A study of RC bridge columns under contact explosion
•RC bridge columns are tested under contact explosions.•Concrete spallation of the proximal and side faces of the two columns were observed.•Numerical models for the two columns are developed in LS-DYNA.•Comparisons between experimental and numerical results are carried out.•Damage mechanisms of the...
Saved in:
Published in | International journal of impact engineering Vol. 109; pp. 378 - 390 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.11.2017
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •RC bridge columns are tested under contact explosions.•Concrete spallation of the proximal and side faces of the two columns were observed.•Numerical models for the two columns are developed in LS-DYNA.•Comparisons between experimental and numerical results are carried out.•Damage mechanisms of the columns under contact explosions are investigated.
This paper presents a study on reinforced concrete (RC) bridge columns under contact detonation. Two 1/3 scale RC bridge columns with circular and square cross-sections are studied both experimentally and numerically. Field tests were performed on two types of columns under 1 kg TNT contact explosion, and acceleration data at different heights of the columns were collected by accelerometers. Investigation of the damage evolution and structural local response is conducted by high-fidelity physics-based numerical models that are developed in the commercial program LS-DYNA through the Arbitrary Lagrangian–Eulerian (ALE) algorithm. The results from the numerical simulation are compared with the experimental results. Field blast tests showed that for both columns the cover concrete on the proximal and side surfaces close to the explosive charge suffered serious damage, while the cover concrete on the distal face remained almost intact. Due to the column geometry, the contact explosion caused larger blast loads on the square column leading to more severe damage. The damage mechanism of the two columns is discussed based on numerical simulations. The results from the numerical model match well with those from the tests except for the back-surface damage in both cases. Field data obtained from accelerometers also show reasonable agreement with results from the numerical modelling and confirm the localized structural response of the columns under contact blast loads. It is shown that the numerical models established in this study provide reliable predictions for the structural response of bridge columns under contact explosion. |
---|---|
AbstractList | This paper presents a study on reinforced concrete (RC) bridge columns under contact detonation. Two 1/3 scale RC bridge columns with circular and square cross-sections are studied both experimentally and numerically. Field tests were performed on two types of columns under 1 kg TNT contact explosion, and acceleration data at different heights of the columns were collected by accelerometers. Investigation of the damage evolution and structural local response is conducted by high-fidelity physics-based numerical models that are developed in the commercial program LS-DYNA through the Arbitrary Lagrangian-Eulerian (ALE) algorithm. The results from the numerical simulation are compared with the experimental results. Field blast tests showed that for both columns the cover concrete on the proximal and side surfaces close to the explosive charge suffered serious damage, while the cover concrete on the distal face remained almost intact. Due to the column geometry, the contact explosion caused larger blast loads on the square column leading to more severe damage. The damage mechanism of the two columns is discussed based on numerical simulations. The results from the numerical model match well with those from the tests except for the back-surface damage in both cases. Field data obtained from accelerometers also show reasonable agreement with results from the numerical modelling and confirm the localized structural response of the columns under contact blast loads. It is shown that the numerical models established in this study provide reliable predictions for the structural response of bridge columns under contact explosion. •RC bridge columns are tested under contact explosions.•Concrete spallation of the proximal and side faces of the two columns were observed.•Numerical models for the two columns are developed in LS-DYNA.•Comparisons between experimental and numerical results are carried out.•Damage mechanisms of the columns under contact explosions are investigated. This paper presents a study on reinforced concrete (RC) bridge columns under contact detonation. Two 1/3 scale RC bridge columns with circular and square cross-sections are studied both experimentally and numerically. Field tests were performed on two types of columns under 1 kg TNT contact explosion, and acceleration data at different heights of the columns were collected by accelerometers. Investigation of the damage evolution and structural local response is conducted by high-fidelity physics-based numerical models that are developed in the commercial program LS-DYNA through the Arbitrary Lagrangian–Eulerian (ALE) algorithm. The results from the numerical simulation are compared with the experimental results. Field blast tests showed that for both columns the cover concrete on the proximal and side surfaces close to the explosive charge suffered serious damage, while the cover concrete on the distal face remained almost intact. Due to the column geometry, the contact explosion caused larger blast loads on the square column leading to more severe damage. The damage mechanism of the two columns is discussed based on numerical simulations. The results from the numerical model match well with those from the tests except for the back-surface damage in both cases. Field data obtained from accelerometers also show reasonable agreement with results from the numerical modelling and confirm the localized structural response of the columns under contact blast loads. It is shown that the numerical models established in this study provide reliable predictions for the structural response of bridge columns under contact explosion. |
Author | Li, Jun Zong, Zhouhong Yuan, Sujing Hao, Hong |
Author_xml | – sequence: 1 givenname: Sujing surname: Yuan fullname: Yuan, Sujing email: yuansujingxyz@163.com organization: School of Civil Engineering, Southeast University, Nanjing 210096, China – sequence: 2 givenname: Hong surname: Hao fullname: Hao, Hong email: hong.hao@curtin.edu.au organization: School of Civil and Mechanical Engineering, Curtin University, Kent Street, Bentley, WA6102, Australia – sequence: 3 givenname: Zhouhong surname: Zong fullname: Zong, Zhouhong email: zongzh@seu.edu.cn organization: School of Civil Engineering, Southeast University, Nanjing 210096, China – sequence: 4 givenname: Jun surname: Li fullname: Li, Jun email: j.li@uts.edu.au organization: School of Civil and Environmental Engineering, University of Technology Sydney, NSW2007, Australia |
BookMark | eNqFkE9LAzEQxYMo2Fa_gix43jrZZDe74MFS_AcFQRS8hTQ7W7K0SU2yYr-9KdWLl8KDYeD33jBvTE6ts0jIFYUpBVrd9FPTm80W7WpaABVTSKLihIxoLZqcldCckhEIxnPB2cc5GYfQQyKghBHhsyzEod1lrste59nSm3aFmXbrYWNDNtgWfdpsVDpm-L1du2CcvSBnnVoHvPydE_L-cP82f8oXL4_P89ki15yXMW9UUYiybUpR8QJZrbSmuuOACru6UrRSpYKOsYpxgQVFLDguOxA1qypoCmATcn3I3Xr3OWCIsneDt-mkpE1iBKdQJqo6UNq7EDx2cuvNRvmdpCD3Dcle_jUk9w1JSKIiGW__GbWJKqYHo1dmfdx-d7BjquDLoJdBG7QaW-NRR9k6cyziBzhyh3I |
CitedBy_id | crossref_primary_10_1016_j_compositesb_2020_108066 crossref_primary_10_1016_j_engstruct_2018_01_006 crossref_primary_10_1016_j_engfailanal_2024_108330 crossref_primary_10_1016_j_jobe_2023_106510 crossref_primary_10_1177_16878132231151837 crossref_primary_10_1016_j_ijimpeng_2020_103595 crossref_primary_10_1016_j_tws_2020_106832 crossref_primary_10_1177_13694332221074772 crossref_primary_10_1016_j_conbuildmat_2023_131465 crossref_primary_10_1016_j_ijmecsci_2019_105050 crossref_primary_10_1016_j_engstruct_2024_118787 crossref_primary_10_1016_j_ijimpeng_2022_104360 crossref_primary_10_1016_j_tust_2019_103131 crossref_primary_10_1016_j_engfailanal_2020_105104 crossref_primary_10_1016_j_compstruct_2019_111658 crossref_primary_10_1016_j_istruc_2023_06_053 crossref_primary_10_1016_j_istruc_2024_107453 crossref_primary_10_1177_1369433220924797 crossref_primary_10_1016_j_dt_2019_10_015 crossref_primary_10_1155_2022_6934078 crossref_primary_10_1016_j_engstruct_2018_12_014 crossref_primary_10_1016_j_ijimpeng_2020_103758 crossref_primary_10_1016_j_tust_2022_104918 crossref_primary_10_1016_j_engstruct_2024_118472 crossref_primary_10_1016_j_engstruct_2019_03_088 crossref_primary_10_1016_j_istruc_2023_03_030 crossref_primary_10_1016_j_istruc_2022_05_088 crossref_primary_10_1016_j_istruc_2022_12_077 crossref_primary_10_1016_j_istruc_2024_107927 crossref_primary_10_1016_j_oceaneng_2023_116520 crossref_primary_10_1016_j_engfailanal_2024_108305 crossref_primary_10_1016_j_istruc_2025_108668 crossref_primary_10_1016_j_jobe_2021_103865 crossref_primary_10_1016_j_tws_2019_106515 crossref_primary_10_1016_j_ijimpeng_2020_103628 crossref_primary_10_1016_j_jtte_2023_07_001 crossref_primary_10_1016_j_engfailanal_2021_105409 crossref_primary_10_1007_s10999_023_09656_7 crossref_primary_10_1016_j_coco_2025_102255 crossref_primary_10_1364_AO_446526 crossref_primary_10_3390_s22249727 crossref_primary_10_1016_j_oceaneng_2020_108128 crossref_primary_10_1016_j_jcsr_2023_108223 crossref_primary_10_1680_jtran_24_00004 crossref_primary_10_1016_j_istruc_2021_09_094 crossref_primary_10_1177_20414196251326186 crossref_primary_10_1016_j_tust_2024_105636 crossref_primary_10_1016_j_engstruct_2024_119138 crossref_primary_10_3390_app11177980 crossref_primary_10_1016_j_ijimpeng_2023_104540 crossref_primary_10_3390_buildings13071726 crossref_primary_10_1007_s11431_023_2632_9 crossref_primary_10_1007_s41062_022_00937_2 crossref_primary_10_1016_j_oceaneng_2019_04_031 crossref_primary_10_1016_j_istruc_2024_107514 crossref_primary_10_1016_j_conbuildmat_2020_119766 crossref_primary_10_1016_j_matpr_2022_03_367 crossref_primary_10_1016_j_ijimpeng_2019_103473 crossref_primary_10_1016_j_engfailanal_2022_106802 crossref_primary_10_1016_j_engstruct_2019_109837 crossref_primary_10_1016_j_engstruct_2022_114688 crossref_primary_10_1016_j_engstruct_2022_114487 crossref_primary_10_1016_j_dt_2022_11_004 crossref_primary_10_1016_j_jcsr_2020_105960 crossref_primary_10_1016_j_jobe_2022_104427 crossref_primary_10_1177_1369433220979443 crossref_primary_10_1002_suco_202300513 crossref_primary_10_1016_j_engstruct_2025_119882 crossref_primary_10_1016_j_enganabound_2025_106201 crossref_primary_10_1016_j_ijimpeng_2022_104335 crossref_primary_10_1016_j_ijimpeng_2023_104753 crossref_primary_10_1016_j_dt_2025_03_005 crossref_primary_10_1002_suco_201900286 crossref_primary_10_1016_j_istruc_2023_05_004 crossref_primary_10_1088_1742_6596_2148_1_012018 crossref_primary_10_1016_j_engstruct_2021_113656 crossref_primary_10_1177_13694332221084028 crossref_primary_10_1016_j_engstruct_2021_113776 crossref_primary_10_1016_j_oceaneng_2024_118170 crossref_primary_10_1016_j_istruc_2024_105922 crossref_primary_10_1155_2018_2792043 crossref_primary_10_1016_j_engstruct_2022_114499 crossref_primary_10_1016_j_ijimpeng_2020_103529 crossref_primary_10_1016_j_tws_2023_111067 crossref_primary_10_1016_j_engstruct_2022_115224 crossref_primary_10_1016_j_istruc_2023_01_030 crossref_primary_10_1016_j_jcsr_2023_107993 crossref_primary_10_1016_j_engstruct_2024_119063 |
Cites_doi | 10.1016/j.compstruc.2005.09.029 10.1016/j.engstruct.2010.06.006 10.1016/j.engfailanal.2015.02.007 10.1016/j.ijimpeng.2009.04.003 10.1016/j.ijimpeng.2015.02.006 10.1260/2041-4196.6.1.1 10.1016/j.ijimpeng.2012.11.008 10.1061/(ASCE)1084-0702(2008)13:6(586) 10.1007/s12209-008-0079-6 10.1061/(ASCE)BE.1943-5592.0000124 10.1016/j.compstruc.2004.08.014 10.1061/(ASCE)BE.1943-5592.0000738 10.1016/j.ijimpeng.2015.08.004 10.1061/(ASCE)BE.1943-5592.0000270 10.1061/(ASCE)ST.1943-541X.0000440 10.1061/(ASCE)ST.1943-541X.0000149 10.1016/j.ijrmms.2007.08.002 10.1016/j.engstruct.2014.04.042 10.1007/s00193-007-0099-5 10.1016/j.engstruct.2010.06.007 10.1016/j.ijimpeng.2014.02.001 10.1061/(ASCE)BE.1943-5592.0000220 10.1260/2041-4196.4.3.315 10.1016/j.engstruct.2015.08.032 10.1061/(ASCE)BE.1943-5592.0000547 10.1016/j.jcsr.2010.12.001 10.1016/j.ijimpeng.2014.07.018 10.1061/(ASCE)BE.1943-5592.0000265 10.1061/(ASCE)BE.1943-5592.0000221 10.1260/2041-4196.1.2.257 10.1016/j.ijimpeng.2012.03.010 |
ContentType | Journal Article |
Copyright | 2017 Copyright Elsevier BV Nov 2017 |
Copyright_xml | – notice: 2017 – notice: Copyright Elsevier BV Nov 2017 |
DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1016/j.ijimpeng.2017.07.017 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3509 |
EndPage | 390 |
ExternalDocumentID | 10_1016_j_ijimpeng_2017_07_017 S0734743X17306243 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TN5 UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 7TB 8BQ 8FD EFKBS FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c445t-9a2275d957642e38acc1cf40eaef86a16a5a0f336347e21ee24ebf07836609203 |
IEDL.DBID | .~1 |
ISSN | 0734-743X |
IngestDate | Mon Jul 14 09:06:13 EDT 2025 Thu Apr 24 23:12:49 EDT 2025 Tue Jul 01 03:54:26 EDT 2025 Fri Feb 23 02:28:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Contact explosion ALE Numerical simulationl Reinforced concrete bridge column Blast test |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c445t-9a2275d957642e38acc1cf40eaef86a16a5a0f336347e21ee24ebf07836609203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1966074105 |
PQPubID | 2045463 |
PageCount | 13 |
ParticipantIDs | proquest_journals_1966074105 crossref_primary_10_1016_j_ijimpeng_2017_07_017 crossref_citationtrail_10_1016_j_ijimpeng_2017_07_017 elsevier_sciencedirect_doi_10_1016_j_ijimpeng_2017_07_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-11-01 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of impact engineering |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Hao, Hao (bib0031) 2014; 73 Trevino (bib0037) 2000 Kappos, Penelis (bib0028) 2010 Wang, Li, Wang (bib0019) 2008; 45 Fujikura, Bruneau (bib0003) 2012; 17 Luccioni, Aráoz, Labanda (bib0039) 2013; 4 Wang, Lu, Hao, Chong (bib0030) 2005; 83 Koneshwaran, Thambiratnam, Gallage (bib0029) 2013 Hao, Tang (bib0035) 2010; 32 Li, Hao (bib0008) 2014; 68 Yan, Liu, Song, Jiang (bib0038) 2015; 51 Williamson, E.B., et al. (2010). Blast-resistant highway bridges: design and detailing guidelines. National Cooperative Highway Research Program (NCHRP) Rep. 645, Transportation Research Board, Washington, DC. Arlery, Rouquand, Chhim (bib0020) 2013 Li, Wu, Hao (bib0010) 2015; 102 Williamson, Bayrak, Davis, Williams (bib0005) 2011; 16 Liu, Torres, Agrawal, Yi, Liu (bib0013) 2015; 20 Xu, Lu (bib0033) 2006; 84 Castedo, Segarra, Alañon, Lopez, Santos, Sanchidrian (bib0041) 2015; 86 Thiagarajan, Kadambi, Robert, Johnson (bib0022) 2015; 75 Li, Huang, Lim (bib0040) 2010; 136 Beppu, Ohno, Ohkubo, Li, Satoh (bib0018) 2010; 1 Aoude, Dagenais, Burrell, Saatcioglu (bib0015) 2015; 80 Yi, Agrawal, Ettouney, Alampalli (bib0011) 2014; 19 Bao, Li (bib0016) 2010; 37 Williamson, Bayrak, Davis, Daniel Williams (bib0006) 2011; 16 Li, Hao (bib0009) 2013; 54 Wu, Li, Tsai (bib0017) 2011; 67 Tang, Hao (bib0034) 2010; 32 Fujikura, Bruneau (bib0002) 2011; 16 Yuan, Gong, Jin (bib0021) 2008; 14 Williams (bib0027) 2009 Tabatabaei, Volz (bib0036) 2012 Malvar, Crawford (bib0032) 1998 Williams, Williamson (bib0026) 2012; 17 Wang, Zhang, Lu, Wang, Tang (bib0024) 2012; 49 Castedo, Segarra, Alañon, Lopez, Santos, Sanchidrian (bib0023) 2015; 86 Williams, Williamson (bib0014) 2011; 137 Qasrawi, Heffernan, Fam (bib0025) 2015; 6 Shi, Hao, Li (bib0007) 2007; 17 Yi, Agrawal, Ettouney, Alampalli (bib0012) 2014; 19 Fujikura, Bruneau, Lopez-Garcia (bib0001) 2008; 13 Malvar (10.1016/j.ijimpeng.2017.07.017_bib0032) 1998 Tang (10.1016/j.ijimpeng.2017.07.017_bib0034) 2010; 32 Fujikura (10.1016/j.ijimpeng.2017.07.017_bib0003) 2012; 17 Yan (10.1016/j.ijimpeng.2017.07.017_bib0038) 2015; 51 Hao (10.1016/j.ijimpeng.2017.07.017_bib0031) 2014; 73 Williams (10.1016/j.ijimpeng.2017.07.017_bib0027) 2009 Hao (10.1016/j.ijimpeng.2017.07.017_bib0035) 2010; 32 Yi (10.1016/j.ijimpeng.2017.07.017_bib0011) 2014; 19 Wang (10.1016/j.ijimpeng.2017.07.017_bib0030) 2005; 83 Williamson (10.1016/j.ijimpeng.2017.07.017_bib0005) 2011; 16 Liu (10.1016/j.ijimpeng.2017.07.017_bib0013) 2015; 20 Beppu (10.1016/j.ijimpeng.2017.07.017_bib0018) 2010; 1 10.1016/j.ijimpeng.2017.07.017_bib0004 Bao (10.1016/j.ijimpeng.2017.07.017_bib0016) 2010; 37 Wang (10.1016/j.ijimpeng.2017.07.017_bib0019) 2008; 45 Castedo (10.1016/j.ijimpeng.2017.07.017_bib0023) 2015; 86 Wang (10.1016/j.ijimpeng.2017.07.017_bib0024) 2012; 49 Li (10.1016/j.ijimpeng.2017.07.017_bib0040) 2010; 136 Fujikura (10.1016/j.ijimpeng.2017.07.017_bib0002) 2011; 16 Williams (10.1016/j.ijimpeng.2017.07.017_bib0014) 2011; 137 Li (10.1016/j.ijimpeng.2017.07.017_bib0009) 2013; 54 Trevino (10.1016/j.ijimpeng.2017.07.017_bib0037) 2000 Wu (10.1016/j.ijimpeng.2017.07.017_bib0017) 2011; 67 Aoude (10.1016/j.ijimpeng.2017.07.017_bib0015) 2015; 80 Li (10.1016/j.ijimpeng.2017.07.017_bib0008) 2014; 68 Xu (10.1016/j.ijimpeng.2017.07.017_bib0033) 2006; 84 Yi (10.1016/j.ijimpeng.2017.07.017_bib0012) 2014; 19 Yuan (10.1016/j.ijimpeng.2017.07.017_bib0021) 2008; 14 Kappos (10.1016/j.ijimpeng.2017.07.017_bib0028) 2010 Qasrawi (10.1016/j.ijimpeng.2017.07.017_bib0025) 2015; 6 Castedo (10.1016/j.ijimpeng.2017.07.017_bib0041) 2015; 86 Thiagarajan (10.1016/j.ijimpeng.2017.07.017_bib0022) 2015; 75 Koneshwaran (10.1016/j.ijimpeng.2017.07.017_bib0029) 2013 Li (10.1016/j.ijimpeng.2017.07.017_bib0010) 2015; 102 Tabatabaei (10.1016/j.ijimpeng.2017.07.017_bib0036) 2012 Shi (10.1016/j.ijimpeng.2017.07.017_bib0007) 2007; 17 Fujikura (10.1016/j.ijimpeng.2017.07.017_bib0001) 2008; 13 Arlery (10.1016/j.ijimpeng.2017.07.017_bib0020) 2013 Williams (10.1016/j.ijimpeng.2017.07.017_bib0026) 2012; 17 Williamson (10.1016/j.ijimpeng.2017.07.017_bib0006) 2011; 16 Luccioni (10.1016/j.ijimpeng.2017.07.017_bib0039) 2013; 4 |
References_xml | – volume: 32 start-page: 3180 year: 2010 end-page: 3192 ident: bib0034 article-title: Numerical simulation of a cable-stayed bridge response to blast loads, Part I: model development and response calculations publication-title: Eng Struct – volume: 14 start-page: 464 year: 2008 end-page: 469 ident: bib0021 article-title: Spallation mechanism of RC slabs under contact detonation publication-title: Trans Tianjin Univ – reference: Williamson, E.B., et al. (2010). Blast-resistant highway bridges: design and detailing guidelines. National Cooperative Highway Research Program (NCHRP) Rep. 645, Transportation Research Board, Washington, DC. – volume: 75 start-page: 162 year: 2015 end-page: 173 ident: bib0022 article-title: Experimental and finite element analysis of doubly reinforced concrete slabs subjected to blast loads publication-title: Int J Impact Eng – volume: 45 start-page: 600 year: 2008 end-page: 608 ident: bib0019 article-title: Numerical analysis of blast-induced wave propagation and spalling damage in a rock plate publication-title: Int J Rock Mech Min Sci – volume: 51 start-page: 9 year: 2015 end-page: 19 ident: bib0038 article-title: Numerical study on damage mechanism of RC beams under close-in blast loading publication-title: Eng Fail Anal – volume: 19 year: 2014 ident: bib0011 article-title: Blast load effects on highway bridges. I: modeling and blast load effects publication-title: J Bridge Eng – start-page: 1 year: 2013 end-page: 10 ident: bib0020 article-title: Numerical dynamic simulations for the prediction of damage and loss of capacity of RC column subjected to contact detonations. FraMCoS-8 publication-title: 8th international conference on fracture mechanics of concrete and concrete structures – volume: 17 start-page: 490 year: 2012 end-page: 499 ident: bib0026 article-title: Procedure for predicting blast loads acting on bridge columns publication-title: J Bridge Eng – volume: 136 start-page: 627 year: 2010 end-page: 636 ident: bib0040 article-title: Verification of non-dimensional energy spectrum-based blast design for reinforced concrete members through actual blast tests publication-title: J Struct Eng – volume: 1 start-page: 257 year: 2010 end-page: 270 ident: bib0018 article-title: Contact explosion resistance of concrete plates externally strengthened with FRP laminates publication-title: Int J Protective Struct – volume: 19 year: 2014 ident: bib0012 article-title: Blast load effects on highway bridges. II: failure modes and multihazard correlations publication-title: J Bridge Eng – volume: 73 start-page: 24 year: 2014 end-page: 38 ident: bib0031 article-title: Influence of the concrete DIF model on the numerical predictions of RC wall responses to blast loadings publication-title: Eng Struct – volume: 86 start-page: 145 year: 2015 end-page: 156 ident: bib0041 article-title: Air blast resistance of full-scale slabs with different compositions: numerical modeling and field validation publication-title: Int J Impact Eng – volume: 17 start-page: 113 year: 2007 end-page: 133 ident: bib0007 article-title: Numerical simulation of blast wave interaction with structure columns publication-title: Shock Waves – volume: 86 start-page: 145 year: 2015 end-page: 156 ident: bib0023 article-title: Air blast resistance of full-scale slabs with different compositions: Numerical modeling and field validation publication-title: Int J Impact Eng – volume: 84 start-page: 431 year: 2006 end-page: 438 ident: bib0033 article-title: Numerical simulation study of spallation in reinforced concrete plates subjected to blast loading publication-title: Comput Struct – volume: 68 start-page: 41 year: 2014 end-page: 55 ident: bib0008 article-title: Numerical study of concrete spall damage to blast loads publication-title: Int J Impact Eng – volume: 16 start-page: 703 year: 2011 end-page: 710 ident: bib0006 article-title: Performance of bridge columns subjected to blast loads. II: results and recommendations publication-title: J Bridge Eng – start-page: 5 year: 1998 end-page: 6 ident: bib0032 article-title: Dynamic increase factors for steel reinforcing bars publication-title: Twenty-eighth DDESB seminar, Orlando, FL, USA, August – volume: 80 start-page: 185 year: 2015 end-page: 202 ident: bib0015 article-title: Behavior of ultra-high performance fiber reinforced concrete columns under blast loading publication-title: Int J Impact Eng – year: 2009 ident: bib0027 article-title: Analysis and response mechanisms of blast-loaded reinforced concrete columns – volume: 17 start-page: 249 year: 2012 end-page: 258 ident: bib0003 article-title: Dynamic analysis of multihazard-resistant bridge piers having concrete-filled steel tube under blast loading publication-title: J Bridge Eng – volume: 54 start-page: 217 year: 2013 end-page: 231 ident: bib0009 article-title: Influence of brittle shear damage on accuracy of the two-step method in prediction of structural response to blast loads publication-title: Int J Impact Eng – volume: 49 start-page: 158 year: 2012 end-page: 164 ident: bib0024 article-title: Experimental study on scaling the explosion resistance of a one-way square reinforced concrete slab under a close-in blast loading publication-title: Int J Impact Eng – volume: 102 start-page: 395 year: 2015 end-page: 408 ident: bib0010 article-title: Investigation of ultra-high performance concrete slab and normal strength concrete slab under contact explosion publication-title: Eng Struct – volume: 6 start-page: 1 year: 2015 end-page: 22 ident: bib0025 article-title: Numerical determination of equivalent reflected blast parameters acting on circular cross sections publication-title: Int J Protective Struct – volume: 13 start-page: 586 year: 2008 end-page: 594 ident: bib0001 article-title: Experimental investigation of multihazard resistant bridge piers having concrete-filled steel tube under blast loading publication-title: J Bridge Eng – volume: 20 year: 2015 ident: bib0013 article-title: Simplified blast-load effects on the column and bent beam of highway bridges publication-title: J Bridge Eng – volume: 83 start-page: 339 year: 2005 end-page: 356 ident: bib0030 article-title: A full coupled numerical analysis approach for buried structures subjected to subsurface blast publication-title: Comput Struct – year: 2013 ident: bib0029 article-title: Response of a buried tunnel to surface blast using different numerical techniques publication-title: Proceedings of the 14th international conference on civil, structural and environmental engineering computing – volume: 37 start-page: 295 year: 2010 end-page: 308 ident: bib0016 article-title: Residual strength of blast damaged reinforced concrete columns publication-title: Int J Impact Eng – start-page: 13 year: 2000 ident: bib0037 article-title: Applications of arbitrary lagrangian eulerian (ALE) analysis approach to underwater and air explosion problems – start-page: 4 year: 2012 end-page: 5 ident: bib0036 article-title: A comparison between three different blast methods in LS-DYNA: LBE, MM-ALE, Coupling of LBE and MM-ALE publication-title: Proceedings of the 12th international LS-DYNA users conference, Dearborn, MI, USA – volume: 4 start-page: 315 year: 2013 end-page: 340 ident: bib0039 article-title: Defining erosion limit for concrete publication-title: Int J Protective Struct – volume: 67 start-page: 602 year: 2011 end-page: 612 ident: bib0017 article-title: The effects of explosive mass ratio on residual compressive capacity of contact blast damaged composite columns publication-title: J Constr Steel Res – volume: 16 start-page: 63 year: 2011 end-page: 71 ident: bib0002 article-title: Experimental investigation of seismically resistant bridge piers under blast loading publication-title: J Bridge Eng – year: 2010 ident: bib0028 article-title: Earthquake resistant concrete structures – volume: 16 start-page: 693 year: 2011 end-page: 702 ident: bib0005 article-title: Performance of bridge columns subjected to blast loads. I: experimental program publication-title: J Bridge Eng – volume: 137 start-page: 903 year: 2011 end-page: 913 ident: bib0014 article-title: Response of reinforced concrete bridge columns subjected to blast loads publication-title: J Struct Eng – volume: 32 start-page: 3193 year: 2010 end-page: 3205 ident: bib0035 article-title: Numerical simulation of a cable-stayed bridge response to blast loads, Part II: damage prediction and FRP strengthening publication-title: Eng Struct – volume: 84 start-page: 431 issue: 5-6 year: 2006 ident: 10.1016/j.ijimpeng.2017.07.017_bib0033 article-title: Numerical simulation study of spallation in reinforced concrete plates subjected to blast loading publication-title: Comput Struct doi: 10.1016/j.compstruc.2005.09.029 – volume: 32 start-page: 3193 issue: 10 year: 2010 ident: 10.1016/j.ijimpeng.2017.07.017_bib0035 article-title: Numerical simulation of a cable-stayed bridge response to blast loads, Part II: damage prediction and FRP strengthening publication-title: Eng Struct doi: 10.1016/j.engstruct.2010.06.006 – volume: 51 start-page: 9 year: 2015 ident: 10.1016/j.ijimpeng.2017.07.017_bib0038 article-title: Numerical study on damage mechanism of RC beams under close-in blast loading publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2015.02.007 – volume: 37 start-page: 295 issue: 3 year: 2010 ident: 10.1016/j.ijimpeng.2017.07.017_bib0016 article-title: Residual strength of blast damaged reinforced concrete columns publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2009.04.003 – start-page: 13 year: 2000 ident: 10.1016/j.ijimpeng.2017.07.017_bib0037 – volume: 19 issue: 4 year: 2014 ident: 10.1016/j.ijimpeng.2017.07.017_bib0012 article-title: Blast load effects on highway bridges. II: failure modes and multihazard correlations publication-title: J Bridge Eng – volume: 80 start-page: 185 year: 2015 ident: 10.1016/j.ijimpeng.2017.07.017_bib0015 article-title: Behavior of ultra-high performance fiber reinforced concrete columns under blast loading publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2015.02.006 – volume: 6 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.ijimpeng.2017.07.017_bib0025 article-title: Numerical determination of equivalent reflected blast parameters acting on circular cross sections publication-title: Int J Protective Struct doi: 10.1260/2041-4196.6.1.1 – start-page: 4 year: 2012 ident: 10.1016/j.ijimpeng.2017.07.017_bib0036 article-title: A comparison between three different blast methods in LS-DYNA: LBE, MM-ALE, Coupling of LBE and MM-ALE – volume: 54 start-page: 217 year: 2013 ident: 10.1016/j.ijimpeng.2017.07.017_bib0009 article-title: Influence of brittle shear damage on accuracy of the two-step method in prediction of structural response to blast loads publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2012.11.008 – year: 2010 ident: 10.1016/j.ijimpeng.2017.07.017_bib0028 – start-page: 1 year: 2013 ident: 10.1016/j.ijimpeng.2017.07.017_bib0020 article-title: Numerical dynamic simulations for the prediction of damage and loss of capacity of RC column subjected to contact detonations. FraMCoS-8 – volume: 13 start-page: 586 issue: 6 year: 2008 ident: 10.1016/j.ijimpeng.2017.07.017_bib0001 article-title: Experimental investigation of multihazard resistant bridge piers having concrete-filled steel tube under blast loading publication-title: J Bridge Eng doi: 10.1061/(ASCE)1084-0702(2008)13:6(586) – volume: 14 start-page: 464 year: 2008 ident: 10.1016/j.ijimpeng.2017.07.017_bib0021 article-title: Spallation mechanism of RC slabs under contact detonation publication-title: Trans Tianjin Univ doi: 10.1007/s12209-008-0079-6 – ident: 10.1016/j.ijimpeng.2017.07.017_bib0004 – volume: 16 start-page: 63 issue: 1 year: 2011 ident: 10.1016/j.ijimpeng.2017.07.017_bib0002 article-title: Experimental investigation of seismically resistant bridge piers under blast loading publication-title: J Bridge Eng doi: 10.1061/(ASCE)BE.1943-5592.0000124 – volume: 83 start-page: 339 issue: 4-5 year: 2005 ident: 10.1016/j.ijimpeng.2017.07.017_bib0030 article-title: A full coupled numerical analysis approach for buried structures subjected to subsurface blast publication-title: Comput Struct doi: 10.1016/j.compstruc.2004.08.014 – volume: 20 issue: 10 year: 2015 ident: 10.1016/j.ijimpeng.2017.07.017_bib0013 article-title: Simplified blast-load effects on the column and bent beam of highway bridges publication-title: J Bridge Eng doi: 10.1061/(ASCE)BE.1943-5592.0000738 – volume: 86 start-page: 145 year: 2015 ident: 10.1016/j.ijimpeng.2017.07.017_bib0023 article-title: Air blast resistance of full-scale slabs with different compositions: Numerical modeling and field validation publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2015.08.004 – volume: 17 start-page: 249 issue: 2 year: 2012 ident: 10.1016/j.ijimpeng.2017.07.017_bib0003 article-title: Dynamic analysis of multihazard-resistant bridge piers having concrete-filled steel tube under blast loading publication-title: J Bridge Eng doi: 10.1061/(ASCE)BE.1943-5592.0000270 – volume: 137 start-page: 903 issue: 9 year: 2011 ident: 10.1016/j.ijimpeng.2017.07.017_bib0014 article-title: Response of reinforced concrete bridge columns subjected to blast loads publication-title: J Struct Eng doi: 10.1061/(ASCE)ST.1943-541X.0000440 – volume: 86 start-page: 145 year: 2015 ident: 10.1016/j.ijimpeng.2017.07.017_bib0041 article-title: Air blast resistance of full-scale slabs with different compositions: numerical modeling and field validation publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2015.08.004 – volume: 136 start-page: 627 issue: 6 year: 2010 ident: 10.1016/j.ijimpeng.2017.07.017_bib0040 article-title: Verification of non-dimensional energy spectrum-based blast design for reinforced concrete members through actual blast tests publication-title: J Struct Eng doi: 10.1061/(ASCE)ST.1943-541X.0000149 – volume: 45 start-page: 600 issue: 4 year: 2008 ident: 10.1016/j.ijimpeng.2017.07.017_bib0019 article-title: Numerical analysis of blast-induced wave propagation and spalling damage in a rock plate publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2007.08.002 – volume: 73 start-page: 24 year: 2014 ident: 10.1016/j.ijimpeng.2017.07.017_bib0031 article-title: Influence of the concrete DIF model on the numerical predictions of RC wall responses to blast loadings publication-title: Eng Struct doi: 10.1016/j.engstruct.2014.04.042 – volume: 17 start-page: 113 issue: 1-2 year: 2007 ident: 10.1016/j.ijimpeng.2017.07.017_bib0007 article-title: Numerical simulation of blast wave interaction with structure columns publication-title: Shock Waves doi: 10.1007/s00193-007-0099-5 – volume: 32 start-page: 3180 issue: 10 year: 2010 ident: 10.1016/j.ijimpeng.2017.07.017_bib0034 article-title: Numerical simulation of a cable-stayed bridge response to blast loads, Part I: model development and response calculations publication-title: Eng Struct doi: 10.1016/j.engstruct.2010.06.007 – volume: 68 start-page: 41 year: 2014 ident: 10.1016/j.ijimpeng.2017.07.017_bib0008 article-title: Numerical study of concrete spall damage to blast loads publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2014.02.001 – volume: 16 start-page: 693 issue: 6 year: 2011 ident: 10.1016/j.ijimpeng.2017.07.017_bib0005 article-title: Performance of bridge columns subjected to blast loads. I: experimental program publication-title: J Bridge Eng doi: 10.1061/(ASCE)BE.1943-5592.0000220 – volume: 4 start-page: 315 issue: 3 year: 2013 ident: 10.1016/j.ijimpeng.2017.07.017_bib0039 article-title: Defining erosion limit for concrete publication-title: Int J Protective Struct doi: 10.1260/2041-4196.4.3.315 – volume: 102 start-page: 395 year: 2015 ident: 10.1016/j.ijimpeng.2017.07.017_bib0010 article-title: Investigation of ultra-high performance concrete slab and normal strength concrete slab under contact explosion publication-title: Eng Struct doi: 10.1016/j.engstruct.2015.08.032 – volume: 19 issue: 4 year: 2014 ident: 10.1016/j.ijimpeng.2017.07.017_bib0011 article-title: Blast load effects on highway bridges. I: modeling and blast load effects publication-title: J Bridge Eng doi: 10.1061/(ASCE)BE.1943-5592.0000547 – volume: 67 start-page: 602 issue: 4 year: 2011 ident: 10.1016/j.ijimpeng.2017.07.017_bib0017 article-title: The effects of explosive mass ratio on residual compressive capacity of contact blast damaged composite columns publication-title: J Constr Steel Res doi: 10.1016/j.jcsr.2010.12.001 – volume: 75 start-page: 162 year: 2015 ident: 10.1016/j.ijimpeng.2017.07.017_bib0022 article-title: Experimental and finite element analysis of doubly reinforced concrete slabs subjected to blast loads publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2014.07.018 – start-page: 5 year: 1998 ident: 10.1016/j.ijimpeng.2017.07.017_bib0032 article-title: Dynamic increase factors for steel reinforcing bars – volume: 17 start-page: 490 issue: 3 year: 2012 ident: 10.1016/j.ijimpeng.2017.07.017_bib0026 article-title: Procedure for predicting blast loads acting on bridge columns publication-title: J Bridge Eng doi: 10.1061/(ASCE)BE.1943-5592.0000265 – volume: 16 start-page: 703 issue: 6 year: 2011 ident: 10.1016/j.ijimpeng.2017.07.017_bib0006 article-title: Performance of bridge columns subjected to blast loads. II: results and recommendations publication-title: J Bridge Eng doi: 10.1061/(ASCE)BE.1943-5592.0000221 – year: 2013 ident: 10.1016/j.ijimpeng.2017.07.017_bib0029 article-title: Response of a buried tunnel to surface blast using different numerical techniques – volume: 1 start-page: 257 issue: 2 year: 2010 ident: 10.1016/j.ijimpeng.2017.07.017_bib0018 article-title: Contact explosion resistance of concrete plates externally strengthened with FRP laminates publication-title: Int J Protective Struct doi: 10.1260/2041-4196.1.2.257 – year: 2009 ident: 10.1016/j.ijimpeng.2017.07.017_bib0027 – volume: 49 start-page: 158 year: 2012 ident: 10.1016/j.ijimpeng.2017.07.017_bib0024 article-title: Experimental study on scaling the explosion resistance of a one-way square reinforced concrete slab under a close-in blast loading publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2012.03.010 |
SSID | ssj0017050 |
Score | 2.5171618 |
Snippet | •RC bridge columns are tested under contact explosions.•Concrete spallation of the proximal and side faces of the two columns were observed.•Numerical models... This paper presents a study on reinforced concrete (RC) bridge columns under contact detonation. Two 1/3 scale RC bridge columns with circular and square... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 378 |
SubjectTerms | Acceleration Accelerometers ALE Blast loads Blast test Bridges Columns (structural) Computer simulation Contact explosion Detonation Experiments Explosions Field tests Mathematical models Numerical simulationl Reinforced concrete Reinforced concrete bridge column Simulation Structural damage |
Title | A study of RC bridge columns under contact explosion |
URI | https://dx.doi.org/10.1016/j.ijimpeng.2017.07.017 https://www.proquest.com/docview/1966074105 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA5jXvQg_sTpHDl47ZqkadIex3BMxR3UwW4hTVPpkG5s8-rfbl5_jCnCDkIvLUkpL6_vvabf9z2E7khKtaQZtG9PI49TnnoJscLTsaWRASpmAkTh54kYT_njLJy10LDhwgCsso79VUwvo3V9xa-t6S_z3H91zsld_ptR56SCcVD85FyCl_e_tjAPUIsp91ncYA9G77CE5_18nrvitHgHiJcsRTzLxmV_JqhfobrMP6MTdFwXjnhQPdspatniDB3tyAmeIz7ApVosXmT4ZYgrLhY2EH-KNQa22AoDNF2bDbaAvYOdsgs0Hd2_Dcde3RXBM5yHGy_WjMkwjd2HAmc2iLQx1GScWG2zSGgqdKhJFgTCWccyai3jNsngb50QJGYkuETtYlHYK4Rdbo94SrTL85anWmsTS2uYIYG0mau0OihsTKFMLRkOnSs-VIMNm6vGhApMqIg7qOwgfztvWYlm7J0RN5ZWP5Zfuci-d263WRpVv4BrRUF1VAKG9foft75Bh3BWcQ-7qL1ZfdpbV4Rskl7pZT10MHh4Gk--AVx621g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gHNSD8RlR1D14rd1tt68jIRKQx0Eh4bZZtltTYgoB_P_u9EHQmHgw6antNM10OjPtft83AI80ZjJgCY5vj0OLMx5bc6p9S0aahQqpmHMkCo_Gfm_KX2berAadiguDsMoy9xc5Pc_W5R679Ka9SlP7zQQnN_VvxkyQ-g53D6CB6lReHRrt_qA33i0mBDQf1IrnW2iwRxRePKWL1PSn2TuivIJcxzOfXfZrjfqRrfMS1D2Fk7J3JO3i9s6gprNzON5TFLwA3ia5YCxZJuS1Qwo6FlGYgrINQcLYmiA6Xaot0Qi_w59llzDtPk86PascjGApzr2tFUnHCbw4Mt8K3NFuKJViKuFUS52EvmS-9CRNXNc3DtIO09rhep7ggp3v08ih7hXUs2Wmr4GY8h7ymEpT6jWPpZQqCrRyFHUDnZhmqwle5QqhStVwHF7xISp42EJULhToQkHNxoIm2Du7VaGb8adFVHlafIsAYZL7n7at6tGI8h3cCIbCowHCWG_-cekHOOxNRkMx7I8Ht3CERwoqYgvq2_WnvjM9yXZ-X8bcF-383gk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+study+of+RC+bridge+columns+under+contact+explosion&rft.jtitle=International+journal+of+impact+engineering&rft.au=Yuan%2C+Sujing&rft.au=Hao%2C+Hong&rft.au=Zong%2C+Zhouhong&rft.au=Li%2C+Jun&rft.date=2017-11-01&rft.pub=Elsevier+BV&rft.issn=0734-743X&rft.eissn=1879-3509&rft.volume=109&rft.spage=378&rft_id=info:doi/10.1016%2Fj.ijimpeng.2017.07.017&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon |