Distribution and risk assessment of phthalates in water and sediment of the Pearl River Delta
Phthalate esters (PAEs) are widely used industrial raw materials that are well known for their environmental contamination and toxicological effects as “endocrine disruptors.” In this study, environmental levels of PAEs and eco-toxicological risk assessments were determined in the eight estuaries of...
Saved in:
Published in | Environmental science and pollution research international Vol. 27; no. 11; pp. 12550 - 12565 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Phthalate esters (PAEs) are widely used industrial raw materials that are well known for their environmental contamination and toxicological effects as “endocrine disruptors.” In this study, environmental levels of PAEs and eco-toxicological risk assessments were determined in the eight estuaries of the Pearl River (Estuaries), main upstream tributary (Xijiang River), urban river network (River network), and nature reserve reservoir (Reservoirs). Water and sediment samples from the above water systems were collected during the low-water period (May) and the high-water period (August) between 2012 and 2014. Solid phase and ultrasonic methods were used to extract 14 different PAEs that were analyzed by gas chromatography. The analytical average recovery of PAEs in water and sediment was 75.4% ± 4.9% and 121.5% ± 8.9%, respectively. The results showed that PAEs were detected in all of the samples, and the di-n-butyl phtalate (DBP) and benzyl butyl phthalate (BBP) monomers had a detection rate of 100% in water. Similarly, in sediment samples, the detection rates of diisobutyl phthalate (D
i
BP), DBP, dimethoxyethyl phthalate (DMEP), BBP, di-n-octyl phthalate (D
n
OP), and DNP ranged from 66.7 to 100%. Among these, in sediment samples, di(2-ethylhexyl) phthalate (DEHP) and phthalic acid bis(2-butoxyethyl) ester (DBEP) had detection rates of 95.8% to 100% in the Estuaries, Xijiang River, and River network. The concentrations of Σ
14
PAEs in water samples and sediments ranged from 12.95 ± 1.97 to 6717.29 ± 112.37 ng/L and 71.99 ± 8.72 to 17,340.04 ± 227.83 ng/g-dw, respectively. During the low-water period, the average concentration of Σ
14
PAEs in water and sediment was 1159.58 ± 97.22 ng/L and 2842.50 ± 178.21 ng/g-dw, respectively, and during the high-water period, 822.83 ± 53.19 ng/L and 1936.42 ± 111.31 ng/g-dw, respectively. In water, the average concentration of Σ
14
PAEs in 2013 and 2014 was 963.39 ± 19.55 ng/L and 2815.35 ± 176.32 ng/L, respectively. In sediment, the average concentrations of Σ
14
PAEs in 2012 to 2014 were 990.10 ± 23.33 ng/g-dw, 1084.20 ± 112.12 ng/g-dw, and 1816.89 ± 79.97 ng/g-dw, respectively, with concentrations showing an increasing trend year after year (2014 > 2013 > 2012). Potential risk assessment of water ecological, the results show that exceeding environmental risk level (ERL) value in higher molecular weight plasticizer (DEHP, DMEP, DNOP, DNP) was mainly distributed in water, the lower molecular weight plasticizer (BMP, D
i
BP) was mainly distributed in sediment. |
---|---|
AbstractList | Phthalate esters (PAEs) are widely used industrial raw materials that are well known for their environmental contamination and toxicological effects as "endocrine disruptors." In this study, environmental levels of PAEs and eco-toxicological risk assessments were determined in the eight estuaries of the Pearl River (Estuaries), main upstream tributary (Xijiang River), urban river network (River network), and nature reserve reservoir (Reservoirs). Water and sediment samples from the above water systems were collected during the low-water period (May) and the high-water period (August) between 2012 and 2014. Solid phase and ultrasonic methods were used to extract 14 different PAEs that were analyzed by gas chromatography. The analytical average recovery of PAEs in water and sediment was 75.4% ± 4.9% and 121.5% ± 8.9%, respectively. The results showed that PAEs were detected in all of the samples, and the di-n-butyl phtalate (DBP) and benzyl butyl phthalate (BBP) monomers had a detection rate of 100% in water. Similarly, in sediment samples, the detection rates of diisobutyl phthalate (DiBP), DBP, dimethoxyethyl phthalate (DMEP), BBP, di-n-octyl phthalate (DnOP), and DNP ranged from 66.7 to 100%. Among these, in sediment samples, di(2-ethylhexyl) phthalate (DEHP) and phthalic acid bis(2-butoxyethyl) ester (DBEP) had detection rates of 95.8% to 100% in the Estuaries, Xijiang River, and River network. The concentrations of Σ
PAEs in water samples and sediments ranged from 12.95 ± 1.97 to 6717.29 ± 112.37 ng/L and 71.99 ± 8.72 to 17,340.04 ± 227.83 ng/g-dw, respectively. During the low-water period, the average concentration of Σ
PAEs in water and sediment was 1159.58 ± 97.22 ng/L and 2842.50 ± 178.21 ng/g-dw, respectively, and during the high-water period, 822.83 ± 53.19 ng/L and 1936.42 ± 111.31 ng/g-dw, respectively. In water, the average concentration of Σ
PAEs in 2013 and 2014 was 963.39 ± 19.55 ng/L and 2815.35 ± 176.32 ng/L, respectively. In sediment, the average concentrations of Σ
PAEs in 2012 to 2014 were 990.10 ± 23.33 ng/g-dw, 1084.20 ± 112.12 ng/g-dw, and 1816.89 ± 79.97 ng/g-dw, respectively, with concentrations showing an increasing trend year after year (2014 > 2013 > 2012). Potential risk assessment of water ecological, the results show that exceeding environmental risk level (ERL) value in higher molecular weight plasticizer (DEHP, DMEP, DNOP, DNP) was mainly distributed in water, the lower molecular weight plasticizer (BMP, DiBP) was mainly distributed in sediment. Phthalate esters (PAEs) are widely used industrial raw materials that are well known for their environmental contamination and toxicological effects as “endocrine disruptors.” In this study, environmental levels of PAEs and eco-toxicological risk assessments were determined in the eight estuaries of the Pearl River (Estuaries), main upstream tributary (Xijiang River), urban river network (River network), and nature reserve reservoir (Reservoirs). Water and sediment samples from the above water systems were collected during the low-water period (May) and the high-water period (August) between 2012 and 2014. Solid phase and ultrasonic methods were used to extract 14 different PAEs that were analyzed by gas chromatography. The analytical average recovery of PAEs in water and sediment was 75.4% ± 4.9% and 121.5% ± 8.9%, respectively. The results showed that PAEs were detected in all of the samples, and the di-n-butyl phtalate (DBP) and benzyl butyl phthalate (BBP) monomers had a detection rate of 100% in water. Similarly, in sediment samples, the detection rates of diisobutyl phthalate (DiBP), DBP, dimethoxyethyl phthalate (DMEP), BBP, di-n-octyl phthalate (DnOP), and DNP ranged from 66.7 to 100%. Among these, in sediment samples, di(2-ethylhexyl) phthalate (DEHP) and phthalic acid bis(2-butoxyethyl) ester (DBEP) had detection rates of 95.8% to 100% in the Estuaries, Xijiang River, and River network. The concentrations of Σ₁₄PAEs in water samples and sediments ranged from 12.95 ± 1.97 to 6717.29 ± 112.37 ng/L and 71.99 ± 8.72 to 17,340.04 ± 227.83 ng/g-dw, respectively. During the low-water period, the average concentration of Σ₁₄PAEs in water and sediment was 1159.58 ± 97.22 ng/L and 2842.50 ± 178.21 ng/g-dw, respectively, and during the high-water period, 822.83 ± 53.19 ng/L and 1936.42 ± 111.31 ng/g-dw, respectively. In water, the average concentration of Σ₁₄PAEs in 2013 and 2014 was 963.39 ± 19.55 ng/L and 2815.35 ± 176.32 ng/L, respectively. In sediment, the average concentrations of Σ₁₄PAEs in 2012 to 2014 were 990.10 ± 23.33 ng/g-dw, 1084.20 ± 112.12 ng/g-dw, and 1816.89 ± 79.97 ng/g-dw, respectively, with concentrations showing an increasing trend year after year (2014 > 2013 > 2012). Potential risk assessment of water ecological, the results show that exceeding environmental risk level (ERL) value in higher molecular weight plasticizer (DEHP, DMEP, DNOP, DNP) was mainly distributed in water, the lower molecular weight plasticizer (BMP, DiBP) was mainly distributed in sediment. Phthalate esters (PAEs) are widely used industrial raw materials that are well known for their environmental contamination and toxicological effects as “endocrine disruptors.” In this study, environmental levels of PAEs and eco-toxicological risk assessments were determined in the eight estuaries of the Pearl River (Estuaries), main upstream tributary (Xijiang River), urban river network (River network), and nature reserve reservoir (Reservoirs). Water and sediment samples from the above water systems were collected during the low-water period (May) and the high-water period (August) between 2012 and 2014. Solid phase and ultrasonic methods were used to extract 14 different PAEs that were analyzed by gas chromatography. The analytical average recovery of PAEs in water and sediment was 75.4% ± 4.9% and 121.5% ± 8.9%, respectively. The results showed that PAEs were detected in all of the samples, and the di-n-butyl phtalate (DBP) and benzyl butyl phthalate (BBP) monomers had a detection rate of 100% in water. Similarly, in sediment samples, the detection rates of diisobutyl phthalate (D i BP), DBP, dimethoxyethyl phthalate (DMEP), BBP, di-n-octyl phthalate (D n OP), and DNP ranged from 66.7 to 100%. Among these, in sediment samples, di(2-ethylhexyl) phthalate (DEHP) and phthalic acid bis(2-butoxyethyl) ester (DBEP) had detection rates of 95.8% to 100% in the Estuaries, Xijiang River, and River network. The concentrations of Σ 14 PAEs in water samples and sediments ranged from 12.95 ± 1.97 to 6717.29 ± 112.37 ng/L and 71.99 ± 8.72 to 17,340.04 ± 227.83 ng/g-dw, respectively. During the low-water period, the average concentration of Σ 14 PAEs in water and sediment was 1159.58 ± 97.22 ng/L and 2842.50 ± 178.21 ng/g-dw, respectively, and during the high-water period, 822.83 ± 53.19 ng/L and 1936.42 ± 111.31 ng/g-dw, respectively. In water, the average concentration of Σ 14 PAEs in 2013 and 2014 was 963.39 ± 19.55 ng/L and 2815.35 ± 176.32 ng/L, respectively. In sediment, the average concentrations of Σ 14 PAEs in 2012 to 2014 were 990.10 ± 23.33 ng/g-dw, 1084.20 ± 112.12 ng/g-dw, and 1816.89 ± 79.97 ng/g-dw, respectively, with concentrations showing an increasing trend year after year (2014 > 2013 > 2012). Potential risk assessment of water ecological, the results show that exceeding environmental risk level (ERL) value in higher molecular weight plasticizer (DEHP, DMEP, DNOP, DNP) was mainly distributed in water, the lower molecular weight plasticizer (BMP, D i BP) was mainly distributed in sediment. Phthalate esters (PAEs) are widely used industrial raw materials that are well known for their environmental contamination and toxicological effects as "endocrine disruptors." In this study, environmental levels of PAEs and eco-toxicological risk assessments were determined in the eight estuaries of the Pearl River (Estuaries), main upstream tributary (Xijiang River), urban river network (River network), and nature reserve reservoir (Reservoirs). Water and sediment samples from the above water systems were collected during the low-water period (May) and the high-water period (August) between 2012 and 2014. Solid phase and ultrasonic methods were used to extract 14 different PAEs that were analyzed by gas chromatography. The analytical average recovery of PAEs in water and sediment was 75.4% ± 4.9% and 121.5% ± 8.9%, respectively. The results showed that PAEs were detected in all of the samples, and the di-n-butyl phtalate (DBP) and benzyl butyl phthalate (BBP) monomers had a detection rate of 100% in water. Similarly, in sediment samples, the detection rates of diisobutyl phthalate (DiBP), DBP, dimethoxyethyl phthalate (DMEP), BBP, di-n-octyl phthalate (DnOP), and DNP ranged from 66.7 to 100%. Among these, in sediment samples, di(2-ethylhexyl) phthalate (DEHP) and phthalic acid bis(2-butoxyethyl) ester (DBEP) had detection rates of 95.8% to 100% in the Estuaries, Xijiang River, and River network. The concentrations of Σ14PAEs in water samples and sediments ranged from 12.95 ± 1.97 to 6717.29 ± 112.37 ng/L and 71.99 ± 8.72 to 17,340.04 ± 227.83 ng/g-dw, respectively. During the low-water period, the average concentration of Σ14PAEs in water and sediment was 1159.58 ± 97.22 ng/L and 2842.50 ± 178.21 ng/g-dw, respectively, and during the high-water period, 822.83 ± 53.19 ng/L and 1936.42 ± 111.31 ng/g-dw, respectively. In water, the average concentration of Σ14PAEs in 2013 and 2014 was 963.39 ± 19.55 ng/L and 2815.35 ± 176.32 ng/L, respectively. In sediment, the average concentrations of Σ14PAEs in 2012 to 2014 were 990.10 ± 23.33 ng/g-dw, 1084.20 ± 112.12 ng/g-dw, and 1816.89 ± 79.97 ng/g-dw, respectively, with concentrations showing an increasing trend year after year (2014 > 2013 > 2012). Potential risk assessment of water ecological, the results show that exceeding environmental risk level (ERL) value in higher molecular weight plasticizer (DEHP, DMEP, DNOP, DNP) was mainly distributed in water, the lower molecular weight plasticizer (BMP, DiBP) was mainly distributed in sediment.Phthalate esters (PAEs) are widely used industrial raw materials that are well known for their environmental contamination and toxicological effects as "endocrine disruptors." In this study, environmental levels of PAEs and eco-toxicological risk assessments were determined in the eight estuaries of the Pearl River (Estuaries), main upstream tributary (Xijiang River), urban river network (River network), and nature reserve reservoir (Reservoirs). Water and sediment samples from the above water systems were collected during the low-water period (May) and the high-water period (August) between 2012 and 2014. Solid phase and ultrasonic methods were used to extract 14 different PAEs that were analyzed by gas chromatography. The analytical average recovery of PAEs in water and sediment was 75.4% ± 4.9% and 121.5% ± 8.9%, respectively. The results showed that PAEs were detected in all of the samples, and the di-n-butyl phtalate (DBP) and benzyl butyl phthalate (BBP) monomers had a detection rate of 100% in water. Similarly, in sediment samples, the detection rates of diisobutyl phthalate (DiBP), DBP, dimethoxyethyl phthalate (DMEP), BBP, di-n-octyl phthalate (DnOP), and DNP ranged from 66.7 to 100%. Among these, in sediment samples, di(2-ethylhexyl) phthalate (DEHP) and phthalic acid bis(2-butoxyethyl) ester (DBEP) had detection rates of 95.8% to 100% in the Estuaries, Xijiang River, and River network. The concentrations of Σ14PAEs in water samples and sediments ranged from 12.95 ± 1.97 to 6717.29 ± 112.37 ng/L and 71.99 ± 8.72 to 17,340.04 ± 227.83 ng/g-dw, respectively. During the low-water period, the average concentration of Σ14PAEs in water and sediment was 1159.58 ± 97.22 ng/L and 2842.50 ± 178.21 ng/g-dw, respectively, and during the high-water period, 822.83 ± 53.19 ng/L and 1936.42 ± 111.31 ng/g-dw, respectively. In water, the average concentration of Σ14PAEs in 2013 and 2014 was 963.39 ± 19.55 ng/L and 2815.35 ± 176.32 ng/L, respectively. In sediment, the average concentrations of Σ14PAEs in 2012 to 2014 were 990.10 ± 23.33 ng/g-dw, 1084.20 ± 112.12 ng/g-dw, and 1816.89 ± 79.97 ng/g-dw, respectively, with concentrations showing an increasing trend year after year (2014 > 2013 > 2012). Potential risk assessment of water ecological, the results show that exceeding environmental risk level (ERL) value in higher molecular weight plasticizer (DEHP, DMEP, DNOP, DNP) was mainly distributed in water, the lower molecular weight plasticizer (BMP, DiBP) was mainly distributed in sediment. Phthalate esters (PAEs) are widely used industrial raw materials that are well known for their environmental contamination and toxicological effects as “endocrine disruptors.” In this study, environmental levels of PAEs and eco-toxicological risk assessments were determined in the eight estuaries of the Pearl River (Estuaries), main upstream tributary (Xijiang River), urban river network (River network), and nature reserve reservoir (Reservoirs). Water and sediment samples from the above water systems were collected during the low-water period (May) and the high-water period (August) between 2012 and 2014. Solid phase and ultrasonic methods were used to extract 14 different PAEs that were analyzed by gas chromatography. The analytical average recovery of PAEs in water and sediment was 75.4% ± 4.9% and 121.5% ± 8.9%, respectively. The results showed that PAEs were detected in all of the samples, and the di-n-butyl phtalate (DBP) and benzyl butyl phthalate (BBP) monomers had a detection rate of 100% in water. Similarly, in sediment samples, the detection rates of diisobutyl phthalate (DiBP), DBP, dimethoxyethyl phthalate (DMEP), BBP, di-n-octyl phthalate (DnOP), and DNP ranged from 66.7 to 100%. Among these, in sediment samples, di(2-ethylhexyl) phthalate (DEHP) and phthalic acid bis(2-butoxyethyl) ester (DBEP) had detection rates of 95.8% to 100% in the Estuaries, Xijiang River, and River network. The concentrations of Σ14PAEs in water samples and sediments ranged from 12.95 ± 1.97 to 6717.29 ± 112.37 ng/L and 71.99 ± 8.72 to 17,340.04 ± 227.83 ng/g-dw, respectively. During the low-water period, the average concentration of Σ14PAEs in water and sediment was 1159.58 ± 97.22 ng/L and 2842.50 ± 178.21 ng/g-dw, respectively, and during the high-water period, 822.83 ± 53.19 ng/L and 1936.42 ± 111.31 ng/g-dw, respectively. In water, the average concentration of Σ14PAEs in 2013 and 2014 was 963.39 ± 19.55 ng/L and 2815.35 ± 176.32 ng/L, respectively. In sediment, the average concentrations of Σ14PAEs in 2012 to 2014 were 990.10 ± 23.33 ng/g-dw, 1084.20 ± 112.12 ng/g-dw, and 1816.89 ± 79.97 ng/g-dw, respectively, with concentrations showing an increasing trend year after year (2014 > 2013 > 2012). Potential risk assessment of water ecological, the results show that exceeding environmental risk level (ERL) value in higher molecular weight plasticizer (DEHP, DMEP, DNOP, DNP) was mainly distributed in water, the lower molecular weight plasticizer (BMP, DiBP) was mainly distributed in sediment. |
Author | Jian, He Weizhen, Zhang Xiaowei, Zheng Zheng, Zheng Zini, Lai Peng, Gu Ning, Wang |
Author_xml | – sequence: 1 givenname: Zhang orcidid: 0000-0001-8601-7230 surname: Weizhen fullname: Weizhen, Zhang organization: Department of Environmental Science and Engineering, Fudan University, Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, College of Aquatic and Life Science, Shanghai Ocean University – sequence: 2 givenname: Zheng surname: Xiaowei fullname: Xiaowei, Zheng organization: Department of Environmental Science and Engineering, Fudan University – sequence: 3 givenname: Gu surname: Peng fullname: Peng, Gu organization: Department of Environmental Science and Engineering, Fudan University – sequence: 4 givenname: Wang surname: Ning fullname: Ning, Wang organization: Department of Environmental Science and Engineering, Fudan University – sequence: 5 givenname: Lai surname: Zini fullname: Zini, Lai email: znlai01@126.com organization: Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences – sequence: 6 givenname: He surname: Jian fullname: Jian, He organization: Department of Environmental Science and Engineering, Fudan University – sequence: 7 givenname: Zheng surname: Zheng fullname: Zheng, Zheng email: zzhenghj@fudan.edu.cn organization: Department of Environmental Science and Engineering, Fudan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32002834$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1vFSEUhompsbfVP-DCkLhxM3oYvoalaf1KmmiMLg3hwhkvdS5zBUZz_720t9Wki8YNnITn4cB5T8hRmhMS8pTBSwagXxXGuFQdMNOBGtq6f0BWTDHRaWHMEVmBEaJjXIhjclLKJUAPptePyDHvWz1wsSLfzmOpOa6XGudEXQo0x_KDulKwlC2mSueR7jZ14yZXsdCY6O9W5Gu0YIi3TN0g_YQuT_Rz_NXOz3Gq7jF5OLqp4JOb_ZR8ffvmy9n77uLjuw9nry86L4Ss3aBQSM97iR6DZoMMXrGgtVRqROnBhHWQYnQA0oESivVeMxW4A2nAjJqfkheHe3d5_rlgqXYbi8dpcgnnpdhecDZw08v_QLkEMFwL1tDnd9DLecmpfaRRQ5u4EAIa9eyGWtZbDHaX49blvb2dcQP6A-DzXErG8S_CwF4FaQ9B2hakvQ7S7ps03JF8rO4qpJpdnO5X-UEtrU_6jvnfs--x_gD1prDi |
CitedBy_id | crossref_primary_10_1016_j_envres_2022_113781 crossref_primary_10_3390_foods13213390 crossref_primary_10_1007_s10646_022_02536_4 crossref_primary_10_1016_j_envint_2023_108294 crossref_primary_10_1016_j_biortech_2022_127990 crossref_primary_10_3389_fenvs_2021_684190 crossref_primary_10_3390_su13020529 crossref_primary_10_3390_analytica3020015 crossref_primary_10_1002_tox_23607 crossref_primary_10_1080_1573062X_2022_2087095 crossref_primary_10_3390_ijerph20042918 crossref_primary_10_1016_j_ecoenv_2021_112830 crossref_primary_10_1016_j_chemosphere_2022_136559 crossref_primary_10_1021_acs_est_2c09426 crossref_primary_10_3390_w15081547 crossref_primary_10_1016_j_scitotenv_2022_157744 crossref_primary_10_1016_j_toxlet_2021_08_008 crossref_primary_10_1007_s42398_023_00268_7 crossref_primary_10_1016_j_envint_2022_107550 crossref_primary_10_1016_j_scitotenv_2024_172984 crossref_primary_10_1016_j_scitotenv_2023_168462 crossref_primary_10_1080_03067319_2024_2447385 crossref_primary_10_1007_s10653_024_01992_7 crossref_primary_10_1016_j_envres_2023_115378 crossref_primary_10_1016_j_scitotenv_2022_153563 crossref_primary_10_1039_D4RE00055B crossref_primary_10_2166_wst_2023_198 crossref_primary_10_1016_j_reprotox_2023_108532 crossref_primary_10_1016_j_marpolbul_2023_115759 crossref_primary_10_4491_eer_2021_243 crossref_primary_10_3390_oceans3030017 crossref_primary_10_1016_j_jes_2024_01_027 crossref_primary_10_1016_j_jenvman_2025_124663 crossref_primary_10_1016_j_jhazmat_2023_133389 crossref_primary_10_1016_j_envres_2024_118909 crossref_primary_10_1016_j_scitotenv_2023_163094 crossref_primary_10_1016_j_scitotenv_2024_171447 crossref_primary_10_2139_ssrn_4112739 crossref_primary_10_1007_s11270_024_06915_x crossref_primary_10_3390_pharmaceutics15030908 crossref_primary_10_1016_j_jece_2024_114574 crossref_primary_10_1016_j_scitotenv_2022_158807 crossref_primary_10_1007_s00244_024_01061_1 crossref_primary_10_1007_s12192_023_01389_y crossref_primary_10_1016_j_scitotenv_2021_151412 crossref_primary_10_1016_j_ecolind_2022_109388 crossref_primary_10_1016_j_envpol_2025_125888 crossref_primary_10_1016_j_eti_2021_101936 crossref_primary_10_1021_acsestwater_4c00798 crossref_primary_10_1016_j_biortech_2021_126249 crossref_primary_10_1016_j_ibiod_2022_105523 crossref_primary_10_1016_j_heliyon_2024_e34748 crossref_primary_10_3390_w15112061 crossref_primary_10_1016_j_envpol_2021_118595 crossref_primary_10_1016_j_heliyon_2024_e32920 crossref_primary_10_1371_journal_pone_0287504 crossref_primary_10_3390_w17050641 crossref_primary_10_1016_j_envpol_2020_115643 crossref_primary_10_1016_j_envpol_2021_116697 crossref_primary_10_1016_j_chemosphere_2022_135563 crossref_primary_10_1016_j_envres_2023_117454 crossref_primary_10_1016_j_scitotenv_2024_175511 crossref_primary_10_3390_w16070948 crossref_primary_10_1002_wer_1486 crossref_primary_10_3390_gels8100610 crossref_primary_10_3390_d14070581 crossref_primary_10_1016_j_jhazmat_2022_129939 crossref_primary_10_3390_agronomy13071777 crossref_primary_10_1007_s11356_020_09295_x crossref_primary_10_18393_ejss_1181205 crossref_primary_10_1016_j_jenvman_2025_124488 crossref_primary_10_1016_j_chemosphere_2022_135932 crossref_primary_10_1080_10934529_2022_2037375 crossref_primary_10_1016_j_hazadv_2023_100369 crossref_primary_10_1016_j_cej_2024_148683 |
Cites_doi | 10.1098/rstb.2008.0242 10.1289/ehp.1306681 10.1007/BF03246206 10.1016/j.habitatint.2016.11.007 10.1007/s00216-005-0082-x 10.1016/j.watres.2004.06.012 10.1002/mnfr.200800312 10.1021/es972315t 10.1021/es048083x 10.1016/S0883-2927(99)00072-4 10.1007/s10653-014-9632-5 10.1007/s10661-006-9225-6 10.1016/S0160-4120(97)00035-4 10.1016/j.jhazmat.2010.12.037 10.1146/annurev-physiol-012110-142200 10.1016/j.scitotenv.2015.09.148 10.1016/j.chroma.2005.02.003 10.1007/BF00197427 10.1016/j.ijheh.2011.01.009 10.1016/j.jhazmat.2008.09.029 10.1016/j.toxlet.2012.11.025 10.1016/j.watres.2003.12.042 10.1111/j.1600-0463.2001.tb05776.x 10.1006/eesa.2000.1930 10.1016/j.tiv.2006.07.005 10.1007/s10661-012-2649-2 10.1016/j.chemosphere.2004.12.053 10.1021/es505233b 10.1186/1476-069X-13-43 10.1016/j.envpol.2006.01.044 10.1289/ehp.0901331 10.1080/09640569811641 10.1016/j.scitotenv.2006.11.018 10.1289/ehp.0901712 10.1016/j.scitotenv.2012.03.090 10.1016/j.atmosenv.2005.02.021 10.1016/j.tox.2007.12.028 10.1016/j.chemosphere.2004.11.027 10.1007/s11356-013-1982-5 10.1002/tox.22028 10.1080/15320383.2013.722141 10.4314/wsa.v36i1.50916 10.1016/j.atmosenv.2012.12.029 10.1542/peds.111.6.1467 10.1021/es101254c 10.1016/j.atmosenv.2008.08.028 10.1021/es0519637 10.1016/j.envpol.2006.07.009 10.1016/j.jhazmat.2012.12.057 10.1016/j.jhazmat.2007.10.028 10.1016/j.scitotenv.2014.01.007 10.1007/s00128-006-0990-2 10.1007/978-3-540-38819-7_3 10.1248/bpb.25.209 10.1016/S0160-4120(01)00004-6 10.1007/s10661-009-1182-4 10.1007/s10113-003-0061-8 10.1007/s11356-014-3615-z 10.1007/s11356-010-0414-z 10.1016/j.ecoenv.2005.07.023 10.1016/S0045-6535(02)00495-2 10.1007/BF00566960 10.1016/S0166-445X(03)00011-0 10.1007/s10661-012-2838-z 10.1061/(ASCE)1090-025X(2010)14:2(98) 10.1007/s00128-012-0859-5 10.1289/ehp.5658 10.1016/S0378-4347(01)00125-6 10.1021/es026361r 10.1016/j.envint.2007.09.002 10.1016/j.marpolbul.2014.03.038 10.1016/S0890-6238(02)00045-X 10.1016/j.envpol.2004.07.014 10.1016/S0043-1354(01)00367-0 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2019 Springer-Verlag GmbH Germany, part of Springer Nature 2019. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7SN 7T7 7TV 7U7 7WY 7WZ 7X7 7XB 87Z 88E 88I 8AO 8C1 8FD 8FI 8FJ 8FK 8FL ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BHPHI C1K CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ K60 K6~ K9. L.- M0C M0S M1P M2P M7N P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQQKQ PQUKI PYCSY Q9U 7X8 7S9 L.6 |
DOI | 10.1007/s11356-019-06819-y |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Pollution Abstracts Toxicology Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central (New) Business Premium Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ABI/INFORM global ProQuest Health & Medical Collection PML(ProQuest Medical Library) Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Business Collection Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Pollution Abstracts ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest Medical Library ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 1614-7499 |
EndPage | 12565 |
ExternalDocumentID | 32002834 10_1007_s11356_019_06819_y |
Genre | Journal Article |
GeographicLocations | China Xijiang River |
GeographicLocations_xml | – name: China – name: Xijiang River |
GrantInformation_xml | – fundername: Guangxi Natural Science Major Project grantid: (2013GXNSFEA053003) – fundername: Guangdong Provincial Marine Fisheries Science and Technology Promotion Project grantid: (A201101I02) – fundername: Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture,Project grantid: Grant no. KEH1829083 |
GroupedDBID | --- -5A -5G -5~ -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 199 1N0 2.D 203 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 53G 5GY 5VS 67M 67Z 6NX 78A 7WY 7X7 7XC 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACSVP ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV L8X LAS LLZTM M0C M1P M2P M4Y MA- ML. N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PATMY PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QOK QOS R89 R9I RHV RNI RNS ROL RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 Y6R YLTOR Z45 Z5O Z7R Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z8P Z8Q Z8S ZMTXR ~02 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7SN 7T7 7TV 7U7 7XB 8FD 8FK ABRTQ C1K FR3 K9. L.- M7N P64 PJZUB PKEHL PPXIY PQEST PQUKI Q9U 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c445t-86e45c325eced7185dc61d77566fe5c09dbd54fa005a064612c716d3a05909f73 |
IEDL.DBID | U2A |
ISSN | 0944-1344 1614-7499 |
IngestDate | Fri Aug 22 20:18:06 EDT 2025 Fri Jul 11 05:38:14 EDT 2025 Fri Jul 25 23:45:07 EDT 2025 Wed Feb 19 02:29:21 EST 2025 Thu Apr 24 23:05:56 EDT 2025 Tue Jul 01 02:10:57 EDT 2025 Fri Feb 21 02:33:36 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Phthalate esters Pearl River Delta Risk assessment Distribution |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c445t-86e45c325eced7185dc61d77566fe5c09dbd54fa005a064612c716d3a05909f73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8601-7230 |
PMID | 32002834 |
PQID | 2386814440 |
PQPubID | 54208 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2431839257 proquest_miscellaneous_2350093741 proquest_journals_2386814440 pubmed_primary_32002834 crossref_primary_10_1007_s11356_019_06819_y crossref_citationtrail_10_1007_s11356_019_06819_y springer_journals_10_1007_s11356_019_06819_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | Environmental science and pollution research international |
PublicationTitleAbbrev | Environ Sci Pollut Res |
PublicationTitleAlternate | Environ Sci Pollut Res Int |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | ColónICaroDBourdonyCJRosarioOIdentification of phthalate esters in the serum of young Puerto Rican girls with premature breast developmentEnviron Health Persp2000108895900 Group W B (2014) World bank group and world bank corporate scorecards, October 2015 Martino-AndradeAJChahoudIReproductive toxicity of phthalate estersMol Nutr Food Res2010541481571:CAS:528:DC%2BC3cXktVeitg%3D%3D SheaKMPediatric exposure and potential toxicity of phthalate plasticizersPEDIATRICS20031111467 ZotaARCalafatAMWoodruffTJTemporal trends in phthalate exposures: findings from the National Health and Nutrition Examination Survey, 2001-2010Environ Health Perspect20141222352411:CAS:528:DC%2BC1MXhtVWntLjN Hashizume K, Nanya J, Toda C, Yasui T, Nagano H, Kojima N (2002) Phthalate esters detected in various water samples and biodegradation of the phthalates by microbes isolated from river water. Biol Pharm Bull 25(2):209–214 BoasMFrederiksenHFeldtrasmussenUSkakkebækNEHegedüsLHilstedLChildhood Exposure to Phthalates: Associations with Thyroid Function, Insulin-like Growth Factor I, and GrowthEnviron Health Persp2010118145814641:CAS:528:DC%2BC3cXhtlyjtrbL XieZEbinghausRTemmeCCabaARuckWAtmospheric concentrations and air–sea exchanges of phthalates in the North Sea (German Bight)Atmos Environ200539320932191:CAS:528:DC%2BD2MXksV2itLw%3D Fatoki OS, Bornman M, Ravandhalala L, Chimuka L, Genthe B, Adeniyi A (2010) Phthalate ester plasticizers in freshwater systems of Venda, South Africa and potential health effects. Water SA 36(1) Sung HH, Kao WY, Su YJ (2003) Effects and toxicity of phthalate esters to hemocytes of giant freshwater prawn, macrobrachium rosenbergii. Aquat Toxicol (Amsterdam), 64(1), 0–37 World Health Organization (2011) Recent highlights-hazards WangXTMaLLSunYZXuXBPhthalate Esters in Sediments from Guanting Reservoir and the Yongding River, Beijing, People's Republic of ChinaBull Environ Contam Toxicol2006767998061:CAS:528:DC%2BD28XlvFahuro%3D HoKCHuiKCCChemical contamination of the East River (Dongjiang) and its implication on sustainable development in the Pearl River DeltaEnviron Int2001263033081:CAS:528:DC%2BD3MXkslOjt7s%3D YeTKangMHuangQFangCChenYLiuLDongSAccumulation of di(2-ethylhexyl) phthalate causes endocrine-disruptive effects in marine medaka (Oryzias melastigma) embryosEnviron Toxicol2016311161271:CAS:528:DC%2BC2cXht1Wkt7fO ColacinoJAHarrisTRSchecterADietary intake is associated with phthalate body burden in a nationally representative sampleEnviron Health Persp201011899810031:CAS:528:DC%2BC3cXpvFaisLg%3D DoongRALinYTCharacterization and distribution of polycyclic aromatic hydrocarbon contaminations in surface sediment and water from Gao-ping River, TaiwanWater Res200438173317441:CAS:528:DC%2BD2cXitVGrtLc%3D LinZPIkonomouMGJingHMackintoshCGobasFADetermination of phthalate ester congeners and mixtures by LC/ESI-MS in sediments and biota of an urbanized marine inletEnviron Sci Technol20033721001:CAS:528:DC%2BD3sXislSitb4%3D EnríquezSDuarteCMSandjensenKPatterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P contentOecologia199394457471 MartineBMarie-JeanneTCendrineDFabriceAMarcCA ssessment of Adult Human Exposure to Phthalate Esters in the Urban Centre of Paris (France)Bull Environ Contam Toxicol20139091961:CAS:528:DC%2BC3sXjvVOitA%3D%3D HadjmohammadiMRFatemiMHTanehTCoacervative extraction of phthalates from water and their determination by high performance liquid chromatographyJ Iran Chem Soc201181001061:CAS:528:DC%2BC3MXks1Khurw%3D FanWXiaXShaYDistribution of Phthalic Acid Esters in Wuhan section of the Yangtze River, ChinaJ Hazard Mater2008154317 ShiZTaoSPanBFanWHeXCZuoQWuSPLiBGCaoJLiuWXXuFLWangXJShenWRWongPKContamination of rivers in Tianjin, China by polycyclic aromatic hydrocarbonsEnviron Pollut2005134971111:CAS:528:DC%2BD2cXhtVaksLbO LiuHCuiKZengFChenLChengYLiHLiSZhouXZhuFOuyangGOccurrence and distribution of phthalate esters in riverine sediments from the Pearl River Delta region, South ChinaMar Pollut Bull2014833583651:CAS:528:DC%2BC2cXmslKjsr8%3D Lin G (2003) China's compliance management system. Electromagnetic compatibility, 2003, IEEE International Symposium on. IEEE WongAWMWongMHRecent socio-economic changes in relation to environmental quality of the Pearl River deltaReg Environ Chang200442838 HornONalliSCooperDNicellJPlasticizer metabolites in the environmentWater Res200438369336981:CAS:528:DC%2BD2cXnt1GqsLs%3D FrommeHKüchlerTOttoTPilzKMüllerJWenzelAOccurrence of phthalates and bisphenol A and F in the environmentWater Res20023614291:CAS:528:DC%2BD38Xhslygu7o%3D Chen ZS (1992): Metal contamination of flooded soils, rice plants, and surface waters in Asia HillsPZhangLLiuJTransboundary Pollution between Guangdong Province and Hong Kong: Threats to Water Quality in the Pearl River Estuary and Their Implications for Environmental Policy and PlanningJ Environ Plan Manag199841375396 ZhangQLuXMZhangXLSunYGZhuDMWangBLZhaoRZZhangZDLevels of phthalate esters in settled house dust from urban dwellings with young children in Nanjing, ChinaAtmos Environ201369258264 SelvarajKKSundaramoorthyGRavichandranPKGirijanGKSampathSRamaswamyBRPhthalate esters in water and sediments of the Kaveri River, India: environmental levels and ecotoxicological evaluationsEnviron Geochem Health20153783961:CAS:528:DC%2BC2cXht1WksrjI Koch HM, Wittassek M, Brüning T, Angerer J, Heudorf U (2011) Exposure to phthalates in 5-6 years old primary school starters in Germany-a human biomonitoring study and a cumulative risk assessment. Int J Hyg Environ Health 214(3):188–195 TeilMJBlanchardMMoreau-GuigonEDargnatCAlliotFBourgesCDesportesAChevreuilMPhthalate Fate in the Hydrographic Network of the River Seine Basin (France) Under Contrasted Hydrological ConditionsWater Air Soil Pollut20132241141:CAS:528:DC%2BC3sXpsVGlsLY%3D KambiaKDineTGressierBGermeAFLuyckxMBrunetCMichaudLGottrandFHigh-performance liquid chromatographic method for the determination of di(2-ethylhexyl) phthalate in total parenteral nutrition and in plasmaJ Chromatogr B Biomed Sci Appl20017552973031:CAS:528:DC%2BD3MXislGmtLw%3D Mackintosh CE, Maldonado JA, Ikonomou MG, Gobas FAPC (2006) Sorption of phthalate esters and pcbs in a marine ecosystem. Environ Scie Technol 40(11):3481–3488 MaiBChenSLuoXChenLYangQShengGPengPFuJZengYDistribution of Polybrominated Diphenyl Ethers in Sediments of the Pearl River Delta and Adjacent South China SeaEnviron Sci Technol200539352135271:CAS:528:DC%2BD2MXivFCmu7c%3D RengarajanSParthasarathyCAnithaMBalasubramanianKDiethylhexyl phthalate impairs insulin binding and glucose oxidation in Chang liver cellsToxicol in Vitro200721991021:CAS:528:DC%2BD28Xht12rt7jK FernandezMPIkonomouMGBuchananIAn assessment of estrogenic organic contaminants in Canadian wastewatersSci Total Environ20073732502691:CAS:528:DC%2BD2sXnsFOnuw%3D%3D MengXZWangYXiangNChenLLiuZWuBDaiXZhangYHXieZEbinghausRFlow of sewage sludge-borne phthalate esters (PAEs) from human release to human intake: implication for risk assessment of sludge applied to soilSci Total Environ2014476-4772422491:CAS:528:DC%2BC2cXjt1artLc%3D Van WezelAPVanVPPosthumusRCrommentuijnGHSijmDTEnvironmental risk limits for two phthalates, with special emphasis on endocrine disruptive propertiesEcotoxicol Environ Saf200046305321 KavlockRBoekelheideKChapinRCunninghamMFaustmanEFosterPGolubMHendersonRHinbergILittleRNTP Center for the Evaluation of Risks to Human Reproduction: phthalates expert panel report on the reproductive and developmental toxicity of butyl benzyl phthalateReprod Toxicol200216451 Chen CF, Chen CW, Ju YR, Dong CD (2016) Determination and assessment of phthalate esters content in sediments from Kaohsiung Harbor, Taiwan. Mar Pollut Bull 124 MankidyRWisemanSMaHGiesyJPBiological impact of phthalatesToxicol Lett201321750581:CAS:528:DC%2BC3sXnvFCmsg%3D%3D SrivastavaASharmaVPTripathiRKumarRPatelDKMathurPKOccurrence of phthalic acid esters in Gomti River Sediment, IndiaEnviron Monit Assess20101693974061:CAS:528:DC%2BC3cXhtFSnt7zM LiXWaiOWHLiYSColesBJRamseyMHThorntonIHeavy metal distribution in sediment profiles of the Pearl River estuary, South ChinaAppl Geochem2000155675811:CAS:528:DC%2BD3cXhtFajs7g%3D van der PasLJTMatserANMBoestenJJTLeistraMBehaviour of metamitron and hydroxy-chlorothalonil in low-humic sandy soilsPestic Sci199999923934 PeijnenburgWJStruijsJOccurrence of phthalate esters in the environment of The NetherlandsEcotoxicol Environ Saf2006632042151:CAS:528:DC%2BD28XisFKisb0%3D Flaherty E (2008) Consumer product safety improvement act of 2008. Loyola Consumer Law Review 21 KlamerHJLeonardsPELamoreeMHVilleriusLAÅkermanJEBakkerJFA chemical and toxicological profile of Dutch North Sea surface sedimentsChemosphere200558157915871:CAS:528:DC%2BD2MXhtVKjtbY%3D RamaswamyBRShanmugamGVeluGRengarajanBLarssonDGGC-MS analysis and ecotoxicological risk assessment of triclosan, carbamazepine and parabens in Indian riversJ Hazard Mater2011186158615931:CAS:528:DC%2BC3MXhvVaisrc%3D Shore MWC (1995) Toxicological profile for diethyl phthalate. Agency for Toxic Substances and Disease Registry OehlmannJSchulte-OehlmannUKloasWJagnytschOLutzIKuskKOWollenbergerLSantosEMPaullGCVan LookKJA critical analysis of the biological impacts of plasticizers on wildlifePhilos Trans Biol Sci200936420471:CAS:528:DC%2BD1MXpt1Skt7s%3D MoCCaiQWuQWangBWangJWCZhouLA study of phthalic acid esters (PAEs) in the municipal sludges of ChinaChina Environ Sci2001213623661:CAS:528:DC%2BD3MXmvFOktL0%3D Giam CS, Atlas E, Powers MA, Leonard JE (1984) Phthalic acid esters. In: Handbook of Environmental Chemistry, Anthropogenic Compounds, vol 3, pp 67–142 Sears JK, Darby JR (1982) The technology of plasticizers WeiCTaubenböckHBlaschkeTMeasuring urban agglomeration using a city-scale dasymetric population map: A study in the Pearl River Delta, ChinaHabitat Int2017593243 Library WP (2013) Ministry of environmental protection of the People's Republic of China YuanSYLiuCLiaoCSChangBVOccurrence and microbial degradation of phthalate esters in Taiwan river sedimentsCHEMOSPHERE200249 6819_CR41 PMD Foster (6819_CR20) 2015; 109 6819_CR1 H Liu (6819_CR43) 2014; 83 Y Sha (6819_CR62) 2007; 124 X Li (6819_CR39) 2000; 15 6819_CR44 O Horn (6819_CR31) 2004; 38 ZP Lin (6819_CR42) 2003; 37 6819_CR46 CW Chen (6819_CR8) 2013; 22 T Ye (6819_CR84) 2016; 31 S Net (6819_CR53) 2015; 49 M Boas (6819_CR2) 2010; 118 HK Florig (6819_CR19) 1997; 31 AJ Martino-Andrade (6819_CR50) 2010; 54 MJ Teil (6819_CR71) 2013; 224 WL Wang (6819_CR78) 2015; 22 WJ Peijnenburg (6819_CR55) 2006; 63 DW Gao (6819_CR22) 2016; 541 AP Van Wezel (6819_CR73) 2000; 46 KK Selvaraj (6819_CR60) 2015; 37 B Mai (6819_CR47) 2005; 39 R Mankidy (6819_CR48) 2013; 217 6819_CR4 SJ Chen (6819_CR6) 2006; 144 6819_CR7 KC Ho (6819_CR30) 2001; 26 F Zeng (6819_CR86) 2008; 34 KM Shea (6819_CR63) 2003; 111 6819_CR9 Z Xie (6819_CR82) 2005; 39 C Wei (6819_CR79) 2017; 59 T Krüger (6819_CR37) 2008; 246 RA Doong (6819_CR12) 2004; 38 6819_CR75 H He (6819_CR28) 2011; 18 6819_CR35 H Yang (6819_CR83) 2013; 185 R Kavlock (6819_CR33) 2002; 16 A Srivastava (6819_CR67) 2010; 169 V Larcinese (6819_CR38) 2013; 20 Z Zeng (6819_CR87) 2009; 164 VA Santhi (6819_CR58) 2013; 185 XT Wang (6819_CR77) 2006; 76 Y Wang (6819_CR76) 2005; 383 6819_CR80 XZ Meng (6819_CR51) 2014; 476-477 H Chen (6819_CR5) 1999; 28 6819_CR23 6819_CR66 6819_CR25 6819_CR69 I Colón (6819_CR11) 2000; 108 6819_CR24 6819_CR27 J Oehlmann (6819_CR54) 2009; 364 S Enríquez (6819_CR13) 1993; 94 H Fromme (6819_CR21) 2002; 36 Z Shi (6819_CR65) 2007; 146 B Martine (6819_CR49) 2013; 90 AD Vethaak (6819_CR74) 2005; 59 T Lovekampswan (6819_CR45) 2003; 111 B Kolarik (6819_CR36) 2008; 42 C Casalscasas (6819_CR3) 2011; 73 AWM Wong (6819_CR81) 2004; 4 BR Ramaswamy (6819_CR56) 2011; 186 MP Fernandez (6819_CR17) 2007; 373 MR Hadjmohammadi (6819_CR26) 2011; 8 6819_CR70 P Hills (6819_CR29) 1998; 41 J Sun (6819_CR68) 2013; 248-249 W Fan (6819_CR15) 2008; 154 AR Zota (6819_CR89) 2014; 122 6819_CR14 6819_CR16 6819_CR59 6819_CR18 Q Zhang (6819_CR88) 2013; 69 JA Colacino (6819_CR10) 2010; 118 Z Shi (6819_CR64) 2005; 134 N Li (6819_CR40) 2010; 44 SY Yuan (6819_CR85) 2002; 49 C Mo (6819_CR52) 2001; 21 K Kambia (6819_CR32) 2001; 755 HJ Klamer (6819_CR34) 2005; 58 S Rengarajan (6819_CR57) 2007; 21 SE Serrano (6819_CR61) 2014; 13 LJT van der Pas (6819_CR72) 1999; 99 |
References_xml | – reference: ChenCWChenCFDongCDDistribution of Phthalate Esters in Sediments of Kaohsiung Harbor, TaiwanJ Soil Contam2013221191311:CAS:528:DC%2BC3sXhtFSjtr8%3D – reference: van der PasLJTMatserANMBoestenJJTLeistraMBehaviour of metamitron and hydroxy-chlorothalonil in low-humic sandy soilsPestic Sci199999923934 – reference: Giam CS, Atlas E, Powers MA, Leonard JE (1984) Phthalic acid esters. In: Handbook of Environmental Chemistry, Anthropogenic Compounds, vol 3, pp 67–142 – reference: WeiCTaubenböckHBlaschkeTMeasuring urban agglomeration using a city-scale dasymetric population map: A study in the Pearl River Delta, ChinaHabitat Int2017593243 – reference: DoongRALinYTCharacterization and distribution of polycyclic aromatic hydrocarbon contaminations in surface sediment and water from Gao-ping River, TaiwanWater Res200438173317441:CAS:528:DC%2BD2cXitVGrtLc%3D – reference: GaoDWWenZDPhthalate esters in the environment: A critical review of their occurrence, biodegradation, and removal during wastewater treatment processesSci Total Environ201654198610011:CAS:528:DC%2BC2MXhs1Krt7jF – reference: SanthiVAMustafaAMAssessment of organochlorine pesticides and plasticisers in the Selangor River basin and possible pollution sourcesEnviron Monit Assess2013185154115541:CAS:528:DC%2BC3sXntVWntA%3D%3D – reference: World Health Organization (2011) Recent highlights-hazards – reference: Library WP (2013) Ministry of environmental protection of the People's Republic of China – reference: WangWLWuQYWangCHeTHuHYHealth risk assessment of phthalate esters (PAEs) in drinking water sources of ChinaEnviron Sci Pollut Res201522362036301:CAS:528:DC%2BC2cXhs1Ohs7%2FK – reference: ZengFCuiKXieZLiuMLiYLinYZengZLiFOccurrence of phthalate esters in water and sediment of urban lakes in a subtropical city, Guangzhou, South ChinaEnviron Int2008343721:CAS:528:DC%2BD1cXktlOgtrw%3D – reference: MartineBMarie-JeanneTCendrineDFabriceAMarcCA ssessment of Adult Human Exposure to Phthalate Esters in the Urban Centre of Paris (France)Bull Environ Contam Toxicol20139091961:CAS:528:DC%2BC3sXjvVOitA%3D%3D – reference: FanWXiaXShaYDistribution of Phthalic Acid Esters in Wuhan section of the Yangtze River, ChinaJ Hazard Mater2008154317 – reference: ChenHZhuYHeavy Metal Pollution in Soils in China: Status and CountermeasuresAmbio199928130134 – reference: Chen L, Zhao Y Li L, Chen B, & Zhang Y (2012) Exposure assessment of phthalates in non-occupational populations in China. Sci Total Environ 427–428 – reference: Group W B (2014) World bank group and world bank corporate scorecards, October 2015 – reference: KolarikBBornehagCGNaydenovKSundellJStavovaPNielsenOFThe concentrations of phthalates in settled dust in Bulgarian homes in relation to building characteristic and cleaning habits in the familyAtmos Environ200842855385591:CAS:528:DC%2BD1cXhtlWhtL%2FM – reference: OehlmannJSchulte-OehlmannUKloasWJagnytschOLutzIKuskKOWollenbergerLSantosEMPaullGCVan LookKJA critical analysis of the biological impacts of plasticizers on wildlifePhilos Trans Biol Sci200936420471:CAS:528:DC%2BD1MXpt1Skt7s%3D – reference: Flaherty E (2008) Consumer product safety improvement act of 2008. Loyola Consumer Law Review 21 – reference: LiNWangDZhouYMaMLiJWangZDibutyl Phthalate Contributes to the Thyroid Receptor Antagonistic Activity in Drinking Water ProcessesEnviron Sci Technol20104468631:CAS:528:DC%2BC3cXpslWis7g%3D – reference: LovekampswanTDavisBJMechanisms of phthalate ester toxicity in the female reproductive systemEnviron Health Persp20031111391:CAS:528:DC%2BD3sXhsFygtbk%3D – reference: ZotaARCalafatAMWoodruffTJTemporal trends in phthalate exposures: findings from the National Health and Nutrition Examination Survey, 2001-2010Environ Health Perspect20141222352411:CAS:528:DC%2BC1MXhtVWntLjN – reference: SerranoSEBraunJTrasandeLDillsRSathyanarayanaSPhthalates and diet: a review of the food monitoring and epidemiology dataEnviron Health201413143 – reference: Tan GH (1995) Residue levels of phthalate esters in water and sediment samples from the klang river basin. Bull Environ Contam Toxicol 54(2):171–176 – reference: ZhangQLuXMZhangXLSunYGZhuDMWangBLZhaoRZZhangZDLevels of phthalate esters in settled house dust from urban dwellings with young children in Nanjing, ChinaAtmos Environ201369258264 – reference: MankidyRWisemanSMaHGiesyJPBiological impact of phthalatesToxicol Lett201321750581:CAS:528:DC%2BC3sXnvFCmsg%3D%3D – reference: Chen CF, Chen CW, Ju YR, Dong CD (2016) Determination and assessment of phthalate esters content in sediments from Kaohsiung Harbor, Taiwan. Mar Pollut Bull 124 – reference: HadjmohammadiMRFatemiMHTanehTCoacervative extraction of phthalates from water and their determination by high performance liquid chromatographyJ Iran Chem Soc201181001061:CAS:528:DC%2BC3MXks1Khurw%3D – reference: KrügerTLongMBonefeld-JørgensenECPlastic components affect the activation of the aryl hydrocarbon and the androgen receptorToxicology2008246112123 – reference: VethaakADLahrJSchrapSMBelfroidACRijsGBGerritsenADeBJBulderASGrinwisGCKuiperRVAn integrated assessment of estrogenic contamination and biological effects in the aquatic environment of The NetherlandsChemosphere2005595111:CAS:528:DC%2BD2MXisFGltLg%3D – reference: MengXZWangYXiangNChenLLiuZWuBDaiXZhangYHXieZEbinghausRFlow of sewage sludge-borne phthalate esters (PAEs) from human release to human intake: implication for risk assessment of sludge applied to soilSci Total Environ2014476-4772422491:CAS:528:DC%2BC2cXjt1artLc%3D – reference: ShaYXiaXYangZHuangGHDistribution of PAEs in the middle and lower reaches of the Yellow River, ChinaEnviron Monit Assess20071242772871:CAS:528:DC%2BD2sXis1yns7o%3D – reference: CasalscasasCDesvergneBEndocrine disruptors: from endocrine to metabolic disruptionAnnu Rev Physiol2011731351621:CAS:528:DC%2BC3MXktVKjtb8%3D – reference: Fatoki OS, Bornman M, Ravandhalala L, Chimuka L, Genthe B, Adeniyi A (2010) Phthalate ester plasticizers in freshwater systems of Venda, South Africa and potential health effects. Water SA 36(1) – reference: Gopal A, Aarti J, Chetna G, Arvinder D, Cooper HL (2010) A practical method to extract and dechlorinate pcbs in soils. Practice Periodical of Hazardous Toxic & Radioactive Waste Management 14(2) – reference: Hashizume K, Nanya J, Toda C, Yasui T, Nagano H, Kojima N (2002) Phthalate esters detected in various water samples and biodegradation of the phthalates by microbes isolated from river water. Biol Pharm Bull 25(2):209–214 – reference: YeTKangMHuangQFangCChenYLiuLDongSAccumulation of di(2-ethylhexyl) phthalate causes endocrine-disruptive effects in marine medaka (Oryzias melastigma) embryosEnviron Toxicol2016311161271:CAS:528:DC%2BC2cXht1Wkt7fO – reference: Martino-AndradeAJChahoudIReproductive toxicity of phthalate estersMol Nutr Food Res2010541481571:CAS:528:DC%2BC3cXktVeitg%3D%3D – reference: Koch HM, Wittassek M, Brüning T, Angerer J, Heudorf U (2011) Exposure to phthalates in 5-6 years old primary school starters in Germany-a human biomonitoring study and a cumulative risk assessment. Int J Hyg Environ Health 214(3):188–195 – reference: Van WezelAPVanVPPosthumusRCrommentuijnGHSijmDTEnvironmental risk limits for two phthalates, with special emphasis on endocrine disruptive propertiesEcotoxicol Environ Saf200046305321 – reference: Sears JK, Darby JR (1982) The technology of plasticizers – reference: ColacinoJAHarrisTRSchecterADietary intake is associated with phthalate body burden in a nationally representative sampleEnviron Health Persp201011899810031:CAS:528:DC%2BC3cXpvFaisLg%3D – reference: HornONalliSCooperDNicellJPlasticizer metabolites in the environmentWater Res200438369336981:CAS:528:DC%2BD2cXnt1GqsLs%3D – reference: PeijnenburgWJStruijsJOccurrence of phthalate esters in the environment of The NetherlandsEcotoxicol Environ Saf2006632042151:CAS:528:DC%2BD28XisFKisb0%3D – reference: WangXTMaLLSunYZXuXBPhthalate Esters in Sediments from Guanting Reservoir and the Yongding River, Beijing, People's Republic of ChinaBull Environ Contam Toxicol2006767998061:CAS:528:DC%2BD28XlvFahuro%3D – reference: LiuHCuiKZengFChenLChengYLiHLiSZhouXZhuFOuyangGOccurrence and distribution of phthalate esters in riverine sediments from the Pearl River Delta region, South ChinaMar Pollut Bull2014833583651:CAS:528:DC%2BC2cXmslKjsr8%3D – reference: Mackintosh CE, Maldonado JA, Ikonomou MG, Gobas FAPC (2006) Sorption of phthalate esters and pcbs in a marine ecosystem. Environ Scie Technol 40(11):3481–3488 – reference: RamaswamyBRShanmugamGVeluGRengarajanBLarssonDGGC-MS analysis and ecotoxicological risk assessment of triclosan, carbamazepine and parabens in Indian riversJ Hazard Mater2011186158615931:CAS:528:DC%2BC3MXhvVaisrc%3D – reference: RengarajanSParthasarathyCAnithaMBalasubramanianKDiethylhexyl phthalate impairs insulin binding and glucose oxidation in Chang liver cellsToxicol in Vitro200721991021:CAS:528:DC%2BD28Xht12rt7jK – reference: WongAWMWongMHRecent socio-economic changes in relation to environmental quality of the Pearl River deltaReg Environ Chang200442838 – reference: YangHXieWLiuQLiuJYuHLuZDistribution of phthalate esters in topsoil: a case study in the Yellow River Delta, ChinaEnviron Monit Assess201318584891:CAS:528:DC%2BC3sXhtl2ktLbI – reference: FlorigHKChina's air pollution risksEnviron Sci Technol199731274A275A1:CAS:528:DyaK2sXjsFGjtrc%3D – reference: ColónICaroDBourdonyCJRosarioOIdentification of phthalate esters in the serum of young Puerto Rican girls with premature breast developmentEnviron Health Persp2000108895900 – reference: Lin G (2003) China's compliance management system. Electromagnetic compatibility, 2003, IEEE International Symposium on. IEEE – reference: HoKCHuiKCCChemical contamination of the East River (Dongjiang) and its implication on sustainable development in the Pearl River DeltaEnviron Int2001263033081:CAS:528:DC%2BD3MXkslOjt7s%3D – reference: XieZEbinghausRTemmeCCabaARuckWAtmospheric concentrations and air–sea exchanges of phthalates in the North Sea (German Bight)Atmos Environ200539320932191:CAS:528:DC%2BD2MXksV2itLw%3D – reference: EnríquezSDuarteCMSandjensenKPatterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P contentOecologia199394457471 – reference: HillsPZhangLLiuJTransboundary Pollution between Guangdong Province and Hong Kong: Threats to Water Quality in the Pearl River Estuary and Their Implications for Environmental Policy and PlanningJ Environ Plan Manag199841375396 – reference: MaiBChenSLuoXChenLYangQShengGPengPFuJZengYDistribution of Polybrominated Diphenyl Ethers in Sediments of the Pearl River Delta and Adjacent South China SeaEnviron Sci Technol200539352135271:CAS:528:DC%2BD2MXivFCmu7c%3D – reference: ZengZCuiKXieZWuLLuoDChenLLinYMinLSunGDistribution of phthalate esters in urban soils of subtropical city, Guangzhou, ChinaJ Hazard Mater2009164117111781:CAS:528:DC%2BD1MXjsVClt7o%3D – reference: WangYHuWCaoZFuXZhuTOccurrence of endocrine-disrupting compounds in reclaimed water from Tianjin, ChinaAnal Bioanal Chem20053838578631:CAS:528:DC%2BD2MXhtFyisLfP – reference: FernandezMPIkonomouMGBuchananIAn assessment of estrogenic organic contaminants in Canadian wastewatersSci Total Environ20073732502691:CAS:528:DC%2BD2sXnsFOnuw%3D%3D – reference: SunJHuangJZhangALiuWChengWOccurrence of phthalate esters in sediments in Qiantang River, China and inference with urbanization and river flow regimeJ Hazard Mater2013248-2491421491:CAS:528:DC%2BC3sXjsFOlsbk%3D – reference: NetSSempéréRDelmontAPaluselliAOuddaneBOccurrence, Fate, Behavior and Ecotoxicological State of Phthalates in Different Environmental MatricesEnviron Sci Technol201549401940351:CAS:528:DC%2BC2MXjs1Wgs7Y%3D – reference: EPAJ (Environmental Protection Agency of Japan) (1993) Chemicals in the environment, Report on Environmental Survey and Wildlife Monitoring of Chemicals in F.Y – reference: FrommeHKüchlerTOttoTPilzKMüllerJWenzelAOccurrence of phthalates and bisphenol A and F in the environmentWater Res20023614291:CAS:528:DC%2BD38Xhslygu7o%3D – reference: HeHHuGJSunCChenSLYangMNLiJZhaoYWangHTrace analysis of persistent toxic substances in the main stream of Jiangsu section of the Yangtze River, ChinaEnviron Sci Pollut Res2011186386481:CAS:528:DC%2BC3MXkvFaisrg%3D – reference: SelvarajKKSundaramoorthyGRavichandranPKGirijanGKSampathSRamaswamyBRPhthalate esters in water and sediments of the Kaveri River, India: environmental levels and ecotoxicological evaluationsEnviron Geochem Health20153783961:CAS:528:DC%2BC2cXht1WksrjI – reference: SheaKMPediatric exposure and potential toxicity of phthalate plasticizersPEDIATRICS20031111467 – reference: KlamerHJLeonardsPELamoreeMHVilleriusLAÅkermanJEBakkerJFA chemical and toxicological profile of Dutch North Sea surface sedimentsChemosphere200558157915871:CAS:528:DC%2BD2MXhtVKjtbY%3D – reference: ShiZTaoSPanBLiuWXShenWRPartitioning and source diagnostics of polycyclic aromatic hydrocarbons in rivers in Tianjin, ChinaEnviron Pollut20071464925001:CAS:528:DC%2BD2sXit12gsbc%3D – reference: Bartolomé L, Cortazar E, Raposo JC, Usobiaga A, Zuloaga O, Etxebarria N et al (2005) Simultaneous microwave-assisted extraction of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, phthalate esters and nonylphenols in sediments. J Chromatogr A 1068(2):229–236 – reference: Chen ZS (1992): Metal contamination of flooded soils, rice plants, and surface waters in Asia – reference: LiXWaiOWHLiYSColesBJRamseyMHThorntonIHeavy metal distribution in sediment profiles of the Pearl River estuary, South ChinaAppl Geochem2000155675811:CAS:528:DC%2BD3cXhtFajs7g%3D – reference: ShiZTaoSPanBFanWHeXCZuoQWuSPLiBGCaoJLiuWXXuFLWangXJShenWRWongPKContamination of rivers in Tianjin, China by polycyclic aromatic hydrocarbonsEnviron Pollut2005134971111:CAS:528:DC%2BD2cXhtVaksLbO – reference: LinZPIkonomouMGJingHMackintoshCGobasFADetermination of phthalate ester congeners and mixtures by LC/ESI-MS in sediments and biota of an urbanized marine inletEnviron Sci Technol20033721001:CAS:528:DC%2BD3sXislSitb4%3D – reference: MoCCaiQWuQWangBWangJWCZhouLA study of phthalic acid esters (PAEs) in the municipal sludges of ChinaChina Environ Sci2001213623661:CAS:528:DC%2BD3MXmvFOktL0%3D – reference: YuanSYLiuCLiaoCSChangBVOccurrence and microbial degradation of phthalate esters in Taiwan river sedimentsCHEMOSPHERE200249129512991:CAS:528:DC%2BD38Xotlymsrk%3D – reference: BoasMFrederiksenHFeldtrasmussenUSkakkebækNEHegedüsLHilstedLChildhood Exposure to Phthalates: Associations with Thyroid Function, Insulin-like Growth Factor I, and GrowthEnviron Health Persp2010118145814641:CAS:528:DC%2BC3cXhtlyjtrbL – reference: Shore MWC (1995) Toxicological profile for diethyl phthalate. Agency for Toxic Substances and Disease Registry – reference: Sung HH, Kao WY, Su YJ (2003) Effects and toxicity of phthalate esters to hemocytes of giant freshwater prawn, macrobrachium rosenbergii. Aquat Toxicol (Amsterdam), 64(1), 0–37 – reference: KambiaKDineTGressierBGermeAFLuyckxMBrunetCMichaudLGottrandFHigh-performance liquid chromatographic method for the determination of di(2-ethylhexyl) phthalate in total parenteral nutrition and in plasmaJ Chromatogr B Biomed Sci Appl20017552973031:CAS:528:DC%2BD3MXislGmtLw%3D – reference: KavlockRBoekelheideKChapinRCunninghamMFaustmanEFosterPGolubMHendersonRHinbergILittleRNTP Center for the Evaluation of Risks to Human Reproduction: phthalates expert panel report on the reproductive and developmental toxicity of butyl benzyl phthalateReprod Toxicol200216451 – reference: Vitali M, Guidotti M, Macilenti G, Cremisini C (1997) Phthalate esters in freshwaters as markers of contamination sources – a site study in Italy. Environ Int 23(3):337–347 – reference: SrivastavaASharmaVPTripathiRKumarRPatelDKMathurPKOccurrence of phthalic acid esters in Gomti River Sediment, IndiaEnviron Monit Assess20101693974061:CAS:528:DC%2BC3cXhtFSnt7zM – reference: FosterPMDMylchreestEGaidoKWSarMEffects of phthalate esters on the developing reproductive tract of male ratsAPMIS2015109S272S277 – reference: LarcineseVTestaCMeta-analysis of environmental contamination by phthalatesEnviron Sci Pollut Res20132080578076 – reference: TeilMJBlanchardMMoreau-GuigonEDargnatCAlliotFBourgesCDesportesAChevreuilMPhthalate Fate in the Hydrographic Network of the River Seine Basin (France) Under Contrasted Hydrological ConditionsWater Air Soil Pollut20132241141:CAS:528:DC%2BC3sXpsVGlsLY%3D – reference: ChenSJGaoXJMaiBXChenZMLuoXJShengGYFuJMZengEYPolybrominated diphenyl ethers in surface sediments of the Yangtze River Delta: Levels, distribution and potential hydrodynamic influenceEnviron Pollut20061449511:CAS:528:DC%2BD28XpslSltr8%3D – volume: 364 start-page: 2047 year: 2009 ident: 6819_CR54 publication-title: Philos Trans Biol Sci doi: 10.1098/rstb.2008.0242 – volume: 122 start-page: 235 year: 2014 ident: 6819_CR89 publication-title: Environ Health Perspect doi: 10.1289/ehp.1306681 – volume: 8 start-page: 100 year: 2011 ident: 6819_CR26 publication-title: J Iran Chem Soc doi: 10.1007/BF03246206 – volume: 59 start-page: 32 year: 2017 ident: 6819_CR79 publication-title: Habitat Int doi: 10.1016/j.habitatint.2016.11.007 – volume: 383 start-page: 857 year: 2005 ident: 6819_CR76 publication-title: Anal Bioanal Chem doi: 10.1007/s00216-005-0082-x – volume: 38 start-page: 3693 year: 2004 ident: 6819_CR31 publication-title: Water Res doi: 10.1016/j.watres.2004.06.012 – ident: 6819_CR25 – volume: 54 start-page: 148 year: 2010 ident: 6819_CR50 publication-title: Mol Nutr Food Res doi: 10.1002/mnfr.200800312 – volume: 31 start-page: 274A year: 1997 ident: 6819_CR19 publication-title: Environ Sci Technol doi: 10.1021/es972315t – volume: 39 start-page: 3521 year: 2005 ident: 6819_CR47 publication-title: Environ Sci Technol doi: 10.1021/es048083x – volume: 15 start-page: 567 year: 2000 ident: 6819_CR39 publication-title: Appl Geochem doi: 10.1016/S0883-2927(99)00072-4 – ident: 6819_CR9 – volume: 37 start-page: 83 year: 2015 ident: 6819_CR60 publication-title: Environ Geochem Health doi: 10.1007/s10653-014-9632-5 – volume: 124 start-page: 277 year: 2007 ident: 6819_CR62 publication-title: Environ Monit Assess doi: 10.1007/s10661-006-9225-6 – ident: 6819_CR44 – ident: 6819_CR75 doi: 10.1016/S0160-4120(97)00035-4 – volume: 186 start-page: 1586 year: 2011 ident: 6819_CR56 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2010.12.037 – volume: 73 start-page: 135 year: 2011 ident: 6819_CR3 publication-title: Annu Rev Physiol doi: 10.1146/annurev-physiol-012110-142200 – volume: 99 start-page: 923 year: 1999 ident: 6819_CR72 publication-title: Pestic Sci – volume: 541 start-page: 986 year: 2016 ident: 6819_CR22 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2015.09.148 – ident: 6819_CR1 doi: 10.1016/j.chroma.2005.02.003 – ident: 6819_CR70 doi: 10.1007/BF00197427 – ident: 6819_CR35 doi: 10.1016/j.ijheh.2011.01.009 – ident: 6819_CR80 – volume: 164 start-page: 1171 year: 2009 ident: 6819_CR87 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2008.09.029 – volume: 217 start-page: 50 year: 2013 ident: 6819_CR48 publication-title: Toxicol Lett doi: 10.1016/j.toxlet.2012.11.025 – volume: 38 start-page: 1733 year: 2004 ident: 6819_CR12 publication-title: Water Res doi: 10.1016/j.watres.2003.12.042 – volume: 109 start-page: S272 year: 2015 ident: 6819_CR20 publication-title: APMIS doi: 10.1111/j.1600-0463.2001.tb05776.x – volume: 21 start-page: 362 year: 2001 ident: 6819_CR52 publication-title: China Environ Sci – volume: 46 start-page: 305 year: 2000 ident: 6819_CR73 publication-title: Ecotoxicol Environ Saf doi: 10.1006/eesa.2000.1930 – volume: 21 start-page: 99 year: 2007 ident: 6819_CR57 publication-title: Toxicol in Vitro doi: 10.1016/j.tiv.2006.07.005 – volume: 185 start-page: 1541 year: 2013 ident: 6819_CR58 publication-title: Environ Monit Assess doi: 10.1007/s10661-012-2649-2 – volume: 59 start-page: 511 year: 2005 ident: 6819_CR74 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2004.12.053 – volume: 49 start-page: 4019 year: 2015 ident: 6819_CR53 publication-title: Environ Sci Technol doi: 10.1021/es505233b – volume: 13 start-page: 43 issue: 1 year: 2014 ident: 6819_CR61 publication-title: Environ Health doi: 10.1186/1476-069X-13-43 – volume: 144 start-page: 951 year: 2006 ident: 6819_CR6 publication-title: Environ Pollut doi: 10.1016/j.envpol.2006.01.044 – volume: 118 start-page: 1458 year: 2010 ident: 6819_CR2 publication-title: Environ Health Persp doi: 10.1289/ehp.0901331 – volume: 41 start-page: 375 year: 1998 ident: 6819_CR29 publication-title: J Environ Plan Manag doi: 10.1080/09640569811641 – volume: 373 start-page: 250 year: 2007 ident: 6819_CR17 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2006.11.018 – volume: 118 start-page: 998 year: 2010 ident: 6819_CR10 publication-title: Environ Health Persp doi: 10.1289/ehp.0901712 – ident: 6819_CR7 doi: 10.1016/j.scitotenv.2012.03.090 – volume: 39 start-page: 3209 year: 2005 ident: 6819_CR82 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2005.02.021 – volume: 28 start-page: 130 year: 1999 ident: 6819_CR5 publication-title: Ambio – volume: 246 start-page: 112 year: 2008 ident: 6819_CR37 publication-title: Toxicology doi: 10.1016/j.tox.2007.12.028 – volume: 58 start-page: 1579 year: 2005 ident: 6819_CR34 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2004.11.027 – volume: 20 start-page: 8057 year: 2013 ident: 6819_CR38 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-013-1982-5 – volume: 31 start-page: 116 year: 2016 ident: 6819_CR84 publication-title: Environ Toxicol doi: 10.1002/tox.22028 – volume: 22 start-page: 119 year: 2013 ident: 6819_CR8 publication-title: J Soil Contam doi: 10.1080/15320383.2013.722141 – ident: 6819_CR16 doi: 10.4314/wsa.v36i1.50916 – volume: 69 start-page: 258 year: 2013 ident: 6819_CR88 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2012.12.029 – volume: 111 start-page: 1467 year: 2003 ident: 6819_CR63 publication-title: PEDIATRICS doi: 10.1542/peds.111.6.1467 – volume: 44 start-page: 6863 year: 2010 ident: 6819_CR40 publication-title: Environ Sci Technol doi: 10.1021/es101254c – ident: 6819_CR18 – volume: 42 start-page: 8553 year: 2008 ident: 6819_CR36 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2008.08.028 – ident: 6819_CR46 doi: 10.1021/es0519637 – volume: 146 start-page: 492 year: 2007 ident: 6819_CR65 publication-title: Environ Pollut doi: 10.1016/j.envpol.2006.07.009 – volume: 248-249 start-page: 142 year: 2013 ident: 6819_CR68 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2012.12.057 – ident: 6819_CR14 – volume: 154 start-page: 317 year: 2008 ident: 6819_CR15 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2007.10.028 – volume: 476-477 start-page: 242 year: 2014 ident: 6819_CR51 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2014.01.007 – volume: 224 start-page: 1 year: 2013 ident: 6819_CR71 publication-title: Water Air Soil Pollut – volume: 76 start-page: 799 year: 2006 ident: 6819_CR77 publication-title: Bull Environ Contam Toxicol doi: 10.1007/s00128-006-0990-2 – ident: 6819_CR23 doi: 10.1007/978-3-540-38819-7_3 – ident: 6819_CR27 doi: 10.1248/bpb.25.209 – volume: 26 start-page: 303 year: 2001 ident: 6819_CR30 publication-title: Environ Int doi: 10.1016/S0160-4120(01)00004-6 – volume: 169 start-page: 397 year: 2010 ident: 6819_CR67 publication-title: Environ Monit Assess doi: 10.1007/s10661-009-1182-4 – ident: 6819_CR4 – volume: 4 start-page: 28 year: 2004 ident: 6819_CR81 publication-title: Reg Environ Chang doi: 10.1007/s10113-003-0061-8 – volume: 22 start-page: 3620 year: 2015 ident: 6819_CR78 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-014-3615-z – volume: 18 start-page: 638 year: 2011 ident: 6819_CR28 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-010-0414-z – volume: 63 start-page: 204 year: 2006 ident: 6819_CR55 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2005.07.023 – ident: 6819_CR66 – volume: 49 start-page: 1295 year: 2002 ident: 6819_CR85 publication-title: CHEMOSPHERE doi: 10.1016/S0045-6535(02)00495-2 – volume: 94 start-page: 457 year: 1993 ident: 6819_CR13 publication-title: Oecologia doi: 10.1007/BF00566960 – ident: 6819_CR69 doi: 10.1016/S0166-445X(03)00011-0 – volume: 185 start-page: 8489 year: 2013 ident: 6819_CR83 publication-title: Environ Monit Assess doi: 10.1007/s10661-012-2838-z – volume: 108 start-page: 895 year: 2000 ident: 6819_CR11 publication-title: Environ Health Persp – ident: 6819_CR24 doi: 10.1061/(ASCE)1090-025X(2010)14:2(98) – volume: 90 start-page: 91 year: 2013 ident: 6819_CR49 publication-title: Bull Environ Contam Toxicol doi: 10.1007/s00128-012-0859-5 – ident: 6819_CR41 – volume: 111 start-page: 139 year: 2003 ident: 6819_CR45 publication-title: Environ Health Persp doi: 10.1289/ehp.5658 – volume: 755 start-page: 297 year: 2001 ident: 6819_CR32 publication-title: J Chromatogr B Biomed Sci Appl doi: 10.1016/S0378-4347(01)00125-6 – volume: 37 start-page: 2100 year: 2003 ident: 6819_CR42 publication-title: Environ Sci Technol doi: 10.1021/es026361r – ident: 6819_CR59 – volume: 34 start-page: 372 year: 2008 ident: 6819_CR86 publication-title: Environ Int doi: 10.1016/j.envint.2007.09.002 – volume: 83 start-page: 358 year: 2014 ident: 6819_CR43 publication-title: Mar Pollut Bull doi: 10.1016/j.marpolbul.2014.03.038 – volume: 16 start-page: 451 year: 2002 ident: 6819_CR33 publication-title: Reprod Toxicol doi: 10.1016/S0890-6238(02)00045-X – volume: 134 start-page: 97 year: 2005 ident: 6819_CR64 publication-title: Environ Pollut doi: 10.1016/j.envpol.2004.07.014 – volume: 36 start-page: 1429 year: 2002 ident: 6819_CR21 publication-title: Water Res doi: 10.1016/S0043-1354(01)00367-0 |
SSID | ssj0020927 |
Score | 2.5290022 |
Snippet | Phthalate esters (PAEs) are widely used industrial raw materials that are well known for their environmental contamination and toxicological effects as... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12550 |
SubjectTerms | Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Butyl phthalate China conservation areas Contamination Dibutyl Phthalate - analysis Earth and Environmental Science Ecological effects Ecological risk assessment Ecotoxicology Endocrine disruptors Environment Environmental Chemistry Environmental Health Environmental risk Environmental science Esters Esters - analysis Estuaries Gas chromatography Molecular weight Molecular weight distribution Monomers Nature reserves Phthalate esters Phthalates Phthalic acid Phthalic Acids - analysis Plasticizers pollution Raw materials Research Article Reservoirs risk Risk Assessment Risk levels river deltas River networks Rivers Sediment samplers Sediments Solid phases Ultrasonic methods Ultrasonic testing ultrasonics Waste Water Technology Water Water analysis Water Management Water Pollutants, Chemical - analysis Water Pollution Control Water sampling |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB58XLyIb-uLCN602EfSbk8iuosIehCFvUhJkxSFpbvuVsR_70yabhFxb4VMw5DJZL5J5gFwplOFZgQViYql-TyMCr8IqJBrpAkwC11YST88Jncv_H4ohu7CbebCKtsz0R7UeqzojvwS50t6iP55cDX58KlrFL2uuhYay7BKpcsopCsddg5XkDUtWzPO_TDm3CXNNKlzYSzIl6YcfLSK_vdvw_QHbf55KbUGaLAB6w45sutG1JuwZKot2O13iWo46DR1tg2vt1QR1zWzYrLSjILImZwX4mTjkk3e6jc5IrTJ3iv2hR9TSzpDi9bSIEBkeG5OR-yJQjjYrRnVcgdeBv3nmzvftVLwFeei9nuJ4ULFkTDKaDRHQqsk1GmKYK40QgWZLrTgpUSdlAhSEPYodKR0LCk3NSvTeBdWqnFl9oHJxKhMS6UlL3HupBCxKZUIpFZFWPRKD8J2HXPl6oxTu4tR3lVIprXPce1zu_b5twfn838mTZWNhdRHrXhyp3GzvNsfHpzOh1FX6AFEVmb8STSCbnAQRC2g4bEFjSL1YK8R_ZylOLKtnbgHF-1e6Bj4n9-DxfwewlpETrwNBzqClXr6aY4R6dTFid3OPwWR-Lc priority: 102 providerName: ProQuest |
Title | Distribution and risk assessment of phthalates in water and sediment of the Pearl River Delta |
URI | https://link.springer.com/article/10.1007/s11356-019-06819-y https://www.ncbi.nlm.nih.gov/pubmed/32002834 https://www.proquest.com/docview/2386814440 https://www.proquest.com/docview/2350093741 https://www.proquest.com/docview/2431839257 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90vvgifludI4JvWuhH0q6PU6eiKCIO5oOUNElRGJ1sFfG_9y5rO8QP8KUt5FrCXS73u-Y-AA51rNCMoCJRsTSX-0HmZh4Vcg00AWahMyvpm9vocsCvhmJYJYVN62j3-kjS7tTzZDc_FOT9UtY82jH3YxGWBPnuuIoHQa9xs7xk1qg14dz1Q86rVJmfv_HVHH3DmN_OR63ZOV-FlQovst5MwGuwYIp12OrP09NwsNLP6QY8nVEd3KqFFZOFZhQ6zmRTfpONc_b6XD7LEWFM9lKwd3yYWNIp2rGaBmEhw91yMmL3FLjBzsyolJswOO8_nF66VQMFV3EuSrcbGS5UGAijjEYjJLSKfB3HCOFyI5SX6EwLnkvURInQBMGOQvdJh5IyUpM8DregVYwLswNMRkYlWioteY7fjjIRmlwJT2qV-Vk3d8Cv-Ziqqro4NbkYpfO6yMT7FHmfWt6nHw4cNe-8zmpr_EndrsWTVno2TXGV4Sjn3HPgoBlGDaFjD1mY8RvRCPpvg9DpDxoeWqgoYge2Z6JvphQGtqETd-C4XgvzCfw-393_ke_BckCuvA0KakOrnLyZfcQ7ZdaBxXgY47V76ndgqXfxeN3H-0n_9u6-Y5f-Jzgg-yA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED-x8rC9TLCNLXzNk7anLVoS20nzgBCsRWVANSGQeJmCYzsCqUpLG4T6T_E3cpevakLrG2-RfLGsu_Pd72zfHcBXE2l0I7iRqFiaK_wgdVOPCrkGhgCzNGkp6bNhOLgUv6_k1Qo8Nrkw9KyysYmloTZjTWfkP3G-sIvoX3j7kzuXukbR7WrTQqNSixM7f8CQbbZ33EP5fguCo_7Fr4FbdxVwtRCycLuhFVLzQFptDVpmaXTomyhCXJNZqb3YpEaKTKF6KvTXiAA0xhSGK0rTjLOI47yvYFVwDGU6sHrYH_45b0M8L66axMZCuD4Xok7TqZL1fC4peqesf_TD7vxfV_gM3z67my1d3tEavK2xKjuolGsdVmz-Djb6i9Q4HKxtw-w9_O1RDd66fRZTuWH0bJ2ptvQnG2dsclPcqBHhW3abswf8mJakM_ShDQ1CUoaWejpi5_RohPXsqFAf4PJF2LwBnXyc20_AVGh1bJQ2SmQ4d5hKbjMtPWV06qfdzAG_4WOi68rm1GBjlCxqMhPvE-R9UvI-mTvwvf1nUtX1WEq93Ygnqff4LFlopANf2mHcnXTlonI7vicaSWdGCNuW0AhewlQZOfCxEn27JB6UzaSEAz8aXVgs4P_r3Vy-3s_wenBxdpqcHg9PtuBNQEcI5WOkbegU03u7gzirSHdr5WZw_dL76QnkdDYb |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7SFEIvpW1ebpJWgfbUmNiWZK8PJZRulqRpQwgN7CU4siSTwOLd7DqE_Wv9dZ2R7TUldG-5GTQWYjSPT9I8AD6ZRKMbQUWiYmm-CKPczwMq5BoZAszS5G6nf53HJ1fix1AOV-BPmwtDYZWtTXSG2ow13ZEf4nxxD9G_CA6LJizioj84mtz71EGKXlrbdhq1iJzZ-SMe32ZfT_u415-jaHD8-_uJ33QY8LUQsvJ7sRVS80habQ1aaWl0HJokQYxTWKmD1ORGikKhqCr03YgGNJ4vDFeUspkWCcd5X8DLhMuQdCwZdoe9IK3bxaZC-CEXoknYqdP2Qi7pHE_5_-iR_fm_TvEJ0n3ySuuc3-ANvG5QK_tWi9lbWLHlO9g87pLkcLCxErN1uO5TNd6mkRZTpWEUwM7UoggoGxdsclvdqhEhXXZXskf8mDrSGXrTlgbBKUObPR2xSwofYX07qtQGXD0LkzdhtRyXdhuYiq1OjdJGiQLnjnPJbaFloIzOw7xXeBC2fMx0U-OcWm2Msq46M_E-Q95njvfZ3IMvi38mdYWPpdS77fZkjbbPsk42PdhfDKOe0uOLKu34gWgk3R4hgFtCI7gDrDLxYKve-sWSeOTaSgkPDlpZ6Bbw__W-X77ej7CGWpT9PD0_24FXEd0luKikXVitpg92DwFXlX9wks3g5rlV6S8ZeDjr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distribution+and+risk+assessment+of+phthalates+in+water+and+sediment+of+the+Pearl+River+Delta&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Weizhen%2C+Zhang&rft.au=Xiaowei%2C+Zheng&rft.au=Peng%2C+Gu&rft.au=Ning%2C+Wang&rft.date=2020-04-01&rft.issn=0944-1344&rft.eissn=1614-7499&rft.volume=27&rft.issue=11&rft.spage=12550&rft.epage=12565&rft_id=info:doi/10.1007%2Fs11356-019-06819-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11356_019_06819_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-1344&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-1344&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-1344&client=summon |