.matdes.2021.109773_b0075) 2019; 4 Sutton (10.1016/j.matdes.2021.109773_b0175) 2018 Manapat (10.1016/j.matdes.2021.109773_b0080) 2017; 302 Cornet (10.1016/j.matdes.2021.109773_b0150) 2018; 145 Manapat (10.1016/j.matdes.2021.109773_b0095) 2017; 9 Kazarian (10.1016/j.matdes.2021.109773_b0195) 1996; 118 Zhao (10.1016/j.matdes.2021.109773_b0125) 2019; 2 Nazir (10.1016/j.matdes.2021.109773_b0025) 2019; 104 Bhagia (10.1016/j.matdes.2021.109773_b0140) 2020; 8 Ligon (10.1016/j.matdes.2021.109773_b0015) 2017; 117 Bhagia (10.1016/j.matdes.2021.109773_b0120) 2020; 21 Strobl (10.1016/j.matdes.2021.109773_b0250) 2007 Odent (10.1016/j.matdes.2021.109773_b0115) 2017; 27 Zhang (10.1016/j.matdes.2021.109773_b0100) 2019; 4 Nourbakhsh (10.1016/j.matdes.2021.109773_b0130) 2008; 29 Turnbull (10.1016/j.matdes.2021.109773_b0225) 1961; 34 Shao (10.1016/j.matdes.2021.109773_b0145) 2016; 6 Chan (10.1016/j.matdes.2021.109773_b0005) 2018; 58 Hadal (10.1016/j.matdes.2021.109773_b0245) 2006; 418 Nazir (10.1016/j.matdes.2021.109773_b0010) 2020; 234 Wang (10.1016/j.matdes.2021.109773_b0160) 2013; 15 Ayrilmis (10.1016/j.matdes.2021.109773_b0045) 2019; 24 Rosenthal (10.1016/j.matdes.2021.109773_b0030) 2018; 76 Correa (10.1016/j.matdes.2021.109773_b0135) 2015; 2 Palaganas (10.1016/j.matdes.2021.109773_b0105) 2019; 11 Chen (10.1016/j.matdes.2021.109773_b0185) 2012; 45 Yang (10.1016/j.matdes.2021.109773_b0180) 2018; 56 Cubero (10.1016/j.matdes.2021.109773_b0205) 1999; 103 Ecker (10.1016/j.matdes.2021.109773_b0235) 2019; 25 Feng (10.1016/j.matdes.2021.109773_b0230) 2017; 169 Sano (10.1016/j.matdes.2021.109773_b0110) 2018; 24 Nazir (10.1016/j.matdes.2021.109773_b0020) 2020; 186 Mirzaee (10.1016/j.matdes.2021.109773_b0060) 2016; 52 Guessasma (10.1016/j.matdes.2021.109773_b0055) 2019; 11 Guit (10.1016/j.matdes.2021.109773_b0085) 2020; 2 Le Duigou (10.1016/j.matdes.2021.109773_b0070) 2016; 96 Yang (10.1016/j.matdes.2021.109773_b0090) 2020; 250 White (10.1016/j.matdes.2021.109773_b0220) 2016; 49 Kariz (10.1016/j.matdes.2021.109773_b0035) 2016; 74 |
References_xml | – volume: 234 start-page: 2741 year: 2020 end-page: 2749 ident: b0010 article-title: A high-speed additive manufacturing approach for achieving high printing speed and accuracy publication-title: Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. – volume: 76 start-page: 797 year: 2018 end-page: 799 ident: b0030 article-title: Liquid Deposition Modeling: a promising approach for 3D printing of wood publication-title: Eur. J. Wood Wood Prod. – volume: 52 start-page: 1656 year: 2016 end-page: 1658 ident: b0060 article-title: High frequency characterisation of wood-fill PLA for antenna additive manufacturing application publication-title: Electron. Lett. – volume: 39 start-page: 5689 year: 1998 end-page: 5697 ident: b0240 article-title: Micromechanical deformation processes in toughened and particle-filled semicrystalline polymers: Part 1. Characterization of deformation processes in dependence on phase morphology publication-title: Polymer – volume: 302 start-page: 1600553 year: 2017 ident: b0080 article-title: 3D printing of polymer nanocomposites via stereolithography publication-title: Macromol. Mater. Eng. – volume: 4 start-page: 4563 year: 2016 end-page: 4572 ident: b0170 article-title: Physicochemical Structural Changes of Poplar and Switchgrass during Biomass Pretreatment and Enzymatic Hydrolysis publication-title: ACS Sustain. Chem. Eng. – volume: 25 start-page: 672 year: 2019 end-page: 678 ident: b0235 article-title: Mechanical properties and water absorption behaviour of PLA and PLA/wood composites prepared by 3D printing and injection moulding publication-title: Rapid Prototyp. J. – volume: 102 start-page: 2501 year: 1998 end-page: 2504 ident: b0200 article-title: Anti-hydrogen bond in the benzene dimer and other carbon proton donor complexes publication-title: J. Phys. Chem. A – volume: 24 start-page: 521 year: 2018 end-page: 527 ident: b0110 article-title: 3D printing of discontinuous and continuous fibre composites using stereolithography publication-title: Addit. Manuf. – volume: 2 start-page: 106 year: 2015 end-page: 116 ident: b0135 article-title: 3D-Printed Wood: Programming Hygroscopic Material Transformations, 3D Print publication-title: Addit. Manuf. – volume: 24 start-page: 659 year: 2019 end-page: 666 ident: b0045 article-title: Effect of wood flour content on surface properties of 3D printed materials produced from wood flour/PLA filament publication-title: Int. J. Polym. Anal. Charact. – volume: 169 start-page: 272 year: 2017 end-page: 281 ident: b0230 article-title: Lignin-coated cellulose nanocrystal filled methacrylate composites prepared via 3D stereolithography printing: Mechanical reinforcement and thermal stabilization publication-title: Carbohydr. Polym. – volume: 29 start-page: 569 year: 2008 end-page: 573 ident: b0130 article-title: Fundamental studies on wood–plastic composites: Effects of fiber concentration and mixing temperature on the mechanical properties of poplar/PP composite publication-title: Polym. Compos. – volume: 34 start-page: 120 year: 1961 end-page: 125 ident: b0225 article-title: Free-volume model of the amorphous phase: glass transition publication-title: J. Chem. Phys. – volume: 58 start-page: 444 year: 2018 end-page: 494 ident: b0005 article-title: Composites of wood and biodegradable thermoplastics: A review publication-title: Polym. Rev. – volume: 186 year: 2020 ident: b0020 article-title: Buckling behavior of additively manufactured cellular columns: Experimental and simulation validation publication-title: Mater. Des. – volume: 9 start-page: 10085 year: 2017 end-page: 10093 ident: b0095 article-title: High-Strength Stereolithographic 3D Printed Nanocomposites: Graphene Oxide Metastability publication-title: ACS Appl. Mater. Interf. – volume: 45 start-page: 4907 year: 2012 end-page: 4919 ident: b0185 article-title: Intermolecular-interaction-dominated solvation behaviors of liquid monomers and polymers in gaseous and supercritical carbon dioxide publication-title: Macromolecules – volume: 103 start-page: 6394 year: 1999 end-page: 6401 ident: b0205 article-title: Hydrogen bond versus anti-hydrogen bond: a comparative analysis based on the electron density topology publication-title: J. Phys. Chem. A – volume: 2 start-page: 949 year: 2020 end-page: 957 ident: b0085 article-title: Photopolymer Resins with Biobased Methacrylates Based on Soybean Oil for Stereolithography publication-title: ACS Appl. Polym. Mater. – volume: 6 start-page: 38803 year: 2016 end-page: 38810 ident: b0145 article-title: Morphology evolution and the tri-continuous morphology formation of a PVDF/PS/HDPE ternary blend in melt mixing publication-title: RSC Adv. – reference: ASTM, ASTM D7028-07(2015), Standard Test Method for Glass Transition Temperature (DMA Tg) of Polymer Matrix Composites by Dynamic Mechanical Analysis (DMA), ASTM International, West Conshohocken, PA, 2015, www.astm.org. – volume: 63 start-page: 917 year: 2018 end-page: 922 ident: b0040 article-title: Effect of humidity on 3d-printed specimens from wood-pla filaments publication-title: Wood Res. – volume: 11 start-page: 46034 year: 2019 end-page: 46043 ident: b0105 article-title: 3D printing of covalent functionalized graphene oxide nanocomposite via stereolithography publication-title: ACS Appl. Mater. Interf. – volume: 49 start-page: 3987 year: 2016 end-page: 4007 ident: b0220 article-title: Polymer Free Volume and Its Connection to the Glass Transition publication-title: Macromolecules – volume: 12 start-page: 2896 year: 2019 ident: b0065 article-title: A Bio-Hygromorph Fabricated with Fish Swim Bladder Hydrogel and Wood Flour-Filled Polylactic Acid Scaffold by 3D Printing publication-title: Materials – volume: 11 year: 2020 ident: b0165 article-title: ATR-FTIR Microspectroscopy Brings a Novel Insight Into the Study of Cell Wall Chemistry at the Cellular Level publication-title: Front. Plant Sci. – volume: 11 start-page: 466 year: 2016 end-page: 481 ident: b0155 article-title: Evaluation of the dyeing properties of basswood veneer treated by dichlorotriazine reactive dye based on gray correlation analysis publication-title: BioResources – year: 2007 ident: b0250 article-title: The Physics of Polymers: Concepts for Understanding Their Structures and Behavior – volume: 8 start-page: 34 year: 2020 end-page: 37 ident: b0140 article-title: Preserving Aryl Ether Linkages and Higher Yields of Isolated Lignin through Biomass Fibrillation publication-title: ACS Sustain. Chem. Eng. – volume: 10 start-page: 21698 year: 2020 end-page: 21723 ident: b0210 article-title: 3D printing of biomass-derived composites: application and characterization approaches publication-title: RSC Adv. – volume: 250 year: 2020 ident: b0090 article-title: Cellulose, hemicellulose, lignin, and their derivatives as multi-components of bio-based feedstocks for 3D printing publication-title: Carbohydr. Polym. – volume: 117 start-page: 10212 year: 2017 end-page: 10290 ident: b0015 article-title: Polymers for 3D Printing and Customized Additive Manufacturing publication-title: Chem. Rev. – volume: 21 year: 2020 ident: b0120 article-title: Tensile properties of 3D-printed wood-filled PLA materials using poplar trees publication-title: Appl. Mater. Today – volume: 14 start-page: 135 year: 2018 end-page: 140 ident: b0050 article-title: Effect of wood content in FDM filament on properties of 3D printed parts publication-title: Mater. Today Commun. – volume: 4 start-page: 1900158 year: 2019 ident: b0075 article-title: Additive Manufacturing of 3D Structures Composed of Wood Materials publication-title: Adv. Mater. Technol. – start-page: 1 year: 2018 end-page: 24 ident: b0175 article-title: Lignin-containing photoactive resins for 3D printing by stereolithography publication-title: ChemRxiv, Polym. Sci. – volume: 4 start-page: 20197 year: 2019 end-page: 20204 ident: b0100 article-title: Stereolithography 3D Printing of Lignin-Reinforced Composites with Enhanced Mechanical Properties publication-title: ACS Omega – volume: 22 start-page: 547 year: 1984 end-page: 566 ident: b0190 article-title: Acid–base complexes of polymers publication-title: J. Polym. Sci. Polym. Chem. Ed. – volume: 56 start-page: 935 year: 2018 end-page: 946 ident: b0180 article-title: Dynamic postpolymerization of 3D-printed photopolymer nanocomposites: Effect of cellulose nanocrystal and postcure temperature publication-title: J. Polym. Sci., Part B: Polym. Phys. – volume: 15 start-page: 70 year: 2013 end-page: 75 ident: b0160 article-title: Kinetics and FTIR characteristics of the pyrolysis process of poplar wood publication-title: For. Sci. Prac. – volume: 145 start-page: 82 year: 2018 end-page: 86 ident: b0150 article-title: FTIR as an easy and fast analytical approach to follow up microbial growth during fungal pretreatment of poplar wood with Phanerochaete chrysosporium publication-title: J. Microbiol. Meth. – volume: 118 start-page: 1729 year: 1996 end-page: 1736 ident: b0195 article-title: Specific intermolecular interaction of carbon dioxide with polymers publication-title: J. Am. Chem. Soc. – volume: 104 start-page: 3489 year: 2019 end-page: 3510 ident: b0025 article-title: A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures publication-title: Int. J. Adv. Manufact. Technol. – volume: 418 start-page: 268 year: 2006 end-page: 281 ident: b0245 article-title: On stress whitening during surface deformation in clay-containing polymer nanocomposites: a microstructural approach publication-title: Mater. Sci. Eng. A – volume: 11 start-page: 1778 year: 2019 ident: b0055 article-title: Microstructure and Mechanical Performance of 3D Printed Wood-PLA/PHA Using Fused Deposition Modelling: Effect of Printing Temperature publication-title: Polymers – volume: 27 start-page: 1701807 year: 2017 ident: b0115 article-title: Highly elastic, transparent, and conductive 3D-printed ionic composite hydrogels publication-title: Adv. Funct. Mater. – volume: 74 start-page: 123 year: 2016 end-page: 126 ident: b0035 article-title: Use of wood powder and adhesive as a mixture for 3D printing publication-title: Eur. J. Wood Wood Prod. – volume: 96 start-page: 106 year: 2016 end-page: 114 ident: b0070 article-title: 3D printing of wood fibre biocomposites: From mechanical to actuation functionality publication-title: Mater. Des. – volume: 2 start-page: 4557 year: 2019 end-page: 4570 ident: b0125 article-title: Poplar as biofiber reinforcement in composites for large-scale 3D printing publication-title: ACS Appl. Bio Mater. – volume: 4 start-page: 1900158 issue: 9 year: 2019 ident: 10.1016/j.matdes.2021.109773_b0075 article-title: Additive Manufacturing of 3D Structures Composed of Wood Materials publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201900158 – volume: 418 start-page: 268 issue: 1–2 year: 2006 ident: 10.1016/j.matdes.2021.109773_b0245 article-title: On stress whitening during surface deformation in clay-containing polymer nanocomposites: a microstructural approach publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2005.11.032 – volume: 34 start-page: 120 issue: 1 year: 1961 ident: 10.1016/j.matdes.2021.109773_b0225 article-title: Free-volume model of the amorphous phase: glass transition publication-title: J. Chem. Phys. doi: 10.1063/1.1731549 – volume: 14 start-page: 135 year: 2018 ident: 10.1016/j.matdes.2021.109773_b0050 article-title: Effect of wood content in FDM filament on properties of 3D printed parts publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2017.12.016 – volume: 2 start-page: 4557 issue: 10 year: 2019 ident: 10.1016/j.matdes.2021.109773_b0125 article-title: Poplar as biofiber reinforcement in composites for large-scale 3D printing publication-title: ACS Appl. Bio Mater. doi: 10.1021/acsabm.9b00675 – volume: 117 start-page: 10212 issue: 15 year: 2017 ident: 10.1016/j.matdes.2021.109773_b0015 article-title: Polymers for 3D Printing and Customized Additive Manufacturing publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00074 – volume: 27 start-page: 1701807 issue: 33 year: 2017 ident: 10.1016/j.matdes.2021.109773_b0115 article-title: Highly elastic, transparent, and conductive 3D-printed ionic composite hydrogels publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201701807 – volume: 74 start-page: 123 issue: 1 year: 2016 ident: 10.1016/j.matdes.2021.109773_b0035 article-title: Use of wood powder and adhesive as a mixture for 3D printing publication-title: Eur. J. Wood Wood Prod. doi: 10.1007/s00107-015-0987-9 – volume: 25 start-page: 672 issue: 4 year: 2019 ident: 10.1016/j.matdes.2021.109773_b0235 article-title: Mechanical properties and water absorption behaviour of PLA and PLA/wood composites prepared by 3D printing and injection moulding publication-title: Rapid Prototyp. J. doi: 10.1108/RPJ-06-2018-0149 – volume: 169 start-page: 272 year: 2017 ident: 10.1016/j.matdes.2021.109773_b0230 article-title: Lignin-coated cellulose nanocrystal filled methacrylate composites prepared via 3D stereolithography printing: Mechanical reinforcement and thermal stabilization publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2017.04.001 – volume: 302 start-page: 1600553 issue: 9 year: 2017 ident: 10.1016/j.matdes.2021.109773_b0080 article-title: 3D printing of polymer nanocomposites via stereolithography publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201600553 – volume: 4 start-page: 20197 issue: 23 year: 2019 ident: 10.1016/j.matdes.2021.109773_b0100 article-title: Stereolithography 3D Printing of Lignin-Reinforced Composites with Enhanced Mechanical Properties publication-title: ACS Omega doi: 10.1021/acsomega.9b02455 – volume: 76 start-page: 797 issue: 2 year: 2018 ident: 10.1016/j.matdes.2021.109773_b0030 article-title: Liquid Deposition Modeling: a promising approach for 3D printing of wood publication-title: Eur. J. Wood Wood Prod. doi: 10.1007/s00107-017-1274-8 – volume: 52 start-page: 1656 issue: 20 year: 2016 ident: 10.1016/j.matdes.2021.109773_b0060 article-title: High frequency characterisation of wood-fill PLA for antenna additive manufacturing application publication-title: Electron. Lett. doi: 10.1049/el.2016.2505 – volume: 11 start-page: 46034 issue: 49 year: 2019 ident: 10.1016/j.matdes.2021.109773_b0105 article-title: 3D printing of covalent functionalized graphene oxide nanocomposite via stereolithography publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.9b12071 – volume: 11 start-page: 466 issue: 1 year: 2016 ident: 10.1016/j.matdes.2021.109773_b0155 article-title: Evaluation of the dyeing properties of basswood veneer treated by dichlorotriazine reactive dye based on gray correlation analysis publication-title: BioResources – volume: 9 start-page: 10085 issue: 11 year: 2017 ident: 10.1016/j.matdes.2021.109773_b0095 article-title: High-Strength Stereolithographic 3D Printed Nanocomposites: Graphene Oxide Metastability publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.6b16174 – start-page: 1 year: 2018 ident: 10.1016/j.matdes.2021.109773_b0175 article-title: Lignin-containing photoactive resins for 3D printing by stereolithography publication-title: ChemRxiv, Polym. Sci. – volume: 12 start-page: 2896 issue: 18 year: 2019 ident: 10.1016/j.matdes.2021.109773_b0065 article-title: A Bio-Hygromorph Fabricated with Fish Swim Bladder Hydrogel and Wood Flour-Filled Polylactic Acid Scaffold by 3D Printing publication-title: Materials doi: 10.3390/ma12182896 – volume: 10 start-page: 21698 issue: 37 year: 2020 ident: 10.1016/j.matdes.2021.109773_b0210 article-title: 3D printing of biomass-derived composites: application and characterization approaches publication-title: RSC Adv. doi: 10.1039/D0RA03620J – volume: 118 start-page: 1729 issue: 7 year: 1996 ident: 10.1016/j.matdes.2021.109773_b0195 article-title: Specific intermolecular interaction of carbon dioxide with polymers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja950416q – volume: 63 start-page: 917 issue: 5 year: 2018 ident: 10.1016/j.matdes.2021.109773_b0040 article-title: Effect of humidity on 3d-printed specimens from wood-pla filaments publication-title: Wood Res. – volume: 49 start-page: 3987 issue: 11 year: 2016 ident: 10.1016/j.matdes.2021.109773_b0220 article-title: Polymer Free Volume and Its Connection to the Glass Transition publication-title: Macromolecules doi: 10.1021/acs.macromol.6b00215 – volume: 8 start-page: 34 issue: 1 year: 2020 ident: 10.1016/j.matdes.2021.109773_b0140 article-title: Preserving Aryl Ether Linkages and Higher Yields of Isolated Lignin through Biomass Fibrillation publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b06390 – volume: 39 start-page: 5689 issue: 23 year: 1998 ident: 10.1016/j.matdes.2021.109773_b0240 article-title: Micromechanical deformation processes in toughened and particle-filled semicrystalline polymers: Part 1. Characterization of deformation processes in dependence on phase morphology publication-title: Polymer doi: 10.1016/S0032-3861(98)00089-5 – year: 2007 ident: 10.1016/j.matdes.2021.109773_b0250 – volume: 145 start-page: 82 year: 2018 ident: 10.1016/j.matdes.2021.109773_b0150 article-title: FTIR as an easy and fast analytical approach to follow up microbial growth during fungal pretreatment of poplar wood with Phanerochaete chrysosporium publication-title: J. Microbiol. Meth. doi: 10.1016/j.mimet.2018.01.004 – volume: 11 issue: 105 year: 2020 ident: 10.1016/j.matdes.2021.109773_b0165 article-title: ATR-FTIR Microspectroscopy Brings a Novel Insight Into the Study of Cell Wall Chemistry at the Cellular Level publication-title: Front. Plant Sci. – volume: 29 start-page: 569 issue: 5 year: 2008 ident: 10.1016/j.matdes.2021.109773_b0130 article-title: Fundamental studies on wood–plastic composites: Effects of fiber concentration and mixing temperature on the mechanical properties of poplar/PP composite publication-title: Polym. Compos. doi: 10.1002/pc.20578 – volume: 45 start-page: 4907 issue: 11 year: 2012 ident: 10.1016/j.matdes.2021.109773_b0185 article-title: Intermolecular-interaction-dominated solvation behaviors of liquid monomers and polymers in gaseous and supercritical carbon dioxide publication-title: Macromolecules doi: 10.1021/ma300556z – volume: 22 start-page: 547 issue: 3 year: 1984 ident: 10.1016/j.matdes.2021.109773_b0190 article-title: Acid–base complexes of polymers publication-title: J. Polym. Sci. Polym. Chem. Ed. doi: 10.1002/pol.1984.170220304 – volume: 2 start-page: 949 issue: 2 year: 2020 ident: 10.1016/j.matdes.2021.109773_b0085 article-title: Photopolymer Resins with Biobased Methacrylates Based on Soybean Oil for Stereolithography publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.9b01143 – volume: 102 start-page: 2501 issue: 15 year: 1998 ident: 10.1016/j.matdes.2021.109773_b0200 article-title: Anti-hydrogen bond in the benzene dimer and other carbon proton donor complexes publication-title: J. Phys. Chem. A doi: 10.1021/jp973374w – volume: 2 start-page: 106 issue: 3 year: 2015 ident: 10.1016/j.matdes.2021.109773_b0135 article-title: 3D-Printed Wood: Programming Hygroscopic Material Transformations, 3D Print publication-title: Addit. Manuf. – volume: 21 year: 2020 ident: 10.1016/j.matdes.2021.109773_b0120 article-title: Tensile properties of 3D-printed wood-filled PLA materials using poplar trees publication-title: Appl. Mater. Today – volume: 186 year: 2020 ident: 10.1016/j.matdes.2021.109773_b0020 article-title: Buckling behavior of additively manufactured cellular columns: Experimental and simulation validation publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.108349 – volume: 103 start-page: 6394 issue: 32 year: 1999 ident: 10.1016/j.matdes.2021.109773_b0205 article-title: Hydrogen bond versus anti-hydrogen bond: a comparative analysis based on the electron density topology publication-title: J. Phys. Chem. A doi: 10.1021/jp990258f – volume: 24 start-page: 659 issue: 7 year: 2019 ident: 10.1016/j.matdes.2021.109773_b0045 article-title: Effect of wood flour content on surface properties of 3D printed materials produced from wood flour/PLA filament publication-title: Int. J. Polym. Anal. Charact. doi: 10.1080/1023666X.2019.1651547 – volume: 250 year: 2020 ident: 10.1016/j.matdes.2021.109773_b0090 article-title: Cellulose, hemicellulose, lignin, and their derivatives as multi-components of bio-based feedstocks for 3D printing publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2020.116881 – volume: 234 start-page: 2741 issue: 14 year: 2020 ident: 10.1016/j.matdes.2021.109773_b0010 article-title: A high-speed additive manufacturing approach for achieving high printing speed and accuracy publication-title: Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. doi: 10.1177/0954406219861664 – volume: 24 start-page: 521 year: 2018 ident: 10.1016/j.matdes.2021.109773_b0110 article-title: 3D printing of discontinuous and continuous fibre composites using stereolithography publication-title: Addit. Manuf. – volume: 56 start-page: 935 issue: 12 year: 2018 ident: 10.1016/j.matdes.2021.109773_b0180 article-title: Dynamic postpolymerization of 3D-printed photopolymer nanocomposites: Effect of cellulose nanocrystal and postcure temperature publication-title: J. Polym. Sci., Part B: Polym. Phys. doi: 10.1002/polb.24610 – volume: 58 start-page: 444 issue: 3 year: 2018 ident: 10.1016/j.matdes.2021.109773_b0005 article-title: Composites of wood and biodegradable thermoplastics: A review publication-title: Polym. Rev. doi: 10.1080/15583724.2017.1380039 – volume: 96 start-page: 106 year: 2016 ident: 10.1016/j.matdes.2021.109773_b0070 article-title: 3D printing of wood fibre biocomposites: From mechanical to actuation functionality publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.02.018 – ident: 10.1016/j.matdes.2021.109773_b0215 – volume: 15 start-page: 70 issue: 1 year: 2013 ident: 10.1016/j.matdes.2021.109773_b0160 article-title: Kinetics and FTIR characteristics of the pyrolysis process of poplar wood publication-title: For. Sci. Prac. doi: 10.1007/s11632-013-0112-2 – volume: 4 start-page: 4563 issue: 9 year: 2016 ident: 10.1016/j.matdes.2021.109773_b0170 article-title: Physicochemical Structural Changes of Poplar and Switchgrass during Biomass Pretreatment and Enzymatic Hydrolysis publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b00603 – volume: 6 start-page: 38803 issue: 45 year: 2016 ident: 10.1016/j.matdes.2021.109773_b0145 article-title: Morphology evolution and the tri-continuous morphology formation of a PVDF/PS/HDPE ternary blend in melt mixing publication-title: RSC Adv. doi: 10.1039/C6RA07877J – volume: 104 start-page: 3489 issue: 9 year: 2019 ident: 10.1016/j.matdes.2021.109773_b0025 article-title: A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures publication-title: Int. J. Adv. Manufact. Technol. doi: 10.1007/s00170-019-04085-3 – volume: 11 start-page: 1778 issue: 11 year: 2019 ident: 10.1016/j.matdes.2021.109773_b0055 article-title: Microstructure and Mechanical Performance of 3D Printed Wood-PLA/PHA Using Fused Deposition Modelling: Effect of Printing Temperature publication-title: Polymers doi: 10.3390/polym11111778 |
SSID | ssj0022734 |
Score | 2.4881084 |
Snippet | [Display omitted]
•First study on wood-flour-included composite by stereolithography.•Enhanced mechanical properties of the printed... In this study, poplar wood flour at various concentrations (1–10 wt%) is incorporated into a methacrylate-based resin via solution blending to fabricate... In this study, poplar wood flour at various concentrations (1–10 wt%) is incorporated into a methacrylate-based resin via solution blending to fabricate... |
SourceID | doaj osti crossref elsevier |
SourceType | Open Website Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 109773 |
SubjectTerms | 3D printing MATERIALS SCIENCE Stereolithography Stress whitening Wood plastic composites |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1EKyANrRB5-JCMgqgoJBkRFNyvnXAQItagUIf49d3FStVMXxiR2Yp0vvs_2d5-FuKQYkFgAjNBojJTJswhYXht0GaMnjK9qXhp4eDSjsbqf6MnKUV_MCQvywMFwV2kaQ1J5U1JcV3RBE3BT6rSw4PNcQZO6RzGvm0y1Uy0WbQmrK6zKZ3WXNNcwuwgKVshS3WnSKDjabC0oNdr9a7GpN6PfbSXsDPfEbosX5XVo577YwumB2FlRETwUTy_MPZ9jo4HqsZJME2cuFn5J-JWshIDMcntt1aklr71KAn4yJIrIH95K4PUR2SXtH4nx8O75dhS1RyVEXim9iApkKTGCMjlgWagSDOHQxNcJWk-IKuVZVgl1VfiiSvK80vRI29gilnUNus6ORW86m-KJkDb2vjKZ8YRkFG-cgY91DrlSBSDGRV9kna2cb3XE-TiLD9cRxt5dsLBjC7tg4b6IlrU-g47GhvI33A3LsqyC3dwg33Ctb7hNvtEXtutE1wKKABToVW8bPj_gPudarKXrmXRE1Wj0ovE4Pv2Pxg3ENn8wkAnPRG8x_8ZzAjgLuGh8-Q8LmPWe priority: 102 providerName: Directory of Open Access Journals |
Title | Wood-reinforced composites by stereolithography with the stress whitening behavior |
URI | https://dx.doi.org/10.1016/j.matdes.2021.109773 https://www.osti.gov/servlets/purl/1797630 https://doaj.org/article/220b1dc6a43542209336a5297bc884b9 |
Volume | 206 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWgLDAgPkUpIA-sUZ3EjuOxVKACggGo6BbFzgWKUFuVIsS_5y5xKjohMcaJE-fs3D1fnp8ZO8cYEGprIYBEQSCTNA4syWtblQtwiPFlSamBu_tkMJQ3IzVaY_1mLQzRKr3vr3165a19Sddbszsbj7uPOHuQJE-OkxaBIMSss40Io6tosY3e9e3gfjnvIgWXOtVCEn1aNSvoKpoX4sICSLc7Cis5Rx2vRKhKyH8lULWm-O39ikFXO2zbg0feq9u3y9Zgsse2fkkK7rOHZyKiz6ESRMW348QZJ2IWfHD7zUkWAYjy9uqlqjklYjmiQF6vGuFf9F-BkiW8WcF_wIZXl0_9QeD3TQiclGoRGCBdMcQ1qYXcyNwmCEpDV4agHcKriKZcuS0L40wRpmmh8JTSQgPkZWlVGR-y1mQ6gSPGtXCuSOLEIayR9BfNOqFSm0ppLIAwbRY3tsqcFxWnvS3es4Y99pbVFs7Iwllt4TYLlrVmtajGH9dfUDcsryVJ7KpgOn_J_JjIokjYsHBJjgBQ4oGJ4yRXkdHWpam02FTddGK2MsLwVuM_Ht-hPqdaJKzriIGE1dCVoXMWx_--b4dt0lFNJzxhrcX8E04R4izsmR_CZ1WK4Ad7_Ppk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1JT8MwEIUtKAfggFgFlMUHrlGz2HF8hApUth5YBDcrdiZQhNqqFCH-PTOJU9ETEscmcZqMnfGz8_yFsRPsAyJlLQSQSghEmiWBJby2lXkIDjW-KGlq4Laf9h7F1bN8XmDdZi0M2Sp97q9zepWt_ZaOj2ZnPBh07nH0IAhPjoOWEEWIXmRLRKfCZr50ennd68_GXURwqadaCNGnZLOCrrJ5oS4sgLjdcVThHFUy10NVIP-5jqo1wmfvVx90sc7WvHjkp_X1bbAFGG6y1V9IwS1290RG9AlUQFS8O06ecTJmwQe335ywCECWt1ePquY0EctRBfJ61Qj_ovcKNFnCmxX82-zx4vyh2wv8dxMCJ4ScBhqIK4a6JrOQa5HbFEVp5MoIlEN5FdOQK7dloZ0uoiwrJO6SKlQAeVlaWSY7rDUcDWGXcRU6V6RJ6lDWCHqLZl0oM5sJoS1AqPdY0sTKOA8Vp29bvJvGPfZm6ggbirCpI7zHglmpcQ3V-OP4M6qG2bGExK42jCYvxrcJE8ehjQqX5igABf7QSZLmMtbKuiwTFi9VNZVo5loYnmrwx9-3qc6pFIF1HTmQsBimMkzO4f6_z3vMlnsPtzfm5rJ_3WYrtKe2Fh6w1nTyCYcod6b2yDfnH4Cz_F4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wood-reinforced+composites+by+stereolithography+with+the+stress+whitening+behavior&rft.jtitle=Materials+%26+design&rft.au=Zhang%2C+Shuyang&rft.au=Bhagia%2C+Samarthya&rft.au=Li%2C+Mi&rft.au=Meng%2C+Xianzhi&rft.date=2021-08-01&rft.pub=Elsevier&rft.issn=0264-1275&rft.eissn=1873-4197&rft.volume=206&rft.issue=n%2Fa&rft_id=info:doi/10.1016%2Fj.matdes.2021.109773&rft.externalDocID=1797630 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon |