Yolk-shell structured CuSi2P3@Graphene nanocomposite anode for long-life and high-rate lithium-ion batteries
Silicon-based anode materials enable the development of commercial lithium-ion batteries (LIBs) with higher gravimetric energy densities than are currently available. However, the inherently low electronic and ionic conductivity as well as large volume expansion upon lithiation of Si hinder their us...
Saved in:
Published in | Nano energy Vol. 80; no. C; p. 105506 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.02.2021
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2211-2855 |
DOI | 10.1016/j.nanoen.2020.105506 |
Cover
Loading…
Abstract | Silicon-based anode materials enable the development of commercial lithium-ion batteries (LIBs) with higher gravimetric energy densities than are currently available. However, the inherently low electronic and ionic conductivity as well as large volume expansion upon lithiation of Si hinder their use in practical applications. Here we report a cation-disordered CuSi2P3 material, synthesized using high-energy ball milling, that shows improved stability, larger capacity, and higher ionic and electronic conductivity than pure Si. When used as an anode for LIBs, CuSi2P3 demonstrates a high reversible capacity of 2069 mA h g−1 with an initial Coulombic efficiency of 91% and a suitable working potential of 0.5 V (vs. Li+/Li). Further, after a two-step ball milling of CuSi2P3 with graphite, a yolk-shell structured carbon-coated CuSi2P3@graphene nanocomposite is formed that shows enhanced long-term cycling stability (1394 mA h g−1 after 1500 cycles at 2 A g−1; 1804 mA h g−1 after 500 cycles at 200 mA g−1) and rate capability (530 mA h g−1 at 50 A g−1), surpassing those for other Cu-Si, Cu-P, and Si-P compounds or single-component Si- and P-based composites. When coupled with a LiNi0.5Co0.2Mn0.3O2 (NCM) cathode in a full cell, the NCM//CuSi2P3 @graphene battery exhibits a high capacity of 140 mA h g−1 after 200 cycles, demonstrating the potential of CuSi2P3 anodes for the next-generation high-performance LIBs.
Ternary CuSi2P3 has high electronic conductivity and low Li-ion diffusion energy barrier, thus delivering better Li-storage properties than related binary and single-component electrodes. [Display omitted]
•Ternary CuSi2P3 has high electronic conductivity.•CuSi2P3 has a low Li-ion diffusion energy barrier.•CuSi2P3 shows better Li-storage properties than related binary and single-component electrodes studied.•A dual-carbon protection architecture is created by a two-step ball milling process.•A full battery based on CuSi2P3/C anode also shows long-term cycling stability. |
---|---|
AbstractList | Silicon-based anode materials enable the development of commercial lithium-ion batteries (LIBs) with higher gravimetric energy densities than are currently available. However, the inherently low electronic and ionic conductivity as well as large volume expansion upon lithiation of Si hinder their use in practical applications. Here we report a cation-disordered CuSi2P3 material, synthesized using high-energy ball milling, that shows improved stability, larger capacity, and higher ionic and electronic conductivity than pure Si. When used as an anode for LIBs, CuSi2P3 demonstrates a high reversible capacity of 2069 mA h g−1 with an initial Coulombic efficiency of 91% and a suitable working potential of 0.5 V (vs. Li+/Li). Further, after a two-step ball milling of CuSi2P3 with graphite, a yolk-shell structured carbon-coated CuSi2P3@graphene nanocomposite is formed that shows enhanced long-term cycling stability (1394 mA h g−1 after 1500 cycles at 2 A g−1; 1804 mA h g−1 after 500 cycles at 200 mA g−1) and rate capability (530 mA h g−1 at 50 A g−1), surpassing those for other Cu-Si, Cu-P, and Si-P compounds or single-component Si- and P-based composites. When coupled with a LiNi0.5Co0.2Mn0.3O2 (NCM) cathode in a full cell, the NCM//CuSi2P3 @graphene battery exhibits a high capacity of 140 mA h g−1 after 200 cycles, demonstrating the potential of CuSi2P3 anodes for the next-generation high-performance LIBs.
Ternary CuSi2P3 has high electronic conductivity and low Li-ion diffusion energy barrier, thus delivering better Li-storage properties than related binary and single-component electrodes. [Display omitted]
•Ternary CuSi2P3 has high electronic conductivity.•CuSi2P3 has a low Li-ion diffusion energy barrier.•CuSi2P3 shows better Li-storage properties than related binary and single-component electrodes studied.•A dual-carbon protection architecture is created by a two-step ball milling process.•A full battery based on CuSi2P3/C anode also shows long-term cycling stability. |
ArticleNumber | 105506 |
Author | Liu, Meilin Zhou, Yucun Li, Yunyong Wu, Yanxue Shen, Pengfei Ma, Qibin Soule, Luke Zhang, Haiyan Li, Wenwu |
Author_xml | – sequence: 1 givenname: Wenwu surname: Li fullname: Li, Wenwu email: wenwuli@hust.edu.cn organization: School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA – sequence: 2 givenname: Qibin surname: Ma fullname: Ma, Qibin organization: School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China – sequence: 3 givenname: Pengfei surname: Shen fullname: Shen, Pengfei organization: School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China – sequence: 4 givenname: Yucun surname: Zhou fullname: Zhou, Yucun organization: School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA – sequence: 5 givenname: Luke surname: Soule fullname: Soule, Luke organization: School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA – sequence: 6 givenname: Yunyong surname: Li fullname: Li, Yunyong organization: School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China – sequence: 7 givenname: Yanxue surname: Wu fullname: Wu, Yanxue organization: School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China – sequence: 8 givenname: Haiyan surname: Zhang fullname: Zhang, Haiyan organization: School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China – sequence: 9 givenname: Meilin surname: Liu fullname: Liu, Meilin email: meilin.liu@mse.gatech.edu organization: School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA |
BackLink | https://www.osti.gov/biblio/1780223$$D View this record in Osti.gov |
BookMark | eNqFkDFPwzAQhT0UiQL9BwwWe4rtxEnKgEAVFKRKIAEDk-U4l8bFtSvbReLf4yhMDHCLdaf3nj6_EzSxzgJC55TMKaHl5XZupXVg54yw4cQ5KSdoyhilGas5P0azELYkTclpRdkUmXdnPrLQgzE4RH9Q8eChxcvDi2bP-c3Ky30PFvCQq9xu74KOgNPSAu6cx8bZTWZ0N9xa3OtNn3mZFEbHXh92mXYWNzJG8BrCGTrqpAkw-3lP0dv93evyIVs_rR6Xt-tMFQWPWd1wxYqWsoqUJZMJliygZVSVNc_bJiekkNA1CwmMNBXvOqZIWZQq55CTRQP5KboYc12IWgSVkFWvnLWgoqBVTRjLk-hqFCnvQvDQiaSTMQFHL7URlIihU7EVY6di6FSMnSZz8cu893on_dd_tuvRBun3nxr8AAdWQav9wNY6_XfAN_GOl08 |
CitedBy_id | crossref_primary_10_5796_electrochemistry_23_00098 crossref_primary_10_1002_celc_202101558 crossref_primary_10_1016_j_apsusc_2023_156870 crossref_primary_10_1016_j_nxener_2024_100176 crossref_primary_10_1002_er_8194 crossref_primary_10_1039_D4EE01241K crossref_primary_10_3390_en14113145 crossref_primary_10_1016_j_cej_2022_139567 crossref_primary_10_1021_acsmaterialslett_3c00253 crossref_primary_10_1016_j_est_2023_108178 crossref_primary_10_1016_j_ces_2023_119168 crossref_primary_10_1016_j_ensm_2022_04_007 crossref_primary_10_1039_D1CE01453F crossref_primary_10_1016_j_ensm_2024_103547 crossref_primary_10_3390_en16073099 crossref_primary_10_1021_acsami_1c09590 crossref_primary_10_1021_acsami_1c24510 crossref_primary_10_1016_j_jmrt_2022_02_017 crossref_primary_10_1016_j_apsusc_2022_153790 crossref_primary_10_1039_D2SE01507B crossref_primary_10_1039_D3CP05164A crossref_primary_10_1016_j_compositesb_2022_110232 crossref_primary_10_1016_j_jallcom_2022_167785 crossref_primary_10_1149_2162_8777_ad15a7 crossref_primary_10_1016_j_carbon_2022_07_010 crossref_primary_10_1016_j_cej_2023_142208 crossref_primary_10_1021_acsami_2c00321 crossref_primary_10_1016_j_elecom_2022_107420 crossref_primary_10_1016_j_electacta_2023_142420 crossref_primary_10_1016_j_jcis_2025_137372 crossref_primary_10_1142_S0218625X24300065 crossref_primary_10_1515_ntrev_2022_0512 crossref_primary_10_1002_smll_202307722 crossref_primary_10_1016_j_ensm_2022_06_022 crossref_primary_10_3390_ma17133189 crossref_primary_10_1039_D1CC05657C crossref_primary_10_1002_adfm_202110853 crossref_primary_10_1002_cjce_25103 crossref_primary_10_1016_j_jallcom_2022_166809 |
Cites_doi | 10.1039/C8CS00441B 10.1016/j.nanoen.2019.06.041 10.1039/C9EE00953A 10.1016/j.nanoen.2019.04.070 10.1021/acs.nanolett.7b01400 10.1021/acsami.6b00386 10.1002/aenm.201200655 10.1002/aenm.201901065 10.1002/anie.201602653 10.1021/acsami.7b04361 10.1021/acsami.7b02826 10.1021/cm504413g 10.1063/1.4730375 10.1038/srep35189 10.1016/j.ensm.2017.09.009 10.1038/s41467-019-09510-5 10.1039/C9EE00283A 10.1103/PhysRevB.59.1758 10.1002/ange.201910474 10.1002/pssa.201900414 10.1039/C8TA06983B 10.1021/acsami.8b22367 10.1557/JMR.1987.0528 10.1021/acsnano.9b02129 10.1103/PhysRevB.16.1748 10.1016/j.ensm.2020.02.003 10.1039/C8TA04959A 10.1016/j.nanoen.2019.04.074 10.1002/aenm.201803480 10.1002/smll.201805405 10.1039/C8EE00239H 10.1002/crat.2170290219 10.1016/j.nanoen.2018.05.048 10.1016/j.nanoen.2019.03.077 10.1039/C8TA01694A 10.1016/j.nanoen.2019.104444 10.1016/j.nanoen.2019.104326 10.1021/acs.nanolett.6b05081 10.1021/nn405148t 10.1039/C6EE00023A 10.1002/adma.201305600 10.1038/nnano.2015.194 10.1016/j.nanoen.2015.09.016 10.1021/acsnano.0c00556 10.1039/C6TA00103C 10.1038/s41467-019-10289-8 10.1021/nn3053632 10.1039/B914555A 10.1016/j.ensm.2018.03.014 10.1021/acs.inorgchem.9b00158 10.1016/j.nanoen.2019.104028 10.1002/adfm.201504014 10.1021/acsnano.6b02727 10.1002/anie.201903709 10.1002/adfm.201700240 10.1021/acsnano.8b08088 10.1016/j.ensm.2017.11.010 10.1016/j.nanoen.2020.104568 10.1016/j.ensm.2018.09.019 10.1016/j.mtener.2018.05.005 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1016/j.nanoen.2020.105506 |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 1780223 10_1016_j_nanoen_2020_105506 S2211285520310806 |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ JARJE KOM M41 MAGPM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSM SSR SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH AALMO ABPIF OTOTI |
ID | FETCH-LOGICAL-c445t-8b5c24d1270662a00609ed21c6853db3004aefb9ae20b75ff2c0646c35e309be3 |
IEDL.DBID | .~1 |
ISSN | 2211-2855 |
IngestDate | Thu May 18 22:34:23 EDT 2023 Thu Apr 24 23:13:24 EDT 2025 Tue Jul 01 00:56:42 EDT 2025 Fri Feb 23 02:48:33 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Ternary phosphide High-performance Anodes Li-ion batteries CuSi2P3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c445t-8b5c24d1270662a00609ed21c6853db3004aefb9ae20b75ff2c0646c35e309be3 |
Notes | USDOE |
OpenAccessLink | https://www.osti.gov/biblio/1780223 |
ParticipantIDs | osti_scitechconnect_1780223 crossref_citationtrail_10_1016_j_nanoen_2020_105506 crossref_primary_10_1016_j_nanoen_2020_105506 elsevier_sciencedirect_doi_10_1016_j_nanoen_2020_105506 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2021 2021-02-00 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Nano energy |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Liu, Liu, Jia, Huang, Luo, Mamat, Yu, Dong, Hu (bb9) 2019; 18 Wang, Liao, Lee, Shi, Huang, Zhao, Pei, Tang, Zheng, Chen, Cui (bb1) 2019; 61 Xu, Peng, Mulder (bb46) 2018; 8 Kwon, Lee, Jeon, Park (bb50) 2016; 10 Teng, Xie, Wang, Yang, Ren, Zhu (bb42) 2017; 27 Kresse, Joubert (bb28) 1999; 59 Ryan, Peterson, Williamson, Frey, Maciel, Parkinson (bb33) 1987; 2 Li, Li, Yue, Xu, Zuo, Yin, Guo (bb5) 2019; 60 Zhang, Fan, Liu, Xi, Liu, Wu, Hao, Pang, Zhou, Guo (bb41) 2020; 32 Chae, Ko, Park, Kim, Ma, Cho (bb49) 2016; 9 Huang, Cheong, Wang, Shen (bb21) 2017; 9 Zhu, Wu, Key, Wu, Shen (bb52) 2018; 15 Reinhold, Mikhailova, Gemming, Missyul, Nowka, Kaskel, Giebeler (bb57) 2018; 6 Song, Wang, Lin, Jiang, Yu, Xu, Yu, Zhang, Liu, He, Pan, Shi, Zhou, Chen (bb58) 2016; 26 Kim, Manthiram (bb60) 2017; 9 Huang, Zhang, Liu, Liu, Li, Hu, Wang, Ding, Schmidt (bb62) 2018; 12 An, Gao, Wei, Xiang, Fu, Wang, Zhang, Chu, Huo (bb18) 2019; 10 Yao, Xu, Huang, Ma, Fu, Shen, Li, Fu (bb38) 2019; 15 Pack, Monkhorst (bb27) 1977; 16 Sun, Lee, Pasta, Yuan, Zheng, Sun, Li, Cui (bb35) 2015; 10 Kim, Yun, Son, Lee, Kim, Lee, Cho (bb56) 2014; 26 Jia, Zheng, Song, Luo, Yi, Estevez, Zhao, Patel, Li, Zhang (bb2) 2018; 50 León, Rodriguez, Prieto, Prato, Vázquez (bb43) 2014; 8 Zhou, Yang, Hou, Yi, Zhou, Chen, Lam, Yuan, Golberg, Wang (bb39) 2020; 70 Abel, Chockla, Lin, Holmberg, Harris, Korgel, Heller, Mullins (bb23) 2013; 7 Shi, Wan, Li, Hu, Lang, Shen, Li, Yan, Jiang, Guo, Wen, Wan (bb4) 2019; 61 Liu, Zhang, Yan, Cheng, Tang, Cui, Wang, Zhang, Wang, Jiang, Wang, Yu (bb15) 2019; 13 Zhang, Zheng, Huang, Hong, Cao, Hao, Fan, Zhou, Guo (bb66) 2019; 9 Chen, Shen, van Aken, Maier, Yu (bb64) 2017; 29 Duveau, Fraisse, Cunin, Monconduit (bb24) 2015; 27 Zhang, Zhang, Yang, Lee, Shin, Lau, Kang (bb40) 2018; 8 Zhang, Mu, Lai, Chao, Yang, Zhou, Li, Yang, Xia, Guo (bb13) 2019; 13 Ryu, Seo, Song, Choi, Hong, Wang, Lee, Lee, Park (bb22) 2019; 10 Zhang, Zong, Chen, Jin, Bai, Li, Ma, Xu, Lian (bb47) 2019; 13 Duho, Zhang, Lim, Lee, Cho, Cho, Kang (bb17) 2018; 9 Shang, Chen, Li, Niu (bb68) 2020; 14 Wang, Ahmadpour, Kolodiazhnyi, Kracher, Cranswick, Mozharivskyj (bb31) 2010; 39 Gao, Tang, Yu, Tang, Ozawa, Sasak, Qin (bb12) 2020; 70 Wang, Luo, Chen, Wu (bb67) 2020; 30 Zhang, Chen, Luo, Zhao, Luo, Han, Wang, Wang, Yang, Zhu, Liu (bb48) 2018; 11 Ni, Zheng, Liu, Chao, Yang, Shen, Zhao (bb63) 2018; 6 Liu, Yu, Zhao, He, Xu, Feng, Li, Zhou, Mai (bb6) 2019; 48 Li, Li, Liu, Zhu, Nauman Ali, Naz, Yu, Xiang (bb61) 2019; 11 Scanlon, Walsh (bb32) 2012; 100 Liu, He, Zhu, Xu, Tong (bb54) 2016; 6 Ren, Zhou, Tang, Ding, Chen, Zhang, Hu, Yang, Wang, Yang (bb20) 2019; 58 Bensalah, Matalkeh, Mustafa, Merabet (bb25) 2020; 217 Bhikshamaiah, Omar, Suryanarayana (bb30) 1994; 29 Yan, Guo (bb3) 2019; 63 Heenen, Scheurer, Reuter (bb34) 2017; 17 Liu, Yang, Sun, Yang, Zheng, Li (bb37) 2020; 132 Son, Ma, Kim, Lee, Lee, Sung, Choi, Nam, Cho, Yoo, Cho (bb11) 2019; 9 Hui, Zhao, Zhang, Li, Wang, Yin (bb14) 2019; 9 Wu, Liang, Pang, Zhou, Cheng, Zhang, Liu, Johannessen, Guo (bb44) 2019; 32 Duveau, Israel, Fullenwarth, Cunin, Monconduit (bb51) 2016; 4 Li, Li, Liao, Zhao, Zhang, Huang, Liu, Guo d, Liu (bb36) 2019; 12 Domi, Usui, Shimizu, Kakimoto, Sakaguchi (bb55) 2016; 8 Guo, Li, Lu, Liu, Hu (bb19) 2020; 27 Ju, Li, Ma, Xing, Zhuang, Qian (bb45) 2018; 11 Chang, Tseng, Tuan (bb65) 2017; 17 Cristian Stan, Klöpsch, Bhaskar, Li, Passerini, Winter (bb53) 2013; 3 Kim, Zhang, Cho, Kang (bb16) 2019; 12 Yang, Wang, Chou, Zhang, Xu, Fan, Zhang, Liu, Zhao, Dou (bb8) 2015; 18 Yang, Liu, Li, Zhang, Wang, He (bb10) 2019; 65 Xiao, Zhou, Yu, Wang, Lou (bb26) 2016; 55 Song, Wang, Song, Yang, Du, Yu, Xu, He, Zhou, Chen (bb59) 2018; 6 Zhang, Wang, Dou, Cheng, Cui, Du, Liu, Al-Mamun, Zhang, Zhao (bb7) 2019; 58 Rodriguez, Qi, Wang, Shalaginov, Goncalves, Kang, Richardson, Guerrero-Sancheze, Moreno-Armentae, Pol (bb29) 2020; 68 Liu (10.1016/j.nanoen.2020.105506_bb9) 2019; 18 Zhang (10.1016/j.nanoen.2020.105506_bb48) 2018; 11 Bensalah (10.1016/j.nanoen.2020.105506_bb25) 2020; 217 Li (10.1016/j.nanoen.2020.105506_bb36) 2019; 12 Shang (10.1016/j.nanoen.2020.105506_bb68) 2020; 14 Song (10.1016/j.nanoen.2020.105506_bb58) 2016; 26 Kresse (10.1016/j.nanoen.2020.105506_bb28) 1999; 59 Wang (10.1016/j.nanoen.2020.105506_bb1) 2019; 61 Shi (10.1016/j.nanoen.2020.105506_bb4) 2019; 61 Zhang (10.1016/j.nanoen.2020.105506_bb41) 2020; 32 Hui (10.1016/j.nanoen.2020.105506_bb14) 2019; 9 Cristian Stan (10.1016/j.nanoen.2020.105506_bb53) 2013; 3 Wu (10.1016/j.nanoen.2020.105506_bb44) 2019; 32 Yao (10.1016/j.nanoen.2020.105506_bb38) 2019; 15 Liu (10.1016/j.nanoen.2020.105506_bb37) 2020; 132 Son (10.1016/j.nanoen.2020.105506_bb11) 2019; 9 Rodriguez (10.1016/j.nanoen.2020.105506_bb29) 2020; 68 Zhang (10.1016/j.nanoen.2020.105506_bb66) 2019; 9 Ren (10.1016/j.nanoen.2020.105506_bb20) 2019; 58 Wang (10.1016/j.nanoen.2020.105506_bb67) 2020; 30 Ju (10.1016/j.nanoen.2020.105506_bb45) 2018; 11 Heenen (10.1016/j.nanoen.2020.105506_bb34) 2017; 17 Reinhold (10.1016/j.nanoen.2020.105506_bb57) 2018; 6 Wang (10.1016/j.nanoen.2020.105506_bb31) 2010; 39 An (10.1016/j.nanoen.2020.105506_bb18) 2019; 10 Abel (10.1016/j.nanoen.2020.105506_bb23) 2013; 7 Duveau (10.1016/j.nanoen.2020.105506_bb51) 2016; 4 Kwon (10.1016/j.nanoen.2020.105506_bb50) 2016; 10 Liu (10.1016/j.nanoen.2020.105506_bb6) 2019; 48 Bhikshamaiah (10.1016/j.nanoen.2020.105506_bb30) 1994; 29 Huang (10.1016/j.nanoen.2020.105506_bb21) 2017; 9 Zhang (10.1016/j.nanoen.2020.105506_bb47) 2019; 13 Sun (10.1016/j.nanoen.2020.105506_bb35) 2015; 10 Yang (10.1016/j.nanoen.2020.105506_bb8) 2015; 18 Kim (10.1016/j.nanoen.2020.105506_bb16) 2019; 12 Kim (10.1016/j.nanoen.2020.105506_bb60) 2017; 9 Ni (10.1016/j.nanoen.2020.105506_bb63) 2018; 6 Li (10.1016/j.nanoen.2020.105506_bb61) 2019; 11 Teng (10.1016/j.nanoen.2020.105506_bb42) 2017; 27 Chen (10.1016/j.nanoen.2020.105506_bb64) 2017; 29 Liu (10.1016/j.nanoen.2020.105506_bb15) 2019; 13 Ryu (10.1016/j.nanoen.2020.105506_bb22) 2019; 10 Domi (10.1016/j.nanoen.2020.105506_bb55) 2016; 8 Zhang (10.1016/j.nanoen.2020.105506_bb7) 2019; 58 León (10.1016/j.nanoen.2020.105506_bb43) 2014; 8 Yan (10.1016/j.nanoen.2020.105506_bb3) 2019; 63 Zhu (10.1016/j.nanoen.2020.105506_bb52) 2018; 15 Zhang (10.1016/j.nanoen.2020.105506_bb40) 2018; 8 Duho (10.1016/j.nanoen.2020.105506_bb17) 2018; 9 Pack (10.1016/j.nanoen.2020.105506_bb27) 1977; 16 Li (10.1016/j.nanoen.2020.105506_bb5) 2019; 60 Song (10.1016/j.nanoen.2020.105506_bb59) 2018; 6 Scanlon (10.1016/j.nanoen.2020.105506_bb32) 2012; 100 Zhang (10.1016/j.nanoen.2020.105506_bb13) 2019; 13 Guo (10.1016/j.nanoen.2020.105506_bb19) 2020; 27 Duveau (10.1016/j.nanoen.2020.105506_bb24) 2015; 27 Kim (10.1016/j.nanoen.2020.105506_bb56) 2014; 26 Jia (10.1016/j.nanoen.2020.105506_bb2) 2018; 50 Gao (10.1016/j.nanoen.2020.105506_bb12) 2020; 70 Xiao (10.1016/j.nanoen.2020.105506_bb26) 2016; 55 Ryan (10.1016/j.nanoen.2020.105506_bb33) 1987; 2 Liu (10.1016/j.nanoen.2020.105506_bb54) 2016; 6 Chang (10.1016/j.nanoen.2020.105506_bb65) 2017; 17 Xu (10.1016/j.nanoen.2020.105506_bb46) 2018; 8 Zhou (10.1016/j.nanoen.2020.105506_bb39) 2020; 70 Chae (10.1016/j.nanoen.2020.105506_bb49) 2016; 9 Yang (10.1016/j.nanoen.2020.105506_bb10) 2019; 65 Huang (10.1016/j.nanoen.2020.105506_bb62) 2018; 12 |
References_xml | – volume: 18 start-page: 165 year: 2019 end-page: 173 ident: bb9 article-title: Multi-core yolk-shell like mesoporous double carbon-coated silicon nanoparticles as anode materials for lithium-ion batteries publication-title: Energy Storage Mater. – volume: 60 start-page: 485 year: 2019 end-page: 492 ident: bb5 article-title: Reducing the volume deformation of high capacity SiOx/G/C anode toward industrial application in high energy density lithium-ion batteries publication-title: Nano Energy – volume: 16 start-page: 1748 year: 1977 end-page: 1749 ident: bb27 article-title: Special points for Brillouin-zone integrations—a reply publication-title: Phys. Rev. B – volume: 132 start-page: 1991 year: 2020 end-page: 1995 ident: bb37 article-title: Low‐temperature synthesis of honeycomb CuP2@C in molten ZnCl2 salt for high‐performance lithium ion batteries publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 18821 year: 2018 end-page: 18826 ident: bb63 article-title: Self-adaptive electrochemical reconstruction boosted exceptional Li+ion storage in a Cu3P@C anode publication-title: J. Mater. Chem. A – volume: 32 year: 2020 ident: bb41 article-title: Dehydration‐triggered ionic channel engineering in potassium niobate for Li/K‐ion storage publication-title: Adv. Mater. – volume: 11 start-page: 38 year: 2018 end-page: 46 ident: bb45 article-title: Few layer nitrogen-doped graphene with highly reversible potassium storage publication-title: Energy Storage Mater. – volume: 8 start-page: 7125 year: 2016 end-page: 7132 ident: bb55 article-title: Effect of phosphorus-doping on electrochemical performance of silicon negative electrodes in lithium-ion batteries publication-title: ACS Appl. Mater. Interfaces – volume: 61 start-page: 404 year: 2019 end-page: 410 ident: bb1 article-title: Surface-engineered mesoporous silicon microparticles as high-Coulombic-efficiency anodes for lithium-ion batteries publication-title: Nano Energy – volume: 48 start-page: 285 year: 2019 end-page: 309 ident: bb6 article-title: Silicon oxides: a promising family of anode materials for lithium-ion batteries publication-title: Chem. Soc. Rev. – volume: 13 start-page: 8854 year: 2019 end-page: 8864 ident: bb15 article-title: Dual bond enhanced multidimensional constructed composite silicon anode for high-performance lithium ion batteries publication-title: ACS Nano – volume: 8 start-page: 563 year: 2014 end-page: 571 ident: bb43 article-title: Exfoliation of graphite with triazine derivatives under ball-milling conditions: preparation of few-layer graphene via selective noncovalent interactions publication-title: ACS Nano – volume: 26 start-page: 2977 year: 2014 end-page: 2982 ident: bb56 article-title: Graphite/silicon hybrid electrodes using a 3D current collector for flexible batteries publication-title: Adv. Mater. – volume: 9 year: 2019 ident: bb11 article-title: Quantification of pseudocapacitive contribution in nanocage‐shaped silicon–carbon composite anode publication-title: Adv. Energy Mater. – volume: 9 start-page: 16221 year: 2017 end-page: 16227 ident: bb60 article-title: Phosphorus-rich CuP2 embedded in carbon matrix as a high-performance anode for lithium-ion batteries publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 1447 year: 2019 ident: bb18 article-title: Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes publication-title: Nat. Commun. – volume: 13 start-page: 2167 year: 2019 end-page: 2175 ident: bb13 article-title: MXene/Si@SiO publication-title: ACS Nano – volume: 9 start-page: 23672 year: 2017 end-page: 23678 ident: bb21 article-title: Nanostructured phosphorus doped silicon/graphite composite as anode for high-performance lithium-ion batteries publication-title: ACS Appl. Mater. Interfaces – volume: 39 start-page: 1105 year: 2010 end-page: 1112 ident: bb31 article-title: Composition, structure, bonding and thermoelectric properties of “CuT2P3” and “CuT4P3”, members of the T1−x(CuP3)x series with T being Si and Ge publication-title: Dalton Trans. – volume: 6 start-page: 19974 year: 2018 end-page: 19978 ident: bb57 article-title: Silicon monophosphide as a possible lithium battery anode material publication-title: J. Mater. Chem. A – volume: 18 start-page: 133 year: 2015 end-page: 142 ident: bb8 article-title: Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries publication-title: Nano Energy – volume: 70 year: 2020 ident: bb12 article-title: In situ synthesis of MOF-derived carbon shells for silicon anode with improved lithium-ion storage publication-title: Nano Energy – volume: 68 year: 2020 ident: bb29 article-title: Ge2Sb2Se5 glass as high-capacity promising lithium-ion battery anode publication-title: Nano Energy – volume: 6 start-page: 35189 year: 2016 ident: bb54 article-title: Cu3P/RGO nanocomposite as a new anode for lithium-ion batteries publication-title: Sci. Rep. – volume: 30 year: 2020 ident: bb67 article-title: Uniformly confined germanium quantum dots in 3D ordered porous carbon framework for high‐performance Li‐ion battery publication-title: Adv. Funct. Mater. – volume: 13 start-page: 3054 year: 2019 end-page: 3062 ident: bb47 article-title: In situsynthesis of multilayer carbon matrix decorated with copper particles: enhancing the performance of Si as anode for Li-Ion batteries publication-title: ACS Nano – volume: 17 start-page: 1240 year: 2017 end-page: 1247 ident: bb65 article-title: Solution synthesis of iodine-doped red phosphorus nanoparticles for lithium-ion battery anodes publication-title: Nano Lett. – volume: 65 year: 2019 ident: bb10 article-title: Ultrafast synthesis of graphene nanosheets encapsulated Si nanoparticles via deflagration of energetic materials for lithium-ion batteries publication-title: Nano Energy – volume: 11 start-page: 669 year: 2018 end-page: 681 ident: bb48 article-title: Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries publication-title: Energy Environ. Sci. – volume: 29 year: 2017 ident: bb64 article-title: Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries publication-title: Adv. Mater. – volume: 100 year: 2012 ident: bb32 article-title: Bandgap engineering of ZnSnP2 for high-efficiency solar cells publication-title: Appl. Phys. Lett. – volume: 15 year: 2019 ident: bb38 article-title: Bundled defect‐rich MoS2 for a high‐rate and long‐life sodium‐ion battery: achieving 3D diffusion of sodium ion by vacancies to improve kinetics publication-title: Small – volume: 26 start-page: 524 year: 2016 end-page: 531 ident: bb58 article-title: Highly connected silicon-copper alloy mixture nanotubes as high-rate and durable anode materials for lithium-ion batteries publication-title: Adv. Funct. Mater. – volume: 14 start-page: 3678 year: 2020 end-page: 3686 ident: bb68 article-title: A fast charge/discharge and wide-temperature battery with a germanium oxide layer on a Ti3C2MXene matrix as anode publication-title: ACS Nano – volume: 58 start-page: 8824 year: 2019 end-page: 8828 ident: bb7 article-title: A yolk–shell structured silicon anode with superior conductivity and high tap density for full lithium‐ion batteries publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 2286 year: 2019 end-page: 2297 ident: bb36 article-title: A new family of cation-disordered Zn(Cu)–Si–P compounds as high-performance anodes for next-generation Li-ion batteries publication-title: Energy Environ. Sci. – volume: 15 start-page: 75 year: 2018 end-page: 81 ident: bb52 article-title: Self-assembled superstructure of carbon-wrapped, single-crystalline Cu3P porous nanosheets: One-step synthesis and enhanced Li-ion battery anode performance publication-title: Energy Storage Mater. – volume: 27 year: 2017 ident: bb42 article-title: Ultrahigh conductive graphene paper based on ball-milling exfoliated graphene publication-title: Adv. Funct. Mater. – volume: 27 start-page: 270 year: 2020 end-page: 278 ident: bb19 article-title: Lattice softening enables highly reversible sodium storage in anti-pulverization Bi–Sb alloy/carbon nanofibers publication-title: Energy Storage Mater. – volume: 63 year: 2019 ident: bb3 article-title: High-performance silicon-carbon anode material via aerosol spray drying and magnesiothermic reduction publication-title: Nano Energy – volume: 6 start-page: 7877 year: 2018 end-page: 7886 ident: bb59 article-title: A bottom-up synthetic hierarchical buffer structure of copper silicon nanowire hybrids as ultra-stable and high-rate lithium-ion battery anodes publication-title: J. Mater. Chem. A – volume: 58 start-page: 4592 year: 2019 end-page: 4599 ident: bb20 article-title: Boron-doped spherical hollow-porous silicon local lattice expansion toward a high-performance lithium-ion-battery anode publication-title: Inorg. Chem. – volume: 9 year: 2019 ident: bb66 article-title: Structural engineering of hierarchical micro‐nanostructured Ge–C framework by controlling the nucleation for ultralong‐life Li storage publication-title: Adv. Energy Mater. – volume: 61 start-page: 304 year: 2019 end-page: 310 ident: bb4 article-title: Elucidating the interfacial evolution and anisotropic dynamics on silicon anodes in lithium-ion batteries publication-title: Nano Energy – volume: 50 start-page: 589 year: 2018 end-page: 597 ident: bb2 article-title: A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries publication-title: Nano Energy – volume: 12 start-page: 1326 year: 2019 end-page: 1333 ident: bb16 article-title: Critical design factors for kinetically favorable P-based compounds toward alloying with Na ions for high-power sodium-ion batteries publication-title: Energy Environ. Sci. – volume: 2 start-page: 528 year: 1987 end-page: 537 ident: bb33 article-title: Metal site disorder in zinc tin phosphide publication-title: J. Mater. Res. – volume: 9 start-page: 126 year: 2018 end-page: 136 ident: bb17 article-title: GeP3 with soft and tunable bonding nature enabling highly reversible alloying with Na ions publication-title: Mater. Today Energy – volume: 11 start-page: 11442 year: 2019 end-page: 11450 ident: bb61 article-title: Self-supporting hybrid fiber mats of Cu3P–Co2P/N–C endowed with enhanced lithium/sodium ions storage performances publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 23 year: 2018 end-page: 29 ident: bb62 article-title: Rationally engineered amorphous TiOx/Si/TiOx nanomembrane as an anode material for high energy lithium ion battery publication-title: Energy Storage Mater. – volume: 9 start-page: 1251 year: 2016 end-page: 1257 ident: bb49 article-title: Micron-sized Fe–Cu–Si ternary composite anodes for high energy Li-ion batteries publication-title: Energy Environ. Sci. – volume: 59 start-page: 1758 year: 1999 end-page: 1775 ident: bb28 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B – volume: 70 year: 2020 ident: bb39 article-title: Stress-relieving defects enable ultra-stable silicon anode for Li-ion storage publication-title: Nano Energy – volume: 29 start-page: 277 year: 1994 end-page: 280 ident: bb30 article-title: X-ray determination of thermal lattice expansion of CuSi2 +xP3 (x = 1, 2) at elevated temperatures publication-title: Cryst. Res. Technol. – volume: 32 year: 2019 ident: bb44 article-title: Coupling topological insulator SnSb2Te4 nanodots with highly doped graphene for high‐rate energy storage publication-title: Adv. Mater. – volume: 27 start-page: 3226 year: 2015 end-page: 3233 ident: bb24 article-title: Synergistic effects of Ge and Si on the performances and mechanism of the GexSi1–x electrodes for Li ion batteries publication-title: Chem. Mater. – volume: 9 year: 2019 ident: bb14 article-title: Low‐temperature reduction strategy synthesized Si/Ti3C2MXene composite anodes for high‐performance Li‐ion batteries publication-title: Adv. Energy Mater. – volume: 17 start-page: 3884 year: 2017 end-page: 3888 ident: bb34 article-title: Implications of occupational disorder on ion mobility in Li4Ti5O12 battery materials publication-title: Nano Lett. – volume: 10 start-page: 5701 year: 2016 end-page: 5709 ident: bb50 article-title: Silicon diphosphide: a Si-Based three-dimensional crystalline framework as a high-performance Li-Ion battery anode publication-title: ACS Nano – volume: 7 start-page: 2249 year: 2013 end-page: 2257 ident: bb23 article-title: Nanostructured Si(1-x)Gex for tunable thin film lithium-ion battery anodes publication-title: ACS Nano – volume: 217 year: 2020 ident: bb25 article-title: Binary Si–Ge alloys as high‐capacity anodes for Li‐Ion batteries publication-title: Phys. Status Solidi A – volume: 10 start-page: 2351 year: 2019 ident: bb22 article-title: Infinitesimal sulfur fusion yields quasi-metallic bulk silicon for stable and fast energy storage publication-title: Nat. Commun. – volume: 4 start-page: 3228 year: 2016 end-page: 3232 ident: bb51 article-title: Pioneer study of SiP2 as negative electrode for Li- and Na-ion batteries publication-title: J. Mater. Chem. A – volume: 10 start-page: 980 year: 2015 end-page: 985 ident: bb35 article-title: A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries publication-title: Nat. Nanotechnol. – volume: 8 year: 2018 ident: bb40 article-title: Bifunctional conducting polymer coated CoP Core–Shell nanowires on carbon paper as a free-standing anode for sodium ion batteries publication-title: Adv. Energy Mater. – volume: 3 start-page: 231 year: 2013 end-page: 238 ident: bb53 article-title: Cu3P binary phosphide: synthesis via a wet mechanochemical method and electrochemical behavior as negative electrode material for lithium-ion batteries publication-title: Adv. Energy Mater. – volume: 55 start-page: 7427 year: 2016 end-page: 7431 ident: bb26 article-title: Electrolytic formation of crystalline silicon/germanium alloy nanotubes and hollow particles with enhanced lithium-storage properties publication-title: Angew. Chem. Int. Ed. – volume: 8 year: 2018 ident: bb46 article-title: A high-rate and ultrastable sodium ion anode based on a novel Sn4P3-P@graphene nanocomposite publication-title: Adv. Energy Mater. – volume: 48 start-page: 285 year: 2019 ident: 10.1016/j.nanoen.2020.105506_bb6 article-title: Silicon oxides: a promising family of anode materials for lithium-ion batteries publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00441B – volume: 63 year: 2019 ident: 10.1016/j.nanoen.2020.105506_bb3 article-title: High-performance silicon-carbon anode material via aerosol spray drying and magnesiothermic reduction publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.06.041 – volume: 12 start-page: 2286 year: 2019 ident: 10.1016/j.nanoen.2020.105506_bb36 article-title: A new family of cation-disordered Zn(Cu)–Si–P compounds as high-performance anodes for next-generation Li-ion batteries publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00953A – volume: 61 start-page: 404 year: 2019 ident: 10.1016/j.nanoen.2020.105506_bb1 article-title: Surface-engineered mesoporous silicon microparticles as high-Coulombic-efficiency anodes for lithium-ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.04.070 – volume: 17 start-page: 3884 year: 2017 ident: 10.1016/j.nanoen.2020.105506_bb34 article-title: Implications of occupational disorder on ion mobility in Li4Ti5O12 battery materials publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b01400 – volume: 8 start-page: 7125 year: 2016 ident: 10.1016/j.nanoen.2020.105506_bb55 article-title: Effect of phosphorus-doping on electrochemical performance of silicon negative electrodes in lithium-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b00386 – volume: 3 start-page: 231 year: 2013 ident: 10.1016/j.nanoen.2020.105506_bb53 article-title: Cu3P binary phosphide: synthesis via a wet mechanochemical method and electrochemical behavior as negative electrode material for lithium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200655 – volume: 9 year: 2019 ident: 10.1016/j.nanoen.2020.105506_bb14 article-title: Low‐temperature reduction strategy synthesized Si/Ti3C2MXene composite anodes for high‐performance Li‐ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901065 – volume: 55 start-page: 7427 year: 2016 ident: 10.1016/j.nanoen.2020.105506_bb26 article-title: Electrolytic formation of crystalline silicon/germanium alloy nanotubes and hollow particles with enhanced lithium-storage properties publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201602653 – volume: 9 start-page: 23672 year: 2017 ident: 10.1016/j.nanoen.2020.105506_bb21 article-title: Nanostructured phosphorus doped silicon/graphite composite as anode for high-performance lithium-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b04361 – volume: 9 start-page: 16221 year: 2017 ident: 10.1016/j.nanoen.2020.105506_bb60 article-title: Phosphorus-rich CuP2 embedded in carbon matrix as a high-performance anode for lithium-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b02826 – volume: 27 start-page: 3226 year: 2015 ident: 10.1016/j.nanoen.2020.105506_bb24 article-title: Synergistic effects of Ge and Si on the performances and mechanism of the GexSi1–x electrodes for Li ion batteries publication-title: Chem. Mater. doi: 10.1021/cm504413g – volume: 8 year: 2018 ident: 10.1016/j.nanoen.2020.105506_bb40 article-title: Bifunctional conducting polymer coated CoP Core–Shell nanowires on carbon paper as a free-standing anode for sodium ion batteries publication-title: Adv. Energy Mater. – volume: 100 year: 2012 ident: 10.1016/j.nanoen.2020.105506_bb32 article-title: Bandgap engineering of ZnSnP2 for high-efficiency solar cells publication-title: Appl. Phys. Lett. doi: 10.1063/1.4730375 – volume: 6 start-page: 35189 year: 2016 ident: 10.1016/j.nanoen.2020.105506_bb54 article-title: Cu3P/RGO nanocomposite as a new anode for lithium-ion batteries publication-title: Sci. Rep. doi: 10.1038/srep35189 – volume: 32 year: 2019 ident: 10.1016/j.nanoen.2020.105506_bb44 article-title: Coupling topological insulator SnSb2Te4 nanodots with highly doped graphene for high‐rate energy storage publication-title: Adv. Mater. – volume: 11 start-page: 38 year: 2018 ident: 10.1016/j.nanoen.2020.105506_bb45 article-title: Few layer nitrogen-doped graphene with highly reversible potassium storage publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.09.009 – volume: 10 start-page: 1447 year: 2019 ident: 10.1016/j.nanoen.2020.105506_bb18 article-title: Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes publication-title: Nat. Commun. doi: 10.1038/s41467-019-09510-5 – volume: 12 start-page: 1326 year: 2019 ident: 10.1016/j.nanoen.2020.105506_bb16 article-title: Critical design factors for kinetically favorable P-based compounds toward alloying with Na ions for high-power sodium-ion batteries publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00283A – volume: 59 start-page: 1758 year: 1999 ident: 10.1016/j.nanoen.2020.105506_bb28 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 132 start-page: 1991 year: 2020 ident: 10.1016/j.nanoen.2020.105506_bb37 article-title: Low‐temperature synthesis of honeycomb CuP2@C in molten ZnCl2 salt for high‐performance lithium ion batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201910474 – volume: 217 year: 2020 ident: 10.1016/j.nanoen.2020.105506_bb25 article-title: Binary Si–Ge alloys as high‐capacity anodes for Li‐Ion batteries publication-title: Phys. Status Solidi A doi: 10.1002/pssa.201900414 – volume: 6 start-page: 19974 year: 2018 ident: 10.1016/j.nanoen.2020.105506_bb57 article-title: Silicon monophosphide as a possible lithium battery anode material publication-title: J. Mater. Chem. A doi: 10.1039/C8TA06983B – volume: 11 start-page: 11442 year: 2019 ident: 10.1016/j.nanoen.2020.105506_bb61 article-title: Self-supporting hybrid fiber mats of Cu3P–Co2P/N–C endowed with enhanced lithium/sodium ions storage performances publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b22367 – volume: 2 start-page: 528 year: 1987 ident: 10.1016/j.nanoen.2020.105506_bb33 article-title: Metal site disorder in zinc tin phosphide publication-title: J. Mater. Res. doi: 10.1557/JMR.1987.0528 – volume: 13 start-page: 8854 year: 2019 ident: 10.1016/j.nanoen.2020.105506_bb15 article-title: Dual bond enhanced multidimensional constructed composite silicon anode for high-performance lithium ion batteries publication-title: ACS Nano doi: 10.1021/acsnano.9b02129 – volume: 16 start-page: 1748 year: 1977 ident: 10.1016/j.nanoen.2020.105506_bb27 article-title: Special points for Brillouin-zone integrations—a reply publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.16.1748 – volume: 27 start-page: 270 year: 2020 ident: 10.1016/j.nanoen.2020.105506_bb19 article-title: Lattice softening enables highly reversible sodium storage in anti-pulverization Bi–Sb alloy/carbon nanofibers publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.02.003 – volume: 6 start-page: 18821 year: 2018 ident: 10.1016/j.nanoen.2020.105506_bb63 article-title: Self-adaptive electrochemical reconstruction boosted exceptional Li+ion storage in a Cu3P@C anode publication-title: J. Mater. Chem. A doi: 10.1039/C8TA04959A – volume: 61 start-page: 304 year: 2019 ident: 10.1016/j.nanoen.2020.105506_bb4 article-title: Elucidating the interfacial evolution and anisotropic dynamics on silicon anodes in lithium-ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.04.074 – volume: 9 year: 2019 ident: 10.1016/j.nanoen.2020.105506_bb11 article-title: Quantification of pseudocapacitive contribution in nanocage‐shaped silicon–carbon composite anode publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803480 – volume: 15 year: 2019 ident: 10.1016/j.nanoen.2020.105506_bb38 article-title: Bundled defect‐rich MoS2 for a high‐rate and long‐life sodium‐ion battery: achieving 3D diffusion of sodium ion by vacancies to improve kinetics publication-title: Small doi: 10.1002/smll.201805405 – volume: 11 start-page: 669 year: 2018 ident: 10.1016/j.nanoen.2020.105506_bb48 article-title: Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00239H – volume: 29 start-page: 277 year: 1994 ident: 10.1016/j.nanoen.2020.105506_bb30 article-title: X-ray determination of thermal lattice expansion of CuSi2 +xP3 (x = 1, 2) at elevated temperatures publication-title: Cryst. Res. Technol. doi: 10.1002/crat.2170290219 – volume: 50 start-page: 589 year: 2018 ident: 10.1016/j.nanoen.2020.105506_bb2 article-title: A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.05.048 – volume: 60 start-page: 485 year: 2019 ident: 10.1016/j.nanoen.2020.105506_bb5 article-title: Reducing the volume deformation of high capacity SiOx/G/C anode toward industrial application in high energy density lithium-ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.077 – volume: 13 start-page: 2167 year: 2019 ident: 10.1016/j.nanoen.2020.105506_bb13 article-title: MXene/Si@SiOx@C layer-by-layer superstructure with autoadjustable function for superior stable lithium storage publication-title: ACS Nano – volume: 8 year: 2018 ident: 10.1016/j.nanoen.2020.105506_bb46 article-title: A high-rate and ultrastable sodium ion anode based on a novel Sn4P3-P@graphene nanocomposite publication-title: Adv. Energy Mater. – volume: 6 start-page: 7877 year: 2018 ident: 10.1016/j.nanoen.2020.105506_bb59 article-title: A bottom-up synthetic hierarchical buffer structure of copper silicon nanowire hybrids as ultra-stable and high-rate lithium-ion battery anodes publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01694A – volume: 9 year: 2019 ident: 10.1016/j.nanoen.2020.105506_bb66 article-title: Structural engineering of hierarchical micro‐nanostructured Ge–C framework by controlling the nucleation for ultralong‐life Li storage publication-title: Adv. Energy Mater. – volume: 70 year: 2020 ident: 10.1016/j.nanoen.2020.105506_bb12 article-title: In situ synthesis of MOF-derived carbon shells for silicon anode with improved lithium-ion storage publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104444 – volume: 68 year: 2020 ident: 10.1016/j.nanoen.2020.105506_bb29 article-title: Ge2Sb2Se5 glass as high-capacity promising lithium-ion battery anode publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104326 – volume: 29 year: 2017 ident: 10.1016/j.nanoen.2020.105506_bb64 article-title: Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries publication-title: Adv. Mater. – volume: 17 start-page: 1240 year: 2017 ident: 10.1016/j.nanoen.2020.105506_bb65 article-title: Solution synthesis of iodine-doped red phosphorus nanoparticles for lithium-ion battery anodes publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b05081 – volume: 8 start-page: 563 year: 2014 ident: 10.1016/j.nanoen.2020.105506_bb43 article-title: Exfoliation of graphite with triazine derivatives under ball-milling conditions: preparation of few-layer graphene via selective noncovalent interactions publication-title: ACS Nano doi: 10.1021/nn405148t – volume: 9 start-page: 1251 year: 2016 ident: 10.1016/j.nanoen.2020.105506_bb49 article-title: Micron-sized Fe–Cu–Si ternary composite anodes for high energy Li-ion batteries publication-title: Energy Environ. Sci. doi: 10.1039/C6EE00023A – volume: 26 start-page: 2977 year: 2014 ident: 10.1016/j.nanoen.2020.105506_bb56 article-title: Graphite/silicon hybrid electrodes using a 3D current collector for flexible batteries publication-title: Adv. Mater. doi: 10.1002/adma.201305600 – volume: 10 start-page: 980 year: 2015 ident: 10.1016/j.nanoen.2020.105506_bb35 article-title: A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.194 – volume: 18 start-page: 133 year: 2015 ident: 10.1016/j.nanoen.2020.105506_bb8 article-title: Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.09.016 – volume: 30 year: 2020 ident: 10.1016/j.nanoen.2020.105506_bb67 article-title: Uniformly confined germanium quantum dots in 3D ordered porous carbon framework for high‐performance Li‐ion battery publication-title: Adv. Funct. Mater. – volume: 14 start-page: 3678 year: 2020 ident: 10.1016/j.nanoen.2020.105506_bb68 article-title: A fast charge/discharge and wide-temperature battery with a germanium oxide layer on a Ti3C2MXene matrix as anode publication-title: ACS Nano doi: 10.1021/acsnano.0c00556 – volume: 4 start-page: 3228 year: 2016 ident: 10.1016/j.nanoen.2020.105506_bb51 article-title: Pioneer study of SiP2 as negative electrode for Li- and Na-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C6TA00103C – volume: 10 start-page: 2351 year: 2019 ident: 10.1016/j.nanoen.2020.105506_bb22 article-title: Infinitesimal sulfur fusion yields quasi-metallic bulk silicon for stable and fast energy storage publication-title: Nat. Commun. doi: 10.1038/s41467-019-10289-8 – volume: 7 start-page: 2249 year: 2013 ident: 10.1016/j.nanoen.2020.105506_bb23 article-title: Nanostructured Si(1-x)Gex for tunable thin film lithium-ion battery anodes publication-title: ACS Nano doi: 10.1021/nn3053632 – volume: 39 start-page: 1105 year: 2010 ident: 10.1016/j.nanoen.2020.105506_bb31 article-title: Composition, structure, bonding and thermoelectric properties of “CuT2P3” and “CuT4P3”, members of the T1−x(CuP3)x series with T being Si and Ge publication-title: Dalton Trans. doi: 10.1039/B914555A – volume: 15 start-page: 75 year: 2018 ident: 10.1016/j.nanoen.2020.105506_bb52 article-title: Self-assembled superstructure of carbon-wrapped, single-crystalline Cu3P porous nanosheets: One-step synthesis and enhanced Li-ion battery anode performance publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.03.014 – volume: 58 start-page: 4592 year: 2019 ident: 10.1016/j.nanoen.2020.105506_bb20 article-title: Boron-doped spherical hollow-porous silicon local lattice expansion toward a high-performance lithium-ion-battery anode publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.9b00158 – volume: 65 year: 2019 ident: 10.1016/j.nanoen.2020.105506_bb10 article-title: Ultrafast synthesis of graphene nanosheets encapsulated Si nanoparticles via deflagration of energetic materials for lithium-ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104028 – volume: 26 start-page: 524 year: 2016 ident: 10.1016/j.nanoen.2020.105506_bb58 article-title: Highly connected silicon-copper alloy mixture nanotubes as high-rate and durable anode materials for lithium-ion batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504014 – volume: 10 start-page: 5701 year: 2016 ident: 10.1016/j.nanoen.2020.105506_bb50 article-title: Silicon diphosphide: a Si-Based three-dimensional crystalline framework as a high-performance Li-Ion battery anode publication-title: ACS Nano doi: 10.1021/acsnano.6b02727 – volume: 32 year: 2020 ident: 10.1016/j.nanoen.2020.105506_bb41 article-title: Dehydration‐triggered ionic channel engineering in potassium niobate for Li/K‐ion storage publication-title: Adv. Mater. – volume: 58 start-page: 8824 year: 2019 ident: 10.1016/j.nanoen.2020.105506_bb7 article-title: A yolk–shell structured silicon anode with superior conductivity and high tap density for full lithium‐ion batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201903709 – volume: 27 year: 2017 ident: 10.1016/j.nanoen.2020.105506_bb42 article-title: Ultrahigh conductive graphene paper based on ball-milling exfoliated graphene publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201700240 – volume: 13 start-page: 3054 year: 2019 ident: 10.1016/j.nanoen.2020.105506_bb47 article-title: In situsynthesis of multilayer carbon matrix decorated with copper particles: enhancing the performance of Si as anode for Li-Ion batteries publication-title: ACS Nano doi: 10.1021/acsnano.8b08088 – volume: 12 start-page: 23 year: 2018 ident: 10.1016/j.nanoen.2020.105506_bb62 article-title: Rationally engineered amorphous TiOx/Si/TiOx nanomembrane as an anode material for high energy lithium ion battery publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.11.010 – volume: 70 year: 2020 ident: 10.1016/j.nanoen.2020.105506_bb39 article-title: Stress-relieving defects enable ultra-stable silicon anode for Li-ion storage publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104568 – volume: 18 start-page: 165 year: 2019 ident: 10.1016/j.nanoen.2020.105506_bb9 article-title: Multi-core yolk-shell like mesoporous double carbon-coated silicon nanoparticles as anode materials for lithium-ion batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.09.019 – volume: 9 start-page: 126 year: 2018 ident: 10.1016/j.nanoen.2020.105506_bb17 article-title: GeP3 with soft and tunable bonding nature enabling highly reversible alloying with Na ions publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2018.05.005 |
SSID | ssj0000651712 |
Score | 2.4901679 |
Snippet | Silicon-based anode materials enable the development of commercial lithium-ion batteries (LIBs) with higher gravimetric energy densities than are currently... |
SourceID | osti crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 105506 |
SubjectTerms | Anodes CuSi2P3 High-performance Li-ion batteries Ternary phosphide |
Title | Yolk-shell structured CuSi2P3@Graphene nanocomposite anode for long-life and high-rate lithium-ion batteries |
URI | https://dx.doi.org/10.1016/j.nanoen.2020.105506 https://www.osti.gov/biblio/1780223 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7LetGD-ERdlRy8xt3m0XZvyqKuiiKsgp5KkiZare2iu1d_uzN9iIIgeGzIlDAznUfz5QshB15DycalYcrqAZORjpkR3jATBSYVAfiIxR3dq-twfCcv7tV9h4zaszAIq2xifx3Tq2jdjPQbbfanWdafcOhdeKwUR3bLuKLdljJCLz_8CL7-s0CKDaJq0xPnMxRoT9BVMK9CF6VDIlRe3Xmr8Oqj3zNUt4SP7lvyOV0hy03VSI_rha2SjivWyNI3LsF1kj-U-Qt7R1wnrUlh528upaP5JOM34ugMiakhrlFcCeLIEazlKDykjkLhSvOyeGR55nEspchizJBFgkKZ_pTNXxnYj5qKjBN66w1yd3pyOxqz5ioFZqVUMxYbZblMcZs5DLlGFpahS3lgQ0jXqUHaLe28GWrHByZS3nMLtUpohXJiMDRObJJuURZui1AxjA130KVBYy29h4wvrTRx6r12kQ75NhGt-hLb8IzjdRd50gLKnpNa6QkqPamVvk3Yl9S05tn4Y37UWib54S8JpII_JHtoSJRCmlyLeCIQCyI8dCx2_v3eHlnkiHepEN27pAuWdntQsMzMfuWR-2Th-PxyfP0JPyLqRw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yHtSD-MT1mYPXsNs82u7NZVHX1yKooKeSpIlWayu6-_-d6UMUBMFjQ6eEmWQezZdvCDn0GlI2Lg1TVveZjHTMjPCGmSgwqQhgjVg80b2ahOM7eX6v7ufIqL0Lg7DKxvfXPr3y1s1Ir9Fm7y3LejccahceK8WR3TJG2u15ZKdSHTI_PLsYT75-tUCUDaLq3BNFGMq0l-gqpFehi9IhFyqv2t4q7H70e5DqlLDvvsWfkxWy3CSOdFjPbZXMuWKNLH2jE1wn-UOZv7APhHbSmhd29u5SOprdZPxaHJ0iNzW4NoozQSg54rUchYfUUchdaV4WjyzPPI6lFImMGRJJUMjUn7LZKwMTUlPxcUJ5vUHuTo5vR2PWdFNgVko1ZbFRlssUT5rDkGskYhm4lAc2hIidGmTe0s6bgXa8byLlPbeQroRWKCf6A-PEJukUZeG2CBWD2HAHhRrU1tJ7CPrSShOn3msX6ZB3iWjVl9iGahw7XuRJiyl7TmqlJ6j0pFZ6l7AvqbeaauOP96PWMsmPJZNANPhDcgcNiVLIlGsRUgRiQYT3jsX2v797QBbGt1eXyeXZ5GKHLHKEv1QA713SAau7Pchfpma_WZ-fTF_s-A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Yolk-shell+structured+CuSi2P3%40Graphene+nanocomposite+anode+for+long-life+and+high-rate+lithium-ion+batteries&rft.jtitle=Nano+energy&rft.au=Li%2C+Wenwu&rft.au=Ma%2C+Qibin&rft.au=Shen%2C+Pengfei&rft.au=Zhou%2C+Yucun&rft.date=2021-02-01&rft.pub=Elsevier&rft.issn=2211-2855&rft.volume=80&rft.issue=C&rft_id=info:doi/10.1016%2Fj.nanoen.2020.105506&rft.externalDocID=1780223 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon |