A Fast North-Finding Algorithm on the Moving Pedestal Based on the Technology of Extended State Observer (ESO)

We propose a kind of fast and high-precision alignment algorithm based on the ESO technology. Firstly, in order to solve the problems of rapid, high-accuracy, and anti-interference alignment on the moving pedestal in the north-seeker, the ESO technology in control theory is introduced to improve the...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 19; p. 7547
Main Authors Bai, Yunchao, Li, Bing, Zhang, Haosu, Wang, Sheng, Yan, Debao, Gao, Ziheng, Pan, Wenchao
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2022
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s22197547

Cover

Abstract We propose a kind of fast and high-precision alignment algorithm based on the ESO technology. Firstly, in order to solve the problems of rapid, high-accuracy, and anti-interference alignment on the moving pedestal in the north-seeker, the ESO technology in control theory is introduced to improve the traditional Kalman fine-alignment model. This method includes two stages: the coarse alignment in the inertial frame and fine alignment based on the ESO technology. By utilizing the ESO technology, the convergence speed of the heading angle can be greatly accelerated. The advantages of this method are high-accuracy, fast-convergence, strong ability of anti-interference, and short time-cost (no need of KF recursive calculation). Then, the algorithm model, calculation process, and the setting initial-values of the filter are shown. Finally, taking the shipborne north-finder based on the FOG (fiber-optic gyroscope) as the investigated subject, the test on the moving ship is carried out. The results of first off-line simulation show that the misalignment angle of the heading angle of the proposed (traditional) method is ≤2.1′ (1.8′) after 5.5 (10) minutes of alignment. The results of second off-line simulation indicate that the misalignment angle of the heading angle of the proposed (traditional) method is ≤4.8′ (14.2′) after 5.5 (10) minutes of alignment. The simulations are based on the ship-running experimental data. The measurement precisions of Doppler velocity log (DVL) are different in these two experiments.
AbstractList We propose a kind of fast and high-precision alignment algorithm based on the ESO technology. Firstly, in order to solve the problems of rapid, high-accuracy, and anti-interference alignment on the moving pedestal in the north-seeker, the ESO technology in control theory is introduced to improve the traditional Kalman fine-alignment model. This method includes two stages: the coarse alignment in the inertial frame and fine alignment based on the ESO technology. By utilizing the ESO technology, the convergence speed of the heading angle can be greatly accelerated. The advantages of this method are high-accuracy, fast-convergence, strong ability of anti-interference, and short time-cost (no need of KF recursive calculation). Then, the algorithm model, calculation process, and the setting initial-values of the filter are shown. Finally, taking the shipborne north-finder based on the FOG (fiber-optic gyroscope) as the investigated subject, the test on the moving ship is carried out. The results of first off-line simulation show that the misalignment angle of the heading angle of the proposed (traditional) method is ≤2.1′ (1.8′) after 5.5 (10) minutes of alignment. The results of second off-line simulation indicate that the misalignment angle of the heading angle of the proposed (traditional) method is ≤4.8′ (14.2′) after 5.5 (10) minutes of alignment. The simulations are based on the ship-running experimental data. The measurement precisions of Doppler velocity log (DVL) are different in these two experiments.
We propose a kind of fast and high-precision alignment algorithm based on the ESO technology. Firstly, in order to solve the problems of rapid, high-accuracy, and anti-interference alignment on the moving pedestal in the north-seeker, the ESO technology in control theory is introduced to improve the traditional Kalman fine-alignment model. This method includes two stages: the coarse alignment in the inertial frame and fine alignment based on the ESO technology. By utilizing the ESO technology, the convergence speed of the heading angle can be greatly accelerated. The advantages of this method are high-accuracy, fast-convergence, strong ability of anti-interference, and short time-cost (no need of KF recursive calculation). Then, the algorithm model, calculation process, and the setting initial-values of the filter are shown. Finally, taking the shipborne north-finder based on the FOG (fiber-optic gyroscope) as the investigated subject, the test on the moving ship is carried out. The results of first off-line simulation show that the misalignment angle of the heading angle of the proposed (traditional) method is ≤2.1' (1.8') after 5.5 (10) minutes of alignment. The results of second off-line simulation indicate that the misalignment angle of the heading angle of the proposed (traditional) method is ≤4.8' (14.2') after 5.5 (10) minutes of alignment. The simulations are based on the ship-running experimental data. The measurement precisions of Doppler velocity log (DVL) are different in these two experiments.We propose a kind of fast and high-precision alignment algorithm based on the ESO technology. Firstly, in order to solve the problems of rapid, high-accuracy, and anti-interference alignment on the moving pedestal in the north-seeker, the ESO technology in control theory is introduced to improve the traditional Kalman fine-alignment model. This method includes two stages: the coarse alignment in the inertial frame and fine alignment based on the ESO technology. By utilizing the ESO technology, the convergence speed of the heading angle can be greatly accelerated. The advantages of this method are high-accuracy, fast-convergence, strong ability of anti-interference, and short time-cost (no need of KF recursive calculation). Then, the algorithm model, calculation process, and the setting initial-values of the filter are shown. Finally, taking the shipborne north-finder based on the FOG (fiber-optic gyroscope) as the investigated subject, the test on the moving ship is carried out. The results of first off-line simulation show that the misalignment angle of the heading angle of the proposed (traditional) method is ≤2.1' (1.8') after 5.5 (10) minutes of alignment. The results of second off-line simulation indicate that the misalignment angle of the heading angle of the proposed (traditional) method is ≤4.8' (14.2') after 5.5 (10) minutes of alignment. The simulations are based on the ship-running experimental data. The measurement precisions of Doppler velocity log (DVL) are different in these two experiments.
Audience Academic
Author Pan, Wenchao
Yan, Debao
Zhang, Haosu
Gao, Ziheng
Bai, Yunchao
Li, Bing
Wang, Sheng
AuthorAffiliation 1 State Key Laboratory for Manufacturing Systems Engineerng, Xi’an Jiaotong University, Xi’an 710054, China
2 International Joint Research Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, Xi’an 710049, China
6 CSSC Systems Engineering Research Institute, Beijing 100094, China
7 Yunnan Tongqu Engineering Testing Co., Ltd., Kunming 650000, China
4 Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
3 School of Marine Engineering and Technology, Sun Yat-Sen University, Guangzhou 510275, China
5 Huazhong Institute of Electro-Optics, Wuhan National Laboratory for Optoelectronics, Wuhan 430223, China
AuthorAffiliation_xml – name: 1 State Key Laboratory for Manufacturing Systems Engineerng, Xi’an Jiaotong University, Xi’an 710054, China
– name: 5 Huazhong Institute of Electro-Optics, Wuhan National Laboratory for Optoelectronics, Wuhan 430223, China
– name: 3 School of Marine Engineering and Technology, Sun Yat-Sen University, Guangzhou 510275, China
– name: 7 Yunnan Tongqu Engineering Testing Co., Ltd., Kunming 650000, China
– name: 6 CSSC Systems Engineering Research Institute, Beijing 100094, China
– name: 2 International Joint Research Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, Xi’an 710049, China
– name: 4 Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
Author_xml – sequence: 1
  givenname: Yunchao
  surname: Bai
  fullname: Bai, Yunchao
– sequence: 2
  givenname: Bing
  surname: Li
  fullname: Li, Bing
– sequence: 3
  givenname: Haosu
  orcidid: 0000-0002-3252-8331
  surname: Zhang
  fullname: Zhang, Haosu
– sequence: 4
  givenname: Sheng
  surname: Wang
  fullname: Wang, Sheng
– sequence: 5
  givenname: Debao
  surname: Yan
  fullname: Yan, Debao
– sequence: 6
  givenname: Ziheng
  surname: Gao
  fullname: Gao, Ziheng
– sequence: 7
  givenname: Wenchao
  surname: Pan
  fullname: Pan, Wenchao
BookMark eNpdkk1v1DAQhiNURD_gwD-IxKU9bPFX4viCtK12oVJhkVrO1sSeZL3K2sXOrui_x2FLRZEPtmbeecYev6fFkQ8ei-I9JZecK_IxMUaVrIR8VZxQwcSsYYwc_XM-Lk5T2hDCOOfNm-KY14zXtahPCj8vl5DG8luI43q2dN4635fzoQ_RjettGXw5rrH8GvZT_DtaTCMM5RUktH-T92jWPgyhfyxDVy5-jehtzt6NMGK5ahPGPcbyfHG3unhbvO5gSPjuaT8rfiwX99dfZrerzzfX89uZEaIaZwpYg8CbRgBvq45SYhU3wpoW2o5xVStsoIGaGIrEykZK2UFtwEoUXLKWnxU3B64NsNEP0W0hPuoATv8JhNhriKMzA2pACtQooLRVQnQKsCHITFWzilJFusz6dGA97NotWoN-jDC8gL7MeLfWfdhrVUnGhciA8ydADD93eYB665LBYQCPYZc0k6xi0-eoLP3wn3QTdtHnUU0qwYlQ1QS8PKh6yA9wvgu5r8nL4taZ7I3O5fhcirrijLIqF1wcCkwMKUXsnm9PiZ4spJ8txH8DMnu3eA
Cites_doi 10.1109/AERO.2017.7943568
10.1109/IJCNN.1989.118638
10.3390/s19051125
10.1109/JSEN.2016.2518860
10.1155/2021/5525481
10.1109/7.259535
10.2514/6.1991-2783
10.2514/3.20299
10.1109/TPEL.2020.2967172
10.1109/ICCA.2007.4376774
10.1109/ICCAS.2016.7832475
10.1109/PLANS.2016.7479787
10.1016/j.ijleo.2016.10.126
10.1109/7.543871
10.1109/CCDC.2013.6561718
10.1109/TAES.2011.6034671
10.1002/j.2161-4296.1983.tb00824.x
10.1109/ACCESS.2019.2929645
10.1109/7.165368
10.1109/TIM.2020.3027405
10.1109/PRECEDE51386.2021.9680944
10.1109/TAES.1975.308106
10.1088/0957-0233/27/12/125102
10.1109/CCDC.2019.8832367
10.1109/ICEEMT56362.2022.9862624
10.1109/APUAVD.2017.8308793
10.1109/7.570762
10.1109/TSP.2008.2007090
10.1109/BdKCSE48644.2019.9010651
10.1088/1361-6501/ab97f8
10.2514/6.1980-1720
10.1109/ACCESS.2019.2953301
10.1109/ICMA.2006.257663
10.1109/CAC51589.2020.9327152
10.1109/7.135435
10.23919/ENC48637.2020.9317382
10.1063/1.5046760
10.1016/j.oceaneng.2019.106259
10.1109/JSEN.2021.3108497
10.1109/7.543857
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22197547
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Proquest Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_ae1a1c9a11b944f9ae80e2c56251190f
PMC9572344
A746532125
10_3390_s22197547
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities, Sun Yat-sen University
  grantid: 22qntd0601
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c445t-9a28ea3884a3b5f110d93c4dcbabf23969e8a8a60c1e0d78777fa6cad7e4372b3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:12:23 EDT 2025
Thu Aug 21 18:40:12 EDT 2025
Thu Sep 04 18:16:03 EDT 2025
Fri Jul 25 20:04:59 EDT 2025
Tue Jul 01 05:43:18 EDT 2025
Tue Jul 01 02:42:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-9a28ea3884a3b5f110d93c4dcbabf23969e8a8a60c1e0d78777fa6cad7e4372b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3252-8331
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22197547
PMID 36236646
PQID 2724304954
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_ae1a1c9a11b944f9ae80e2c56251190f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9572344
proquest_miscellaneous_2725200239
proquest_journals_2724304954
gale_infotracacademiconefile_A746532125
crossref_primary_10_3390_s22197547
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Lu (ref_19) 2016; 27
Chung (ref_22) 1996; 32
Schneider (ref_27) 1983; 30
Zhang (ref_47) 2019; 188
ref_14
Zhang (ref_41) 2020; 35
ref_13
ref_35
Xing (ref_37) 2019; 7
ref_12
ref_33
ref_10
Pei (ref_17) 2021; 70
ref_32
Zhu (ref_15) 2018; 89
Bojja (ref_36) 2016; 16
Xie (ref_2) 2021; 2021
ref_18
Xu (ref_25) 2020; 31
ref_39
Berman (ref_38) 1988; 11
Lee (ref_21) 1993; 29
(ref_4) 1992; 28
Chang (ref_16) 2022; 22
Benson (ref_1) 1975; 11
Chen (ref_48) 2017; 130
Wei (ref_30) 2019; 1168
ref_24
ref_46
ref_45
ref_44
ref_43
ref_20
ref_42
ref_40
Gao (ref_9) 2011; 47
Einicke (ref_11) 2009; 57
Hecht (ref_31) 1989; 3
ref_29
ref_28
Yang (ref_34) 2019; 7
ref_8
Fang (ref_23) 1996; 32
Dmitriyev (ref_26) 1997; 33
ref_5
Jiang (ref_3) 1992; 28
ref_7
ref_6
References_xml – ident: ref_33
  doi: 10.1109/AERO.2017.7943568
– ident: ref_32
– ident: ref_24
– volume: 3
  start-page: 593
  year: 1989
  ident: ref_31
  article-title: Theory of the back propagation neutral networks
  publication-title: IEEE Int. Conf. Neutral Netw.
  doi: 10.1109/IJCNN.1989.118638
– ident: ref_20
  doi: 10.3390/s19051125
– volume: 16
  start-page: 2554
  year: 2016
  ident: ref_36
  article-title: Compact North Finding System
  publication-title: Sens. J. IEEE
  doi: 10.1109/JSEN.2016.2518860
– volume: 2021
  start-page: 5525481
  year: 2021
  ident: ref_2
  article-title: An Improved Attitude Compensation Algorithm for SINS/GNS Integrated Navigation System
  publication-title: Hindawi J. Sens.
  doi: 10.1155/2021/5525481
– volume: 29
  start-page: 1323
  year: 1993
  ident: ref_21
  article-title: Multi-position alignment of strapdown inertial navigation system
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/7.259535
– ident: ref_29
  doi: 10.2514/6.1991-2783
– volume: 11
  start-page: 237
  year: 1988
  ident: ref_38
  article-title: Control theoretic approach to inertial navigation systems
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/3.20299
– volume: 35
  start-page: 8130
  year: 2020
  ident: ref_41
  article-title: Model-Free Predictive Current Control of DFIG Based on an Extended State Observer Under Unbalanced and Distorted Grid
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2020.2967172
– ident: ref_12
  doi: 10.1109/ICCA.2007.4376774
– ident: ref_46
  doi: 10.1109/ICCAS.2016.7832475
– ident: ref_8
  doi: 10.1109/PLANS.2016.7479787
– ident: ref_14
– ident: ref_44
– volume: 130
  start-page: 777
  year: 2017
  ident: ref_48
  article-title: Research on shipborne transfer alignment under the influence of the uncertain disturbance based on the extended state observer
  publication-title: Optik
  doi: 10.1016/j.ijleo.2016.10.126
– volume: 32
  start-page: 1501
  year: 1996
  ident: ref_23
  article-title: A fast initial alignment and method for strapdown inertial navigation system on stationary base
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/7.543871
– ident: ref_42
  doi: 10.1109/CCDC.2013.6561718
– volume: 47
  start-page: 2887
  year: 2011
  ident: ref_9
  article-title: Rapid Fine Strapdown INS Alignment Method under Marine Mooring Condition
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2011.6034671
– volume: 30
  start-page: 72
  year: 1983
  ident: ref_27
  article-title: Kalman filter formulation for transfer alignment of strapdown inertial units
  publication-title: Navigation
  doi: 10.1002/j.2161-4296.1983.tb00824.x
– volume: 7
  start-page: 96215
  year: 2019
  ident: ref_37
  article-title: Optimal Weighted Fusion Based on Recursive Least Squares for Dynamic North-Finding of MIMU on a Tilting Base
  publication-title: Access IEEE
  doi: 10.1109/ACCESS.2019.2929645
– ident: ref_6
– volume: 28
  start-page: 1068
  year: 1992
  ident: ref_4
  article-title: Observability analysis of piece-wise constant system, Part II: Application to Inertial navigation in-flight alignment
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/7.165368
– volume: 70
  start-page: 8500812
  year: 2021
  ident: ref_17
  article-title: In-Motion Initial Alignment Using State-Dependent Extended Kalman Filter for Strapdown Inertial Navigation System
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.3027405
– ident: ref_43
  doi: 10.1109/PRECEDE51386.2021.9680944
– ident: ref_10
– volume: 11
  start-page: 447
  year: 1975
  ident: ref_1
  article-title: A comparison of two approaches to pure-inertial and Doppler-inertia error analysis
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.1975.308106
– volume: 27
  start-page: 125102
  year: 2016
  ident: ref_19
  article-title: A high-accuracy two-position alignment inertial navigation system for lunar rovers aided by a star sensor with a calibration and positioning function
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/27/12/125102
– ident: ref_39
  doi: 10.1109/CCDC.2019.8832367
– ident: ref_18
  doi: 10.1109/ICEEMT56362.2022.9862624
– ident: ref_7
  doi: 10.1109/APUAVD.2017.8308793
– volume: 33
  start-page: 260
  year: 1997
  ident: ref_26
  article-title: Nonlinear Filtering Methods Application in INS Alignment
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/7.570762
– volume: 57
  start-page: 370
  year: 2009
  ident: ref_11
  article-title: Riccati Equation and EM Algorithm Convergence for Inertial Navigation Alignment
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2008.2007090
– ident: ref_5
  doi: 10.1109/BdKCSE48644.2019.9010651
– volume: 31
  start-page: 125106
  year: 2020
  ident: ref_25
  article-title: A rapid and high-accuracy rotation alignment method based on bidirectional process for dual-axis rotational inertial navigation system
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ab97f8
– ident: ref_28
  doi: 10.2514/6.1980-1720
– volume: 7
  start-page: 165873
  year: 2019
  ident: ref_34
  article-title: A Novel Method for Fast Stationary Initial Alignment Based on Extended Measurement Information
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2953301
– ident: ref_45
– ident: ref_13
  doi: 10.1109/ICMA.2006.257663
– ident: ref_40
  doi: 10.1109/CAC51589.2020.9327152
– volume: 28
  start-page: 92
  year: 1992
  ident: ref_3
  article-title: Error estimation of INS ground alignment through observability analysis
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/7.135435
– volume: 1168
  start-page: 062030
  year: 2019
  ident: ref_30
  article-title: Marginal Reduced High-degree CKF and its Application in Nonlinear Rapid Transfer Alignment
  publication-title: J. Phys.
– ident: ref_35
  doi: 10.23919/ENC48637.2020.9317382
– volume: 89
  start-page: 115102
  year: 2018
  ident: ref_15
  article-title: Robust adaptive unscented Kalman filter and its application in initial alignment for body frame velocity aided strapdown inertial navigation system
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.5046760
– volume: 188
  start-page: 106259
  year: 2019
  ident: ref_47
  article-title: ESO-based path following control for underactuated vehicles with the safety prediction obstacle avoidance mechanism
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2019.106259
– volume: 22
  start-page: 803
  year: 2022
  ident: ref_16
  article-title: Strapdown Inertial Navigation System Initial Alignment Based on Group of Double Direct Spatial Isometries
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3108497
– volume: 32
  start-page: 1362
  year: 1996
  ident: ref_22
  article-title: Strapdown INS error model for multiposition alignment
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/7.543857
SSID ssj0023338
Score 2.3734348
Snippet We propose a kind of fast and high-precision alignment algorithm based on the ESO technology. Firstly, in order to solve the problems of rapid, high-accuracy,...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 7547
SubjectTerms Accuracy
Algorithms
Analysis
Bias
Compasses
Control systems
Control theory
fiber-optic gyroscope (FOG)
inertial alignment
Kalman filters
Methods
Navigation systems
Neural networks
Sensors
shipborne inertial systems
Simulation methods
Velocity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hnuCAgIIIFGQqJOAQNbGdOD5u0a6qSm2RoFJv1thxaKWSoO72_zPjZJddOHDhGkeOM-PxvD8DvDdNZawsMS9aq3JtMeYYuAIg1GxQlK223I18dl6fXOrTq-pq66ovrgkb4YFHwh1hLLEMFsvSW607mqwpogxst5ekzDo-fQtbrJ2pydVS5HmNOEKKnPqjpSTBNBXfobKlfRJI_99H8Z_lkVv6ZvEEHk-GopiNC3wKD2L_DB5twQfuQz8TC1yuRMq95Iub1KAiZrffB_L4r3-IoRdk3omzFDQQX2JLn6Upj0lxtevB36F1MXRiPoXERbJBxYXnmG28Ex_nXy8-PYfLxfzb55N8uj8hD1pXq9yibCKqptGofNWRoid-BN0Gj76TytY2NthgXYQyFq1hZMAO64CtiZzN8-oF7PVDH1-C6GxnWxmMlMSE4EPDMDKadmHwUhslMzhc09X9HGEyHLkXTHy3IX4Gx0zxzQuMbJ0eEL_dxG_3L35n8IH55Vj-iDsBpzYCWicjWbmZYcQ4UshVBgdrlrpJMJdOGqk5s1jpDN5thkmkOE-CfRzu0zsMRkUUysDsbIWdpe-O9DfXCZzbVkYqrV_9j399DQ8ld1uk2sED2Fvd3cc3ZAOt_Nu03X8BPK4FYA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxQxFA5aX_RBvOJolSiC-jB0c5lJ8iTbstMi1Apa6FtIMpm2oDN1d_r_PSeb3e5a6OskTMK55FzzhZCPSlfKcObKSWtEKY2LpQvYARBqdChYKw3eRj7-Xh-dym9n1VlOuC1yW-XqTEwHdTsEzJHvccUlloQq-fXqb4mvRmF1NT-hcZ88YGBpUM51c7gOuATEX0s0IQGh_d6Cg3qqCl9S2bBBCar_9oH8f5PkhtVpnpDH2V2k0yV_n5J7sX9GHm2ACD4n_ZQ2bjHSVIEpm8t0TYVOf5_D7seLP3ToKTh59DilDuiP2MKy8Mt9MF_tavAmwU6Hjs5yYpwmT5SeeMzcxjn9PPt58uUFOW1mvw6OyvyKQhmkrMbSOK6jE1pLJ3zVgbkHrgTZBu98x4WpTdROu3oSWJy0CvEBO1cH16qINT0vXpKdfujjK0I705mWB8W5kTL4oBFMRoIsBs-lErwgH1Z0tVdLsAwLQQYS366JX5B9pPh6AuJbpw_D_NxmdbEuMseCcYx5WKoDEdKTyANGawxcmK4gn5BfFrUQuBNcvkwA-0Q8KztViBsHZrkqyO6KpTar58LeCFNB3q-HQbGwWuL6OFynOQhJBRQqiNoSha2tb4_0lxcJottUigspX9-9-BvykONtitQbuEt2xvl1fAs-zujfJUH-B0Md_Ms
  priority: 102
  providerName: ProQuest
Title A Fast North-Finding Algorithm on the Moving Pedestal Based on the Technology of Extended State Observer (ESO)
URI https://www.proquest.com/docview/2724304954
https://www.proquest.com/docview/2725200239
https://pubmed.ncbi.nlm.nih.gov/PMC9572344
https://doaj.org/article/ae1a1c9a11b944f9ae80e2c56251190f
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFH_axwUOiPEhwkZlEBJwCDSOE8cHNLWoYULqNgGVerMcx9kmbcnWdhL897znJmUBjlxyiK04eR95X34_A7yWWSIVj0w4LFUcCmVcaCztALApORRRKRR1I0-P06OZ-DJP5lvQnbHZEnD5z9COzpOaLS7f_7j5eYgK_5EiTgzZPyw5qp1MhNyGXTRIKcVgU7EpJvAYw7A1qFB_es8UecT-v__Lf-6VvGN88ofwoPUa2WjN5j3YcvUjuH8HS_Ax1COWm-WK-UJMmF_4bhU2ujxrMPw_v2JNzdDXY1OfQWCnrsRl8ZFjtGJlN_g7z86aik3a_DjzDik7KSiB6xbs7eTbybsnMMsn3z8dhe1hCqEVIlmFyvDMmTjLhImLpEKrj8yxorSFKSoeq1S5zGQmHdrIDUtJMIGVSa0ppaPSXhE_hZ26qd0zYJWqVMmt5FwJYQubEaaMQJG0BRcy5gG86uiqr9eYGRpjDSK-3hA_gDFRfDOBYK79jWZxplut0cZFJrLKRFGBS1UoSdnQcUtBW4SeTBXAG-KXJvFA7ljT9hTgexKslR5Jgo9D65wEcNCxVHdCprnkgsqMiQjg5WYY9YuKJqZ2za2fQ8hUSKEAZE8Ueq_eH6kvzj1St0okj4V4_j--dR_ucWq98BsJD2Bntbh1L9AhWhUD2JZzidcs_zyA3fHk-PTrwCcXBl4RfgHW9w-2
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKcIFDAIBByiJrazjg8IbWFXW9ptkWilvaWO47SVICm7qRB_it_IjDfZB0jceo0j2xrPeF6ebwBeqTRRmscmjAotQqmNC42lFwC2RwZFXEhN1cjjg97oWH6eJJMN-N3VwtCzyu5O9Bd1UVuKkW9zxSWlhBL54eJHSF2jKLvatdCYs8We-_UTXbbZ-91PeL6vOR8Ojj6OwrarQGilTJpQG546I9JUGpEnJao_3KWVhc1NXnKhe9qlJjW9yMYuKhTh5ZWmZ02hHOW4coHzXoPrkiLjKD9qsnTwBPp7c_QiIXS0PeN4HaiEOres6DzfGuBfBfD3o8wVLTe8A7db85T15_x0FzZcdQ9urYAW3oeqz4Zm1jCf8QmH574shvW_nSK1mrPvrK4YGpVs7EMV7IsrcFmccgfVZdENLgP6rC7ZoA3EM2_5ssOcIsVuyt4Ovh6-ewDHV0Lfh7BZ1ZV7BKzUpS64VZxrKW1uUwKvkcj7NudSCR7Ay46u2cUcnCNDp4aIny2IH8AOUXzxA-Fp-w_19DRrxTMzLjax1SaOc1yqRJZNI8cteYcxmkxlAG_ovDKSejwda9riBdwn4WdlfUU4dWgGJAFsdUeatdfBLFsybwAvFsMoyJSdMZWrL_0_BIGFFApArbHC2tbXR6rzMw8JrhPFhZSP_7_4c7gxOhrvZ_u7B3tP4CanSg7_LnELNpvppXuK9lWTP_NMzeDkqqXoD0H-Oqk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw9KkUCcEBsYrQAgaBgEM0E9uJ4wNCUzpRS-kiQaW5pY7jtJVoUmamQvwaX8d7nmQWkLj1Gke29fz2FeC1SmOleWTCfqlFKLVxobGUAWATUiiiUmqqRt4_SHaO5edRPFqD310tDKVVdjzRM-qyseQj73HFJYWEYtmr2rSIo-3s4-WPkCZIUaS1G6cxQ5E99-snmm-TD7vb-NZvOM-G3z7thO2EgdBKGU9DbXjqjEhTaUQRVygK8cZWlrYwRcWFTrRLTWqSvo1cv1TUO68yiTWlchTvKgTuewNuKoFaFdKSGi2MPYG236yTkRC635twZA0qpikuS_LPjwn4Vxj8naC5JPGye3C3VVXZYIZb92HN1Q_gzlIDw4dQD1hmJlPmoz9hdu5LZNjg-ylCa3p2wZqaoYLJ9r3bgh25Eo_FLbdQdJbd4sK5z5qKDVunPPNaMDssyGvsxuzd8Ovh-0dwfC3wfQzrdVO7J8AqXemSW8W5ltIWNqVGNhLpwBZcKsEDeNXBNb-cNerI0cAh4Odz4AewRRCf_0C9tf2HZnyat6SaGxeZyGoTRQUeVSH6pn3HLVmKEapPVQBv6b1y4gD4Ota0hQx4T-qllQ8U9axDlSAOYLN70rxlDZN8gcgBvJwvI1FTpMbUrrny_1A7LIRQAGoFFVauvrpSn5_59uA6VlxI-fT_h7-AW0g_-Zfdg70NuM2pqMOnKG7C-nR85Z6hqjUtnnucZnBy3UT0B8McPug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fast+North-Finding+Algorithm+on+the+Moving+Pedestal+Based+on+the+Technology+of+Extended+State+Observer+%28ESO%29&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Yunchao+Bai&rft.au=Bing+Li&rft.au=Haosu+Zhang&rft.au=Sheng+Wang&rft.date=2022-10-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=19&rft.spage=7547&rft_id=info:doi/10.3390%2Fs22197547&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ae1a1c9a11b944f9ae80e2c56251190f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon