Yolk-shell structured CuSi2P3@Graphene nanocomposite anode for long-life and high-rate lithium-ion batteries

Silicon-based anode materials enable the development of commercial lithium-ion batteries (LIBs) with higher gravimetric energy densities than are currently available. However, the inherently low electronic and ionic conductivity as well as large volume expansion upon lithiation of Si hinder their us...

Full description

Saved in:
Bibliographic Details
Published inNano energy Vol. 80; no. C; p. 105506
Main Authors Li, Wenwu, Ma, Qibin, Shen, Pengfei, Zhou, Yucun, Soule, Luke, Li, Yunyong, Wu, Yanxue, Zhang, Haiyan, Liu, Meilin
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.02.2021
Elsevier
Subjects
Online AccessGet full text
ISSN2211-2855
DOI10.1016/j.nanoen.2020.105506

Cover

Loading…
Abstract Silicon-based anode materials enable the development of commercial lithium-ion batteries (LIBs) with higher gravimetric energy densities than are currently available. However, the inherently low electronic and ionic conductivity as well as large volume expansion upon lithiation of Si hinder their use in practical applications. Here we report a cation-disordered CuSi2P3 material, synthesized using high-energy ball milling, that shows improved stability, larger capacity, and higher ionic and electronic conductivity than pure Si. When used as an anode for LIBs, CuSi2P3 demonstrates a high reversible capacity of 2069 mA h g−1 with an initial Coulombic efficiency of 91% and a suitable working potential of 0.5 V (vs. Li+/Li). Further, after a two-step ball milling of CuSi2P3 with graphite, a yolk-shell structured carbon-coated CuSi2P3@graphene nanocomposite is formed that shows enhanced long-term cycling stability (1394 mA h g−1 after 1500 cycles at 2 A g−1; 1804 mA h g−1 after 500 cycles at 200 mA g−1) and rate capability (530 mA h g−1 at 50 A g−1), surpassing those for other Cu-Si, Cu-P, and Si-P compounds or single-component Si- and P-based composites. When coupled with a LiNi0.5Co0.2Mn0.3O2 (NCM) cathode in a full cell, the NCM//CuSi2P3 @graphene battery exhibits a high capacity of 140 mA h g−1 after 200 cycles, demonstrating the potential of CuSi2P3 anodes for the next-generation high-performance LIBs. Ternary CuSi2P3 has high electronic conductivity and low Li-ion diffusion energy barrier, thus delivering better Li-storage properties than related binary and single-component electrodes. [Display omitted] •Ternary CuSi2P3 has high electronic conductivity.•CuSi2P3 has a low Li-ion diffusion energy barrier.•CuSi2P3 shows better Li-storage properties than related binary and single-component electrodes studied.•A dual-carbon protection architecture is created by a two-step ball milling process.•A full battery based on CuSi2P3/C anode also shows long-term cycling stability.
AbstractList Silicon-based anode materials enable the development of commercial lithium-ion batteries (LIBs) with higher gravimetric energy densities than are currently available. However, the inherently low electronic and ionic conductivity as well as large volume expansion upon lithiation of Si hinder their use in practical applications. Here we report a cation-disordered CuSi2P3 material, synthesized using high-energy ball milling, that shows improved stability, larger capacity, and higher ionic and electronic conductivity than pure Si. When used as an anode for LIBs, CuSi2P3 demonstrates a high reversible capacity of 2069 mA h g−1 with an initial Coulombic efficiency of 91% and a suitable working potential of 0.5 V (vs. Li+/Li). Further, after a two-step ball milling of CuSi2P3 with graphite, a yolk-shell structured carbon-coated CuSi2P3@graphene nanocomposite is formed that shows enhanced long-term cycling stability (1394 mA h g−1 after 1500 cycles at 2 A g−1; 1804 mA h g−1 after 500 cycles at 200 mA g−1) and rate capability (530 mA h g−1 at 50 A g−1), surpassing those for other Cu-Si, Cu-P, and Si-P compounds or single-component Si- and P-based composites. When coupled with a LiNi0.5Co0.2Mn0.3O2 (NCM) cathode in a full cell, the NCM//CuSi2P3 @graphene battery exhibits a high capacity of 140 mA h g−1 after 200 cycles, demonstrating the potential of CuSi2P3 anodes for the next-generation high-performance LIBs. Ternary CuSi2P3 has high electronic conductivity and low Li-ion diffusion energy barrier, thus delivering better Li-storage properties than related binary and single-component electrodes. [Display omitted] •Ternary CuSi2P3 has high electronic conductivity.•CuSi2P3 has a low Li-ion diffusion energy barrier.•CuSi2P3 shows better Li-storage properties than related binary and single-component electrodes studied.•A dual-carbon protection architecture is created by a two-step ball milling process.•A full battery based on CuSi2P3/C anode also shows long-term cycling stability.
ArticleNumber 105506
Author Liu, Meilin
Zhou, Yucun
Li, Yunyong
Wu, Yanxue
Shen, Pengfei
Ma, Qibin
Soule, Luke
Zhang, Haiyan
Li, Wenwu
Author_xml – sequence: 1
  givenname: Wenwu
  surname: Li
  fullname: Li, Wenwu
  email: wenwuli@hust.edu.cn
  organization: School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
– sequence: 2
  givenname: Qibin
  surname: Ma
  fullname: Ma, Qibin
  organization: School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China
– sequence: 3
  givenname: Pengfei
  surname: Shen
  fullname: Shen, Pengfei
  organization: School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China
– sequence: 4
  givenname: Yucun
  surname: Zhou
  fullname: Zhou, Yucun
  organization: School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
– sequence: 5
  givenname: Luke
  surname: Soule
  fullname: Soule, Luke
  organization: School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
– sequence: 6
  givenname: Yunyong
  surname: Li
  fullname: Li, Yunyong
  organization: School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China
– sequence: 7
  givenname: Yanxue
  surname: Wu
  fullname: Wu, Yanxue
  organization: School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China
– sequence: 8
  givenname: Haiyan
  surname: Zhang
  fullname: Zhang, Haiyan
  organization: School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China
– sequence: 9
  givenname: Meilin
  surname: Liu
  fullname: Liu, Meilin
  email: meilin.liu@mse.gatech.edu
  organization: School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
BackLink https://www.osti.gov/biblio/1780223$$D View this record in Osti.gov
BookMark eNqFkDFPwzAQhT0UiQL9BwwWe4rtxEnKgEAVFKRKIAEDk-U4l8bFtSvbReLf4yhMDHCLdaf3nj6_EzSxzgJC55TMKaHl5XZupXVg54yw4cQ5KSdoyhilGas5P0azELYkTclpRdkUmXdnPrLQgzE4RH9Q8eChxcvDi2bP-c3Ky30PFvCQq9xu74KOgNPSAu6cx8bZTWZ0N9xa3OtNn3mZFEbHXh92mXYWNzJG8BrCGTrqpAkw-3lP0dv93evyIVs_rR6Xt-tMFQWPWd1wxYqWsoqUJZMJliygZVSVNc_bJiekkNA1CwmMNBXvOqZIWZQq55CTRQP5KboYc12IWgSVkFWvnLWgoqBVTRjLk-hqFCnvQvDQiaSTMQFHL7URlIihU7EVY6di6FSMnSZz8cu893on_dd_tuvRBun3nxr8AAdWQav9wNY6_XfAN_GOl08
CitedBy_id crossref_primary_10_5796_electrochemistry_23_00098
crossref_primary_10_1002_celc_202101558
crossref_primary_10_1016_j_apsusc_2023_156870
crossref_primary_10_1016_j_nxener_2024_100176
crossref_primary_10_1002_er_8194
crossref_primary_10_1039_D4EE01241K
crossref_primary_10_3390_en14113145
crossref_primary_10_1016_j_cej_2022_139567
crossref_primary_10_1021_acsmaterialslett_3c00253
crossref_primary_10_1016_j_est_2023_108178
crossref_primary_10_1016_j_ces_2023_119168
crossref_primary_10_1016_j_ensm_2022_04_007
crossref_primary_10_1039_D1CE01453F
crossref_primary_10_1016_j_ensm_2024_103547
crossref_primary_10_3390_en16073099
crossref_primary_10_1021_acsami_1c09590
crossref_primary_10_1021_acsami_1c24510
crossref_primary_10_1016_j_jmrt_2022_02_017
crossref_primary_10_1016_j_apsusc_2022_153790
crossref_primary_10_1039_D2SE01507B
crossref_primary_10_1039_D3CP05164A
crossref_primary_10_1016_j_compositesb_2022_110232
crossref_primary_10_1016_j_jallcom_2022_167785
crossref_primary_10_1149_2162_8777_ad15a7
crossref_primary_10_1016_j_carbon_2022_07_010
crossref_primary_10_1016_j_cej_2023_142208
crossref_primary_10_1021_acsami_2c00321
crossref_primary_10_1016_j_elecom_2022_107420
crossref_primary_10_1016_j_electacta_2023_142420
crossref_primary_10_1016_j_jcis_2025_137372
crossref_primary_10_1142_S0218625X24300065
crossref_primary_10_1515_ntrev_2022_0512
crossref_primary_10_1002_smll_202307722
crossref_primary_10_1016_j_ensm_2022_06_022
crossref_primary_10_3390_ma17133189
crossref_primary_10_1039_D1CC05657C
crossref_primary_10_1002_adfm_202110853
crossref_primary_10_1002_cjce_25103
crossref_primary_10_1016_j_jallcom_2022_166809
Cites_doi 10.1039/C8CS00441B
10.1016/j.nanoen.2019.06.041
10.1039/C9EE00953A
10.1016/j.nanoen.2019.04.070
10.1021/acs.nanolett.7b01400
10.1021/acsami.6b00386
10.1002/aenm.201200655
10.1002/aenm.201901065
10.1002/anie.201602653
10.1021/acsami.7b04361
10.1021/acsami.7b02826
10.1021/cm504413g
10.1063/1.4730375
10.1038/srep35189
10.1016/j.ensm.2017.09.009
10.1038/s41467-019-09510-5
10.1039/C9EE00283A
10.1103/PhysRevB.59.1758
10.1002/ange.201910474
10.1002/pssa.201900414
10.1039/C8TA06983B
10.1021/acsami.8b22367
10.1557/JMR.1987.0528
10.1021/acsnano.9b02129
10.1103/PhysRevB.16.1748
10.1016/j.ensm.2020.02.003
10.1039/C8TA04959A
10.1016/j.nanoen.2019.04.074
10.1002/aenm.201803480
10.1002/smll.201805405
10.1039/C8EE00239H
10.1002/crat.2170290219
10.1016/j.nanoen.2018.05.048
10.1016/j.nanoen.2019.03.077
10.1039/C8TA01694A
10.1016/j.nanoen.2019.104444
10.1016/j.nanoen.2019.104326
10.1021/acs.nanolett.6b05081
10.1021/nn405148t
10.1039/C6EE00023A
10.1002/adma.201305600
10.1038/nnano.2015.194
10.1016/j.nanoen.2015.09.016
10.1021/acsnano.0c00556
10.1039/C6TA00103C
10.1038/s41467-019-10289-8
10.1021/nn3053632
10.1039/B914555A
10.1016/j.ensm.2018.03.014
10.1021/acs.inorgchem.9b00158
10.1016/j.nanoen.2019.104028
10.1002/adfm.201504014
10.1021/acsnano.6b02727
10.1002/anie.201903709
10.1002/adfm.201700240
10.1021/acsnano.8b08088
10.1016/j.ensm.2017.11.010
10.1016/j.nanoen.2020.104568
10.1016/j.ensm.2018.09.019
10.1016/j.mtener.2018.05.005
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
OTOTI
DOI 10.1016/j.nanoen.2020.105506
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 1780223
10_1016_j_nanoen_2020_105506
S2211285520310806
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
JARJE
KOM
M41
MAGPM
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSM
SSR
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
AALMO
ABPIF
OTOTI
ID FETCH-LOGICAL-c445t-8b5c24d1270662a00609ed21c6853db3004aefb9ae20b75ff2c0646c35e309be3
IEDL.DBID .~1
ISSN 2211-2855
IngestDate Thu May 18 22:34:23 EDT 2023
Thu Apr 24 23:13:24 EDT 2025
Tue Jul 01 00:56:42 EDT 2025
Fri Feb 23 02:48:33 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Ternary phosphide
High-performance
Anodes
Li-ion batteries
CuSi2P3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-8b5c24d1270662a00609ed21c6853db3004aefb9ae20b75ff2c0646c35e309be3
Notes USDOE
OpenAccessLink https://www.osti.gov/biblio/1780223
ParticipantIDs osti_scitechconnect_1780223
crossref_citationtrail_10_1016_j_nanoen_2020_105506
crossref_primary_10_1016_j_nanoen_2020_105506
elsevier_sciencedirect_doi_10_1016_j_nanoen_2020_105506
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2021
2021-02-00
2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Nano energy
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Liu, Liu, Jia, Huang, Luo, Mamat, Yu, Dong, Hu (bb9) 2019; 18
Wang, Liao, Lee, Shi, Huang, Zhao, Pei, Tang, Zheng, Chen, Cui (bb1) 2019; 61
Xu, Peng, Mulder (bb46) 2018; 8
Kwon, Lee, Jeon, Park (bb50) 2016; 10
Teng, Xie, Wang, Yang, Ren, Zhu (bb42) 2017; 27
Kresse, Joubert (bb28) 1999; 59
Ryan, Peterson, Williamson, Frey, Maciel, Parkinson (bb33) 1987; 2
Li, Li, Yue, Xu, Zuo, Yin, Guo (bb5) 2019; 60
Zhang, Fan, Liu, Xi, Liu, Wu, Hao, Pang, Zhou, Guo (bb41) 2020; 32
Chae, Ko, Park, Kim, Ma, Cho (bb49) 2016; 9
Huang, Cheong, Wang, Shen (bb21) 2017; 9
Zhu, Wu, Key, Wu, Shen (bb52) 2018; 15
Reinhold, Mikhailova, Gemming, Missyul, Nowka, Kaskel, Giebeler (bb57) 2018; 6
Song, Wang, Lin, Jiang, Yu, Xu, Yu, Zhang, Liu, He, Pan, Shi, Zhou, Chen (bb58) 2016; 26
Kim, Manthiram (bb60) 2017; 9
Huang, Zhang, Liu, Liu, Li, Hu, Wang, Ding, Schmidt (bb62) 2018; 12
An, Gao, Wei, Xiang, Fu, Wang, Zhang, Chu, Huo (bb18) 2019; 10
Yao, Xu, Huang, Ma, Fu, Shen, Li, Fu (bb38) 2019; 15
Pack, Monkhorst (bb27) 1977; 16
Sun, Lee, Pasta, Yuan, Zheng, Sun, Li, Cui (bb35) 2015; 10
Kim, Yun, Son, Lee, Kim, Lee, Cho (bb56) 2014; 26
Jia, Zheng, Song, Luo, Yi, Estevez, Zhao, Patel, Li, Zhang (bb2) 2018; 50
León, Rodriguez, Prieto, Prato, Vázquez (bb43) 2014; 8
Zhou, Yang, Hou, Yi, Zhou, Chen, Lam, Yuan, Golberg, Wang (bb39) 2020; 70
Abel, Chockla, Lin, Holmberg, Harris, Korgel, Heller, Mullins (bb23) 2013; 7
Shi, Wan, Li, Hu, Lang, Shen, Li, Yan, Jiang, Guo, Wen, Wan (bb4) 2019; 61
Liu, Zhang, Yan, Cheng, Tang, Cui, Wang, Zhang, Wang, Jiang, Wang, Yu (bb15) 2019; 13
Zhang, Zheng, Huang, Hong, Cao, Hao, Fan, Zhou, Guo (bb66) 2019; 9
Chen, Shen, van Aken, Maier, Yu (bb64) 2017; 29
Duveau, Fraisse, Cunin, Monconduit (bb24) 2015; 27
Zhang, Zhang, Yang, Lee, Shin, Lau, Kang (bb40) 2018; 8
Zhang, Mu, Lai, Chao, Yang, Zhou, Li, Yang, Xia, Guo (bb13) 2019; 13
Ryu, Seo, Song, Choi, Hong, Wang, Lee, Lee, Park (bb22) 2019; 10
Zhang, Zong, Chen, Jin, Bai, Li, Ma, Xu, Lian (bb47) 2019; 13
Duho, Zhang, Lim, Lee, Cho, Cho, Kang (bb17) 2018; 9
Shang, Chen, Li, Niu (bb68) 2020; 14
Wang, Ahmadpour, Kolodiazhnyi, Kracher, Cranswick, Mozharivskyj (bb31) 2010; 39
Gao, Tang, Yu, Tang, Ozawa, Sasak, Qin (bb12) 2020; 70
Wang, Luo, Chen, Wu (bb67) 2020; 30
Zhang, Chen, Luo, Zhao, Luo, Han, Wang, Wang, Yang, Zhu, Liu (bb48) 2018; 11
Ni, Zheng, Liu, Chao, Yang, Shen, Zhao (bb63) 2018; 6
Liu, Yu, Zhao, He, Xu, Feng, Li, Zhou, Mai (bb6) 2019; 48
Li, Li, Liu, Zhu, Nauman Ali, Naz, Yu, Xiang (bb61) 2019; 11
Scanlon, Walsh (bb32) 2012; 100
Liu, He, Zhu, Xu, Tong (bb54) 2016; 6
Ren, Zhou, Tang, Ding, Chen, Zhang, Hu, Yang, Wang, Yang (bb20) 2019; 58
Bensalah, Matalkeh, Mustafa, Merabet (bb25) 2020; 217
Bhikshamaiah, Omar, Suryanarayana (bb30) 1994; 29
Yan, Guo (bb3) 2019; 63
Heenen, Scheurer, Reuter (bb34) 2017; 17
Liu, Yang, Sun, Yang, Zheng, Li (bb37) 2020; 132
Son, Ma, Kim, Lee, Lee, Sung, Choi, Nam, Cho, Yoo, Cho (bb11) 2019; 9
Hui, Zhao, Zhang, Li, Wang, Yin (bb14) 2019; 9
Wu, Liang, Pang, Zhou, Cheng, Zhang, Liu, Johannessen, Guo (bb44) 2019; 32
Duveau, Israel, Fullenwarth, Cunin, Monconduit (bb51) 2016; 4
Li, Li, Liao, Zhao, Zhang, Huang, Liu, Guo d, Liu (bb36) 2019; 12
Domi, Usui, Shimizu, Kakimoto, Sakaguchi (bb55) 2016; 8
Guo, Li, Lu, Liu, Hu (bb19) 2020; 27
Ju, Li, Ma, Xing, Zhuang, Qian (bb45) 2018; 11
Chang, Tseng, Tuan (bb65) 2017; 17
Cristian Stan, Klöpsch, Bhaskar, Li, Passerini, Winter (bb53) 2013; 3
Kim, Zhang, Cho, Kang (bb16) 2019; 12
Yang, Wang, Chou, Zhang, Xu, Fan, Zhang, Liu, Zhao, Dou (bb8) 2015; 18
Yang, Liu, Li, Zhang, Wang, He (bb10) 2019; 65
Xiao, Zhou, Yu, Wang, Lou (bb26) 2016; 55
Song, Wang, Song, Yang, Du, Yu, Xu, He, Zhou, Chen (bb59) 2018; 6
Zhang, Wang, Dou, Cheng, Cui, Du, Liu, Al-Mamun, Zhang, Zhao (bb7) 2019; 58
Rodriguez, Qi, Wang, Shalaginov, Goncalves, Kang, Richardson, Guerrero-Sancheze, Moreno-Armentae, Pol (bb29) 2020; 68
Liu (10.1016/j.nanoen.2020.105506_bb9) 2019; 18
Zhang (10.1016/j.nanoen.2020.105506_bb48) 2018; 11
Bensalah (10.1016/j.nanoen.2020.105506_bb25) 2020; 217
Li (10.1016/j.nanoen.2020.105506_bb36) 2019; 12
Shang (10.1016/j.nanoen.2020.105506_bb68) 2020; 14
Song (10.1016/j.nanoen.2020.105506_bb58) 2016; 26
Kresse (10.1016/j.nanoen.2020.105506_bb28) 1999; 59
Wang (10.1016/j.nanoen.2020.105506_bb1) 2019; 61
Shi (10.1016/j.nanoen.2020.105506_bb4) 2019; 61
Zhang (10.1016/j.nanoen.2020.105506_bb41) 2020; 32
Hui (10.1016/j.nanoen.2020.105506_bb14) 2019; 9
Cristian Stan (10.1016/j.nanoen.2020.105506_bb53) 2013; 3
Wu (10.1016/j.nanoen.2020.105506_bb44) 2019; 32
Yao (10.1016/j.nanoen.2020.105506_bb38) 2019; 15
Liu (10.1016/j.nanoen.2020.105506_bb37) 2020; 132
Son (10.1016/j.nanoen.2020.105506_bb11) 2019; 9
Rodriguez (10.1016/j.nanoen.2020.105506_bb29) 2020; 68
Zhang (10.1016/j.nanoen.2020.105506_bb66) 2019; 9
Ren (10.1016/j.nanoen.2020.105506_bb20) 2019; 58
Wang (10.1016/j.nanoen.2020.105506_bb67) 2020; 30
Ju (10.1016/j.nanoen.2020.105506_bb45) 2018; 11
Heenen (10.1016/j.nanoen.2020.105506_bb34) 2017; 17
Reinhold (10.1016/j.nanoen.2020.105506_bb57) 2018; 6
Wang (10.1016/j.nanoen.2020.105506_bb31) 2010; 39
An (10.1016/j.nanoen.2020.105506_bb18) 2019; 10
Abel (10.1016/j.nanoen.2020.105506_bb23) 2013; 7
Duveau (10.1016/j.nanoen.2020.105506_bb51) 2016; 4
Kwon (10.1016/j.nanoen.2020.105506_bb50) 2016; 10
Liu (10.1016/j.nanoen.2020.105506_bb6) 2019; 48
Bhikshamaiah (10.1016/j.nanoen.2020.105506_bb30) 1994; 29
Huang (10.1016/j.nanoen.2020.105506_bb21) 2017; 9
Zhang (10.1016/j.nanoen.2020.105506_bb47) 2019; 13
Sun (10.1016/j.nanoen.2020.105506_bb35) 2015; 10
Yang (10.1016/j.nanoen.2020.105506_bb8) 2015; 18
Kim (10.1016/j.nanoen.2020.105506_bb16) 2019; 12
Kim (10.1016/j.nanoen.2020.105506_bb60) 2017; 9
Ni (10.1016/j.nanoen.2020.105506_bb63) 2018; 6
Li (10.1016/j.nanoen.2020.105506_bb61) 2019; 11
Teng (10.1016/j.nanoen.2020.105506_bb42) 2017; 27
Chen (10.1016/j.nanoen.2020.105506_bb64) 2017; 29
Liu (10.1016/j.nanoen.2020.105506_bb15) 2019; 13
Ryu (10.1016/j.nanoen.2020.105506_bb22) 2019; 10
Domi (10.1016/j.nanoen.2020.105506_bb55) 2016; 8
Zhang (10.1016/j.nanoen.2020.105506_bb7) 2019; 58
León (10.1016/j.nanoen.2020.105506_bb43) 2014; 8
Yan (10.1016/j.nanoen.2020.105506_bb3) 2019; 63
Zhu (10.1016/j.nanoen.2020.105506_bb52) 2018; 15
Zhang (10.1016/j.nanoen.2020.105506_bb40) 2018; 8
Duho (10.1016/j.nanoen.2020.105506_bb17) 2018; 9
Pack (10.1016/j.nanoen.2020.105506_bb27) 1977; 16
Li (10.1016/j.nanoen.2020.105506_bb5) 2019; 60
Song (10.1016/j.nanoen.2020.105506_bb59) 2018; 6
Scanlon (10.1016/j.nanoen.2020.105506_bb32) 2012; 100
Zhang (10.1016/j.nanoen.2020.105506_bb13) 2019; 13
Guo (10.1016/j.nanoen.2020.105506_bb19) 2020; 27
Duveau (10.1016/j.nanoen.2020.105506_bb24) 2015; 27
Kim (10.1016/j.nanoen.2020.105506_bb56) 2014; 26
Jia (10.1016/j.nanoen.2020.105506_bb2) 2018; 50
Gao (10.1016/j.nanoen.2020.105506_bb12) 2020; 70
Xiao (10.1016/j.nanoen.2020.105506_bb26) 2016; 55
Ryan (10.1016/j.nanoen.2020.105506_bb33) 1987; 2
Liu (10.1016/j.nanoen.2020.105506_bb54) 2016; 6
Chang (10.1016/j.nanoen.2020.105506_bb65) 2017; 17
Xu (10.1016/j.nanoen.2020.105506_bb46) 2018; 8
Zhou (10.1016/j.nanoen.2020.105506_bb39) 2020; 70
Chae (10.1016/j.nanoen.2020.105506_bb49) 2016; 9
Yang (10.1016/j.nanoen.2020.105506_bb10) 2019; 65
Huang (10.1016/j.nanoen.2020.105506_bb62) 2018; 12
References_xml – volume: 18
  start-page: 165
  year: 2019
  end-page: 173
  ident: bb9
  article-title: Multi-core yolk-shell like mesoporous double carbon-coated silicon nanoparticles as anode materials for lithium-ion batteries
  publication-title: Energy Storage Mater.
– volume: 60
  start-page: 485
  year: 2019
  end-page: 492
  ident: bb5
  article-title: Reducing the volume deformation of high capacity SiOx/G/C anode toward industrial application in high energy density lithium-ion batteries
  publication-title: Nano Energy
– volume: 16
  start-page: 1748
  year: 1977
  end-page: 1749
  ident: bb27
  article-title: Special points for Brillouin-zone integrations—a reply
  publication-title: Phys. Rev. B
– volume: 132
  start-page: 1991
  year: 2020
  end-page: 1995
  ident: bb37
  article-title: Low‐temperature synthesis of honeycomb CuP2@C in molten ZnCl2 salt for high‐performance lithium ion batteries
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 18821
  year: 2018
  end-page: 18826
  ident: bb63
  article-title: Self-adaptive electrochemical reconstruction boosted exceptional Li+ion storage in a Cu3P@C anode
  publication-title: J. Mater. Chem. A
– volume: 32
  year: 2020
  ident: bb41
  article-title: Dehydration‐triggered ionic channel engineering in potassium niobate for Li/K‐ion storage
  publication-title: Adv. Mater.
– volume: 11
  start-page: 38
  year: 2018
  end-page: 46
  ident: bb45
  article-title: Few layer nitrogen-doped graphene with highly reversible potassium storage
  publication-title: Energy Storage Mater.
– volume: 8
  start-page: 7125
  year: 2016
  end-page: 7132
  ident: bb55
  article-title: Effect of phosphorus-doping on electrochemical performance of silicon negative electrodes in lithium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 61
  start-page: 404
  year: 2019
  end-page: 410
  ident: bb1
  article-title: Surface-engineered mesoporous silicon microparticles as high-Coulombic-efficiency anodes for lithium-ion batteries
  publication-title: Nano Energy
– volume: 48
  start-page: 285
  year: 2019
  end-page: 309
  ident: bb6
  article-title: Silicon oxides: a promising family of anode materials for lithium-ion batteries
  publication-title: Chem. Soc. Rev.
– volume: 13
  start-page: 8854
  year: 2019
  end-page: 8864
  ident: bb15
  article-title: Dual bond enhanced multidimensional constructed composite silicon anode for high-performance lithium ion batteries
  publication-title: ACS Nano
– volume: 8
  start-page: 563
  year: 2014
  end-page: 571
  ident: bb43
  article-title: Exfoliation of graphite with triazine derivatives under ball-milling conditions: preparation of few-layer graphene via selective noncovalent interactions
  publication-title: ACS Nano
– volume: 26
  start-page: 2977
  year: 2014
  end-page: 2982
  ident: bb56
  article-title: Graphite/silicon hybrid electrodes using a 3D current collector for flexible batteries
  publication-title: Adv. Mater.
– volume: 9
  year: 2019
  ident: bb11
  article-title: Quantification of pseudocapacitive contribution in nanocage‐shaped silicon–carbon composite anode
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 16221
  year: 2017
  end-page: 16227
  ident: bb60
  article-title: Phosphorus-rich CuP2 embedded in carbon matrix as a high-performance anode for lithium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 1447
  year: 2019
  ident: bb18
  article-title: Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes
  publication-title: Nat. Commun.
– volume: 13
  start-page: 2167
  year: 2019
  end-page: 2175
  ident: bb13
  article-title: MXene/Si@SiO
  publication-title: ACS Nano
– volume: 9
  start-page: 23672
  year: 2017
  end-page: 23678
  ident: bb21
  article-title: Nanostructured phosphorus doped silicon/graphite composite as anode for high-performance lithium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 39
  start-page: 1105
  year: 2010
  end-page: 1112
  ident: bb31
  article-title: Composition, structure, bonding and thermoelectric properties of “CuT2P3” and “CuT4P3”, members of the T1−x(CuP3)x series with T being Si and Ge
  publication-title: Dalton Trans.
– volume: 6
  start-page: 19974
  year: 2018
  end-page: 19978
  ident: bb57
  article-title: Silicon monophosphide as a possible lithium battery anode material
  publication-title: J. Mater. Chem. A
– volume: 18
  start-page: 133
  year: 2015
  end-page: 142
  ident: bb8
  article-title: Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries
  publication-title: Nano Energy
– volume: 70
  year: 2020
  ident: bb12
  article-title: In situ synthesis of MOF-derived carbon shells for silicon anode with improved lithium-ion storage
  publication-title: Nano Energy
– volume: 68
  year: 2020
  ident: bb29
  article-title: Ge2Sb2Se5 glass as high-capacity promising lithium-ion battery anode
  publication-title: Nano Energy
– volume: 6
  start-page: 35189
  year: 2016
  ident: bb54
  article-title: Cu3P/RGO nanocomposite as a new anode for lithium-ion batteries
  publication-title: Sci. Rep.
– volume: 30
  year: 2020
  ident: bb67
  article-title: Uniformly confined germanium quantum dots in 3D ordered porous carbon framework for high‐performance Li‐ion battery
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 3054
  year: 2019
  end-page: 3062
  ident: bb47
  article-title: In situsynthesis of multilayer carbon matrix decorated with copper particles: enhancing the performance of Si as anode for Li-Ion batteries
  publication-title: ACS Nano
– volume: 17
  start-page: 1240
  year: 2017
  end-page: 1247
  ident: bb65
  article-title: Solution synthesis of iodine-doped red phosphorus nanoparticles for lithium-ion battery anodes
  publication-title: Nano Lett.
– volume: 65
  year: 2019
  ident: bb10
  article-title: Ultrafast synthesis of graphene nanosheets encapsulated Si nanoparticles via deflagration of energetic materials for lithium-ion batteries
  publication-title: Nano Energy
– volume: 11
  start-page: 669
  year: 2018
  end-page: 681
  ident: bb48
  article-title: Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries
  publication-title: Energy Environ. Sci.
– volume: 29
  year: 2017
  ident: bb64
  article-title: Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries
  publication-title: Adv. Mater.
– volume: 100
  year: 2012
  ident: bb32
  article-title: Bandgap engineering of ZnSnP2 for high-efficiency solar cells
  publication-title: Appl. Phys. Lett.
– volume: 15
  year: 2019
  ident: bb38
  article-title: Bundled defect‐rich MoS2 for a high‐rate and long‐life sodium‐ion battery: achieving 3D diffusion of sodium ion by vacancies to improve kinetics
  publication-title: Small
– volume: 26
  start-page: 524
  year: 2016
  end-page: 531
  ident: bb58
  article-title: Highly connected silicon-copper alloy mixture nanotubes as high-rate and durable anode materials for lithium-ion batteries
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 3678
  year: 2020
  end-page: 3686
  ident: bb68
  article-title: A fast charge/discharge and wide-temperature battery with a germanium oxide layer on a Ti3C2MXene matrix as anode
  publication-title: ACS Nano
– volume: 58
  start-page: 8824
  year: 2019
  end-page: 8828
  ident: bb7
  article-title: A yolk–shell structured silicon anode with superior conductivity and high tap density for full lithium‐ion batteries
  publication-title: Angew. Chem. Int. Ed.
– volume: 12
  start-page: 2286
  year: 2019
  end-page: 2297
  ident: bb36
  article-title: A new family of cation-disordered Zn(Cu)–Si–P compounds as high-performance anodes for next-generation Li-ion batteries
  publication-title: Energy Environ. Sci.
– volume: 15
  start-page: 75
  year: 2018
  end-page: 81
  ident: bb52
  article-title: Self-assembled superstructure of carbon-wrapped, single-crystalline Cu3P porous nanosheets: One-step synthesis and enhanced Li-ion battery anode performance
  publication-title: Energy Storage Mater.
– volume: 27
  year: 2017
  ident: bb42
  article-title: Ultrahigh conductive graphene paper based on ball-milling exfoliated graphene
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 270
  year: 2020
  end-page: 278
  ident: bb19
  article-title: Lattice softening enables highly reversible sodium storage in anti-pulverization Bi–Sb alloy/carbon nanofibers
  publication-title: Energy Storage Mater.
– volume: 63
  year: 2019
  ident: bb3
  article-title: High-performance silicon-carbon anode material via aerosol spray drying and magnesiothermic reduction
  publication-title: Nano Energy
– volume: 6
  start-page: 7877
  year: 2018
  end-page: 7886
  ident: bb59
  article-title: A bottom-up synthetic hierarchical buffer structure of copper silicon nanowire hybrids as ultra-stable and high-rate lithium-ion battery anodes
  publication-title: J. Mater. Chem. A
– volume: 58
  start-page: 4592
  year: 2019
  end-page: 4599
  ident: bb20
  article-title: Boron-doped spherical hollow-porous silicon local lattice expansion toward a high-performance lithium-ion-battery anode
  publication-title: Inorg. Chem.
– volume: 9
  year: 2019
  ident: bb66
  article-title: Structural engineering of hierarchical micro‐nanostructured Ge–C framework by controlling the nucleation for ultralong‐life Li storage
  publication-title: Adv. Energy Mater.
– volume: 61
  start-page: 304
  year: 2019
  end-page: 310
  ident: bb4
  article-title: Elucidating the interfacial evolution and anisotropic dynamics on silicon anodes in lithium-ion batteries
  publication-title: Nano Energy
– volume: 50
  start-page: 589
  year: 2018
  end-page: 597
  ident: bb2
  article-title: A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries
  publication-title: Nano Energy
– volume: 12
  start-page: 1326
  year: 2019
  end-page: 1333
  ident: bb16
  article-title: Critical design factors for kinetically favorable P-based compounds toward alloying with Na ions for high-power sodium-ion batteries
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 528
  year: 1987
  end-page: 537
  ident: bb33
  article-title: Metal site disorder in zinc tin phosphide
  publication-title: J. Mater. Res.
– volume: 9
  start-page: 126
  year: 2018
  end-page: 136
  ident: bb17
  article-title: GeP3 with soft and tunable bonding nature enabling highly reversible alloying with Na ions
  publication-title: Mater. Today Energy
– volume: 11
  start-page: 11442
  year: 2019
  end-page: 11450
  ident: bb61
  article-title: Self-supporting hybrid fiber mats of Cu3P–Co2P/N–C endowed with enhanced lithium/sodium ions storage performances
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 23
  year: 2018
  end-page: 29
  ident: bb62
  article-title: Rationally engineered amorphous TiOx/Si/TiOx nanomembrane as an anode material for high energy lithium ion battery
  publication-title: Energy Storage Mater.
– volume: 9
  start-page: 1251
  year: 2016
  end-page: 1257
  ident: bb49
  article-title: Micron-sized Fe–Cu–Si ternary composite anodes for high energy Li-ion batteries
  publication-title: Energy Environ. Sci.
– volume: 59
  start-page: 1758
  year: 1999
  end-page: 1775
  ident: bb28
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
– volume: 70
  year: 2020
  ident: bb39
  article-title: Stress-relieving defects enable ultra-stable silicon anode for Li-ion storage
  publication-title: Nano Energy
– volume: 29
  start-page: 277
  year: 1994
  end-page: 280
  ident: bb30
  article-title: X-ray determination of thermal lattice expansion of CuSi2 +xP3 (x = 1, 2) at elevated temperatures
  publication-title: Cryst. Res. Technol.
– volume: 32
  year: 2019
  ident: bb44
  article-title: Coupling topological insulator SnSb2Te4 nanodots with highly doped graphene for high‐rate energy storage
  publication-title: Adv. Mater.
– volume: 27
  start-page: 3226
  year: 2015
  end-page: 3233
  ident: bb24
  article-title: Synergistic effects of Ge and Si on the performances and mechanism of the GexSi1–x electrodes for Li ion batteries
  publication-title: Chem. Mater.
– volume: 9
  year: 2019
  ident: bb14
  article-title: Low‐temperature reduction strategy synthesized Si/Ti3C2MXene composite anodes for high‐performance Li‐ion batteries
  publication-title: Adv. Energy Mater.
– volume: 17
  start-page: 3884
  year: 2017
  end-page: 3888
  ident: bb34
  article-title: Implications of occupational disorder on ion mobility in Li4Ti5O12 battery materials
  publication-title: Nano Lett.
– volume: 10
  start-page: 5701
  year: 2016
  end-page: 5709
  ident: bb50
  article-title: Silicon diphosphide: a Si-Based three-dimensional crystalline framework as a high-performance Li-Ion battery anode
  publication-title: ACS Nano
– volume: 7
  start-page: 2249
  year: 2013
  end-page: 2257
  ident: bb23
  article-title: Nanostructured Si(1-x)Gex for tunable thin film lithium-ion battery anodes
  publication-title: ACS Nano
– volume: 217
  year: 2020
  ident: bb25
  article-title: Binary Si–Ge alloys as high‐capacity anodes for Li‐Ion batteries
  publication-title: Phys. Status Solidi A
– volume: 10
  start-page: 2351
  year: 2019
  ident: bb22
  article-title: Infinitesimal sulfur fusion yields quasi-metallic bulk silicon for stable and fast energy storage
  publication-title: Nat. Commun.
– volume: 4
  start-page: 3228
  year: 2016
  end-page: 3232
  ident: bb51
  article-title: Pioneer study of SiP2 as negative electrode for Li- and Na-ion batteries
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 980
  year: 2015
  end-page: 985
  ident: bb35
  article-title: A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries
  publication-title: Nat. Nanotechnol.
– volume: 8
  year: 2018
  ident: bb40
  article-title: Bifunctional conducting polymer coated CoP Core–Shell nanowires on carbon paper as a free-standing anode for sodium ion batteries
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 231
  year: 2013
  end-page: 238
  ident: bb53
  article-title: Cu3P binary phosphide: synthesis via a wet mechanochemical method and electrochemical behavior as negative electrode material for lithium-ion batteries
  publication-title: Adv. Energy Mater.
– volume: 55
  start-page: 7427
  year: 2016
  end-page: 7431
  ident: bb26
  article-title: Electrolytic formation of crystalline silicon/germanium alloy nanotubes and hollow particles with enhanced lithium-storage properties
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  year: 2018
  ident: bb46
  article-title: A high-rate and ultrastable sodium ion anode based on a novel Sn4P3-P@graphene nanocomposite
  publication-title: Adv. Energy Mater.
– volume: 48
  start-page: 285
  year: 2019
  ident: 10.1016/j.nanoen.2020.105506_bb6
  article-title: Silicon oxides: a promising family of anode materials for lithium-ion batteries
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00441B
– volume: 63
  year: 2019
  ident: 10.1016/j.nanoen.2020.105506_bb3
  article-title: High-performance silicon-carbon anode material via aerosol spray drying and magnesiothermic reduction
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.06.041
– volume: 12
  start-page: 2286
  year: 2019
  ident: 10.1016/j.nanoen.2020.105506_bb36
  article-title: A new family of cation-disordered Zn(Cu)–Si–P compounds as high-performance anodes for next-generation Li-ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00953A
– volume: 61
  start-page: 404
  year: 2019
  ident: 10.1016/j.nanoen.2020.105506_bb1
  article-title: Surface-engineered mesoporous silicon microparticles as high-Coulombic-efficiency anodes for lithium-ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.070
– volume: 17
  start-page: 3884
  year: 2017
  ident: 10.1016/j.nanoen.2020.105506_bb34
  article-title: Implications of occupational disorder on ion mobility in Li4Ti5O12 battery materials
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b01400
– volume: 8
  start-page: 7125
  year: 2016
  ident: 10.1016/j.nanoen.2020.105506_bb55
  article-title: Effect of phosphorus-doping on electrochemical performance of silicon negative electrodes in lithium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b00386
– volume: 3
  start-page: 231
  year: 2013
  ident: 10.1016/j.nanoen.2020.105506_bb53
  article-title: Cu3P binary phosphide: synthesis via a wet mechanochemical method and electrochemical behavior as negative electrode material for lithium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200655
– volume: 9
  year: 2019
  ident: 10.1016/j.nanoen.2020.105506_bb14
  article-title: Low‐temperature reduction strategy synthesized Si/Ti3C2MXene composite anodes for high‐performance Li‐ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901065
– volume: 55
  start-page: 7427
  year: 2016
  ident: 10.1016/j.nanoen.2020.105506_bb26
  article-title: Electrolytic formation of crystalline silicon/germanium alloy nanotubes and hollow particles with enhanced lithium-storage properties
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201602653
– volume: 9
  start-page: 23672
  year: 2017
  ident: 10.1016/j.nanoen.2020.105506_bb21
  article-title: Nanostructured phosphorus doped silicon/graphite composite as anode for high-performance lithium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b04361
– volume: 9
  start-page: 16221
  year: 2017
  ident: 10.1016/j.nanoen.2020.105506_bb60
  article-title: Phosphorus-rich CuP2 embedded in carbon matrix as a high-performance anode for lithium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b02826
– volume: 27
  start-page: 3226
  year: 2015
  ident: 10.1016/j.nanoen.2020.105506_bb24
  article-title: Synergistic effects of Ge and Si on the performances and mechanism of the GexSi1–x electrodes for Li ion batteries
  publication-title: Chem. Mater.
  doi: 10.1021/cm504413g
– volume: 8
  year: 2018
  ident: 10.1016/j.nanoen.2020.105506_bb40
  article-title: Bifunctional conducting polymer coated CoP Core–Shell nanowires on carbon paper as a free-standing anode for sodium ion batteries
  publication-title: Adv. Energy Mater.
– volume: 100
  year: 2012
  ident: 10.1016/j.nanoen.2020.105506_bb32
  article-title: Bandgap engineering of ZnSnP2 for high-efficiency solar cells
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4730375
– volume: 6
  start-page: 35189
  year: 2016
  ident: 10.1016/j.nanoen.2020.105506_bb54
  article-title: Cu3P/RGO nanocomposite as a new anode for lithium-ion batteries
  publication-title: Sci. Rep.
  doi: 10.1038/srep35189
– volume: 32
  year: 2019
  ident: 10.1016/j.nanoen.2020.105506_bb44
  article-title: Coupling topological insulator SnSb2Te4 nanodots with highly doped graphene for high‐rate energy storage
  publication-title: Adv. Mater.
– volume: 11
  start-page: 38
  year: 2018
  ident: 10.1016/j.nanoen.2020.105506_bb45
  article-title: Few layer nitrogen-doped graphene with highly reversible potassium storage
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2017.09.009
– volume: 10
  start-page: 1447
  year: 2019
  ident: 10.1016/j.nanoen.2020.105506_bb18
  article-title: Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09510-5
– volume: 12
  start-page: 1326
  year: 2019
  ident: 10.1016/j.nanoen.2020.105506_bb16
  article-title: Critical design factors for kinetically favorable P-based compounds toward alloying with Na ions for high-power sodium-ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00283A
– volume: 59
  start-page: 1758
  year: 1999
  ident: 10.1016/j.nanoen.2020.105506_bb28
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 132
  start-page: 1991
  year: 2020
  ident: 10.1016/j.nanoen.2020.105506_bb37
  article-title: Low‐temperature synthesis of honeycomb CuP2@C in molten ZnCl2 salt for high‐performance lithium ion batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201910474
– volume: 217
  year: 2020
  ident: 10.1016/j.nanoen.2020.105506_bb25
  article-title: Binary Si–Ge alloys as high‐capacity anodes for Li‐Ion batteries
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.201900414
– volume: 6
  start-page: 19974
  year: 2018
  ident: 10.1016/j.nanoen.2020.105506_bb57
  article-title: Silicon monophosphide as a possible lithium battery anode material
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA06983B
– volume: 11
  start-page: 11442
  year: 2019
  ident: 10.1016/j.nanoen.2020.105506_bb61
  article-title: Self-supporting hybrid fiber mats of Cu3P–Co2P/N–C endowed with enhanced lithium/sodium ions storage performances
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b22367
– volume: 2
  start-page: 528
  year: 1987
  ident: 10.1016/j.nanoen.2020.105506_bb33
  article-title: Metal site disorder in zinc tin phosphide
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1987.0528
– volume: 13
  start-page: 8854
  year: 2019
  ident: 10.1016/j.nanoen.2020.105506_bb15
  article-title: Dual bond enhanced multidimensional constructed composite silicon anode for high-performance lithium ion batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b02129
– volume: 16
  start-page: 1748
  year: 1977
  ident: 10.1016/j.nanoen.2020.105506_bb27
  article-title: Special points for Brillouin-zone integrations—a reply
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.16.1748
– volume: 27
  start-page: 270
  year: 2020
  ident: 10.1016/j.nanoen.2020.105506_bb19
  article-title: Lattice softening enables highly reversible sodium storage in anti-pulverization Bi–Sb alloy/carbon nanofibers
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.02.003
– volume: 6
  start-page: 18821
  year: 2018
  ident: 10.1016/j.nanoen.2020.105506_bb63
  article-title: Self-adaptive electrochemical reconstruction boosted exceptional Li+ion storage in a Cu3P@C anode
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA04959A
– volume: 61
  start-page: 304
  year: 2019
  ident: 10.1016/j.nanoen.2020.105506_bb4
  article-title: Elucidating the interfacial evolution and anisotropic dynamics on silicon anodes in lithium-ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.074
– volume: 9
  year: 2019
  ident: 10.1016/j.nanoen.2020.105506_bb11
  article-title: Quantification of pseudocapacitive contribution in nanocage‐shaped silicon–carbon composite anode
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201803480
– volume: 15
  year: 2019
  ident: 10.1016/j.nanoen.2020.105506_bb38
  article-title: Bundled defect‐rich MoS2 for a high‐rate and long‐life sodium‐ion battery: achieving 3D diffusion of sodium ion by vacancies to improve kinetics
  publication-title: Small
  doi: 10.1002/smll.201805405
– volume: 11
  start-page: 669
  year: 2018
  ident: 10.1016/j.nanoen.2020.105506_bb48
  article-title: Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00239H
– volume: 29
  start-page: 277
  year: 1994
  ident: 10.1016/j.nanoen.2020.105506_bb30
  article-title: X-ray determination of thermal lattice expansion of CuSi2 +xP3 (x = 1, 2) at elevated temperatures
  publication-title: Cryst. Res. Technol.
  doi: 10.1002/crat.2170290219
– volume: 50
  start-page: 589
  year: 2018
  ident: 10.1016/j.nanoen.2020.105506_bb2
  article-title: A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.05.048
– volume: 60
  start-page: 485
  year: 2019
  ident: 10.1016/j.nanoen.2020.105506_bb5
  article-title: Reducing the volume deformation of high capacity SiOx/G/C anode toward industrial application in high energy density lithium-ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.077
– volume: 13
  start-page: 2167
  year: 2019
  ident: 10.1016/j.nanoen.2020.105506_bb13
  article-title: MXene/Si@SiOx@C layer-by-layer superstructure with autoadjustable function for superior stable lithium storage
  publication-title: ACS Nano
– volume: 8
  year: 2018
  ident: 10.1016/j.nanoen.2020.105506_bb46
  article-title: A high-rate and ultrastable sodium ion anode based on a novel Sn4P3-P@graphene nanocomposite
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 7877
  year: 2018
  ident: 10.1016/j.nanoen.2020.105506_bb59
  article-title: A bottom-up synthetic hierarchical buffer structure of copper silicon nanowire hybrids as ultra-stable and high-rate lithium-ion battery anodes
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA01694A
– volume: 9
  year: 2019
  ident: 10.1016/j.nanoen.2020.105506_bb66
  article-title: Structural engineering of hierarchical micro‐nanostructured Ge–C framework by controlling the nucleation for ultralong‐life Li storage
  publication-title: Adv. Energy Mater.
– volume: 70
  year: 2020
  ident: 10.1016/j.nanoen.2020.105506_bb12
  article-title: In situ synthesis of MOF-derived carbon shells for silicon anode with improved lithium-ion storage
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104444
– volume: 68
  year: 2020
  ident: 10.1016/j.nanoen.2020.105506_bb29
  article-title: Ge2Sb2Se5 glass as high-capacity promising lithium-ion battery anode
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104326
– volume: 29
  year: 2017
  ident: 10.1016/j.nanoen.2020.105506_bb64
  article-title: Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries
  publication-title: Adv. Mater.
– volume: 17
  start-page: 1240
  year: 2017
  ident: 10.1016/j.nanoen.2020.105506_bb65
  article-title: Solution synthesis of iodine-doped red phosphorus nanoparticles for lithium-ion battery anodes
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b05081
– volume: 8
  start-page: 563
  year: 2014
  ident: 10.1016/j.nanoen.2020.105506_bb43
  article-title: Exfoliation of graphite with triazine derivatives under ball-milling conditions: preparation of few-layer graphene via selective noncovalent interactions
  publication-title: ACS Nano
  doi: 10.1021/nn405148t
– volume: 9
  start-page: 1251
  year: 2016
  ident: 10.1016/j.nanoen.2020.105506_bb49
  article-title: Micron-sized Fe–Cu–Si ternary composite anodes for high energy Li-ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE00023A
– volume: 26
  start-page: 2977
  year: 2014
  ident: 10.1016/j.nanoen.2020.105506_bb56
  article-title: Graphite/silicon hybrid electrodes using a 3D current collector for flexible batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305600
– volume: 10
  start-page: 980
  year: 2015
  ident: 10.1016/j.nanoen.2020.105506_bb35
  article-title: A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.194
– volume: 18
  start-page: 133
  year: 2015
  ident: 10.1016/j.nanoen.2020.105506_bb8
  article-title: Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.09.016
– volume: 30
  year: 2020
  ident: 10.1016/j.nanoen.2020.105506_bb67
  article-title: Uniformly confined germanium quantum dots in 3D ordered porous carbon framework for high‐performance Li‐ion battery
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 3678
  year: 2020
  ident: 10.1016/j.nanoen.2020.105506_bb68
  article-title: A fast charge/discharge and wide-temperature battery with a germanium oxide layer on a Ti3C2MXene matrix as anode
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c00556
– volume: 4
  start-page: 3228
  year: 2016
  ident: 10.1016/j.nanoen.2020.105506_bb51
  article-title: Pioneer study of SiP2 as negative electrode for Li- and Na-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA00103C
– volume: 10
  start-page: 2351
  year: 2019
  ident: 10.1016/j.nanoen.2020.105506_bb22
  article-title: Infinitesimal sulfur fusion yields quasi-metallic bulk silicon for stable and fast energy storage
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10289-8
– volume: 7
  start-page: 2249
  year: 2013
  ident: 10.1016/j.nanoen.2020.105506_bb23
  article-title: Nanostructured Si(1-x)Gex for tunable thin film lithium-ion battery anodes
  publication-title: ACS Nano
  doi: 10.1021/nn3053632
– volume: 39
  start-page: 1105
  year: 2010
  ident: 10.1016/j.nanoen.2020.105506_bb31
  article-title: Composition, structure, bonding and thermoelectric properties of “CuT2P3” and “CuT4P3”, members of the T1−x(CuP3)x series with T being Si and Ge
  publication-title: Dalton Trans.
  doi: 10.1039/B914555A
– volume: 15
  start-page: 75
  year: 2018
  ident: 10.1016/j.nanoen.2020.105506_bb52
  article-title: Self-assembled superstructure of carbon-wrapped, single-crystalline Cu3P porous nanosheets: One-step synthesis and enhanced Li-ion battery anode performance
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.03.014
– volume: 58
  start-page: 4592
  year: 2019
  ident: 10.1016/j.nanoen.2020.105506_bb20
  article-title: Boron-doped spherical hollow-porous silicon local lattice expansion toward a high-performance lithium-ion-battery anode
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.9b00158
– volume: 65
  year: 2019
  ident: 10.1016/j.nanoen.2020.105506_bb10
  article-title: Ultrafast synthesis of graphene nanosheets encapsulated Si nanoparticles via deflagration of energetic materials for lithium-ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104028
– volume: 26
  start-page: 524
  year: 2016
  ident: 10.1016/j.nanoen.2020.105506_bb58
  article-title: Highly connected silicon-copper alloy mixture nanotubes as high-rate and durable anode materials for lithium-ion batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504014
– volume: 10
  start-page: 5701
  year: 2016
  ident: 10.1016/j.nanoen.2020.105506_bb50
  article-title: Silicon diphosphide: a Si-Based three-dimensional crystalline framework as a high-performance Li-Ion battery anode
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b02727
– volume: 32
  year: 2020
  ident: 10.1016/j.nanoen.2020.105506_bb41
  article-title: Dehydration‐triggered ionic channel engineering in potassium niobate for Li/K‐ion storage
  publication-title: Adv. Mater.
– volume: 58
  start-page: 8824
  year: 2019
  ident: 10.1016/j.nanoen.2020.105506_bb7
  article-title: A yolk–shell structured silicon anode with superior conductivity and high tap density for full lithium‐ion batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201903709
– volume: 27
  year: 2017
  ident: 10.1016/j.nanoen.2020.105506_bb42
  article-title: Ultrahigh conductive graphene paper based on ball-milling exfoliated graphene
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201700240
– volume: 13
  start-page: 3054
  year: 2019
  ident: 10.1016/j.nanoen.2020.105506_bb47
  article-title: In situsynthesis of multilayer carbon matrix decorated with copper particles: enhancing the performance of Si as anode for Li-Ion batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b08088
– volume: 12
  start-page: 23
  year: 2018
  ident: 10.1016/j.nanoen.2020.105506_bb62
  article-title: Rationally engineered amorphous TiOx/Si/TiOx nanomembrane as an anode material for high energy lithium ion battery
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2017.11.010
– volume: 70
  year: 2020
  ident: 10.1016/j.nanoen.2020.105506_bb39
  article-title: Stress-relieving defects enable ultra-stable silicon anode for Li-ion storage
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104568
– volume: 18
  start-page: 165
  year: 2019
  ident: 10.1016/j.nanoen.2020.105506_bb9
  article-title: Multi-core yolk-shell like mesoporous double carbon-coated silicon nanoparticles as anode materials for lithium-ion batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.09.019
– volume: 9
  start-page: 126
  year: 2018
  ident: 10.1016/j.nanoen.2020.105506_bb17
  article-title: GeP3 with soft and tunable bonding nature enabling highly reversible alloying with Na ions
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2018.05.005
SSID ssj0000651712
Score 2.4901679
Snippet Silicon-based anode materials enable the development of commercial lithium-ion batteries (LIBs) with higher gravimetric energy densities than are currently...
SourceID osti
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 105506
SubjectTerms Anodes
CuSi2P3
High-performance
Li-ion batteries
Ternary phosphide
Title Yolk-shell structured CuSi2P3@Graphene nanocomposite anode for long-life and high-rate lithium-ion batteries
URI https://dx.doi.org/10.1016/j.nanoen.2020.105506
https://www.osti.gov/biblio/1780223
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7LetGD-ERdlRy8xt3m0XZvyqKuiiKsgp5KkiZare2iu1d_uzN9iIIgeGzIlDAznUfz5QshB15DycalYcrqAZORjpkR3jATBSYVAfiIxR3dq-twfCcv7tV9h4zaszAIq2xifx3Tq2jdjPQbbfanWdafcOhdeKwUR3bLuKLdljJCLz_8CL7-s0CKDaJq0xPnMxRoT9BVMK9CF6VDIlRe3Xmr8Oqj3zNUt4SP7lvyOV0hy03VSI_rha2SjivWyNI3LsF1kj-U-Qt7R1wnrUlh528upaP5JOM34ugMiakhrlFcCeLIEazlKDykjkLhSvOyeGR55nEspchizJBFgkKZ_pTNXxnYj5qKjBN66w1yd3pyOxqz5ioFZqVUMxYbZblMcZs5DLlGFpahS3lgQ0jXqUHaLe28GWrHByZS3nMLtUpohXJiMDRObJJuURZui1AxjA130KVBYy29h4wvrTRx6r12kQ75NhGt-hLb8IzjdRd50gLKnpNa6QkqPamVvk3Yl9S05tn4Y37UWib54S8JpII_JHtoSJRCmlyLeCIQCyI8dCx2_v3eHlnkiHepEN27pAuWdntQsMzMfuWR-2Th-PxyfP0JPyLqRw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yHtSD-MT1mYPXsNs82u7NZVHX1yKooKeSpIlWayu6-_-d6UMUBMFjQ6eEmWQezZdvCDn0GlI2Lg1TVveZjHTMjPCGmSgwqQhgjVg80b2ahOM7eX6v7ufIqL0Lg7DKxvfXPr3y1s1Ir9Fm7y3LejccahceK8WR3TJG2u15ZKdSHTI_PLsYT75-tUCUDaLq3BNFGMq0l-gqpFehi9IhFyqv2t4q7H70e5DqlLDvvsWfkxWy3CSOdFjPbZXMuWKNLH2jE1wn-UOZv7APhHbSmhd29u5SOprdZPxaHJ0iNzW4NoozQSg54rUchYfUUchdaV4WjyzPPI6lFImMGRJJUMjUn7LZKwMTUlPxcUJ5vUHuTo5vR2PWdFNgVko1ZbFRlssUT5rDkGskYhm4lAc2hIidGmTe0s6bgXa8byLlPbeQroRWKCf6A-PEJukUZeG2CBWD2HAHhRrU1tJ7CPrSShOn3msX6ZB3iWjVl9iGahw7XuRJiyl7TmqlJ6j0pFZ6l7AvqbeaauOP96PWMsmPJZNANPhDcgcNiVLIlGsRUgRiQYT3jsX2v797QBbGt1eXyeXZ5GKHLHKEv1QA713SAau7Pchfpma_WZ-fTF_s-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Yolk-shell+structured+CuSi2P3%40Graphene+nanocomposite+anode+for+long-life+and+high-rate+lithium-ion+batteries&rft.jtitle=Nano+energy&rft.au=Li%2C+Wenwu&rft.au=Ma%2C+Qibin&rft.au=Shen%2C+Pengfei&rft.au=Zhou%2C+Yucun&rft.date=2021-02-01&rft.pub=Elsevier&rft.issn=2211-2855&rft.volume=80&rft.issue=C&rft_id=info:doi/10.1016%2Fj.nanoen.2020.105506&rft.externalDocID=1780223
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon