A study of RC bridge columns under contact explosion

•RC bridge columns are tested under contact explosions.•Concrete spallation of the proximal and side faces of the two columns were observed.•Numerical models for the two columns are developed in LS-DYNA.•Comparisons between experimental and numerical results are carried out.•Damage mechanisms of the...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of impact engineering Vol. 109; pp. 378 - 390
Main Authors Yuan, Sujing, Hao, Hong, Zong, Zhouhong, Li, Jun
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.11.2017
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •RC bridge columns are tested under contact explosions.•Concrete spallation of the proximal and side faces of the two columns were observed.•Numerical models for the two columns are developed in LS-DYNA.•Comparisons between experimental and numerical results are carried out.•Damage mechanisms of the columns under contact explosions are investigated. This paper presents a study on reinforced concrete (RC) bridge columns under contact detonation. Two 1/3 scale RC bridge columns with circular and square cross-sections are studied both experimentally and numerically. Field tests were performed on two types of columns under 1 kg TNT contact explosion, and acceleration data at different heights of the columns were collected by accelerometers. Investigation of the damage evolution and structural local response is conducted by high-fidelity physics-based numerical models that are developed in the commercial program LS-DYNA through the Arbitrary Lagrangian–Eulerian (ALE) algorithm. The results from the numerical simulation are compared with the experimental results. Field blast tests showed that for both columns the cover concrete on the proximal and side surfaces close to the explosive charge suffered serious damage, while the cover concrete on the distal face remained almost intact. Due to the column geometry, the contact explosion caused larger blast loads on the square column leading to more severe damage. The damage mechanism of the two columns is discussed based on numerical simulations. The results from the numerical model match well with those from the tests except for the back-surface damage in both cases. Field data obtained from accelerometers also show reasonable agreement with results from the numerical modelling and confirm the localized structural response of the columns under contact blast loads. It is shown that the numerical models established in this study provide reliable predictions for the structural response of bridge columns under contact explosion.
AbstractList This paper presents a study on reinforced concrete (RC) bridge columns under contact detonation. Two 1/3 scale RC bridge columns with circular and square cross-sections are studied both experimentally and numerically. Field tests were performed on two types of columns under 1 kg TNT contact explosion, and acceleration data at different heights of the columns were collected by accelerometers. Investigation of the damage evolution and structural local response is conducted by high-fidelity physics-based numerical models that are developed in the commercial program LS-DYNA through the Arbitrary Lagrangian-Eulerian (ALE) algorithm. The results from the numerical simulation are compared with the experimental results. Field blast tests showed that for both columns the cover concrete on the proximal and side surfaces close to the explosive charge suffered serious damage, while the cover concrete on the distal face remained almost intact. Due to the column geometry, the contact explosion caused larger blast loads on the square column leading to more severe damage. The damage mechanism of the two columns is discussed based on numerical simulations. The results from the numerical model match well with those from the tests except for the back-surface damage in both cases. Field data obtained from accelerometers also show reasonable agreement with results from the numerical modelling and confirm the localized structural response of the columns under contact blast loads. It is shown that the numerical models established in this study provide reliable predictions for the structural response of bridge columns under contact explosion.
•RC bridge columns are tested under contact explosions.•Concrete spallation of the proximal and side faces of the two columns were observed.•Numerical models for the two columns are developed in LS-DYNA.•Comparisons between experimental and numerical results are carried out.•Damage mechanisms of the columns under contact explosions are investigated. This paper presents a study on reinforced concrete (RC) bridge columns under contact detonation. Two 1/3 scale RC bridge columns with circular and square cross-sections are studied both experimentally and numerically. Field tests were performed on two types of columns under 1 kg TNT contact explosion, and acceleration data at different heights of the columns were collected by accelerometers. Investigation of the damage evolution and structural local response is conducted by high-fidelity physics-based numerical models that are developed in the commercial program LS-DYNA through the Arbitrary Lagrangian–Eulerian (ALE) algorithm. The results from the numerical simulation are compared with the experimental results. Field blast tests showed that for both columns the cover concrete on the proximal and side surfaces close to the explosive charge suffered serious damage, while the cover concrete on the distal face remained almost intact. Due to the column geometry, the contact explosion caused larger blast loads on the square column leading to more severe damage. The damage mechanism of the two columns is discussed based on numerical simulations. The results from the numerical model match well with those from the tests except for the back-surface damage in both cases. Field data obtained from accelerometers also show reasonable agreement with results from the numerical modelling and confirm the localized structural response of the columns under contact blast loads. It is shown that the numerical models established in this study provide reliable predictions for the structural response of bridge columns under contact explosion.
Author Li, Jun
Zong, Zhouhong
Yuan, Sujing
Hao, Hong
Author_xml – sequence: 1
  givenname: Sujing
  surname: Yuan
  fullname: Yuan, Sujing
  email: yuansujingxyz@163.com
  organization: School of Civil Engineering, Southeast University, Nanjing 210096, China
– sequence: 2
  givenname: Hong
  surname: Hao
  fullname: Hao, Hong
  email: hong.hao@curtin.edu.au
  organization: School of Civil and Mechanical Engineering, Curtin University, Kent Street, Bentley, WA6102, Australia
– sequence: 3
  givenname: Zhouhong
  surname: Zong
  fullname: Zong, Zhouhong
  email: zongzh@seu.edu.cn
  organization: School of Civil Engineering, Southeast University, Nanjing 210096, China
– sequence: 4
  givenname: Jun
  surname: Li
  fullname: Li, Jun
  email: j.li@uts.edu.au
  organization: School of Civil and Environmental Engineering, University of Technology Sydney, NSW2007, Australia
BookMark eNqFkE9LAzEQxYMo2Fa_gix43jrZZDe74MFS_AcFQRS8hTQ7W7K0SU2yYr-9KdWLl8KDYeD33jBvTE6ts0jIFYUpBVrd9FPTm80W7WpaABVTSKLihIxoLZqcldCckhEIxnPB2cc5GYfQQyKghBHhsyzEod1lrste59nSm3aFmXbrYWNDNtgWfdpsVDpm-L1du2CcvSBnnVoHvPydE_L-cP82f8oXL4_P89ki15yXMW9UUYiybUpR8QJZrbSmuuOACru6UrRSpYKOsYpxgQVFLDguOxA1qypoCmATcn3I3Xr3OWCIsneDt-mkpE1iBKdQJqo6UNq7EDx2cuvNRvmdpCD3Dcle_jUk9w1JSKIiGW__GbWJKqYHo1dmfdx-d7BjquDLoJdBG7QaW-NRR9k6cyziBzhyh3I
CitedBy_id crossref_primary_10_1016_j_compositesb_2020_108066
crossref_primary_10_1016_j_engstruct_2018_01_006
crossref_primary_10_1016_j_engfailanal_2024_108330
crossref_primary_10_1016_j_jobe_2023_106510
crossref_primary_10_1177_16878132231151837
crossref_primary_10_1016_j_ijimpeng_2020_103595
crossref_primary_10_1016_j_tws_2020_106832
crossref_primary_10_1177_13694332221074772
crossref_primary_10_1016_j_conbuildmat_2023_131465
crossref_primary_10_1016_j_ijmecsci_2019_105050
crossref_primary_10_1016_j_engstruct_2024_118787
crossref_primary_10_1016_j_ijimpeng_2022_104360
crossref_primary_10_1016_j_tust_2019_103131
crossref_primary_10_1016_j_engfailanal_2020_105104
crossref_primary_10_1016_j_compstruct_2019_111658
crossref_primary_10_1016_j_istruc_2023_06_053
crossref_primary_10_1016_j_istruc_2024_107453
crossref_primary_10_1177_1369433220924797
crossref_primary_10_1016_j_dt_2019_10_015
crossref_primary_10_1155_2022_6934078
crossref_primary_10_1016_j_engstruct_2018_12_014
crossref_primary_10_1016_j_ijimpeng_2020_103758
crossref_primary_10_1016_j_tust_2022_104918
crossref_primary_10_1016_j_engstruct_2024_118472
crossref_primary_10_1016_j_engstruct_2019_03_088
crossref_primary_10_1016_j_istruc_2023_03_030
crossref_primary_10_1016_j_istruc_2022_05_088
crossref_primary_10_1016_j_istruc_2022_12_077
crossref_primary_10_1016_j_istruc_2024_107927
crossref_primary_10_1016_j_oceaneng_2023_116520
crossref_primary_10_1016_j_engfailanal_2024_108305
crossref_primary_10_1016_j_istruc_2025_108668
crossref_primary_10_1016_j_jobe_2021_103865
crossref_primary_10_1016_j_tws_2019_106515
crossref_primary_10_1016_j_ijimpeng_2020_103628
crossref_primary_10_1016_j_jtte_2023_07_001
crossref_primary_10_1016_j_engfailanal_2021_105409
crossref_primary_10_1007_s10999_023_09656_7
crossref_primary_10_1016_j_coco_2025_102255
crossref_primary_10_1364_AO_446526
crossref_primary_10_3390_s22249727
crossref_primary_10_1016_j_oceaneng_2020_108128
crossref_primary_10_1016_j_jcsr_2023_108223
crossref_primary_10_1680_jtran_24_00004
crossref_primary_10_1016_j_istruc_2021_09_094
crossref_primary_10_1177_20414196251326186
crossref_primary_10_1016_j_tust_2024_105636
crossref_primary_10_1016_j_engstruct_2024_119138
crossref_primary_10_3390_app11177980
crossref_primary_10_1016_j_ijimpeng_2023_104540
crossref_primary_10_3390_buildings13071726
crossref_primary_10_1007_s11431_023_2632_9
crossref_primary_10_1007_s41062_022_00937_2
crossref_primary_10_1016_j_oceaneng_2019_04_031
crossref_primary_10_1016_j_istruc_2024_107514
crossref_primary_10_1016_j_conbuildmat_2020_119766
crossref_primary_10_1016_j_matpr_2022_03_367
crossref_primary_10_1016_j_ijimpeng_2019_103473
crossref_primary_10_1016_j_engfailanal_2022_106802
crossref_primary_10_1016_j_engstruct_2019_109837
crossref_primary_10_1016_j_engstruct_2022_114688
crossref_primary_10_1016_j_engstruct_2022_114487
crossref_primary_10_1016_j_dt_2022_11_004
crossref_primary_10_1016_j_jcsr_2020_105960
crossref_primary_10_1016_j_jobe_2022_104427
crossref_primary_10_1177_1369433220979443
crossref_primary_10_1002_suco_202300513
crossref_primary_10_1016_j_engstruct_2025_119882
crossref_primary_10_1016_j_enganabound_2025_106201
crossref_primary_10_1016_j_ijimpeng_2022_104335
crossref_primary_10_1016_j_ijimpeng_2023_104753
crossref_primary_10_1016_j_dt_2025_03_005
crossref_primary_10_1002_suco_201900286
crossref_primary_10_1016_j_istruc_2023_05_004
crossref_primary_10_1088_1742_6596_2148_1_012018
crossref_primary_10_1016_j_engstruct_2021_113656
crossref_primary_10_1177_13694332221084028
crossref_primary_10_1016_j_engstruct_2021_113776
crossref_primary_10_1016_j_oceaneng_2024_118170
crossref_primary_10_1016_j_istruc_2024_105922
crossref_primary_10_1155_2018_2792043
crossref_primary_10_1016_j_engstruct_2022_114499
crossref_primary_10_1016_j_ijimpeng_2020_103529
crossref_primary_10_1016_j_tws_2023_111067
crossref_primary_10_1016_j_engstruct_2022_115224
crossref_primary_10_1016_j_istruc_2023_01_030
crossref_primary_10_1016_j_jcsr_2023_107993
crossref_primary_10_1016_j_engstruct_2024_119063
Cites_doi 10.1016/j.compstruc.2005.09.029
10.1016/j.engstruct.2010.06.006
10.1016/j.engfailanal.2015.02.007
10.1016/j.ijimpeng.2009.04.003
10.1016/j.ijimpeng.2015.02.006
10.1260/2041-4196.6.1.1
10.1016/j.ijimpeng.2012.11.008
10.1061/(ASCE)1084-0702(2008)13:6(586)
10.1007/s12209-008-0079-6
10.1061/(ASCE)BE.1943-5592.0000124
10.1016/j.compstruc.2004.08.014
10.1061/(ASCE)BE.1943-5592.0000738
10.1016/j.ijimpeng.2015.08.004
10.1061/(ASCE)BE.1943-5592.0000270
10.1061/(ASCE)ST.1943-541X.0000440
10.1061/(ASCE)ST.1943-541X.0000149
10.1016/j.ijrmms.2007.08.002
10.1016/j.engstruct.2014.04.042
10.1007/s00193-007-0099-5
10.1016/j.engstruct.2010.06.007
10.1016/j.ijimpeng.2014.02.001
10.1061/(ASCE)BE.1943-5592.0000220
10.1260/2041-4196.4.3.315
10.1016/j.engstruct.2015.08.032
10.1061/(ASCE)BE.1943-5592.0000547
10.1016/j.jcsr.2010.12.001
10.1016/j.ijimpeng.2014.07.018
10.1061/(ASCE)BE.1943-5592.0000265
10.1061/(ASCE)BE.1943-5592.0000221
10.1260/2041-4196.1.2.257
10.1016/j.ijimpeng.2012.03.010
ContentType Journal Article
Copyright 2017
Copyright Elsevier BV Nov 2017
Copyright_xml – notice: 2017
– notice: Copyright Elsevier BV Nov 2017
DBID AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1016/j.ijimpeng.2017.07.017
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3509
EndPage 390
ExternalDocumentID 10_1016_j_ijimpeng_2017_07_017
S0734743X17306243
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
7TB
8BQ
8FD
EFKBS
FR3
JG9
KR7
ID FETCH-LOGICAL-c445t-9a2275d957642e38acc1cf40eaef86a16a5a0f336347e21ee24ebf07836609203
IEDL.DBID .~1
ISSN 0734-743X
IngestDate Mon Jul 14 09:06:13 EDT 2025
Thu Apr 24 23:12:49 EDT 2025
Tue Jul 01 03:54:26 EDT 2025
Fri Feb 23 02:28:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Contact explosion
ALE
Numerical simulationl
Reinforced concrete bridge column
Blast test
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-9a2275d957642e38acc1cf40eaef86a16a5a0f336347e21ee24ebf07836609203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1966074105
PQPubID 2045463
PageCount 13
ParticipantIDs proquest_journals_1966074105
crossref_primary_10_1016_j_ijimpeng_2017_07_017
crossref_citationtrail_10_1016_j_ijimpeng_2017_07_017
elsevier_sciencedirect_doi_10_1016_j_ijimpeng_2017_07_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-01
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of impact engineering
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Hao, Hao (bib0031) 2014; 73
Trevino (bib0037) 2000
Kappos, Penelis (bib0028) 2010
Wang, Li, Wang (bib0019) 2008; 45
Fujikura, Bruneau (bib0003) 2012; 17
Luccioni, Aráoz, Labanda (bib0039) 2013; 4
Wang, Lu, Hao, Chong (bib0030) 2005; 83
Koneshwaran, Thambiratnam, Gallage (bib0029) 2013
Hao, Tang (bib0035) 2010; 32
Li, Hao (bib0008) 2014; 68
Yan, Liu, Song, Jiang (bib0038) 2015; 51
Williamson, E.B., et al. (2010). Blast-resistant highway bridges: design and detailing guidelines. National Cooperative Highway Research Program (NCHRP) Rep. 645, Transportation Research Board, Washington, DC.
Arlery, Rouquand, Chhim (bib0020) 2013
Li, Wu, Hao (bib0010) 2015; 102
Williamson, Bayrak, Davis, Williams (bib0005) 2011; 16
Liu, Torres, Agrawal, Yi, Liu (bib0013) 2015; 20
Xu, Lu (bib0033) 2006; 84
Castedo, Segarra, Alañon, Lopez, Santos, Sanchidrian (bib0041) 2015; 86
Thiagarajan, Kadambi, Robert, Johnson (bib0022) 2015; 75
Li, Huang, Lim (bib0040) 2010; 136
Beppu, Ohno, Ohkubo, Li, Satoh (bib0018) 2010; 1
Aoude, Dagenais, Burrell, Saatcioglu (bib0015) 2015; 80
Yi, Agrawal, Ettouney, Alampalli (bib0011) 2014; 19
Bao, Li (bib0016) 2010; 37
Williamson, Bayrak, Davis, Daniel Williams (bib0006) 2011; 16
Li, Hao (bib0009) 2013; 54
Wu, Li, Tsai (bib0017) 2011; 67
Tang, Hao (bib0034) 2010; 32
Fujikura, Bruneau (bib0002) 2011; 16
Yuan, Gong, Jin (bib0021) 2008; 14
Williams (bib0027) 2009
Tabatabaei, Volz (bib0036) 2012
Malvar, Crawford (bib0032) 1998
Williams, Williamson (bib0026) 2012; 17
Wang, Zhang, Lu, Wang, Tang (bib0024) 2012; 49
Castedo, Segarra, Alañon, Lopez, Santos, Sanchidrian (bib0023) 2015; 86
Williams, Williamson (bib0014) 2011; 137
Qasrawi, Heffernan, Fam (bib0025) 2015; 6
Shi, Hao, Li (bib0007) 2007; 17
Yi, Agrawal, Ettouney, Alampalli (bib0012) 2014; 19
Fujikura, Bruneau, Lopez-Garcia (bib0001) 2008; 13
Malvar (10.1016/j.ijimpeng.2017.07.017_bib0032) 1998
Tang (10.1016/j.ijimpeng.2017.07.017_bib0034) 2010; 32
Fujikura (10.1016/j.ijimpeng.2017.07.017_bib0003) 2012; 17
Yan (10.1016/j.ijimpeng.2017.07.017_bib0038) 2015; 51
Hao (10.1016/j.ijimpeng.2017.07.017_bib0031) 2014; 73
Williams (10.1016/j.ijimpeng.2017.07.017_bib0027) 2009
Hao (10.1016/j.ijimpeng.2017.07.017_bib0035) 2010; 32
Yi (10.1016/j.ijimpeng.2017.07.017_bib0011) 2014; 19
Wang (10.1016/j.ijimpeng.2017.07.017_bib0030) 2005; 83
Williamson (10.1016/j.ijimpeng.2017.07.017_bib0005) 2011; 16
Liu (10.1016/j.ijimpeng.2017.07.017_bib0013) 2015; 20
Beppu (10.1016/j.ijimpeng.2017.07.017_bib0018) 2010; 1
10.1016/j.ijimpeng.2017.07.017_bib0004
Bao (10.1016/j.ijimpeng.2017.07.017_bib0016) 2010; 37
Wang (10.1016/j.ijimpeng.2017.07.017_bib0019) 2008; 45
Castedo (10.1016/j.ijimpeng.2017.07.017_bib0023) 2015; 86
Wang (10.1016/j.ijimpeng.2017.07.017_bib0024) 2012; 49
Li (10.1016/j.ijimpeng.2017.07.017_bib0040) 2010; 136
Fujikura (10.1016/j.ijimpeng.2017.07.017_bib0002) 2011; 16
Williams (10.1016/j.ijimpeng.2017.07.017_bib0014) 2011; 137
Li (10.1016/j.ijimpeng.2017.07.017_bib0009) 2013; 54
Trevino (10.1016/j.ijimpeng.2017.07.017_bib0037) 2000
Wu (10.1016/j.ijimpeng.2017.07.017_bib0017) 2011; 67
Aoude (10.1016/j.ijimpeng.2017.07.017_bib0015) 2015; 80
Li (10.1016/j.ijimpeng.2017.07.017_bib0008) 2014; 68
Xu (10.1016/j.ijimpeng.2017.07.017_bib0033) 2006; 84
Yi (10.1016/j.ijimpeng.2017.07.017_bib0012) 2014; 19
Yuan (10.1016/j.ijimpeng.2017.07.017_bib0021) 2008; 14
Kappos (10.1016/j.ijimpeng.2017.07.017_bib0028) 2010
Qasrawi (10.1016/j.ijimpeng.2017.07.017_bib0025) 2015; 6
Castedo (10.1016/j.ijimpeng.2017.07.017_bib0041) 2015; 86
Thiagarajan (10.1016/j.ijimpeng.2017.07.017_bib0022) 2015; 75
Koneshwaran (10.1016/j.ijimpeng.2017.07.017_bib0029) 2013
Li (10.1016/j.ijimpeng.2017.07.017_bib0010) 2015; 102
Tabatabaei (10.1016/j.ijimpeng.2017.07.017_bib0036) 2012
Shi (10.1016/j.ijimpeng.2017.07.017_bib0007) 2007; 17
Fujikura (10.1016/j.ijimpeng.2017.07.017_bib0001) 2008; 13
Arlery (10.1016/j.ijimpeng.2017.07.017_bib0020) 2013
Williams (10.1016/j.ijimpeng.2017.07.017_bib0026) 2012; 17
Williamson (10.1016/j.ijimpeng.2017.07.017_bib0006) 2011; 16
Luccioni (10.1016/j.ijimpeng.2017.07.017_bib0039) 2013; 4
References_xml – volume: 32
  start-page: 3180
  year: 2010
  end-page: 3192
  ident: bib0034
  article-title: Numerical simulation of a cable-stayed bridge response to blast loads, Part I: model development and response calculations
  publication-title: Eng Struct
– volume: 14
  start-page: 464
  year: 2008
  end-page: 469
  ident: bib0021
  article-title: Spallation mechanism of RC slabs under contact detonation
  publication-title: Trans Tianjin Univ
– reference: Williamson, E.B., et al. (2010). Blast-resistant highway bridges: design and detailing guidelines. National Cooperative Highway Research Program (NCHRP) Rep. 645, Transportation Research Board, Washington, DC.
– volume: 75
  start-page: 162
  year: 2015
  end-page: 173
  ident: bib0022
  article-title: Experimental and finite element analysis of doubly reinforced concrete slabs subjected to blast loads
  publication-title: Int J Impact Eng
– volume: 45
  start-page: 600
  year: 2008
  end-page: 608
  ident: bib0019
  article-title: Numerical analysis of blast-induced wave propagation and spalling damage in a rock plate
  publication-title: Int J Rock Mech Min Sci
– volume: 51
  start-page: 9
  year: 2015
  end-page: 19
  ident: bib0038
  article-title: Numerical study on damage mechanism of RC beams under close-in blast loading
  publication-title: Eng Fail Anal
– volume: 19
  year: 2014
  ident: bib0011
  article-title: Blast load effects on highway bridges. I: modeling and blast load effects
  publication-title: J Bridge Eng
– start-page: 1
  year: 2013
  end-page: 10
  ident: bib0020
  article-title: Numerical dynamic simulations for the prediction of damage and loss of capacity of RC column subjected to contact detonations. FraMCoS-8
  publication-title: 8th international conference on fracture mechanics of concrete and concrete structures
– volume: 17
  start-page: 490
  year: 2012
  end-page: 499
  ident: bib0026
  article-title: Procedure for predicting blast loads acting on bridge columns
  publication-title: J Bridge Eng
– volume: 136
  start-page: 627
  year: 2010
  end-page: 636
  ident: bib0040
  article-title: Verification of non-dimensional energy spectrum-based blast design for reinforced concrete members through actual blast tests
  publication-title: J Struct Eng
– volume: 1
  start-page: 257
  year: 2010
  end-page: 270
  ident: bib0018
  article-title: Contact explosion resistance of concrete plates externally strengthened with FRP laminates
  publication-title: Int J Protective Struct
– volume: 19
  year: 2014
  ident: bib0012
  article-title: Blast load effects on highway bridges. II: failure modes and multihazard correlations
  publication-title: J Bridge Eng
– volume: 73
  start-page: 24
  year: 2014
  end-page: 38
  ident: bib0031
  article-title: Influence of the concrete DIF model on the numerical predictions of RC wall responses to blast loadings
  publication-title: Eng Struct
– volume: 86
  start-page: 145
  year: 2015
  end-page: 156
  ident: bib0041
  article-title: Air blast resistance of full-scale slabs with different compositions: numerical modeling and field validation
  publication-title: Int J Impact Eng
– volume: 17
  start-page: 113
  year: 2007
  end-page: 133
  ident: bib0007
  article-title: Numerical simulation of blast wave interaction with structure columns
  publication-title: Shock Waves
– volume: 86
  start-page: 145
  year: 2015
  end-page: 156
  ident: bib0023
  article-title: Air blast resistance of full-scale slabs with different compositions: Numerical modeling and field validation
  publication-title: Int J Impact Eng
– volume: 84
  start-page: 431
  year: 2006
  end-page: 438
  ident: bib0033
  article-title: Numerical simulation study of spallation in reinforced concrete plates subjected to blast loading
  publication-title: Comput Struct
– volume: 68
  start-page: 41
  year: 2014
  end-page: 55
  ident: bib0008
  article-title: Numerical study of concrete spall damage to blast loads
  publication-title: Int J Impact Eng
– volume: 16
  start-page: 703
  year: 2011
  end-page: 710
  ident: bib0006
  article-title: Performance of bridge columns subjected to blast loads. II: results and recommendations
  publication-title: J Bridge Eng
– start-page: 5
  year: 1998
  end-page: 6
  ident: bib0032
  article-title: Dynamic increase factors for steel reinforcing bars
  publication-title: Twenty-eighth DDESB seminar, Orlando, FL, USA, August
– volume: 80
  start-page: 185
  year: 2015
  end-page: 202
  ident: bib0015
  article-title: Behavior of ultra-high performance fiber reinforced concrete columns under blast loading
  publication-title: Int J Impact Eng
– year: 2009
  ident: bib0027
  article-title: Analysis and response mechanisms of blast-loaded reinforced concrete columns
– volume: 17
  start-page: 249
  year: 2012
  end-page: 258
  ident: bib0003
  article-title: Dynamic analysis of multihazard-resistant bridge piers having concrete-filled steel tube under blast loading
  publication-title: J Bridge Eng
– volume: 54
  start-page: 217
  year: 2013
  end-page: 231
  ident: bib0009
  article-title: Influence of brittle shear damage on accuracy of the two-step method in prediction of structural response to blast loads
  publication-title: Int J Impact Eng
– volume: 49
  start-page: 158
  year: 2012
  end-page: 164
  ident: bib0024
  article-title: Experimental study on scaling the explosion resistance of a one-way square reinforced concrete slab under a close-in blast loading
  publication-title: Int J Impact Eng
– volume: 102
  start-page: 395
  year: 2015
  end-page: 408
  ident: bib0010
  article-title: Investigation of ultra-high performance concrete slab and normal strength concrete slab under contact explosion
  publication-title: Eng Struct
– volume: 6
  start-page: 1
  year: 2015
  end-page: 22
  ident: bib0025
  article-title: Numerical determination of equivalent reflected blast parameters acting on circular cross sections
  publication-title: Int J Protective Struct
– volume: 13
  start-page: 586
  year: 2008
  end-page: 594
  ident: bib0001
  article-title: Experimental investigation of multihazard resistant bridge piers having concrete-filled steel tube under blast loading
  publication-title: J Bridge Eng
– volume: 20
  year: 2015
  ident: bib0013
  article-title: Simplified blast-load effects on the column and bent beam of highway bridges
  publication-title: J Bridge Eng
– volume: 83
  start-page: 339
  year: 2005
  end-page: 356
  ident: bib0030
  article-title: A full coupled numerical analysis approach for buried structures subjected to subsurface blast
  publication-title: Comput Struct
– year: 2013
  ident: bib0029
  article-title: Response of a buried tunnel to surface blast using different numerical techniques
  publication-title: Proceedings of the 14th international conference on civil, structural and environmental engineering computing
– volume: 37
  start-page: 295
  year: 2010
  end-page: 308
  ident: bib0016
  article-title: Residual strength of blast damaged reinforced concrete columns
  publication-title: Int J Impact Eng
– start-page: 13
  year: 2000
  ident: bib0037
  article-title: Applications of arbitrary lagrangian eulerian (ALE) analysis approach to underwater and air explosion problems
– start-page: 4
  year: 2012
  end-page: 5
  ident: bib0036
  article-title: A comparison between three different blast methods in LS-DYNA: LBE, MM-ALE, Coupling of LBE and MM-ALE
  publication-title: Proceedings of the 12th international LS-DYNA users conference, Dearborn, MI, USA
– volume: 4
  start-page: 315
  year: 2013
  end-page: 340
  ident: bib0039
  article-title: Defining erosion limit for concrete
  publication-title: Int J Protective Struct
– volume: 67
  start-page: 602
  year: 2011
  end-page: 612
  ident: bib0017
  article-title: The effects of explosive mass ratio on residual compressive capacity of contact blast damaged composite columns
  publication-title: J Constr Steel Res
– volume: 16
  start-page: 63
  year: 2011
  end-page: 71
  ident: bib0002
  article-title: Experimental investigation of seismically resistant bridge piers under blast loading
  publication-title: J Bridge Eng
– year: 2010
  ident: bib0028
  article-title: Earthquake resistant concrete structures
– volume: 16
  start-page: 693
  year: 2011
  end-page: 702
  ident: bib0005
  article-title: Performance of bridge columns subjected to blast loads. I: experimental program
  publication-title: J Bridge Eng
– volume: 137
  start-page: 903
  year: 2011
  end-page: 913
  ident: bib0014
  article-title: Response of reinforced concrete bridge columns subjected to blast loads
  publication-title: J Struct Eng
– volume: 32
  start-page: 3193
  year: 2010
  end-page: 3205
  ident: bib0035
  article-title: Numerical simulation of a cable-stayed bridge response to blast loads, Part II: damage prediction and FRP strengthening
  publication-title: Eng Struct
– volume: 84
  start-page: 431
  issue: 5-6
  year: 2006
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0033
  article-title: Numerical simulation study of spallation in reinforced concrete plates subjected to blast loading
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2005.09.029
– volume: 32
  start-page: 3193
  issue: 10
  year: 2010
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0035
  article-title: Numerical simulation of a cable-stayed bridge response to blast loads, Part II: damage prediction and FRP strengthening
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2010.06.006
– volume: 51
  start-page: 9
  year: 2015
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0038
  article-title: Numerical study on damage mechanism of RC beams under close-in blast loading
  publication-title: Eng Fail Anal
  doi: 10.1016/j.engfailanal.2015.02.007
– volume: 37
  start-page: 295
  issue: 3
  year: 2010
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0016
  article-title: Residual strength of blast damaged reinforced concrete columns
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2009.04.003
– start-page: 13
  year: 2000
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0037
– volume: 19
  issue: 4
  year: 2014
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0012
  article-title: Blast load effects on highway bridges. II: failure modes and multihazard correlations
  publication-title: J Bridge Eng
– volume: 80
  start-page: 185
  year: 2015
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0015
  article-title: Behavior of ultra-high performance fiber reinforced concrete columns under blast loading
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2015.02.006
– volume: 6
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0025
  article-title: Numerical determination of equivalent reflected blast parameters acting on circular cross sections
  publication-title: Int J Protective Struct
  doi: 10.1260/2041-4196.6.1.1
– start-page: 4
  year: 2012
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0036
  article-title: A comparison between three different blast methods in LS-DYNA: LBE, MM-ALE, Coupling of LBE and MM-ALE
– volume: 54
  start-page: 217
  year: 2013
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0009
  article-title: Influence of brittle shear damage on accuracy of the two-step method in prediction of structural response to blast loads
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2012.11.008
– year: 2010
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0028
– start-page: 1
  year: 2013
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0020
  article-title: Numerical dynamic simulations for the prediction of damage and loss of capacity of RC column subjected to contact detonations. FraMCoS-8
– volume: 13
  start-page: 586
  issue: 6
  year: 2008
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0001
  article-title: Experimental investigation of multihazard resistant bridge piers having concrete-filled steel tube under blast loading
  publication-title: J Bridge Eng
  doi: 10.1061/(ASCE)1084-0702(2008)13:6(586)
– volume: 14
  start-page: 464
  year: 2008
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0021
  article-title: Spallation mechanism of RC slabs under contact detonation
  publication-title: Trans Tianjin Univ
  doi: 10.1007/s12209-008-0079-6
– ident: 10.1016/j.ijimpeng.2017.07.017_bib0004
– volume: 16
  start-page: 63
  issue: 1
  year: 2011
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0002
  article-title: Experimental investigation of seismically resistant bridge piers under blast loading
  publication-title: J Bridge Eng
  doi: 10.1061/(ASCE)BE.1943-5592.0000124
– volume: 83
  start-page: 339
  issue: 4-5
  year: 2005
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0030
  article-title: A full coupled numerical analysis approach for buried structures subjected to subsurface blast
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2004.08.014
– volume: 20
  issue: 10
  year: 2015
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0013
  article-title: Simplified blast-load effects on the column and bent beam of highway bridges
  publication-title: J Bridge Eng
  doi: 10.1061/(ASCE)BE.1943-5592.0000738
– volume: 86
  start-page: 145
  year: 2015
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0023
  article-title: Air blast resistance of full-scale slabs with different compositions: Numerical modeling and field validation
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2015.08.004
– volume: 17
  start-page: 249
  issue: 2
  year: 2012
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0003
  article-title: Dynamic analysis of multihazard-resistant bridge piers having concrete-filled steel tube under blast loading
  publication-title: J Bridge Eng
  doi: 10.1061/(ASCE)BE.1943-5592.0000270
– volume: 137
  start-page: 903
  issue: 9
  year: 2011
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0014
  article-title: Response of reinforced concrete bridge columns subjected to blast loads
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0000440
– volume: 86
  start-page: 145
  year: 2015
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0041
  article-title: Air blast resistance of full-scale slabs with different compositions: numerical modeling and field validation
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2015.08.004
– volume: 136
  start-page: 627
  issue: 6
  year: 2010
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0040
  article-title: Verification of non-dimensional energy spectrum-based blast design for reinforced concrete members through actual blast tests
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0000149
– volume: 45
  start-page: 600
  issue: 4
  year: 2008
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0019
  article-title: Numerical analysis of blast-induced wave propagation and spalling damage in a rock plate
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2007.08.002
– volume: 73
  start-page: 24
  year: 2014
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0031
  article-title: Influence of the concrete DIF model on the numerical predictions of RC wall responses to blast loadings
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2014.04.042
– volume: 17
  start-page: 113
  issue: 1-2
  year: 2007
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0007
  article-title: Numerical simulation of blast wave interaction with structure columns
  publication-title: Shock Waves
  doi: 10.1007/s00193-007-0099-5
– volume: 32
  start-page: 3180
  issue: 10
  year: 2010
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0034
  article-title: Numerical simulation of a cable-stayed bridge response to blast loads, Part I: model development and response calculations
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2010.06.007
– volume: 68
  start-page: 41
  year: 2014
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0008
  article-title: Numerical study of concrete spall damage to blast loads
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2014.02.001
– volume: 16
  start-page: 693
  issue: 6
  year: 2011
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0005
  article-title: Performance of bridge columns subjected to blast loads. I: experimental program
  publication-title: J Bridge Eng
  doi: 10.1061/(ASCE)BE.1943-5592.0000220
– volume: 4
  start-page: 315
  issue: 3
  year: 2013
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0039
  article-title: Defining erosion limit for concrete
  publication-title: Int J Protective Struct
  doi: 10.1260/2041-4196.4.3.315
– volume: 102
  start-page: 395
  year: 2015
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0010
  article-title: Investigation of ultra-high performance concrete slab and normal strength concrete slab under contact explosion
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2015.08.032
– volume: 19
  issue: 4
  year: 2014
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0011
  article-title: Blast load effects on highway bridges. I: modeling and blast load effects
  publication-title: J Bridge Eng
  doi: 10.1061/(ASCE)BE.1943-5592.0000547
– volume: 67
  start-page: 602
  issue: 4
  year: 2011
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0017
  article-title: The effects of explosive mass ratio on residual compressive capacity of contact blast damaged composite columns
  publication-title: J Constr Steel Res
  doi: 10.1016/j.jcsr.2010.12.001
– volume: 75
  start-page: 162
  year: 2015
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0022
  article-title: Experimental and finite element analysis of doubly reinforced concrete slabs subjected to blast loads
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2014.07.018
– start-page: 5
  year: 1998
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0032
  article-title: Dynamic increase factors for steel reinforcing bars
– volume: 17
  start-page: 490
  issue: 3
  year: 2012
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0026
  article-title: Procedure for predicting blast loads acting on bridge columns
  publication-title: J Bridge Eng
  doi: 10.1061/(ASCE)BE.1943-5592.0000265
– volume: 16
  start-page: 703
  issue: 6
  year: 2011
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0006
  article-title: Performance of bridge columns subjected to blast loads. II: results and recommendations
  publication-title: J Bridge Eng
  doi: 10.1061/(ASCE)BE.1943-5592.0000221
– year: 2013
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0029
  article-title: Response of a buried tunnel to surface blast using different numerical techniques
– volume: 1
  start-page: 257
  issue: 2
  year: 2010
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0018
  article-title: Contact explosion resistance of concrete plates externally strengthened with FRP laminates
  publication-title: Int J Protective Struct
  doi: 10.1260/2041-4196.1.2.257
– year: 2009
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0027
– volume: 49
  start-page: 158
  year: 2012
  ident: 10.1016/j.ijimpeng.2017.07.017_bib0024
  article-title: Experimental study on scaling the explosion resistance of a one-way square reinforced concrete slab under a close-in blast loading
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2012.03.010
SSID ssj0017050
Score 2.5171618
Snippet •RC bridge columns are tested under contact explosions.•Concrete spallation of the proximal and side faces of the two columns were observed.•Numerical models...
This paper presents a study on reinforced concrete (RC) bridge columns under contact detonation. Two 1/3 scale RC bridge columns with circular and square...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 378
SubjectTerms Acceleration
Accelerometers
ALE
Blast loads
Blast test
Bridges
Columns (structural)
Computer simulation
Contact explosion
Detonation
Experiments
Explosions
Field tests
Mathematical models
Numerical simulationl
Reinforced concrete
Reinforced concrete bridge column
Simulation
Structural damage
Title A study of RC bridge columns under contact explosion
URI https://dx.doi.org/10.1016/j.ijimpeng.2017.07.017
https://www.proquest.com/docview/1966074105
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA5jXvQg_sTpHDl47ZqkadIex3BMxR3UwW4hTVPpkG5s8-rfbl5_jCnCDkIvLUkpL6_vvabf9z2E7khKtaQZtG9PI49TnnoJscLTsaWRASpmAkTh54kYT_njLJy10LDhwgCsso79VUwvo3V9xa-t6S_z3H91zsld_ptR56SCcVD85FyCl_e_tjAPUIsp91ncYA9G77CE5_18nrvitHgHiJcsRTzLxmV_JqhfobrMP6MTdFwXjnhQPdspatniDB3tyAmeIz7ApVosXmT4ZYgrLhY2EH-KNQa22AoDNF2bDbaAvYOdsgs0Hd2_Dcde3RXBM5yHGy_WjMkwjd2HAmc2iLQx1GScWG2zSGgqdKhJFgTCWccyai3jNsngb50QJGYkuETtYlHYK4Rdbo94SrTL85anWmsTS2uYIYG0mau0OihsTKFMLRkOnSs-VIMNm6vGhApMqIg7qOwgfztvWYlm7J0RN5ZWP5Zfuci-d263WRpVv4BrRUF1VAKG9foft75Bh3BWcQ-7qL1ZfdpbV4Rskl7pZT10MHh4Gk--AVx621g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gHNSD8RlR1D14rd1tt68jIRKQx0Eh4bZZtltTYgoB_P_u9EHQmHgw6antNM10OjPtft83AI80ZjJgCY5vj0OLMx5bc6p9S0aahQqpmHMkCo_Gfm_KX2berAadiguDsMoy9xc5Pc_W5R679Ka9SlP7zQQnN_VvxkyQ-g53D6CB6lReHRrt_qA33i0mBDQf1IrnW2iwRxRePKWL1PSn2TuivIJcxzOfXfZrjfqRrfMS1D2Fk7J3JO3i9s6gprNzON5TFLwA3ia5YCxZJuS1Qwo6FlGYgrINQcLYmiA6Xaot0Qi_w59llzDtPk86PascjGApzr2tFUnHCbw4Mt8K3NFuKJViKuFUS52EvmS-9CRNXNc3DtIO09rhep7ggp3v08ih7hXUs2Wmr4GY8h7ymEpT6jWPpZQqCrRyFHUDnZhmqwle5QqhStVwHF7xISp42EJULhToQkHNxoIm2Du7VaGb8adFVHlafIsAYZL7n7at6tGI8h3cCIbCowHCWG_-cekHOOxNRkMx7I8Ht3CERwoqYgvq2_WnvjM9yXZ-X8bcF-383gk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+study+of+RC+bridge+columns+under+contact+explosion&rft.jtitle=International+journal+of+impact+engineering&rft.au=Yuan%2C+Sujing&rft.au=Hao%2C+Hong&rft.au=Zong%2C+Zhouhong&rft.au=Li%2C+Jun&rft.date=2017-11-01&rft.pub=Elsevier+BV&rft.issn=0734-743X&rft.eissn=1879-3509&rft.volume=109&rft.spage=378&rft_id=info:doi/10.1016%2Fj.ijimpeng.2017.07.017&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon