A Fast North-Finding Algorithm on the Moving Pedestal Based on the Technology of Extended State Observer (ESO)
We propose a kind of fast and high-precision alignment algorithm based on the ESO technology. Firstly, in order to solve the problems of rapid, high-accuracy, and anti-interference alignment on the moving pedestal in the north-seeker, the ESO technology in control theory is introduced to improve the...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 19; p. 7547 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2022
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s22197547 |
Cover
Abstract | We propose a kind of fast and high-precision alignment algorithm based on the ESO technology. Firstly, in order to solve the problems of rapid, high-accuracy, and anti-interference alignment on the moving pedestal in the north-seeker, the ESO technology in control theory is introduced to improve the traditional Kalman fine-alignment model. This method includes two stages: the coarse alignment in the inertial frame and fine alignment based on the ESO technology. By utilizing the ESO technology, the convergence speed of the heading angle can be greatly accelerated. The advantages of this method are high-accuracy, fast-convergence, strong ability of anti-interference, and short time-cost (no need of KF recursive calculation). Then, the algorithm model, calculation process, and the setting initial-values of the filter are shown. Finally, taking the shipborne north-finder based on the FOG (fiber-optic gyroscope) as the investigated subject, the test on the moving ship is carried out. The results of first off-line simulation show that the misalignment angle of the heading angle of the proposed (traditional) method is ≤2.1′ (1.8′) after 5.5 (10) minutes of alignment. The results of second off-line simulation indicate that the misalignment angle of the heading angle of the proposed (traditional) method is ≤4.8′ (14.2′) after 5.5 (10) minutes of alignment. The simulations are based on the ship-running experimental data. The measurement precisions of Doppler velocity log (DVL) are different in these two experiments. |
---|---|
AbstractList | We propose a kind of fast and high-precision alignment algorithm based on the ESO technology. Firstly, in order to solve the problems of rapid, high-accuracy, and anti-interference alignment on the moving pedestal in the north-seeker, the ESO technology in control theory is introduced to improve the traditional Kalman fine-alignment model. This method includes two stages: the coarse alignment in the inertial frame and fine alignment based on the ESO technology. By utilizing the ESO technology, the convergence speed of the heading angle can be greatly accelerated. The advantages of this method are high-accuracy, fast-convergence, strong ability of anti-interference, and short time-cost (no need of KF recursive calculation). Then, the algorithm model, calculation process, and the setting initial-values of the filter are shown. Finally, taking the shipborne north-finder based on the FOG (fiber-optic gyroscope) as the investigated subject, the test on the moving ship is carried out. The results of first off-line simulation show that the misalignment angle of the heading angle of the proposed (traditional) method is ≤2.1′ (1.8′) after 5.5 (10) minutes of alignment. The results of second off-line simulation indicate that the misalignment angle of the heading angle of the proposed (traditional) method is ≤4.8′ (14.2′) after 5.5 (10) minutes of alignment. The simulations are based on the ship-running experimental data. The measurement precisions of Doppler velocity log (DVL) are different in these two experiments. We propose a kind of fast and high-precision alignment algorithm based on the ESO technology. Firstly, in order to solve the problems of rapid, high-accuracy, and anti-interference alignment on the moving pedestal in the north-seeker, the ESO technology in control theory is introduced to improve the traditional Kalman fine-alignment model. This method includes two stages: the coarse alignment in the inertial frame and fine alignment based on the ESO technology. By utilizing the ESO technology, the convergence speed of the heading angle can be greatly accelerated. The advantages of this method are high-accuracy, fast-convergence, strong ability of anti-interference, and short time-cost (no need of KF recursive calculation). Then, the algorithm model, calculation process, and the setting initial-values of the filter are shown. Finally, taking the shipborne north-finder based on the FOG (fiber-optic gyroscope) as the investigated subject, the test on the moving ship is carried out. The results of first off-line simulation show that the misalignment angle of the heading angle of the proposed (traditional) method is ≤2.1' (1.8') after 5.5 (10) minutes of alignment. The results of second off-line simulation indicate that the misalignment angle of the heading angle of the proposed (traditional) method is ≤4.8' (14.2') after 5.5 (10) minutes of alignment. The simulations are based on the ship-running experimental data. The measurement precisions of Doppler velocity log (DVL) are different in these two experiments.We propose a kind of fast and high-precision alignment algorithm based on the ESO technology. Firstly, in order to solve the problems of rapid, high-accuracy, and anti-interference alignment on the moving pedestal in the north-seeker, the ESO technology in control theory is introduced to improve the traditional Kalman fine-alignment model. This method includes two stages: the coarse alignment in the inertial frame and fine alignment based on the ESO technology. By utilizing the ESO technology, the convergence speed of the heading angle can be greatly accelerated. The advantages of this method are high-accuracy, fast-convergence, strong ability of anti-interference, and short time-cost (no need of KF recursive calculation). Then, the algorithm model, calculation process, and the setting initial-values of the filter are shown. Finally, taking the shipborne north-finder based on the FOG (fiber-optic gyroscope) as the investigated subject, the test on the moving ship is carried out. The results of first off-line simulation show that the misalignment angle of the heading angle of the proposed (traditional) method is ≤2.1' (1.8') after 5.5 (10) minutes of alignment. The results of second off-line simulation indicate that the misalignment angle of the heading angle of the proposed (traditional) method is ≤4.8' (14.2') after 5.5 (10) minutes of alignment. The simulations are based on the ship-running experimental data. The measurement precisions of Doppler velocity log (DVL) are different in these two experiments. |
Audience | Academic |
Author | Pan, Wenchao Yan, Debao Zhang, Haosu Gao, Ziheng Bai, Yunchao Li, Bing Wang, Sheng |
AuthorAffiliation | 1 State Key Laboratory for Manufacturing Systems Engineerng, Xi’an Jiaotong University, Xi’an 710054, China 2 International Joint Research Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, Xi’an 710049, China 6 CSSC Systems Engineering Research Institute, Beijing 100094, China 7 Yunnan Tongqu Engineering Testing Co., Ltd., Kunming 650000, China 4 Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China 3 School of Marine Engineering and Technology, Sun Yat-Sen University, Guangzhou 510275, China 5 Huazhong Institute of Electro-Optics, Wuhan National Laboratory for Optoelectronics, Wuhan 430223, China |
AuthorAffiliation_xml | – name: 1 State Key Laboratory for Manufacturing Systems Engineerng, Xi’an Jiaotong University, Xi’an 710054, China – name: 5 Huazhong Institute of Electro-Optics, Wuhan National Laboratory for Optoelectronics, Wuhan 430223, China – name: 3 School of Marine Engineering and Technology, Sun Yat-Sen University, Guangzhou 510275, China – name: 7 Yunnan Tongqu Engineering Testing Co., Ltd., Kunming 650000, China – name: 6 CSSC Systems Engineering Research Institute, Beijing 100094, China – name: 2 International Joint Research Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, Xi’an 710049, China – name: 4 Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China |
Author_xml | – sequence: 1 givenname: Yunchao surname: Bai fullname: Bai, Yunchao – sequence: 2 givenname: Bing surname: Li fullname: Li, Bing – sequence: 3 givenname: Haosu orcidid: 0000-0002-3252-8331 surname: Zhang fullname: Zhang, Haosu – sequence: 4 givenname: Sheng surname: Wang fullname: Wang, Sheng – sequence: 5 givenname: Debao surname: Yan fullname: Yan, Debao – sequence: 6 givenname: Ziheng surname: Gao fullname: Gao, Ziheng – sequence: 7 givenname: Wenchao surname: Pan fullname: Pan, Wenchao |
BookMark | eNpdkk1v1DAQhiNURD_gwD-IxKU9bPFX4viCtK12oVJhkVrO1sSeZL3K2sXOrui_x2FLRZEPtmbeecYev6fFkQ8ei-I9JZecK_IxMUaVrIR8VZxQwcSsYYwc_XM-Lk5T2hDCOOfNm-KY14zXtahPCj8vl5DG8luI43q2dN4635fzoQ_RjettGXw5rrH8GvZT_DtaTCMM5RUktH-T92jWPgyhfyxDVy5-jehtzt6NMGK5ahPGPcbyfHG3unhbvO5gSPjuaT8rfiwX99dfZrerzzfX89uZEaIaZwpYg8CbRgBvq45SYhU3wpoW2o5xVStsoIGaGIrEykZK2UFtwEoUXLKWnxU3B64NsNEP0W0hPuoATv8JhNhriKMzA2pACtQooLRVQnQKsCHITFWzilJFusz6dGA97NotWoN-jDC8gL7MeLfWfdhrVUnGhciA8ydADD93eYB665LBYQCPYZc0k6xi0-eoLP3wn3QTdtHnUU0qwYlQ1QS8PKh6yA9wvgu5r8nL4taZ7I3O5fhcirrijLIqF1wcCkwMKUXsnm9PiZ4spJ8txH8DMnu3eA |
Cites_doi | 10.1109/AERO.2017.7943568 10.1109/IJCNN.1989.118638 10.3390/s19051125 10.1109/JSEN.2016.2518860 10.1155/2021/5525481 10.1109/7.259535 10.2514/6.1991-2783 10.2514/3.20299 10.1109/TPEL.2020.2967172 10.1109/ICCA.2007.4376774 10.1109/ICCAS.2016.7832475 10.1109/PLANS.2016.7479787 10.1016/j.ijleo.2016.10.126 10.1109/7.543871 10.1109/CCDC.2013.6561718 10.1109/TAES.2011.6034671 10.1002/j.2161-4296.1983.tb00824.x 10.1109/ACCESS.2019.2929645 10.1109/7.165368 10.1109/TIM.2020.3027405 10.1109/PRECEDE51386.2021.9680944 10.1109/TAES.1975.308106 10.1088/0957-0233/27/12/125102 10.1109/CCDC.2019.8832367 10.1109/ICEEMT56362.2022.9862624 10.1109/APUAVD.2017.8308793 10.1109/7.570762 10.1109/TSP.2008.2007090 10.1109/BdKCSE48644.2019.9010651 10.1088/1361-6501/ab97f8 10.2514/6.1980-1720 10.1109/ACCESS.2019.2953301 10.1109/ICMA.2006.257663 10.1109/CAC51589.2020.9327152 10.1109/7.135435 10.23919/ENC48637.2020.9317382 10.1063/1.5046760 10.1016/j.oceaneng.2019.106259 10.1109/JSEN.2021.3108497 10.1109/7.543857 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s22197547 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Proquest Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_ae1a1c9a11b944f9ae80e2c56251190f PMC9572344 A746532125 10_3390_s22197547 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities, Sun Yat-sen University grantid: 22qntd0601 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c445t-9a28ea3884a3b5f110d93c4dcbabf23969e8a8a60c1e0d78777fa6cad7e4372b3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:12:23 EDT 2025 Thu Aug 21 18:40:12 EDT 2025 Thu Sep 04 18:16:03 EDT 2025 Fri Jul 25 20:04:59 EDT 2025 Tue Jul 01 05:43:18 EDT 2025 Tue Jul 01 02:42:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c445t-9a28ea3884a3b5f110d93c4dcbabf23969e8a8a60c1e0d78777fa6cad7e4372b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3252-8331 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22197547 |
PMID | 36236646 |
PQID | 2724304954 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ae1a1c9a11b944f9ae80e2c56251190f pubmedcentral_primary_oai_pubmedcentral_nih_gov_9572344 proquest_miscellaneous_2725200239 proquest_journals_2724304954 gale_infotracacademiconefile_A746532125 crossref_primary_10_3390_s22197547 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Lu (ref_19) 2016; 27 Chung (ref_22) 1996; 32 Schneider (ref_27) 1983; 30 Zhang (ref_47) 2019; 188 ref_14 Zhang (ref_41) 2020; 35 ref_13 ref_35 Xing (ref_37) 2019; 7 ref_12 ref_33 ref_10 Pei (ref_17) 2021; 70 ref_32 Zhu (ref_15) 2018; 89 Bojja (ref_36) 2016; 16 Xie (ref_2) 2021; 2021 ref_18 Xu (ref_25) 2020; 31 ref_39 Berman (ref_38) 1988; 11 Lee (ref_21) 1993; 29 (ref_4) 1992; 28 Chang (ref_16) 2022; 22 Benson (ref_1) 1975; 11 Chen (ref_48) 2017; 130 Wei (ref_30) 2019; 1168 ref_24 ref_46 ref_45 ref_44 ref_43 ref_20 ref_42 ref_40 Gao (ref_9) 2011; 47 Einicke (ref_11) 2009; 57 Hecht (ref_31) 1989; 3 ref_29 ref_28 Yang (ref_34) 2019; 7 ref_8 Fang (ref_23) 1996; 32 Dmitriyev (ref_26) 1997; 33 ref_5 Jiang (ref_3) 1992; 28 ref_7 ref_6 |
References_xml | – ident: ref_33 doi: 10.1109/AERO.2017.7943568 – ident: ref_32 – ident: ref_24 – volume: 3 start-page: 593 year: 1989 ident: ref_31 article-title: Theory of the back propagation neutral networks publication-title: IEEE Int. Conf. Neutral Netw. doi: 10.1109/IJCNN.1989.118638 – ident: ref_20 doi: 10.3390/s19051125 – volume: 16 start-page: 2554 year: 2016 ident: ref_36 article-title: Compact North Finding System publication-title: Sens. J. IEEE doi: 10.1109/JSEN.2016.2518860 – volume: 2021 start-page: 5525481 year: 2021 ident: ref_2 article-title: An Improved Attitude Compensation Algorithm for SINS/GNS Integrated Navigation System publication-title: Hindawi J. Sens. doi: 10.1155/2021/5525481 – volume: 29 start-page: 1323 year: 1993 ident: ref_21 article-title: Multi-position alignment of strapdown inertial navigation system publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/7.259535 – ident: ref_29 doi: 10.2514/6.1991-2783 – volume: 11 start-page: 237 year: 1988 ident: ref_38 article-title: Control theoretic approach to inertial navigation systems publication-title: J. Guid. Control Dyn. doi: 10.2514/3.20299 – volume: 35 start-page: 8130 year: 2020 ident: ref_41 article-title: Model-Free Predictive Current Control of DFIG Based on an Extended State Observer Under Unbalanced and Distorted Grid publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2020.2967172 – ident: ref_12 doi: 10.1109/ICCA.2007.4376774 – ident: ref_46 doi: 10.1109/ICCAS.2016.7832475 – ident: ref_8 doi: 10.1109/PLANS.2016.7479787 – ident: ref_14 – ident: ref_44 – volume: 130 start-page: 777 year: 2017 ident: ref_48 article-title: Research on shipborne transfer alignment under the influence of the uncertain disturbance based on the extended state observer publication-title: Optik doi: 10.1016/j.ijleo.2016.10.126 – volume: 32 start-page: 1501 year: 1996 ident: ref_23 article-title: A fast initial alignment and method for strapdown inertial navigation system on stationary base publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/7.543871 – ident: ref_42 doi: 10.1109/CCDC.2013.6561718 – volume: 47 start-page: 2887 year: 2011 ident: ref_9 article-title: Rapid Fine Strapdown INS Alignment Method under Marine Mooring Condition publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2011.6034671 – volume: 30 start-page: 72 year: 1983 ident: ref_27 article-title: Kalman filter formulation for transfer alignment of strapdown inertial units publication-title: Navigation doi: 10.1002/j.2161-4296.1983.tb00824.x – volume: 7 start-page: 96215 year: 2019 ident: ref_37 article-title: Optimal Weighted Fusion Based on Recursive Least Squares for Dynamic North-Finding of MIMU on a Tilting Base publication-title: Access IEEE doi: 10.1109/ACCESS.2019.2929645 – ident: ref_6 – volume: 28 start-page: 1068 year: 1992 ident: ref_4 article-title: Observability analysis of piece-wise constant system, Part II: Application to Inertial navigation in-flight alignment publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/7.165368 – volume: 70 start-page: 8500812 year: 2021 ident: ref_17 article-title: In-Motion Initial Alignment Using State-Dependent Extended Kalman Filter for Strapdown Inertial Navigation System publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2020.3027405 – ident: ref_43 doi: 10.1109/PRECEDE51386.2021.9680944 – ident: ref_10 – volume: 11 start-page: 447 year: 1975 ident: ref_1 article-title: A comparison of two approaches to pure-inertial and Doppler-inertia error analysis publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.1975.308106 – volume: 27 start-page: 125102 year: 2016 ident: ref_19 article-title: A high-accuracy two-position alignment inertial navigation system for lunar rovers aided by a star sensor with a calibration and positioning function publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/27/12/125102 – ident: ref_39 doi: 10.1109/CCDC.2019.8832367 – ident: ref_18 doi: 10.1109/ICEEMT56362.2022.9862624 – ident: ref_7 doi: 10.1109/APUAVD.2017.8308793 – volume: 33 start-page: 260 year: 1997 ident: ref_26 article-title: Nonlinear Filtering Methods Application in INS Alignment publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/7.570762 – volume: 57 start-page: 370 year: 2009 ident: ref_11 article-title: Riccati Equation and EM Algorithm Convergence for Inertial Navigation Alignment publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2008.2007090 – ident: ref_5 doi: 10.1109/BdKCSE48644.2019.9010651 – volume: 31 start-page: 125106 year: 2020 ident: ref_25 article-title: A rapid and high-accuracy rotation alignment method based on bidirectional process for dual-axis rotational inertial navigation system publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ab97f8 – ident: ref_28 doi: 10.2514/6.1980-1720 – volume: 7 start-page: 165873 year: 2019 ident: ref_34 article-title: A Novel Method for Fast Stationary Initial Alignment Based on Extended Measurement Information publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2953301 – ident: ref_45 – ident: ref_13 doi: 10.1109/ICMA.2006.257663 – ident: ref_40 doi: 10.1109/CAC51589.2020.9327152 – volume: 28 start-page: 92 year: 1992 ident: ref_3 article-title: Error estimation of INS ground alignment through observability analysis publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/7.135435 – volume: 1168 start-page: 062030 year: 2019 ident: ref_30 article-title: Marginal Reduced High-degree CKF and its Application in Nonlinear Rapid Transfer Alignment publication-title: J. Phys. – ident: ref_35 doi: 10.23919/ENC48637.2020.9317382 – volume: 89 start-page: 115102 year: 2018 ident: ref_15 article-title: Robust adaptive unscented Kalman filter and its application in initial alignment for body frame velocity aided strapdown inertial navigation system publication-title: Rev. Sci. Instrum. doi: 10.1063/1.5046760 – volume: 188 start-page: 106259 year: 2019 ident: ref_47 article-title: ESO-based path following control for underactuated vehicles with the safety prediction obstacle avoidance mechanism publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.106259 – volume: 22 start-page: 803 year: 2022 ident: ref_16 article-title: Strapdown Inertial Navigation System Initial Alignment Based on Group of Double Direct Spatial Isometries publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3108497 – volume: 32 start-page: 1362 year: 1996 ident: ref_22 article-title: Strapdown INS error model for multiposition alignment publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/7.543857 |
SSID | ssj0023338 |
Score | 2.3734348 |
Snippet | We propose a kind of fast and high-precision alignment algorithm based on the ESO technology. Firstly, in order to solve the problems of rapid, high-accuracy,... |
SourceID | doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 7547 |
SubjectTerms | Accuracy Algorithms Analysis Bias Compasses Control systems Control theory fiber-optic gyroscope (FOG) inertial alignment Kalman filters Methods Navigation systems Neural networks Sensors shipborne inertial systems Simulation methods Velocity |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hnuCAgIIIFGQqJOAQNbGdOD5u0a6qSm2RoFJv1thxaKWSoO72_zPjZJddOHDhGkeOM-PxvD8DvDdNZawsMS9aq3JtMeYYuAIg1GxQlK223I18dl6fXOrTq-pq66ovrgkb4YFHwh1hLLEMFsvSW607mqwpogxst5ekzDo-fQtbrJ2pydVS5HmNOEKKnPqjpSTBNBXfobKlfRJI_99H8Z_lkVv6ZvEEHk-GopiNC3wKD2L_DB5twQfuQz8TC1yuRMq95Iub1KAiZrffB_L4r3-IoRdk3omzFDQQX2JLn6Upj0lxtevB36F1MXRiPoXERbJBxYXnmG28Ex_nXy8-PYfLxfzb55N8uj8hD1pXq9yibCKqptGofNWRoid-BN0Gj76TytY2NthgXYQyFq1hZMAO64CtiZzN8-oF7PVDH1-C6GxnWxmMlMSE4EPDMDKadmHwUhslMzhc09X9HGEyHLkXTHy3IX4Gx0zxzQuMbJ0eEL_dxG_3L35n8IH55Vj-iDsBpzYCWicjWbmZYcQ4UshVBgdrlrpJMJdOGqk5s1jpDN5thkmkOE-CfRzu0zsMRkUUysDsbIWdpe-O9DfXCZzbVkYqrV_9j399DQ8ld1uk2sED2Fvd3cc3ZAOt_Nu03X8BPK4FYA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxQxFA5aX_RBvOJolSiC-jB0c5lJ8iTbstMi1Apa6FtIMpm2oDN1d_r_PSeb3e5a6OskTMK55FzzhZCPSlfKcObKSWtEKY2LpQvYARBqdChYKw3eRj7-Xh-dym9n1VlOuC1yW-XqTEwHdTsEzJHvccUlloQq-fXqb4mvRmF1NT-hcZ88YGBpUM51c7gOuATEX0s0IQGh_d6Cg3qqCl9S2bBBCar_9oH8f5PkhtVpnpDH2V2k0yV_n5J7sX9GHm2ACD4n_ZQ2bjHSVIEpm8t0TYVOf5_D7seLP3ToKTh59DilDuiP2MKy8Mt9MF_tavAmwU6Hjs5yYpwmT5SeeMzcxjn9PPt58uUFOW1mvw6OyvyKQhmkrMbSOK6jE1pLJ3zVgbkHrgTZBu98x4WpTdROu3oSWJy0CvEBO1cH16qINT0vXpKdfujjK0I705mWB8W5kTL4oBFMRoIsBs-lErwgH1Z0tVdLsAwLQQYS366JX5B9pPh6AuJbpw_D_NxmdbEuMseCcYx5WKoDEdKTyANGawxcmK4gn5BfFrUQuBNcvkwA-0Q8KztViBsHZrkqyO6KpTar58LeCFNB3q-HQbGwWuL6OFynOQhJBRQqiNoSha2tb4_0lxcJottUigspX9-9-BvykONtitQbuEt2xvl1fAs-zujfJUH-B0Md_Ms priority: 102 providerName: ProQuest |
Title | A Fast North-Finding Algorithm on the Moving Pedestal Based on the Technology of Extended State Observer (ESO) |
URI | https://www.proquest.com/docview/2724304954 https://www.proquest.com/docview/2725200239 https://pubmed.ncbi.nlm.nih.gov/PMC9572344 https://doaj.org/article/ae1a1c9a11b944f9ae80e2c56251190f |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFH_axwUOiPEhwkZlEBJwCDSOE8cHNLWoYULqNgGVerMcx9kmbcnWdhL897znJmUBjlxyiK04eR95X34_A7yWWSIVj0w4LFUcCmVcaCztALApORRRKRR1I0-P06OZ-DJP5lvQnbHZEnD5z9COzpOaLS7f_7j5eYgK_5EiTgzZPyw5qp1MhNyGXTRIKcVgU7EpJvAYw7A1qFB_es8UecT-v__Lf-6VvGN88ofwoPUa2WjN5j3YcvUjuH8HS_Ax1COWm-WK-UJMmF_4bhU2ujxrMPw_v2JNzdDXY1OfQWCnrsRl8ZFjtGJlN_g7z86aik3a_DjzDik7KSiB6xbs7eTbybsnMMsn3z8dhe1hCqEVIlmFyvDMmTjLhImLpEKrj8yxorSFKSoeq1S5zGQmHdrIDUtJMIGVSa0ppaPSXhE_hZ26qd0zYJWqVMmt5FwJYQubEaaMQJG0BRcy5gG86uiqr9eYGRpjDSK-3hA_gDFRfDOBYK79jWZxplut0cZFJrLKRFGBS1UoSdnQcUtBW4SeTBXAG-KXJvFA7ljT9hTgexKslR5Jgo9D65wEcNCxVHdCprnkgsqMiQjg5WYY9YuKJqZ2za2fQ8hUSKEAZE8Ueq_eH6kvzj1St0okj4V4_j--dR_ucWq98BsJD2Bntbh1L9AhWhUD2JZzidcs_zyA3fHk-PTrwCcXBl4RfgHW9w-2 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKcIFDAIBByiJrazjg8IbWFXW9ptkWilvaWO47SVICm7qRB_it_IjDfZB0jceo0j2xrPeF6ebwBeqTRRmscmjAotQqmNC42lFwC2RwZFXEhN1cjjg97oWH6eJJMN-N3VwtCzyu5O9Bd1UVuKkW9zxSWlhBL54eJHSF2jKLvatdCYs8We-_UTXbbZ-91PeL6vOR8Ojj6OwrarQGilTJpQG546I9JUGpEnJao_3KWVhc1NXnKhe9qlJjW9yMYuKhTh5ZWmZ02hHOW4coHzXoPrkiLjKD9qsnTwBPp7c_QiIXS0PeN4HaiEOres6DzfGuBfBfD3o8wVLTe8A7db85T15_x0FzZcdQ9urYAW3oeqz4Zm1jCf8QmH574shvW_nSK1mrPvrK4YGpVs7EMV7IsrcFmccgfVZdENLgP6rC7ZoA3EM2_5ssOcIsVuyt4Ovh6-ewDHV0Lfh7BZ1ZV7BKzUpS64VZxrKW1uUwKvkcj7NudSCR7Ay46u2cUcnCNDp4aIny2IH8AOUXzxA-Fp-w_19DRrxTMzLjax1SaOc1yqRJZNI8cteYcxmkxlAG_ovDKSejwda9riBdwn4WdlfUU4dWgGJAFsdUeatdfBLFsybwAvFsMoyJSdMZWrL_0_BIGFFApArbHC2tbXR6rzMw8JrhPFhZSP_7_4c7gxOhrvZ_u7B3tP4CanSg7_LnELNpvppXuK9lWTP_NMzeDkqqXoD0H-Oqk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw9KkUCcEBsYrQAgaBgEM0E9uJ4wNCUzpRS-kiQaW5pY7jtJVoUmamQvwaX8d7nmQWkLj1Gke29fz2FeC1SmOleWTCfqlFKLVxobGUAWATUiiiUmqqRt4_SHaO5edRPFqD310tDKVVdjzRM-qyseQj73HFJYWEYtmr2rSIo-3s4-WPkCZIUaS1G6cxQ5E99-snmm-TD7vb-NZvOM-G3z7thO2EgdBKGU9DbXjqjEhTaUQRVygK8cZWlrYwRcWFTrRLTWqSvo1cv1TUO68yiTWlchTvKgTuewNuKoFaFdKSGi2MPYG236yTkRC635twZA0qpikuS_LPjwn4Vxj8naC5JPGye3C3VVXZYIZb92HN1Q_gzlIDw4dQD1hmJlPmoz9hdu5LZNjg-ylCa3p2wZqaoYLJ9r3bgh25Eo_FLbdQdJbd4sK5z5qKDVunPPNaMDssyGvsxuzd8Ovh-0dwfC3wfQzrdVO7J8AqXemSW8W5ltIWNqVGNhLpwBZcKsEDeNXBNb-cNerI0cAh4Odz4AewRRCf_0C9tf2HZnyat6SaGxeZyGoTRQUeVSH6pn3HLVmKEapPVQBv6b1y4gD4Ota0hQx4T-qllQ8U9axDlSAOYLN70rxlDZN8gcgBvJwvI1FTpMbUrrny_1A7LIRQAGoFFVauvrpSn5_59uA6VlxI-fT_h7-AW0g_-Zfdg70NuM2pqMOnKG7C-nR85Z6hqjUtnnucZnBy3UT0B8McPug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fast+North-Finding+Algorithm+on+the+Moving+Pedestal+Based+on+the+Technology+of+Extended+State+Observer+%28ESO%29&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Yunchao+Bai&rft.au=Bing+Li&rft.au=Haosu+Zhang&rft.au=Sheng+Wang&rft.date=2022-10-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=19&rft.spage=7547&rft_id=info:doi/10.3390%2Fs22197547&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ae1a1c9a11b944f9ae80e2c56251190f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |