Wood-reinforced composites by stereolithography with the stress whitening behavior

[Display omitted] •First study on wood-flour-included composite by stereolithography.•Enhanced mechanical properties of the printed composites.•Stress-whitening was first found after the uniaxial drawing. In this study, poplar wood flour at various concentrations (1–10 wt%) is incorporated into a me...

Full description

Saved in:
Bibliographic Details
Published inMaterials & design Vol. 206; no. n/a; p. 109773
Main Authors Zhang, Shuyang, Bhagia, Samarthya, Li, Mi, Meng, Xianzhi, Ragauskas, Arthur J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.08.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •First study on wood-flour-included composite by stereolithography.•Enhanced mechanical properties of the printed composites.•Stress-whitening was first found after the uniaxial drawing. In this study, poplar wood flour at various concentrations (1–10 wt%) is incorporated into a methacrylate-based resin via solution blending to fabricate wood-reinforced composites using stereolithography apparatus (SLA) 3D printing. Differential scanning calorimetry (DSC) along with Fourier transform infrared spectroscopy (FTIR) analysis shows the presence of a small amount of residual monomer in the printed samples. For the printed composites, the glass transition temperature (Tg) from dynamic mechanical analysis (DMA) decreases as more wood flour is incorporated, which indicates an increase in free volume occupied by polymer chains. The tensile strength is improved up to 17.3% from 21.1 MPa (no wood flour) to 24.7 MPa (1.0 wt% wood flour). The highest Young’s modulus reaches 323.8 MPa (2.0 wt% wood flour), which is 1.9-fold of that of the sample without wood flour. Moreover, the composites show “stress whitening” with the addition of wood flour during the uniaxial drawing. Morphology analysis of the tested samples show that the formation of microcraze and microvoids likely causing the stress whitening. This is the first study that demonstrates wood flour can be utilized in SLA 3D printed wood plastic composites (WPC) which can reinforce the printed products with a modest loading amount.
AbstractList In this study, poplar wood flour at various concentrations (1–10 wt%) is incorporated into a methacrylate-based resin via solution blending to fabricate wood-reinforced composites using stereolithography apparatus (SLA) 3D printing. Differential scanning calorimetry (DSC) along with Fourier transform infrared spectroscopy (FTIR) analysis shows the presence of a small amount of residual monomer in the printed samples. For the printed composites, the glass transition temperature (Tg) from dynamic mechanical analysis (DMA) decreases as more wood flour is incorporated, which indicates an increase in free volume occupied by polymer chains. The tensile strength is improved up to 17.3% from 21.1 MPa (no wood flour) to 24.7 MPa (1.0 wt% wood flour). The highest Young’s modulus reaches 323.8 MPa (2.0 wt% wood flour), which is 1.9-fold of that of the sample without wood flour. Moreover, the composites show “stress whitening” with the addition of wood flour during the uniaxial drawing. Morphology analysis of the tested samples show that the formation of microcraze and microvoids likely causing the stress whitening. This is the first study that demonstrates wood flour can be utilized in SLA 3D printed wood plastic composites (WPC) which can reinforce the printed products with a modest loading amount.
In this study, poplar wood flour at various concentrations (1–10 wt%) is incorporated into a methacrylate-based resin via solution blending to fabricate wood-reinforced composites using stereolithography apparatus (SLA) 3D printing. Differential scanning calorimetry (DSC) along with Fourier transform infrared spectroscopy (FTIR) analysis shows the presence of a small amount of residual monomer in the printed samples. For the printed composites, the glass transition temperature (Tg) from dynamic mechanical analysis (DMA) decreases as more wood flour is incorporated, which indicates an increase in free volume occupied by polymer chains. The tensile strength is improved up to 17.3% from 21.1 MPa (no wood flour) to 24.7 MPa (1.0 wt% wood flour). The highest Young’s modulus reaches 323.8 MPa (2.0 wt% wood flour), which is 1.9-fold of that of the sample without wood flour. Moreover, the composites show “stress whitening” with the addition of wood flour during the uniaxial drawing. Morphology analysis of the tested samples show that the formation of microcraze and microvoids likely causing the stress whitening. This is the first study that demonstrates wood flour can be utilized in SLA 3D printed wood plastic composites (WPC) which can reinforce the printed products with a modest loading amount.
[Display omitted] •First study on wood-flour-included composite by stereolithography.•Enhanced mechanical properties of the printed composites.•Stress-whitening was first found after the uniaxial drawing. In this study, poplar wood flour at various concentrations (1–10 wt%) is incorporated into a methacrylate-based resin via solution blending to fabricate wood-reinforced composites using stereolithography apparatus (SLA) 3D printing. Differential scanning calorimetry (DSC) along with Fourier transform infrared spectroscopy (FTIR) analysis shows the presence of a small amount of residual monomer in the printed samples. For the printed composites, the glass transition temperature (Tg) from dynamic mechanical analysis (DMA) decreases as more wood flour is incorporated, which indicates an increase in free volume occupied by polymer chains. The tensile strength is improved up to 17.3% from 21.1 MPa (no wood flour) to 24.7 MPa (1.0 wt% wood flour). The highest Young’s modulus reaches 323.8 MPa (2.0 wt% wood flour), which is 1.9-fold of that of the sample without wood flour. Moreover, the composites show “stress whitening” with the addition of wood flour during the uniaxial drawing. Morphology analysis of the tested samples show that the formation of microcraze and microvoids likely causing the stress whitening. This is the first study that demonstrates wood flour can be utilized in SLA 3D printed wood plastic composites (WPC) which can reinforce the printed products with a modest loading amount.
ArticleNumber 109773
Author Ragauskas, Arthur J.
Li, Mi
Zhang, Shuyang
Meng, Xianzhi
Bhagia, Samarthya
Author_xml – sequence: 1
  givenname: Shuyang
  surname: Zhang
  fullname: Zhang, Shuyang
  organization: Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN 37996, USA
– sequence: 2
  givenname: Samarthya
  surname: Bhagia
  fullname: Bhagia, Samarthya
  organization: Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
– sequence: 3
  givenname: Mi
  surname: Li
  fullname: Li, Mi
  organization: Department of Forestry, Wildlife and Fisheries, Center for Renewable Carbon, The University of Tennessee Institution of Agriculture, Knoxville, TN 37996, USA
– sequence: 4
  givenname: Xianzhi
  surname: Meng
  fullname: Meng, Xianzhi
  organization: Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN 37996, USA
– sequence: 5
  givenname: Arthur J.
  surname: Ragauskas
  fullname: Ragauskas, Arthur J.
  email: aragausk@utk.edu
  organization: Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN 37996, USA
BackLink https://www.osti.gov/servlets/purl/1797630$$D View this record in Osti.gov
BookMark eNqFkUtrGzEUhUVJoU7af9DFkP24eo5GWRRCSNpAoBBSuhR63PHI2JKRRIL_feVO6SKLZiXp3nM-Xemco7OYIiD0meA1wWT4sl3vTfVQ1hRT0kpKSvYOrcgoWc-JkmdohenAe0Kl-IDOS9liTKlkfIUef6Xk-wwhTik78J1L-0MqoULp7LErFTKkXahz2mRzmI_dS9t3dYbWylBK9zI3bQxx01mYzXNI-SN6P5ldgU9_1wv08-726eZ7__Dj2_3N9UPvOBe1V0CFGAbKRgtGcWOHkXjiJgLSEUKpolwZO3nllCfj6EVrCYklgJkmKyZ2ge4Xrk9mqw857E0-6mSC_lNIeaNNrsHtQFOKLfFuMJwJ3g6KscEIqqR148itaqzLhZVKDbq49iY3uxQjuKqJVHJguIn4InI5lZJh-ncpwfoUhN7qJQh9CkIvQTTb1Stbw5saUqzZhN1b5q-LGdpPPgfIp-EgtqRCPs3mU_g_4Dfaealn
CitedBy_id crossref_primary_10_1080_2374068X_2023_2226919
crossref_primary_10_3390_coatings13071291
crossref_primary_10_3390_polym16192827
crossref_primary_10_1088_2631_8695_ad4aec
crossref_primary_10_3390_ma16144955
crossref_primary_10_1016_j_reactfunctpolym_2025_106161
crossref_primary_10_3390_polym15244728
crossref_primary_10_1007_s10570_024_05916_7
crossref_primary_10_3390_polym14091903
crossref_primary_10_1007_s10692_024_10511_4
crossref_primary_10_1016_j_indcrop_2022_115832
crossref_primary_10_3390_polym15122692
crossref_primary_10_1007_s42114_025_01273_6
crossref_primary_10_1002_adfm_202414222
crossref_primary_10_1186_s11671_023_03938_x
crossref_primary_10_1016_j_indcrop_2023_117179
crossref_primary_10_1007_s10853_024_09925_6
crossref_primary_10_1016_j_compscitech_2024_110487
crossref_primary_10_1016_j_cej_2023_148449
crossref_primary_10_3390_chemengineering5040078
crossref_primary_10_1016_j_coco_2023_101506
crossref_primary_10_1002_app_56280
crossref_primary_10_5604_01_3001_0054_8755
crossref_primary_10_1039_D4MH01680G
crossref_primary_10_1007_s00107_022_01877_5
crossref_primary_10_1021_acsapm_1c01816
crossref_primary_10_3390_coatings14101240
crossref_primary_10_1016_j_matdes_2022_111200
crossref_primary_10_1016_j_jmbbm_2022_105408
crossref_primary_10_1155_2022_7253136
Cites_doi 10.1002/admt.201900158
10.1016/j.msea.2005.11.032
10.1063/1.1731549
10.1016/j.mtcomm.2017.12.016
10.1021/acsabm.9b00675
10.1021/acs.chemrev.7b00074
10.1002/adfm.201701807
10.1007/s00107-015-0987-9
10.1108/RPJ-06-2018-0149
10.1016/j.carbpol.2017.04.001
10.1002/mame.201600553
10.1021/acsomega.9b02455
10.1007/s00107-017-1274-8
10.1049/el.2016.2505
10.1021/acsami.9b12071
10.1021/acsami.6b16174
10.3390/ma12182896
10.1039/D0RA03620J
10.1021/ja950416q
10.1021/acs.macromol.6b00215
10.1021/acssuschemeng.9b06390
10.1016/S0032-3861(98)00089-5
10.1016/j.mimet.2018.01.004
10.1002/pc.20578
10.1021/ma300556z
10.1002/pol.1984.170220304
10.1021/acsapm.9b01143
10.1021/jp973374w
10.1016/j.matdes.2019.108349
10.1021/jp990258f
10.1080/1023666X.2019.1651547
10.1016/j.carbpol.2020.116881
10.1177/0954406219861664
10.1002/polb.24610
10.1080/15583724.2017.1380039
10.1016/j.matdes.2016.02.018
10.1007/s11632-013-0112-2
10.1021/acssuschemeng.6b00603
10.1039/C6RA07877J
10.1007/s00170-019-04085-3
10.3390/polym11111778
ContentType Journal Article
Copyright 2021 The Authors
Copyright_xml – notice: 2021 The Authors
CorporateAuthor Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
CorporateAuthor_xml – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
DBID 6I.
AAFTH
AAYXX
CITATION
OIOZB
OTOTI
DOA
DOI 10.1016/j.matdes.2021.109773
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ) (Open Access)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4197
ExternalDocumentID oai_doaj_org_article_220b1dc6a43542209336a5297bc884b9
1797630
10_1016_j_matdes_2021_109773
S0264127521003269
GroupedDBID --K
--M
-~X
.~1
0R~
0SF
1B1
1~.
29M
4.4
457
4G.
5GY
5VS
6I.
7-5
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BCNDV
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
NCXOZ
O9-
OAUVE
OK1
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEW
SMS
SPC
SSM
SST
SSZ
T5K
WUQ
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
AALMO
ABPIF
ABPTK
OIOZB
OTOTI
EFKBS
ID FETCH-LOGICAL-c445t-9e25566238bea94ab681d1cf1e7c11229249abfd9c9d188d5cf15707eeaffb5f3
IEDL.DBID AIKHN
ISSN 0264-1275
IngestDate Wed Aug 27 01:27:16 EDT 2025
Fri May 19 01:57:45 EDT 2023
Tue Jul 01 02:24:02 EDT 2025
Thu Apr 24 23:08:48 EDT 2025
Fri Feb 23 02:38:05 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue n/a
Keywords Stress whitening
Stereolithography
Wood plastic composites
3D printing
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-9e25566238bea94ab681d1cf1e7c11229249abfd9c9d188d5cf15707eeaffb5f3
Notes USDOE
AC05-00OR22725
ORCID 0000000175231266
0000000294951880
000000023536554X
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0264127521003269
ParticipantIDs doaj_primary_oai_doaj_org_article_220b1dc6a43542209336a5297bc884b9
osti_scitechconnect_1797630
crossref_primary_10_1016_j_matdes_2021_109773
crossref_citationtrail_10_1016_j_matdes_2021_109773
elsevier_sciencedirect_doi_10_1016_j_matdes_2021_109773
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Materials & design
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Manapat, Mangadlao, Tiu, Tritchler, Advincula (b0095) 2017; 9
Guit, Tavares, Hul, Ye, Loos, Jager, Folkersma, Voet (b0085) 2020; 2
Kariz, Sernek, Kuzman (b0035) 2016; 74
Yang, Wu, Wang, Xu, Feng (b0180) 2018; 56
Meng, Sun, Kosa, Huang, Pu, Ragauskas (b0170) 2016; 4
Fowkes, Tischler, Wolfe, Lannigan, Ademu-John, Halliwell (b0190) 1984; 22
Rosenthal, Henneberger, Gutkes, Bues (b0030) 2018; 76
Ji, Zhang, Bhagia, Yoo, Ragauskas (b0210) 2020; 10
Bhagia, Ragauskas (b0140) 2020; 8
Turnbull, Cohen (b0225) 1961; 34
Kariz, Sernek, Kuzman (b0040) 2018; 63
Li, Pan, Liu, Tao, Shi (b0065) 2019; 12
Cuello, Marchand, Laurans, Grand-Perret, Lainé-Prade, Pilate, Déjardin (b0165) 2020; 11
Zhang, Li, Hao, Ragauskas (b0100) 2019; 4
Odent, Wallin, Pan, Kruemplestaedter, Shepherd, Giannelis (b0115) 2017; 27
Feng, Yang, Chmely, Wang, Wang, Xie (b0230) 2017; 169
Guessasma, Belhabib, Nouri (b0055) 2019; 11
Zhao, Tekinalp, Meng, Ker, Benson, Pu, Ragauskas, Wang, Li, Webb (b0125) 2019; 2
Nazir, Jeng (b0010) 2020; 234
Cornet, Wittner, Tofani, Tavernier (b0150) 2018; 145
Cubero, Orozco, Hobza, Luque (b0205) 1999; 103
Le Duigou, Castro, Bevan, Martin (b0070) 2016; 96
Mirzaee, Noghanian (b0060) 2016; 52
Sano, Matsuzaki, Ueda, Todoroki, Hirano (b0110) 2018; 24
Ligon, Liska, Stampfl, Gurr, Mülhaupt (b0015) 2017; 117
Yang, An, Liu, Tang, Cao, Xu, Liu (b0090) 2020; 250
Kazarian, Vincent, Bright, Liotta, Eckert (b0195) 1996; 118
Hadal, Yuan, Jog, Misra (b0245) 2006; 418
Chen, Liu, Liu, Hu, Zhang, Xue, Xiao, Liu (b0185) 2012; 45
Chan, Vandi, Pratt, Halley, Richardson, Werker, Laycock (b0005) 2018; 58
Nazir, Jeng (b0020) 2020; 186
Hobza, Špirko, Selzle, Schlag (b0200) 1998; 102
Ecker, Haider, Burzic, Huber, Eder, Hild (b0235) 2019; 25
Kim, Michler (b0240) 1998; 39
Manapat, Chen, Ye, Advincula (b0080) 2017; 302
Sutton, Rajan, Harper, Chmely (b0175) 2018
ASTM, ASTM D7028-07(2015), Standard Test Method for Glass Transition Temperature (DMA Tg) of Polymer Matrix Composites by Dynamic Mechanical Analysis (DMA), ASTM International, West Conshohocken, PA, 2015, www.astm.org.
Nazir, Abate, Kumar, Jeng (b0025) 2019; 104
Bhagia, Lowden, Erdman, Rodriguez, Haga, Solano, Gallego, Pu, Muchero, Kunc, Ragauskas (b0120) 2020; 21
White, Lipson (b0220) 2016; 49
Nourbakhsh, Ashori (b0130) 2008; 29
Correa, Papadopoulou, Guberan, Jhaveri, Reichert, Menges, Tibbits (b0135) 2015; 2
Strobl (b0250) 2007
Kam, Layani, Minerbi, Orbaum, Ben Harush, Shoseyov, Magdassi (b0075) 2019; 4
Palaganas, Palaganas, Ramos, David (b0105) 2019; 11
Hu, Li, Yi, Guo, Li (b0155) 2016; 11
Wang, Ren, Che, Chang, Gou (b0160) 2013; 15
Shao, Dou, Li, Yin, Yang (b0145) 2016; 6
Ayrilmis, Kariz, Kuzman (b0045) 2019; 24
Kariz, Sernek, Obucina, Kuzman (b0050) 2018; 14
Ji (10.1016/j.matdes.2021.109773_b0210) 2020; 10
Li (10.1016/j.matdes.2021.109773_b0065) 2019; 12
Kariz (10.1016/j.matdes.2021.109773_b0050) 2018; 14
Meng (10.1016/j.matdes.2021.109773_b0170) 2016; 4
Hobza (10.1016/j.matdes.2021.109773_b0200) 1998; 102
Hu (10.1016/j.matdes.2021.109773_b0155) 2016; 11
10.1016/j.matdes.2021.109773_b0215
Fowkes (10.1016/j.matdes.2021.109773_b0190) 1984; 22
Cuello (10.1016/j.matdes.2021.109773_b0165) 2020; 11
Kim (10.1016/j.matdes.2021.109773_b0240) 1998; 39
Kariz (10.1016/j.matdes.2021.109773_b0040) 2018; 63
Kam (10.1016/j.matdes.2021.109773_b0075) 2019; 4
Sutton (10.1016/j.matdes.2021.109773_b0175) 2018
Manapat (10.1016/j.matdes.2021.109773_b0080) 2017; 302
Cornet (10.1016/j.matdes.2021.109773_b0150) 2018; 145
Manapat (10.1016/j.matdes.2021.109773_b0095) 2017; 9
Kazarian (10.1016/j.matdes.2021.109773_b0195) 1996; 118
Zhao (10.1016/j.matdes.2021.109773_b0125) 2019; 2
Nazir (10.1016/j.matdes.2021.109773_b0025) 2019; 104
Bhagia (10.1016/j.matdes.2021.109773_b0140) 2020; 8
Ligon (10.1016/j.matdes.2021.109773_b0015) 2017; 117
Bhagia (10.1016/j.matdes.2021.109773_b0120) 2020; 21
Strobl (10.1016/j.matdes.2021.109773_b0250) 2007
Odent (10.1016/j.matdes.2021.109773_b0115) 2017; 27
Zhang (10.1016/j.matdes.2021.109773_b0100) 2019; 4
Nourbakhsh (10.1016/j.matdes.2021.109773_b0130) 2008; 29
Turnbull (10.1016/j.matdes.2021.109773_b0225) 1961; 34
Shao (10.1016/j.matdes.2021.109773_b0145) 2016; 6
Chan (10.1016/j.matdes.2021.109773_b0005) 2018; 58
Hadal (10.1016/j.matdes.2021.109773_b0245) 2006; 418
Nazir (10.1016/j.matdes.2021.109773_b0010) 2020; 234
Wang (10.1016/j.matdes.2021.109773_b0160) 2013; 15
Ayrilmis (10.1016/j.matdes.2021.109773_b0045) 2019; 24
Rosenthal (10.1016/j.matdes.2021.109773_b0030) 2018; 76
Correa (10.1016/j.matdes.2021.109773_b0135) 2015; 2
Palaganas (10.1016/j.matdes.2021.109773_b0105) 2019; 11
Chen (10.1016/j.matdes.2021.109773_b0185) 2012; 45
Yang (10.1016/j.matdes.2021.109773_b0180) 2018; 56
Cubero (10.1016/j.matdes.2021.109773_b0205) 1999; 103
Ecker (10.1016/j.matdes.2021.109773_b0235) 2019; 25
Feng (10.1016/j.matdes.2021.109773_b0230) 2017; 169
Sano (10.1016/j.matdes.2021.109773_b0110) 2018; 24
Nazir (10.1016/j.matdes.2021.109773_b0020) 2020; 186
Mirzaee (10.1016/j.matdes.2021.109773_b0060) 2016; 52
Guessasma (10.1016/j.matdes.2021.109773_b0055) 2019; 11
Guit (10.1016/j.matdes.2021.109773_b0085) 2020; 2
Le Duigou (10.1016/j.matdes.2021.109773_b0070) 2016; 96
Yang (10.1016/j.matdes.2021.109773_b0090) 2020; 250
White (10.1016/j.matdes.2021.109773_b0220) 2016; 49
Kariz (10.1016/j.matdes.2021.109773_b0035) 2016; 74
References_xml – volume: 234
  start-page: 2741
  year: 2020
  end-page: 2749
  ident: b0010
  article-title: A high-speed additive manufacturing approach for achieving high printing speed and accuracy
  publication-title: Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
– volume: 76
  start-page: 797
  year: 2018
  end-page: 799
  ident: b0030
  article-title: Liquid Deposition Modeling: a promising approach for 3D printing of wood
  publication-title: Eur. J. Wood Wood Prod.
– volume: 52
  start-page: 1656
  year: 2016
  end-page: 1658
  ident: b0060
  article-title: High frequency characterisation of wood-fill PLA for antenna additive manufacturing application
  publication-title: Electron. Lett.
– volume: 39
  start-page: 5689
  year: 1998
  end-page: 5697
  ident: b0240
  article-title: Micromechanical deformation processes in toughened and particle-filled semicrystalline polymers: Part 1. Characterization of deformation processes in dependence on phase morphology
  publication-title: Polymer
– volume: 302
  start-page: 1600553
  year: 2017
  ident: b0080
  article-title: 3D printing of polymer nanocomposites via stereolithography
  publication-title: Macromol. Mater. Eng.
– volume: 4
  start-page: 4563
  year: 2016
  end-page: 4572
  ident: b0170
  article-title: Physicochemical Structural Changes of Poplar and Switchgrass during Biomass Pretreatment and Enzymatic Hydrolysis
  publication-title: ACS Sustain. Chem. Eng.
– volume: 25
  start-page: 672
  year: 2019
  end-page: 678
  ident: b0235
  article-title: Mechanical properties and water absorption behaviour of PLA and PLA/wood composites prepared by 3D printing and injection moulding
  publication-title: Rapid Prototyp. J.
– volume: 102
  start-page: 2501
  year: 1998
  end-page: 2504
  ident: b0200
  article-title: Anti-hydrogen bond in the benzene dimer and other carbon proton donor complexes
  publication-title: J. Phys. Chem. A
– volume: 24
  start-page: 521
  year: 2018
  end-page: 527
  ident: b0110
  article-title: 3D printing of discontinuous and continuous fibre composites using stereolithography
  publication-title: Addit. Manuf.
– volume: 2
  start-page: 106
  year: 2015
  end-page: 116
  ident: b0135
  article-title: 3D-Printed Wood: Programming Hygroscopic Material Transformations, 3D Print
  publication-title: Addit. Manuf.
– volume: 24
  start-page: 659
  year: 2019
  end-page: 666
  ident: b0045
  article-title: Effect of wood flour content on surface properties of 3D printed materials produced from wood flour/PLA filament
  publication-title: Int. J. Polym. Anal. Charact.
– volume: 169
  start-page: 272
  year: 2017
  end-page: 281
  ident: b0230
  article-title: Lignin-coated cellulose nanocrystal filled methacrylate composites prepared via 3D stereolithography printing: Mechanical reinforcement and thermal stabilization
  publication-title: Carbohydr. Polym.
– volume: 29
  start-page: 569
  year: 2008
  end-page: 573
  ident: b0130
  article-title: Fundamental studies on wood–plastic composites: Effects of fiber concentration and mixing temperature on the mechanical properties of poplar/PP composite
  publication-title: Polym. Compos.
– volume: 34
  start-page: 120
  year: 1961
  end-page: 125
  ident: b0225
  article-title: Free-volume model of the amorphous phase: glass transition
  publication-title: J. Chem. Phys.
– volume: 58
  start-page: 444
  year: 2018
  end-page: 494
  ident: b0005
  article-title: Composites of wood and biodegradable thermoplastics: A review
  publication-title: Polym. Rev.
– volume: 186
  year: 2020
  ident: b0020
  article-title: Buckling behavior of additively manufactured cellular columns: Experimental and simulation validation
  publication-title: Mater. Des.
– volume: 9
  start-page: 10085
  year: 2017
  end-page: 10093
  ident: b0095
  article-title: High-Strength Stereolithographic 3D Printed Nanocomposites: Graphene Oxide Metastability
  publication-title: ACS Appl. Mater. Interf.
– volume: 45
  start-page: 4907
  year: 2012
  end-page: 4919
  ident: b0185
  article-title: Intermolecular-interaction-dominated solvation behaviors of liquid monomers and polymers in gaseous and supercritical carbon dioxide
  publication-title: Macromolecules
– volume: 103
  start-page: 6394
  year: 1999
  end-page: 6401
  ident: b0205
  article-title: Hydrogen bond versus anti-hydrogen bond: a comparative analysis based on the electron density topology
  publication-title: J. Phys. Chem. A
– volume: 2
  start-page: 949
  year: 2020
  end-page: 957
  ident: b0085
  article-title: Photopolymer Resins with Biobased Methacrylates Based on Soybean Oil for Stereolithography
  publication-title: ACS Appl. Polym. Mater.
– volume: 6
  start-page: 38803
  year: 2016
  end-page: 38810
  ident: b0145
  article-title: Morphology evolution and the tri-continuous morphology formation of a PVDF/PS/HDPE ternary blend in melt mixing
  publication-title: RSC Adv.
– reference: ASTM, ASTM D7028-07(2015), Standard Test Method for Glass Transition Temperature (DMA Tg) of Polymer Matrix Composites by Dynamic Mechanical Analysis (DMA), ASTM International, West Conshohocken, PA, 2015, www.astm.org.
– volume: 63
  start-page: 917
  year: 2018
  end-page: 922
  ident: b0040
  article-title: Effect of humidity on 3d-printed specimens from wood-pla filaments
  publication-title: Wood Res.
– volume: 11
  start-page: 46034
  year: 2019
  end-page: 46043
  ident: b0105
  article-title: 3D printing of covalent functionalized graphene oxide nanocomposite via stereolithography
  publication-title: ACS Appl. Mater. Interf.
– volume: 49
  start-page: 3987
  year: 2016
  end-page: 4007
  ident: b0220
  article-title: Polymer Free Volume and Its Connection to the Glass Transition
  publication-title: Macromolecules
– volume: 12
  start-page: 2896
  year: 2019
  ident: b0065
  article-title: A Bio-Hygromorph Fabricated with Fish Swim Bladder Hydrogel and Wood Flour-Filled Polylactic Acid Scaffold by 3D Printing
  publication-title: Materials
– volume: 11
  year: 2020
  ident: b0165
  article-title: ATR-FTIR Microspectroscopy Brings a Novel Insight Into the Study of Cell Wall Chemistry at the Cellular Level
  publication-title: Front. Plant Sci.
– volume: 11
  start-page: 466
  year: 2016
  end-page: 481
  ident: b0155
  article-title: Evaluation of the dyeing properties of basswood veneer treated by dichlorotriazine reactive dye based on gray correlation analysis
  publication-title: BioResources
– year: 2007
  ident: b0250
  article-title: The Physics of Polymers: Concepts for Understanding Their Structures and Behavior
– volume: 8
  start-page: 34
  year: 2020
  end-page: 37
  ident: b0140
  article-title: Preserving Aryl Ether Linkages and Higher Yields of Isolated Lignin through Biomass Fibrillation
  publication-title: ACS Sustain. Chem. Eng.
– volume: 10
  start-page: 21698
  year: 2020
  end-page: 21723
  ident: b0210
  article-title: 3D printing of biomass-derived composites: application and characterization approaches
  publication-title: RSC Adv.
– volume: 250
  year: 2020
  ident: b0090
  article-title: Cellulose, hemicellulose, lignin, and their derivatives as multi-components of bio-based feedstocks for 3D printing
  publication-title: Carbohydr. Polym.
– volume: 117
  start-page: 10212
  year: 2017
  end-page: 10290
  ident: b0015
  article-title: Polymers for 3D Printing and Customized Additive Manufacturing
  publication-title: Chem. Rev.
– volume: 21
  year: 2020
  ident: b0120
  article-title: Tensile properties of 3D-printed wood-filled PLA materials using poplar trees
  publication-title: Appl. Mater. Today
– volume: 14
  start-page: 135
  year: 2018
  end-page: 140
  ident: b0050
  article-title: Effect of wood content in FDM filament on properties of 3D printed parts
  publication-title: Mater. Today Commun.
– volume: 4
  start-page: 1900158
  year: 2019
  ident: b0075
  article-title: Additive Manufacturing of 3D Structures Composed of Wood Materials
  publication-title: Adv. Mater. Technol.
– start-page: 1
  year: 2018
  end-page: 24
  ident: b0175
  article-title: Lignin-containing photoactive resins for 3D printing by stereolithography
  publication-title: ChemRxiv, Polym. Sci.
– volume: 4
  start-page: 20197
  year: 2019
  end-page: 20204
  ident: b0100
  article-title: Stereolithography 3D Printing of Lignin-Reinforced Composites with Enhanced Mechanical Properties
  publication-title: ACS Omega
– volume: 22
  start-page: 547
  year: 1984
  end-page: 566
  ident: b0190
  article-title: Acid–base complexes of polymers
  publication-title: J. Polym. Sci. Polym. Chem. Ed.
– volume: 56
  start-page: 935
  year: 2018
  end-page: 946
  ident: b0180
  article-title: Dynamic postpolymerization of 3D-printed photopolymer nanocomposites: Effect of cellulose nanocrystal and postcure temperature
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
– volume: 15
  start-page: 70
  year: 2013
  end-page: 75
  ident: b0160
  article-title: Kinetics and FTIR characteristics of the pyrolysis process of poplar wood
  publication-title: For. Sci. Prac.
– volume: 145
  start-page: 82
  year: 2018
  end-page: 86
  ident: b0150
  article-title: FTIR as an easy and fast analytical approach to follow up microbial growth during fungal pretreatment of poplar wood with Phanerochaete chrysosporium
  publication-title: J. Microbiol. Meth.
– volume: 118
  start-page: 1729
  year: 1996
  end-page: 1736
  ident: b0195
  article-title: Specific intermolecular interaction of carbon dioxide with polymers
  publication-title: J. Am. Chem. Soc.
– volume: 104
  start-page: 3489
  year: 2019
  end-page: 3510
  ident: b0025
  article-title: A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures
  publication-title: Int. J. Adv. Manufact. Technol.
– volume: 418
  start-page: 268
  year: 2006
  end-page: 281
  ident: b0245
  article-title: On stress whitening during surface deformation in clay-containing polymer nanocomposites: a microstructural approach
  publication-title: Mater. Sci. Eng. A
– volume: 11
  start-page: 1778
  year: 2019
  ident: b0055
  article-title: Microstructure and Mechanical Performance of 3D Printed Wood-PLA/PHA Using Fused Deposition Modelling: Effect of Printing Temperature
  publication-title: Polymers
– volume: 27
  start-page: 1701807
  year: 2017
  ident: b0115
  article-title: Highly elastic, transparent, and conductive 3D-printed ionic composite hydrogels
  publication-title: Adv. Funct. Mater.
– volume: 74
  start-page: 123
  year: 2016
  end-page: 126
  ident: b0035
  article-title: Use of wood powder and adhesive as a mixture for 3D printing
  publication-title: Eur. J. Wood Wood Prod.
– volume: 96
  start-page: 106
  year: 2016
  end-page: 114
  ident: b0070
  article-title: 3D printing of wood fibre biocomposites: From mechanical to actuation functionality
  publication-title: Mater. Des.
– volume: 2
  start-page: 4557
  year: 2019
  end-page: 4570
  ident: b0125
  article-title: Poplar as biofiber reinforcement in composites for large-scale 3D printing
  publication-title: ACS Appl. Bio Mater.
– volume: 4
  start-page: 1900158
  issue: 9
  year: 2019
  ident: 10.1016/j.matdes.2021.109773_b0075
  article-title: Additive Manufacturing of 3D Structures Composed of Wood Materials
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201900158
– volume: 418
  start-page: 268
  issue: 1–2
  year: 2006
  ident: 10.1016/j.matdes.2021.109773_b0245
  article-title: On stress whitening during surface deformation in clay-containing polymer nanocomposites: a microstructural approach
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2005.11.032
– volume: 34
  start-page: 120
  issue: 1
  year: 1961
  ident: 10.1016/j.matdes.2021.109773_b0225
  article-title: Free-volume model of the amorphous phase: glass transition
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1731549
– volume: 14
  start-page: 135
  year: 2018
  ident: 10.1016/j.matdes.2021.109773_b0050
  article-title: Effect of wood content in FDM filament on properties of 3D printed parts
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2017.12.016
– volume: 2
  start-page: 4557
  issue: 10
  year: 2019
  ident: 10.1016/j.matdes.2021.109773_b0125
  article-title: Poplar as biofiber reinforcement in composites for large-scale 3D printing
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.9b00675
– volume: 117
  start-page: 10212
  issue: 15
  year: 2017
  ident: 10.1016/j.matdes.2021.109773_b0015
  article-title: Polymers for 3D Printing and Customized Additive Manufacturing
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00074
– volume: 27
  start-page: 1701807
  issue: 33
  year: 2017
  ident: 10.1016/j.matdes.2021.109773_b0115
  article-title: Highly elastic, transparent, and conductive 3D-printed ionic composite hydrogels
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201701807
– volume: 74
  start-page: 123
  issue: 1
  year: 2016
  ident: 10.1016/j.matdes.2021.109773_b0035
  article-title: Use of wood powder and adhesive as a mixture for 3D printing
  publication-title: Eur. J. Wood Wood Prod.
  doi: 10.1007/s00107-015-0987-9
– volume: 25
  start-page: 672
  issue: 4
  year: 2019
  ident: 10.1016/j.matdes.2021.109773_b0235
  article-title: Mechanical properties and water absorption behaviour of PLA and PLA/wood composites prepared by 3D printing and injection moulding
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/RPJ-06-2018-0149
– volume: 169
  start-page: 272
  year: 2017
  ident: 10.1016/j.matdes.2021.109773_b0230
  article-title: Lignin-coated cellulose nanocrystal filled methacrylate composites prepared via 3D stereolithography printing: Mechanical reinforcement and thermal stabilization
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2017.04.001
– volume: 302
  start-page: 1600553
  issue: 9
  year: 2017
  ident: 10.1016/j.matdes.2021.109773_b0080
  article-title: 3D printing of polymer nanocomposites via stereolithography
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201600553
– volume: 4
  start-page: 20197
  issue: 23
  year: 2019
  ident: 10.1016/j.matdes.2021.109773_b0100
  article-title: Stereolithography 3D Printing of Lignin-Reinforced Composites with Enhanced Mechanical Properties
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b02455
– volume: 76
  start-page: 797
  issue: 2
  year: 2018
  ident: 10.1016/j.matdes.2021.109773_b0030
  article-title: Liquid Deposition Modeling: a promising approach for 3D printing of wood
  publication-title: Eur. J. Wood Wood Prod.
  doi: 10.1007/s00107-017-1274-8
– volume: 52
  start-page: 1656
  issue: 20
  year: 2016
  ident: 10.1016/j.matdes.2021.109773_b0060
  article-title: High frequency characterisation of wood-fill PLA for antenna additive manufacturing application
  publication-title: Electron. Lett.
  doi: 10.1049/el.2016.2505
– volume: 11
  start-page: 46034
  issue: 49
  year: 2019
  ident: 10.1016/j.matdes.2021.109773_b0105
  article-title: 3D printing of covalent functionalized graphene oxide nanocomposite via stereolithography
  publication-title: ACS Appl. Mater. Interf.
  doi: 10.1021/acsami.9b12071
– volume: 11
  start-page: 466
  issue: 1
  year: 2016
  ident: 10.1016/j.matdes.2021.109773_b0155
  article-title: Evaluation of the dyeing properties of basswood veneer treated by dichlorotriazine reactive dye based on gray correlation analysis
  publication-title: BioResources
– volume: 9
  start-page: 10085
  issue: 11
  year: 2017
  ident: 10.1016/j.matdes.2021.109773_b0095
  article-title: High-Strength Stereolithographic 3D Printed Nanocomposites: Graphene Oxide Metastability
  publication-title: ACS Appl. Mater. Interf.
  doi: 10.1021/acsami.6b16174
– start-page: 1
  year: 2018
  ident: 10.1016/j.matdes.2021.109773_b0175
  article-title: Lignin-containing photoactive resins for 3D printing by stereolithography
  publication-title: ChemRxiv, Polym. Sci.
– volume: 12
  start-page: 2896
  issue: 18
  year: 2019
  ident: 10.1016/j.matdes.2021.109773_b0065
  article-title: A Bio-Hygromorph Fabricated with Fish Swim Bladder Hydrogel and Wood Flour-Filled Polylactic Acid Scaffold by 3D Printing
  publication-title: Materials
  doi: 10.3390/ma12182896
– volume: 10
  start-page: 21698
  issue: 37
  year: 2020
  ident: 10.1016/j.matdes.2021.109773_b0210
  article-title: 3D printing of biomass-derived composites: application and characterization approaches
  publication-title: RSC Adv.
  doi: 10.1039/D0RA03620J
– volume: 118
  start-page: 1729
  issue: 7
  year: 1996
  ident: 10.1016/j.matdes.2021.109773_b0195
  article-title: Specific intermolecular interaction of carbon dioxide with polymers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja950416q
– volume: 63
  start-page: 917
  issue: 5
  year: 2018
  ident: 10.1016/j.matdes.2021.109773_b0040
  article-title: Effect of humidity on 3d-printed specimens from wood-pla filaments
  publication-title: Wood Res.
– volume: 49
  start-page: 3987
  issue: 11
  year: 2016
  ident: 10.1016/j.matdes.2021.109773_b0220
  article-title: Polymer Free Volume and Its Connection to the Glass Transition
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.6b00215
– volume: 8
  start-page: 34
  issue: 1
  year: 2020
  ident: 10.1016/j.matdes.2021.109773_b0140
  article-title: Preserving Aryl Ether Linkages and Higher Yields of Isolated Lignin through Biomass Fibrillation
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b06390
– volume: 39
  start-page: 5689
  issue: 23
  year: 1998
  ident: 10.1016/j.matdes.2021.109773_b0240
  article-title: Micromechanical deformation processes in toughened and particle-filled semicrystalline polymers: Part 1. Characterization of deformation processes in dependence on phase morphology
  publication-title: Polymer
  doi: 10.1016/S0032-3861(98)00089-5
– year: 2007
  ident: 10.1016/j.matdes.2021.109773_b0250
– volume: 145
  start-page: 82
  year: 2018
  ident: 10.1016/j.matdes.2021.109773_b0150
  article-title: FTIR as an easy and fast analytical approach to follow up microbial growth during fungal pretreatment of poplar wood with Phanerochaete chrysosporium
  publication-title: J. Microbiol. Meth.
  doi: 10.1016/j.mimet.2018.01.004
– volume: 11
  issue: 105
  year: 2020
  ident: 10.1016/j.matdes.2021.109773_b0165
  article-title: ATR-FTIR Microspectroscopy Brings a Novel Insight Into the Study of Cell Wall Chemistry at the Cellular Level
  publication-title: Front. Plant Sci.
– volume: 29
  start-page: 569
  issue: 5
  year: 2008
  ident: 10.1016/j.matdes.2021.109773_b0130
  article-title: Fundamental studies on wood–plastic composites: Effects of fiber concentration and mixing temperature on the mechanical properties of poplar/PP composite
  publication-title: Polym. Compos.
  doi: 10.1002/pc.20578
– volume: 45
  start-page: 4907
  issue: 11
  year: 2012
  ident: 10.1016/j.matdes.2021.109773_b0185
  article-title: Intermolecular-interaction-dominated solvation behaviors of liquid monomers and polymers in gaseous and supercritical carbon dioxide
  publication-title: Macromolecules
  doi: 10.1021/ma300556z
– volume: 22
  start-page: 547
  issue: 3
  year: 1984
  ident: 10.1016/j.matdes.2021.109773_b0190
  article-title: Acid–base complexes of polymers
  publication-title: J. Polym. Sci. Polym. Chem. Ed.
  doi: 10.1002/pol.1984.170220304
– volume: 2
  start-page: 949
  issue: 2
  year: 2020
  ident: 10.1016/j.matdes.2021.109773_b0085
  article-title: Photopolymer Resins with Biobased Methacrylates Based on Soybean Oil for Stereolithography
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.9b01143
– volume: 102
  start-page: 2501
  issue: 15
  year: 1998
  ident: 10.1016/j.matdes.2021.109773_b0200
  article-title: Anti-hydrogen bond in the benzene dimer and other carbon proton donor complexes
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp973374w
– volume: 2
  start-page: 106
  issue: 3
  year: 2015
  ident: 10.1016/j.matdes.2021.109773_b0135
  article-title: 3D-Printed Wood: Programming Hygroscopic Material Transformations, 3D Print
  publication-title: Addit. Manuf.
– volume: 21
  year: 2020
  ident: 10.1016/j.matdes.2021.109773_b0120
  article-title: Tensile properties of 3D-printed wood-filled PLA materials using poplar trees
  publication-title: Appl. Mater. Today
– volume: 186
  year: 2020
  ident: 10.1016/j.matdes.2021.109773_b0020
  article-title: Buckling behavior of additively manufactured cellular columns: Experimental and simulation validation
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.108349
– volume: 103
  start-page: 6394
  issue: 32
  year: 1999
  ident: 10.1016/j.matdes.2021.109773_b0205
  article-title: Hydrogen bond versus anti-hydrogen bond: a comparative analysis based on the electron density topology
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp990258f
– volume: 24
  start-page: 659
  issue: 7
  year: 2019
  ident: 10.1016/j.matdes.2021.109773_b0045
  article-title: Effect of wood flour content on surface properties of 3D printed materials produced from wood flour/PLA filament
  publication-title: Int. J. Polym. Anal. Charact.
  doi: 10.1080/1023666X.2019.1651547
– volume: 250
  year: 2020
  ident: 10.1016/j.matdes.2021.109773_b0090
  article-title: Cellulose, hemicellulose, lignin, and their derivatives as multi-components of bio-based feedstocks for 3D printing
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2020.116881
– volume: 234
  start-page: 2741
  issue: 14
  year: 2020
  ident: 10.1016/j.matdes.2021.109773_b0010
  article-title: A high-speed additive manufacturing approach for achieving high printing speed and accuracy
  publication-title: Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
  doi: 10.1177/0954406219861664
– volume: 24
  start-page: 521
  year: 2018
  ident: 10.1016/j.matdes.2021.109773_b0110
  article-title: 3D printing of discontinuous and continuous fibre composites using stereolithography
  publication-title: Addit. Manuf.
– volume: 56
  start-page: 935
  issue: 12
  year: 2018
  ident: 10.1016/j.matdes.2021.109773_b0180
  article-title: Dynamic postpolymerization of 3D-printed photopolymer nanocomposites: Effect of cellulose nanocrystal and postcure temperature
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
  doi: 10.1002/polb.24610
– volume: 58
  start-page: 444
  issue: 3
  year: 2018
  ident: 10.1016/j.matdes.2021.109773_b0005
  article-title: Composites of wood and biodegradable thermoplastics: A review
  publication-title: Polym. Rev.
  doi: 10.1080/15583724.2017.1380039
– volume: 96
  start-page: 106
  year: 2016
  ident: 10.1016/j.matdes.2021.109773_b0070
  article-title: 3D printing of wood fibre biocomposites: From mechanical to actuation functionality
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.02.018
– ident: 10.1016/j.matdes.2021.109773_b0215
– volume: 15
  start-page: 70
  issue: 1
  year: 2013
  ident: 10.1016/j.matdes.2021.109773_b0160
  article-title: Kinetics and FTIR characteristics of the pyrolysis process of poplar wood
  publication-title: For. Sci. Prac.
  doi: 10.1007/s11632-013-0112-2
– volume: 4
  start-page: 4563
  issue: 9
  year: 2016
  ident: 10.1016/j.matdes.2021.109773_b0170
  article-title: Physicochemical Structural Changes of Poplar and Switchgrass during Biomass Pretreatment and Enzymatic Hydrolysis
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.6b00603
– volume: 6
  start-page: 38803
  issue: 45
  year: 2016
  ident: 10.1016/j.matdes.2021.109773_b0145
  article-title: Morphology evolution and the tri-continuous morphology formation of a PVDF/PS/HDPE ternary blend in melt mixing
  publication-title: RSC Adv.
  doi: 10.1039/C6RA07877J
– volume: 104
  start-page: 3489
  issue: 9
  year: 2019
  ident: 10.1016/j.matdes.2021.109773_b0025
  article-title: A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures
  publication-title: Int. J. Adv. Manufact. Technol.
  doi: 10.1007/s00170-019-04085-3
– volume: 11
  start-page: 1778
  issue: 11
  year: 2019
  ident: 10.1016/j.matdes.2021.109773_b0055
  article-title: Microstructure and Mechanical Performance of 3D Printed Wood-PLA/PHA Using Fused Deposition Modelling: Effect of Printing Temperature
  publication-title: Polymers
  doi: 10.3390/polym11111778
SSID ssj0022734
Score 2.4881084
Snippet [Display omitted] •First study on wood-flour-included composite by stereolithography.•Enhanced mechanical properties of the printed...
In this study, poplar wood flour at various concentrations (1–10 wt%) is incorporated into a methacrylate-based resin via solution blending to fabricate...
In this study, poplar wood flour at various concentrations (1–10 wt%) is incorporated into a methacrylate-based resin via solution blending to fabricate...
SourceID doaj
osti
crossref
elsevier
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 109773
SubjectTerms 3D printing
MATERIALS SCIENCE
Stereolithography
Stress whitening
Wood plastic composites
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1EKyANrRB5-JCMgqgoJBkRFNyvnXAQItagUIf49d3FStVMXxiR2Yp0vvs_2d5-FuKQYkFgAjNBojJTJswhYXht0GaMnjK9qXhp4eDSjsbqf6MnKUV_MCQvywMFwV2kaQ1J5U1JcV3RBE3BT6rSw4PNcQZO6RzGvm0y1Uy0WbQmrK6zKZ3WXNNcwuwgKVshS3WnSKDjabC0oNdr9a7GpN6PfbSXsDPfEbosX5XVo577YwumB2FlRETwUTy_MPZ9jo4HqsZJME2cuFn5J-JWshIDMcntt1aklr71KAn4yJIrIH95K4PUR2SXtH4nx8O75dhS1RyVEXim9iApkKTGCMjlgWagSDOHQxNcJWk-IKuVZVgl1VfiiSvK80vRI29gilnUNus6ORW86m-KJkDb2vjKZ8YRkFG-cgY91DrlSBSDGRV9kna2cb3XE-TiLD9cRxt5dsLBjC7tg4b6IlrU-g47GhvI33A3LsqyC3dwg33Ctb7hNvtEXtutE1wKKABToVW8bPj_gPudarKXrmXRE1Wj0ovE4Pv2Pxg3ENn8wkAnPRG8x_8ZzAjgLuGh8-Q8LmPWe
  priority: 102
  providerName: Directory of Open Access Journals
Title Wood-reinforced composites by stereolithography with the stress whitening behavior
URI https://dx.doi.org/10.1016/j.matdes.2021.109773
https://www.osti.gov/servlets/purl/1797630
https://doaj.org/article/220b1dc6a43542209336a5297bc884b9
Volume 206
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWgLDAgPkUpIA-sUZ3EjuOxVKACggGo6BbFzgWKUFuVIsS_5y5xKjohMcaJE-fs3D1fnp8ZO8cYEGprIYBEQSCTNA4syWtblQtwiPFlSamBu_tkMJQ3IzVaY_1mLQzRKr3vr3165a19Sddbszsbj7uPOHuQJE-OkxaBIMSss40Io6tosY3e9e3gfjnvIgWXOtVCEn1aNSvoKpoX4sICSLc7Cis5Rx2vRKhKyH8lULWm-O39ikFXO2zbg0feq9u3y9Zgsse2fkkK7rOHZyKiz6ESRMW348QZJ2IWfHD7zUkWAYjy9uqlqjklYjmiQF6vGuFf9F-BkiW8WcF_wIZXl0_9QeD3TQiclGoRGCBdMcQ1qYXcyNwmCEpDV4agHcKriKZcuS0L40wRpmmh8JTSQgPkZWlVGR-y1mQ6gSPGtXCuSOLEIayR9BfNOqFSm0ppLIAwbRY3tsqcFxWnvS3es4Y99pbVFs7Iwllt4TYLlrVmtajGH9dfUDcsryVJ7KpgOn_J_JjIokjYsHBJjgBQ4oGJ4yRXkdHWpam02FTddGK2MsLwVuM_Ht-hPqdaJKzriIGE1dCVoXMWx_--b4dt0lFNJzxhrcX8E04R4izsmR_CZ1WK4Ad7_Ppk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1JT8MwEIUtKAfggFgFlMUHrlGz2HF8hApUth5YBDcrdiZQhNqqFCH-PTOJU9ETEscmcZqMnfGz8_yFsRPsAyJlLQSQSghEmiWBJby2lXkIDjW-KGlq4Laf9h7F1bN8XmDdZi0M2Sp97q9zepWt_ZaOj2ZnPBh07nH0IAhPjoOWEEWIXmRLRKfCZr50ennd68_GXURwqadaCNGnZLOCrrJ5oS4sgLjdcVThHFUy10NVIP-5jqo1wmfvVx90sc7WvHjkp_X1bbAFGG6y1V9IwS1290RG9AlUQFS8O06ecTJmwQe335ywCECWt1ePquY0EctRBfJ61Qj_ovcKNFnCmxX82-zx4vyh2wv8dxMCJ4ScBhqIK4a6JrOQa5HbFEVp5MoIlEN5FdOQK7dloZ0uoiwrJO6SKlQAeVlaWSY7rDUcDWGXcRU6V6RJ6lDWCHqLZl0oM5sJoS1AqPdY0sTKOA8Vp29bvJvGPfZm6ggbirCpI7zHglmpcQ3V-OP4M6qG2bGExK42jCYvxrcJE8ehjQqX5igABf7QSZLmMtbKuiwTFi9VNZVo5loYnmrwx9-3qc6pFIF1HTmQsBimMkzO4f6_z3vMlnsPtzfm5rJ_3WYrtKe2Fh6w1nTyCYcod6b2yDfnH4Cz_F4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wood-reinforced+composites+by+stereolithography+with+the+stress+whitening+behavior&rft.jtitle=Materials+%26+design&rft.au=Zhang%2C+Shuyang&rft.au=Bhagia%2C+Samarthya&rft.au=Li%2C+Mi&rft.au=Meng%2C+Xianzhi&rft.date=2021-08-01&rft.pub=Elsevier&rft.issn=0264-1275&rft.eissn=1873-4197&rft.volume=206&rft.issue=n%2Fa&rft_id=info:doi/10.1016%2Fj.matdes.2021.109773&rft.externalDocID=1797630
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon