Distribution and risk assessment of phthalates in water and sediment of the Pearl River Delta

Phthalate esters (PAEs) are widely used industrial raw materials that are well known for their environmental contamination and toxicological effects as “endocrine disruptors.” In this study, environmental levels of PAEs and eco-toxicological risk assessments were determined in the eight estuaries of...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science and pollution research international Vol. 27; no. 11; pp. 12550 - 12565
Main Authors Weizhen, Zhang, Xiaowei, Zheng, Peng, Gu, Ning, Wang, Zini, Lai, Jian, He, Zheng, Zheng
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Phthalate esters (PAEs) are widely used industrial raw materials that are well known for their environmental contamination and toxicological effects as “endocrine disruptors.” In this study, environmental levels of PAEs and eco-toxicological risk assessments were determined in the eight estuaries of the Pearl River (Estuaries), main upstream tributary (Xijiang River), urban river network (River network), and nature reserve reservoir (Reservoirs). Water and sediment samples from the above water systems were collected during the low-water period (May) and the high-water period (August) between 2012 and 2014. Solid phase and ultrasonic methods were used to extract 14 different PAEs that were analyzed by gas chromatography. The analytical average recovery of PAEs in water and sediment was 75.4% ± 4.9% and 121.5% ± 8.9%, respectively. The results showed that PAEs were detected in all of the samples, and the di-n-butyl phtalate (DBP) and benzyl butyl phthalate (BBP) monomers had a detection rate of 100% in water. Similarly, in sediment samples, the detection rates of diisobutyl phthalate (D i BP), DBP, dimethoxyethyl phthalate (DMEP), BBP, di-n-octyl phthalate (D n OP), and DNP ranged from 66.7 to 100%. Among these, in sediment samples, di(2-ethylhexyl) phthalate (DEHP) and phthalic acid bis(2-butoxyethyl) ester (DBEP) had detection rates of 95.8% to 100% in the Estuaries, Xijiang River, and River network. The concentrations of Σ 14 PAEs in water samples and sediments ranged from 12.95 ± 1.97 to 6717.29 ± 112.37 ng/L and 71.99 ± 8.72 to 17,340.04 ± 227.83 ng/g-dw, respectively. During the low-water period, the average concentration of Σ 14 PAEs in water and sediment was 1159.58 ± 97.22 ng/L and 2842.50 ± 178.21 ng/g-dw, respectively, and during the high-water period, 822.83 ± 53.19 ng/L and 1936.42 ± 111.31 ng/g-dw, respectively. In water, the average concentration of Σ 14 PAEs in 2013 and 2014 was 963.39 ± 19.55 ng/L and 2815.35 ± 176.32 ng/L, respectively. In sediment, the average concentrations of Σ 14 PAEs in 2012 to 2014 were 990.10 ± 23.33 ng/g-dw, 1084.20 ± 112.12 ng/g-dw, and 1816.89 ± 79.97 ng/g-dw, respectively, with concentrations showing an increasing trend year after year (2014 > 2013 > 2012). Potential risk assessment of water ecological, the results show that exceeding environmental risk level (ERL) value in higher molecular weight plasticizer (DEHP, DMEP, DNOP, DNP) was mainly distributed in water, the lower molecular weight plasticizer (BMP, D i BP) was mainly distributed in sediment.
AbstractList Phthalate esters (PAEs) are widely used industrial raw materials that are well known for their environmental contamination and toxicological effects as "endocrine disruptors." In this study, environmental levels of PAEs and eco-toxicological risk assessments were determined in the eight estuaries of the Pearl River (Estuaries), main upstream tributary (Xijiang River), urban river network (River network), and nature reserve reservoir (Reservoirs). Water and sediment samples from the above water systems were collected during the low-water period (May) and the high-water period (August) between 2012 and 2014. Solid phase and ultrasonic methods were used to extract 14 different PAEs that were analyzed by gas chromatography. The analytical average recovery of PAEs in water and sediment was 75.4% ± 4.9% and 121.5% ± 8.9%, respectively. The results showed that PAEs were detected in all of the samples, and the di-n-butyl phtalate (DBP) and benzyl butyl phthalate (BBP) monomers had a detection rate of 100% in water. Similarly, in sediment samples, the detection rates of diisobutyl phthalate (DiBP), DBP, dimethoxyethyl phthalate (DMEP), BBP, di-n-octyl phthalate (DnOP), and DNP ranged from 66.7 to 100%. Among these, in sediment samples, di(2-ethylhexyl) phthalate (DEHP) and phthalic acid bis(2-butoxyethyl) ester (DBEP) had detection rates of 95.8% to 100% in the Estuaries, Xijiang River, and River network. The concentrations of Σ PAEs in water samples and sediments ranged from 12.95 ± 1.97 to 6717.29 ± 112.37 ng/L and 71.99 ± 8.72 to 17,340.04 ± 227.83 ng/g-dw, respectively. During the low-water period, the average concentration of Σ PAEs in water and sediment was 1159.58 ± 97.22 ng/L and 2842.50 ± 178.21 ng/g-dw, respectively, and during the high-water period, 822.83 ± 53.19 ng/L and 1936.42 ± 111.31 ng/g-dw, respectively. In water, the average concentration of Σ PAEs in 2013 and 2014 was 963.39 ± 19.55 ng/L and 2815.35 ± 176.32 ng/L, respectively. In sediment, the average concentrations of Σ PAEs in 2012 to 2014 were 990.10 ± 23.33 ng/g-dw, 1084.20 ± 112.12 ng/g-dw, and 1816.89 ± 79.97 ng/g-dw, respectively, with concentrations showing an increasing trend year after year (2014 > 2013 > 2012). Potential risk assessment of water ecological, the results show that exceeding environmental risk level (ERL) value in higher molecular weight plasticizer (DEHP, DMEP, DNOP, DNP) was mainly distributed in water, the lower molecular weight plasticizer (BMP, DiBP) was mainly distributed in sediment.
Phthalate esters (PAEs) are widely used industrial raw materials that are well known for their environmental contamination and toxicological effects as “endocrine disruptors.” In this study, environmental levels of PAEs and eco-toxicological risk assessments were determined in the eight estuaries of the Pearl River (Estuaries), main upstream tributary (Xijiang River), urban river network (River network), and nature reserve reservoir (Reservoirs). Water and sediment samples from the above water systems were collected during the low-water period (May) and the high-water period (August) between 2012 and 2014. Solid phase and ultrasonic methods were used to extract 14 different PAEs that were analyzed by gas chromatography. The analytical average recovery of PAEs in water and sediment was 75.4% ± 4.9% and 121.5% ± 8.9%, respectively. The results showed that PAEs were detected in all of the samples, and the di-n-butyl phtalate (DBP) and benzyl butyl phthalate (BBP) monomers had a detection rate of 100% in water. Similarly, in sediment samples, the detection rates of diisobutyl phthalate (DiBP), DBP, dimethoxyethyl phthalate (DMEP), BBP, di-n-octyl phthalate (DnOP), and DNP ranged from 66.7 to 100%. Among these, in sediment samples, di(2-ethylhexyl) phthalate (DEHP) and phthalic acid bis(2-butoxyethyl) ester (DBEP) had detection rates of 95.8% to 100% in the Estuaries, Xijiang River, and River network. The concentrations of Σ₁₄PAEs in water samples and sediments ranged from 12.95 ± 1.97 to 6717.29 ± 112.37 ng/L and 71.99 ± 8.72 to 17,340.04 ± 227.83 ng/g-dw, respectively. During the low-water period, the average concentration of Σ₁₄PAEs in water and sediment was 1159.58 ± 97.22 ng/L and 2842.50 ± 178.21 ng/g-dw, respectively, and during the high-water period, 822.83 ± 53.19 ng/L and 1936.42 ± 111.31 ng/g-dw, respectively. In water, the average concentration of Σ₁₄PAEs in 2013 and 2014 was 963.39 ± 19.55 ng/L and 2815.35 ± 176.32 ng/L, respectively. In sediment, the average concentrations of Σ₁₄PAEs in 2012 to 2014 were 990.10 ± 23.33 ng/g-dw, 1084.20 ± 112.12 ng/g-dw, and 1816.89 ± 79.97 ng/g-dw, respectively, with concentrations showing an increasing trend year after year (2014 > 2013 > 2012). Potential risk assessment of water ecological, the results show that exceeding environmental risk level (ERL) value in higher molecular weight plasticizer (DEHP, DMEP, DNOP, DNP) was mainly distributed in water, the lower molecular weight plasticizer (BMP, DiBP) was mainly distributed in sediment.
Phthalate esters (PAEs) are widely used industrial raw materials that are well known for their environmental contamination and toxicological effects as “endocrine disruptors.” In this study, environmental levels of PAEs and eco-toxicological risk assessments were determined in the eight estuaries of the Pearl River (Estuaries), main upstream tributary (Xijiang River), urban river network (River network), and nature reserve reservoir (Reservoirs). Water and sediment samples from the above water systems were collected during the low-water period (May) and the high-water period (August) between 2012 and 2014. Solid phase and ultrasonic methods were used to extract 14 different PAEs that were analyzed by gas chromatography. The analytical average recovery of PAEs in water and sediment was 75.4% ± 4.9% and 121.5% ± 8.9%, respectively. The results showed that PAEs were detected in all of the samples, and the di-n-butyl phtalate (DBP) and benzyl butyl phthalate (BBP) monomers had a detection rate of 100% in water. Similarly, in sediment samples, the detection rates of diisobutyl phthalate (D i BP), DBP, dimethoxyethyl phthalate (DMEP), BBP, di-n-octyl phthalate (D n OP), and DNP ranged from 66.7 to 100%. Among these, in sediment samples, di(2-ethylhexyl) phthalate (DEHP) and phthalic acid bis(2-butoxyethyl) ester (DBEP) had detection rates of 95.8% to 100% in the Estuaries, Xijiang River, and River network. The concentrations of Σ 14 PAEs in water samples and sediments ranged from 12.95 ± 1.97 to 6717.29 ± 112.37 ng/L and 71.99 ± 8.72 to 17,340.04 ± 227.83 ng/g-dw, respectively. During the low-water period, the average concentration of Σ 14 PAEs in water and sediment was 1159.58 ± 97.22 ng/L and 2842.50 ± 178.21 ng/g-dw, respectively, and during the high-water period, 822.83 ± 53.19 ng/L and 1936.42 ± 111.31 ng/g-dw, respectively. In water, the average concentration of Σ 14 PAEs in 2013 and 2014 was 963.39 ± 19.55 ng/L and 2815.35 ± 176.32 ng/L, respectively. In sediment, the average concentrations of Σ 14 PAEs in 2012 to 2014 were 990.10 ± 23.33 ng/g-dw, 1084.20 ± 112.12 ng/g-dw, and 1816.89 ± 79.97 ng/g-dw, respectively, with concentrations showing an increasing trend year after year (2014 > 2013 > 2012). Potential risk assessment of water ecological, the results show that exceeding environmental risk level (ERL) value in higher molecular weight plasticizer (DEHP, DMEP, DNOP, DNP) was mainly distributed in water, the lower molecular weight plasticizer (BMP, D i BP) was mainly distributed in sediment.
Phthalate esters (PAEs) are widely used industrial raw materials that are well known for their environmental contamination and toxicological effects as "endocrine disruptors." In this study, environmental levels of PAEs and eco-toxicological risk assessments were determined in the eight estuaries of the Pearl River (Estuaries), main upstream tributary (Xijiang River), urban river network (River network), and nature reserve reservoir (Reservoirs). Water and sediment samples from the above water systems were collected during the low-water period (May) and the high-water period (August) between 2012 and 2014. Solid phase and ultrasonic methods were used to extract 14 different PAEs that were analyzed by gas chromatography. The analytical average recovery of PAEs in water and sediment was 75.4% ± 4.9% and 121.5% ± 8.9%, respectively. The results showed that PAEs were detected in all of the samples, and the di-n-butyl phtalate (DBP) and benzyl butyl phthalate (BBP) monomers had a detection rate of 100% in water. Similarly, in sediment samples, the detection rates of diisobutyl phthalate (DiBP), DBP, dimethoxyethyl phthalate (DMEP), BBP, di-n-octyl phthalate (DnOP), and DNP ranged from 66.7 to 100%. Among these, in sediment samples, di(2-ethylhexyl) phthalate (DEHP) and phthalic acid bis(2-butoxyethyl) ester (DBEP) had detection rates of 95.8% to 100% in the Estuaries, Xijiang River, and River network. The concentrations of Σ14PAEs in water samples and sediments ranged from 12.95 ± 1.97 to 6717.29 ± 112.37 ng/L and 71.99 ± 8.72 to 17,340.04 ± 227.83 ng/g-dw, respectively. During the low-water period, the average concentration of Σ14PAEs in water and sediment was 1159.58 ± 97.22 ng/L and 2842.50 ± 178.21 ng/g-dw, respectively, and during the high-water period, 822.83 ± 53.19 ng/L and 1936.42 ± 111.31 ng/g-dw, respectively. In water, the average concentration of Σ14PAEs in 2013 and 2014 was 963.39 ± 19.55 ng/L and 2815.35 ± 176.32 ng/L, respectively. In sediment, the average concentrations of Σ14PAEs in 2012 to 2014 were 990.10 ± 23.33 ng/g-dw, 1084.20 ± 112.12 ng/g-dw, and 1816.89 ± 79.97 ng/g-dw, respectively, with concentrations showing an increasing trend year after year (2014 > 2013 > 2012). Potential risk assessment of water ecological, the results show that exceeding environmental risk level (ERL) value in higher molecular weight plasticizer (DEHP, DMEP, DNOP, DNP) was mainly distributed in water, the lower molecular weight plasticizer (BMP, DiBP) was mainly distributed in sediment.Phthalate esters (PAEs) are widely used industrial raw materials that are well known for their environmental contamination and toxicological effects as "endocrine disruptors." In this study, environmental levels of PAEs and eco-toxicological risk assessments were determined in the eight estuaries of the Pearl River (Estuaries), main upstream tributary (Xijiang River), urban river network (River network), and nature reserve reservoir (Reservoirs). Water and sediment samples from the above water systems were collected during the low-water period (May) and the high-water period (August) between 2012 and 2014. Solid phase and ultrasonic methods were used to extract 14 different PAEs that were analyzed by gas chromatography. The analytical average recovery of PAEs in water and sediment was 75.4% ± 4.9% and 121.5% ± 8.9%, respectively. The results showed that PAEs were detected in all of the samples, and the di-n-butyl phtalate (DBP) and benzyl butyl phthalate (BBP) monomers had a detection rate of 100% in water. Similarly, in sediment samples, the detection rates of diisobutyl phthalate (DiBP), DBP, dimethoxyethyl phthalate (DMEP), BBP, di-n-octyl phthalate (DnOP), and DNP ranged from 66.7 to 100%. Among these, in sediment samples, di(2-ethylhexyl) phthalate (DEHP) and phthalic acid bis(2-butoxyethyl) ester (DBEP) had detection rates of 95.8% to 100% in the Estuaries, Xijiang River, and River network. The concentrations of Σ14PAEs in water samples and sediments ranged from 12.95 ± 1.97 to 6717.29 ± 112.37 ng/L and 71.99 ± 8.72 to 17,340.04 ± 227.83 ng/g-dw, respectively. During the low-water period, the average concentration of Σ14PAEs in water and sediment was 1159.58 ± 97.22 ng/L and 2842.50 ± 178.21 ng/g-dw, respectively, and during the high-water period, 822.83 ± 53.19 ng/L and 1936.42 ± 111.31 ng/g-dw, respectively. In water, the average concentration of Σ14PAEs in 2013 and 2014 was 963.39 ± 19.55 ng/L and 2815.35 ± 176.32 ng/L, respectively. In sediment, the average concentrations of Σ14PAEs in 2012 to 2014 were 990.10 ± 23.33 ng/g-dw, 1084.20 ± 112.12 ng/g-dw, and 1816.89 ± 79.97 ng/g-dw, respectively, with concentrations showing an increasing trend year after year (2014 > 2013 > 2012). Potential risk assessment of water ecological, the results show that exceeding environmental risk level (ERL) value in higher molecular weight plasticizer (DEHP, DMEP, DNOP, DNP) was mainly distributed in water, the lower molecular weight plasticizer (BMP, DiBP) was mainly distributed in sediment.
Phthalate esters (PAEs) are widely used industrial raw materials that are well known for their environmental contamination and toxicological effects as “endocrine disruptors.” In this study, environmental levels of PAEs and eco-toxicological risk assessments were determined in the eight estuaries of the Pearl River (Estuaries), main upstream tributary (Xijiang River), urban river network (River network), and nature reserve reservoir (Reservoirs). Water and sediment samples from the above water systems were collected during the low-water period (May) and the high-water period (August) between 2012 and 2014. Solid phase and ultrasonic methods were used to extract 14 different PAEs that were analyzed by gas chromatography. The analytical average recovery of PAEs in water and sediment was 75.4% ± 4.9% and 121.5% ± 8.9%, respectively. The results showed that PAEs were detected in all of the samples, and the di-n-butyl phtalate (DBP) and benzyl butyl phthalate (BBP) monomers had a detection rate of 100% in water. Similarly, in sediment samples, the detection rates of diisobutyl phthalate (DiBP), DBP, dimethoxyethyl phthalate (DMEP), BBP, di-n-octyl phthalate (DnOP), and DNP ranged from 66.7 to 100%. Among these, in sediment samples, di(2-ethylhexyl) phthalate (DEHP) and phthalic acid bis(2-butoxyethyl) ester (DBEP) had detection rates of 95.8% to 100% in the Estuaries, Xijiang River, and River network. The concentrations of Σ14PAEs in water samples and sediments ranged from 12.95 ± 1.97 to 6717.29 ± 112.37 ng/L and 71.99 ± 8.72 to 17,340.04 ± 227.83 ng/g-dw, respectively. During the low-water period, the average concentration of Σ14PAEs in water and sediment was 1159.58 ± 97.22 ng/L and 2842.50 ± 178.21 ng/g-dw, respectively, and during the high-water period, 822.83 ± 53.19 ng/L and 1936.42 ± 111.31 ng/g-dw, respectively. In water, the average concentration of Σ14PAEs in 2013 and 2014 was 963.39 ± 19.55 ng/L and 2815.35 ± 176.32 ng/L, respectively. In sediment, the average concentrations of Σ14PAEs in 2012 to 2014 were 990.10 ± 23.33 ng/g-dw, 1084.20 ± 112.12 ng/g-dw, and 1816.89 ± 79.97 ng/g-dw, respectively, with concentrations showing an increasing trend year after year (2014 > 2013 > 2012). Potential risk assessment of water ecological, the results show that exceeding environmental risk level (ERL) value in higher molecular weight plasticizer (DEHP, DMEP, DNOP, DNP) was mainly distributed in water, the lower molecular weight plasticizer (BMP, DiBP) was mainly distributed in sediment.
Author Jian, He
Weizhen, Zhang
Xiaowei, Zheng
Zheng, Zheng
Zini, Lai
Peng, Gu
Ning, Wang
Author_xml – sequence: 1
  givenname: Zhang
  orcidid: 0000-0001-8601-7230
  surname: Weizhen
  fullname: Weizhen, Zhang
  organization: Department of Environmental Science and Engineering, Fudan University, Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, College of Aquatic and Life Science, Shanghai Ocean University
– sequence: 2
  givenname: Zheng
  surname: Xiaowei
  fullname: Xiaowei, Zheng
  organization: Department of Environmental Science and Engineering, Fudan University
– sequence: 3
  givenname: Gu
  surname: Peng
  fullname: Peng, Gu
  organization: Department of Environmental Science and Engineering, Fudan University
– sequence: 4
  givenname: Wang
  surname: Ning
  fullname: Ning, Wang
  organization: Department of Environmental Science and Engineering, Fudan University
– sequence: 5
  givenname: Lai
  surname: Zini
  fullname: Zini, Lai
  email: znlai01@126.com
  organization: Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences
– sequence: 6
  givenname: He
  surname: Jian
  fullname: Jian, He
  organization: Department of Environmental Science and Engineering, Fudan University
– sequence: 7
  givenname: Zheng
  surname: Zheng
  fullname: Zheng, Zheng
  email: zzhenghj@fudan.edu.cn
  organization: Department of Environmental Science and Engineering, Fudan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32002834$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1vFSEUhompsbfVP-DCkLhxM3oYvoalaf1KmmiMLg3hwhkvdS5zBUZz_720t9Wki8YNnITn4cB5T8hRmhMS8pTBSwagXxXGuFQdMNOBGtq6f0BWTDHRaWHMEVmBEaJjXIhjclLKJUAPptePyDHvWz1wsSLfzmOpOa6XGudEXQo0x_KDulKwlC2mSueR7jZ14yZXsdCY6O9W5Gu0YIi3TN0g_YQuT_Rz_NXOz3Gq7jF5OLqp4JOb_ZR8ffvmy9n77uLjuw9nry86L4Ss3aBQSM97iR6DZoMMXrGgtVRqROnBhHWQYnQA0oESivVeMxW4A2nAjJqfkheHe3d5_rlgqXYbi8dpcgnnpdhecDZw08v_QLkEMFwL1tDnd9DLecmpfaRRQ5u4EAIa9eyGWtZbDHaX49blvb2dcQP6A-DzXErG8S_CwF4FaQ9B2hakvQ7S7ps03JF8rO4qpJpdnO5X-UEtrU_6jvnfs--x_gD1prDi
CitedBy_id crossref_primary_10_1016_j_envres_2022_113781
crossref_primary_10_3390_foods13213390
crossref_primary_10_1007_s10646_022_02536_4
crossref_primary_10_1016_j_envint_2023_108294
crossref_primary_10_1016_j_biortech_2022_127990
crossref_primary_10_3389_fenvs_2021_684190
crossref_primary_10_3390_su13020529
crossref_primary_10_3390_analytica3020015
crossref_primary_10_1002_tox_23607
crossref_primary_10_1080_1573062X_2022_2087095
crossref_primary_10_3390_ijerph20042918
crossref_primary_10_1016_j_ecoenv_2021_112830
crossref_primary_10_1016_j_chemosphere_2022_136559
crossref_primary_10_1021_acs_est_2c09426
crossref_primary_10_3390_w15081547
crossref_primary_10_1016_j_scitotenv_2022_157744
crossref_primary_10_1016_j_toxlet_2021_08_008
crossref_primary_10_1007_s42398_023_00268_7
crossref_primary_10_1016_j_envint_2022_107550
crossref_primary_10_1016_j_scitotenv_2024_172984
crossref_primary_10_1016_j_scitotenv_2023_168462
crossref_primary_10_1080_03067319_2024_2447385
crossref_primary_10_1007_s10653_024_01992_7
crossref_primary_10_1016_j_envres_2023_115378
crossref_primary_10_1016_j_scitotenv_2022_153563
crossref_primary_10_1039_D4RE00055B
crossref_primary_10_2166_wst_2023_198
crossref_primary_10_1016_j_reprotox_2023_108532
crossref_primary_10_1016_j_marpolbul_2023_115759
crossref_primary_10_4491_eer_2021_243
crossref_primary_10_3390_oceans3030017
crossref_primary_10_1016_j_jes_2024_01_027
crossref_primary_10_1016_j_jenvman_2025_124663
crossref_primary_10_1016_j_jhazmat_2023_133389
crossref_primary_10_1016_j_envres_2024_118909
crossref_primary_10_1016_j_scitotenv_2023_163094
crossref_primary_10_1016_j_scitotenv_2024_171447
crossref_primary_10_2139_ssrn_4112739
crossref_primary_10_1007_s11270_024_06915_x
crossref_primary_10_3390_pharmaceutics15030908
crossref_primary_10_1016_j_jece_2024_114574
crossref_primary_10_1016_j_scitotenv_2022_158807
crossref_primary_10_1007_s00244_024_01061_1
crossref_primary_10_1007_s12192_023_01389_y
crossref_primary_10_1016_j_scitotenv_2021_151412
crossref_primary_10_1016_j_ecolind_2022_109388
crossref_primary_10_1016_j_envpol_2025_125888
crossref_primary_10_1016_j_eti_2021_101936
crossref_primary_10_1021_acsestwater_4c00798
crossref_primary_10_1016_j_biortech_2021_126249
crossref_primary_10_1016_j_ibiod_2022_105523
crossref_primary_10_1016_j_heliyon_2024_e34748
crossref_primary_10_3390_w15112061
crossref_primary_10_1016_j_envpol_2021_118595
crossref_primary_10_1016_j_heliyon_2024_e32920
crossref_primary_10_1371_journal_pone_0287504
crossref_primary_10_3390_w17050641
crossref_primary_10_1016_j_envpol_2020_115643
crossref_primary_10_1016_j_envpol_2021_116697
crossref_primary_10_1016_j_chemosphere_2022_135563
crossref_primary_10_1016_j_envres_2023_117454
crossref_primary_10_1016_j_scitotenv_2024_175511
crossref_primary_10_3390_w16070948
crossref_primary_10_1002_wer_1486
crossref_primary_10_3390_gels8100610
crossref_primary_10_3390_d14070581
crossref_primary_10_1016_j_jhazmat_2022_129939
crossref_primary_10_3390_agronomy13071777
crossref_primary_10_1007_s11356_020_09295_x
crossref_primary_10_18393_ejss_1181205
crossref_primary_10_1016_j_jenvman_2025_124488
crossref_primary_10_1016_j_chemosphere_2022_135932
crossref_primary_10_1080_10934529_2022_2037375
crossref_primary_10_1016_j_hazadv_2023_100369
crossref_primary_10_1016_j_cej_2024_148683
Cites_doi 10.1098/rstb.2008.0242
10.1289/ehp.1306681
10.1007/BF03246206
10.1016/j.habitatint.2016.11.007
10.1007/s00216-005-0082-x
10.1016/j.watres.2004.06.012
10.1002/mnfr.200800312
10.1021/es972315t
10.1021/es048083x
10.1016/S0883-2927(99)00072-4
10.1007/s10653-014-9632-5
10.1007/s10661-006-9225-6
10.1016/S0160-4120(97)00035-4
10.1016/j.jhazmat.2010.12.037
10.1146/annurev-physiol-012110-142200
10.1016/j.scitotenv.2015.09.148
10.1016/j.chroma.2005.02.003
10.1007/BF00197427
10.1016/j.ijheh.2011.01.009
10.1016/j.jhazmat.2008.09.029
10.1016/j.toxlet.2012.11.025
10.1016/j.watres.2003.12.042
10.1111/j.1600-0463.2001.tb05776.x
10.1006/eesa.2000.1930
10.1016/j.tiv.2006.07.005
10.1007/s10661-012-2649-2
10.1016/j.chemosphere.2004.12.053
10.1021/es505233b
10.1186/1476-069X-13-43
10.1016/j.envpol.2006.01.044
10.1289/ehp.0901331
10.1080/09640569811641
10.1016/j.scitotenv.2006.11.018
10.1289/ehp.0901712
10.1016/j.scitotenv.2012.03.090
10.1016/j.atmosenv.2005.02.021
10.1016/j.tox.2007.12.028
10.1016/j.chemosphere.2004.11.027
10.1007/s11356-013-1982-5
10.1002/tox.22028
10.1080/15320383.2013.722141
10.4314/wsa.v36i1.50916
10.1016/j.atmosenv.2012.12.029
10.1542/peds.111.6.1467
10.1021/es101254c
10.1016/j.atmosenv.2008.08.028
10.1021/es0519637
10.1016/j.envpol.2006.07.009
10.1016/j.jhazmat.2012.12.057
10.1016/j.jhazmat.2007.10.028
10.1016/j.scitotenv.2014.01.007
10.1007/s00128-006-0990-2
10.1007/978-3-540-38819-7_3
10.1248/bpb.25.209
10.1016/S0160-4120(01)00004-6
10.1007/s10661-009-1182-4
10.1007/s10113-003-0061-8
10.1007/s11356-014-3615-z
10.1007/s11356-010-0414-z
10.1016/j.ecoenv.2005.07.023
10.1016/S0045-6535(02)00495-2
10.1007/BF00566960
10.1016/S0166-445X(03)00011-0
10.1007/s10661-012-2838-z
10.1061/(ASCE)1090-025X(2010)14:2(98)
10.1007/s00128-012-0859-5
10.1289/ehp.5658
10.1016/S0378-4347(01)00125-6
10.1021/es026361r
10.1016/j.envint.2007.09.002
10.1016/j.marpolbul.2014.03.038
10.1016/S0890-6238(02)00045-X
10.1016/j.envpol.2004.07.014
10.1016/S0043-1354(01)00367-0
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2019
Springer-Verlag GmbH Germany, part of Springer Nature 2019.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7SN
7T7
7TV
7U7
7WY
7WZ
7X7
7XB
87Z
88E
88I
8AO
8C1
8FD
8FI
8FJ
8FK
8FL
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
C1K
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
K60
K6~
K9.
L.-
M0C
M0S
M1P
M2P
M7N
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
7X8
7S9
L.6
DOI 10.1007/s11356-019-06819-y
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Pollution Abstracts
Toxicology Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central (New)
Business Premium Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ABI/INFORM global
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Pollution Abstracts
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest Medical Library
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA

MEDLINE - Academic
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1614-7499
EndPage 12565
ExternalDocumentID 32002834
10_1007_s11356_019_06819_y
Genre Journal Article
GeographicLocations China
Xijiang River
GeographicLocations_xml – name: China
– name: Xijiang River
GrantInformation_xml – fundername: Guangxi Natural Science Major Project
  grantid: (2013GXNSFEA053003)
– fundername: Guangdong Provincial Marine Fisheries Science and Technology Promotion Project
  grantid: (A201101I02)
– fundername: Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture,Project
  grantid: Grant no. KEH1829083
GroupedDBID ---
-5A
-5G
-5~
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
199
1N0
2.D
203
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
53G
5GY
5VS
67M
67Z
6NX
78A
7WY
7X7
7XC
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACSVP
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
L8X
LAS
LLZTM
M0C
M1P
M2P
M4Y
MA-
ML.
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PATMY
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
PYCSY
Q2X
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z8P
Z8Q
Z8S
ZMTXR
~02
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7SN
7T7
7TV
7U7
7XB
8FD
8FK
ABRTQ
C1K
FR3
K9.
L.-
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
Q9U
7X8
7S9
L.6
ID FETCH-LOGICAL-c445t-86e45c325eced7185dc61d77566fe5c09dbd54fa005a064612c716d3a05909f73
IEDL.DBID U2A
ISSN 0944-1344
1614-7499
IngestDate Fri Aug 22 20:18:06 EDT 2025
Fri Jul 11 05:38:14 EDT 2025
Fri Jul 25 23:45:07 EDT 2025
Wed Feb 19 02:29:21 EST 2025
Thu Apr 24 23:05:56 EDT 2025
Tue Jul 01 02:10:57 EDT 2025
Fri Feb 21 02:33:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Phthalate esters
Pearl River Delta
Risk assessment
Distribution
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-86e45c325eced7185dc61d77566fe5c09dbd54fa005a064612c716d3a05909f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8601-7230
PMID 32002834
PQID 2386814440
PQPubID 54208
PageCount 16
ParticipantIDs proquest_miscellaneous_2431839257
proquest_miscellaneous_2350093741
proquest_journals_2386814440
pubmed_primary_32002834
crossref_primary_10_1007_s11356_019_06819_y
crossref_citationtrail_10_1007_s11356_019_06819_y
springer_journals_10_1007_s11356_019_06819_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Environmental science and pollution research international
PublicationTitleAbbrev Environ Sci Pollut Res
PublicationTitleAlternate Environ Sci Pollut Res Int
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References ColónICaroDBourdonyCJRosarioOIdentification of phthalate esters in the serum of young Puerto Rican girls with premature breast developmentEnviron Health Persp2000108895900
Group W B (2014) World bank group and world bank corporate scorecards, October 2015
Martino-AndradeAJChahoudIReproductive toxicity of phthalate estersMol Nutr Food Res2010541481571:CAS:528:DC%2BC3cXktVeitg%3D%3D
SheaKMPediatric exposure and potential toxicity of phthalate plasticizersPEDIATRICS20031111467
ZotaARCalafatAMWoodruffTJTemporal trends in phthalate exposures: findings from the National Health and Nutrition Examination Survey, 2001-2010Environ Health Perspect20141222352411:CAS:528:DC%2BC1MXhtVWntLjN
Hashizume K, Nanya J, Toda C, Yasui T, Nagano H, Kojima N (2002) Phthalate esters detected in various water samples and biodegradation of the phthalates by microbes isolated from river water. Biol Pharm Bull 25(2):209–214
BoasMFrederiksenHFeldtrasmussenUSkakkebækNEHegedüsLHilstedLChildhood Exposure to Phthalates: Associations with Thyroid Function, Insulin-like Growth Factor I, and GrowthEnviron Health Persp2010118145814641:CAS:528:DC%2BC3cXhtlyjtrbL
XieZEbinghausRTemmeCCabaARuckWAtmospheric concentrations and air–sea exchanges of phthalates in the North Sea (German Bight)Atmos Environ200539320932191:CAS:528:DC%2BD2MXksV2itLw%3D
Fatoki OS, Bornman M, Ravandhalala L, Chimuka L, Genthe B, Adeniyi A (2010) Phthalate ester plasticizers in freshwater systems of Venda, South Africa and potential health effects. Water SA 36(1)
Sung HH, Kao WY, Su YJ (2003) Effects and toxicity of phthalate esters to hemocytes of giant freshwater prawn, macrobrachium rosenbergii. Aquat Toxicol (Amsterdam), 64(1), 0–37
World Health Organization (2011) Recent highlights-hazards
WangXTMaLLSunYZXuXBPhthalate Esters in Sediments from Guanting Reservoir and the Yongding River, Beijing, People's Republic of ChinaBull Environ Contam Toxicol2006767998061:CAS:528:DC%2BD28XlvFahuro%3D
HoKCHuiKCCChemical contamination of the East River (Dongjiang) and its implication on sustainable development in the Pearl River DeltaEnviron Int2001263033081:CAS:528:DC%2BD3MXkslOjt7s%3D
YeTKangMHuangQFangCChenYLiuLDongSAccumulation of di(2-ethylhexyl) phthalate causes endocrine-disruptive effects in marine medaka (Oryzias melastigma) embryosEnviron Toxicol2016311161271:CAS:528:DC%2BC2cXht1Wkt7fO
ColacinoJAHarrisTRSchecterADietary intake is associated with phthalate body burden in a nationally representative sampleEnviron Health Persp201011899810031:CAS:528:DC%2BC3cXpvFaisLg%3D
DoongRALinYTCharacterization and distribution of polycyclic aromatic hydrocarbon contaminations in surface sediment and water from Gao-ping River, TaiwanWater Res200438173317441:CAS:528:DC%2BD2cXitVGrtLc%3D
LinZPIkonomouMGJingHMackintoshCGobasFADetermination of phthalate ester congeners and mixtures by LC/ESI-MS in sediments and biota of an urbanized marine inletEnviron Sci Technol20033721001:CAS:528:DC%2BD3sXislSitb4%3D
EnríquezSDuarteCMSandjensenKPatterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P contentOecologia199394457471
MartineBMarie-JeanneTCendrineDFabriceAMarcCA ssessment of Adult Human Exposure to Phthalate Esters in the Urban Centre of Paris (France)Bull Environ Contam Toxicol20139091961:CAS:528:DC%2BC3sXjvVOitA%3D%3D
HadjmohammadiMRFatemiMHTanehTCoacervative extraction of phthalates from water and their determination by high performance liquid chromatographyJ Iran Chem Soc201181001061:CAS:528:DC%2BC3MXks1Khurw%3D
FanWXiaXShaYDistribution of Phthalic Acid Esters in Wuhan section of the Yangtze River, ChinaJ Hazard Mater2008154317
ShiZTaoSPanBFanWHeXCZuoQWuSPLiBGCaoJLiuWXXuFLWangXJShenWRWongPKContamination of rivers in Tianjin, China by polycyclic aromatic hydrocarbonsEnviron Pollut2005134971111:CAS:528:DC%2BD2cXhtVaksLbO
LiuHCuiKZengFChenLChengYLiHLiSZhouXZhuFOuyangGOccurrence and distribution of phthalate esters in riverine sediments from the Pearl River Delta region, South ChinaMar Pollut Bull2014833583651:CAS:528:DC%2BC2cXmslKjsr8%3D
Lin G (2003) China's compliance management system. Electromagnetic compatibility, 2003, IEEE International Symposium on. IEEE
WongAWMWongMHRecent socio-economic changes in relation to environmental quality of the Pearl River deltaReg Environ Chang200442838
HornONalliSCooperDNicellJPlasticizer metabolites in the environmentWater Res200438369336981:CAS:528:DC%2BD2cXnt1GqsLs%3D
FrommeHKüchlerTOttoTPilzKMüllerJWenzelAOccurrence of phthalates and bisphenol A and F in the environmentWater Res20023614291:CAS:528:DC%2BD38Xhslygu7o%3D
Chen ZS (1992): Metal contamination of flooded soils, rice plants, and surface waters in Asia
HillsPZhangLLiuJTransboundary Pollution between Guangdong Province and Hong Kong: Threats to Water Quality in the Pearl River Estuary and Their Implications for Environmental Policy and PlanningJ Environ Plan Manag199841375396
ZhangQLuXMZhangXLSunYGZhuDMWangBLZhaoRZZhangZDLevels of phthalate esters in settled house dust from urban dwellings with young children in Nanjing, ChinaAtmos Environ201369258264
SelvarajKKSundaramoorthyGRavichandranPKGirijanGKSampathSRamaswamyBRPhthalate esters in water and sediments of the Kaveri River, India: environmental levels and ecotoxicological evaluationsEnviron Geochem Health20153783961:CAS:528:DC%2BC2cXht1WksrjI
Koch HM, Wittassek M, Brüning T, Angerer J, Heudorf U (2011) Exposure to phthalates in 5-6 years old primary school starters in Germany-a human biomonitoring study and a cumulative risk assessment. Int J Hyg Environ Health 214(3):188–195
TeilMJBlanchardMMoreau-GuigonEDargnatCAlliotFBourgesCDesportesAChevreuilMPhthalate Fate in the Hydrographic Network of the River Seine Basin (France) Under Contrasted Hydrological ConditionsWater Air Soil Pollut20132241141:CAS:528:DC%2BC3sXpsVGlsLY%3D
KambiaKDineTGressierBGermeAFLuyckxMBrunetCMichaudLGottrandFHigh-performance liquid chromatographic method for the determination of di(2-ethylhexyl) phthalate in total parenteral nutrition and in plasmaJ Chromatogr B Biomed Sci Appl20017552973031:CAS:528:DC%2BD3MXislGmtLw%3D
Mackintosh CE, Maldonado JA, Ikonomou MG, Gobas FAPC (2006) Sorption of phthalate esters and pcbs in a marine ecosystem. Environ Scie Technol 40(11):3481–3488
MaiBChenSLuoXChenLYangQShengGPengPFuJZengYDistribution of Polybrominated Diphenyl Ethers in Sediments of the Pearl River Delta and Adjacent South China SeaEnviron Sci Technol200539352135271:CAS:528:DC%2BD2MXivFCmu7c%3D
RengarajanSParthasarathyCAnithaMBalasubramanianKDiethylhexyl phthalate impairs insulin binding and glucose oxidation in Chang liver cellsToxicol in Vitro200721991021:CAS:528:DC%2BD28Xht12rt7jK
FernandezMPIkonomouMGBuchananIAn assessment of estrogenic organic contaminants in Canadian wastewatersSci Total Environ20073732502691:CAS:528:DC%2BD2sXnsFOnuw%3D%3D
MengXZWangYXiangNChenLLiuZWuBDaiXZhangYHXieZEbinghausRFlow of sewage sludge-borne phthalate esters (PAEs) from human release to human intake: implication for risk assessment of sludge applied to soilSci Total Environ2014476-4772422491:CAS:528:DC%2BC2cXjt1artLc%3D
Van WezelAPVanVPPosthumusRCrommentuijnGHSijmDTEnvironmental risk limits for two phthalates, with special emphasis on endocrine disruptive propertiesEcotoxicol Environ Saf200046305321
KavlockRBoekelheideKChapinRCunninghamMFaustmanEFosterPGolubMHendersonRHinbergILittleRNTP Center for the Evaluation of Risks to Human Reproduction: phthalates expert panel report on the reproductive and developmental toxicity of butyl benzyl phthalateReprod Toxicol200216451
Chen CF, Chen CW, Ju YR, Dong CD (2016) Determination and assessment of phthalate esters content in sediments from Kaohsiung Harbor, Taiwan. Mar Pollut Bull 124
MankidyRWisemanSMaHGiesyJPBiological impact of phthalatesToxicol Lett201321750581:CAS:528:DC%2BC3sXnvFCmsg%3D%3D
SrivastavaASharmaVPTripathiRKumarRPatelDKMathurPKOccurrence of phthalic acid esters in Gomti River Sediment, IndiaEnviron Monit Assess20101693974061:CAS:528:DC%2BC3cXhtFSnt7zM
LiXWaiOWHLiYSColesBJRamseyMHThorntonIHeavy metal distribution in sediment profiles of the Pearl River estuary, South ChinaAppl Geochem2000155675811:CAS:528:DC%2BD3cXhtFajs7g%3D
van der PasLJTMatserANMBoestenJJTLeistraMBehaviour of metamitron and hydroxy-chlorothalonil in low-humic sandy soilsPestic Sci199999923934
PeijnenburgWJStruijsJOccurrence of phthalate esters in the environment of The NetherlandsEcotoxicol Environ Saf2006632042151:CAS:528:DC%2BD28XisFKisb0%3D
Flaherty E (2008) Consumer product safety improvement act of 2008. Loyola Consumer Law Review 21
KlamerHJLeonardsPELamoreeMHVilleriusLAÅkermanJEBakkerJFA chemical and toxicological profile of Dutch North Sea surface sedimentsChemosphere200558157915871:CAS:528:DC%2BD2MXhtVKjtbY%3D
RamaswamyBRShanmugamGVeluGRengarajanBLarssonDGGC-MS analysis and ecotoxicological risk assessment of triclosan, carbamazepine and parabens in Indian riversJ Hazard Mater2011186158615931:CAS:528:DC%2BC3MXhvVaisrc%3D
Shore MWC (1995) Toxicological profile for diethyl phthalate. Agency for Toxic Substances and Disease Registry
OehlmannJSchulte-OehlmannUKloasWJagnytschOLutzIKuskKOWollenbergerLSantosEMPaullGCVan LookKJA critical analysis of the biological impacts of plasticizers on wildlifePhilos Trans Biol Sci200936420471:CAS:528:DC%2BD1MXpt1Skt7s%3D
MoCCaiQWuQWangBWangJWCZhouLA study of phthalic acid esters (PAEs) in the municipal sludges of ChinaChina Environ Sci2001213623661:CAS:528:DC%2BD3MXmvFOktL0%3D
Giam CS, Atlas E, Powers MA, Leonard JE (1984) Phthalic acid esters. In: Handbook of Environmental Chemistry, Anthropogenic Compounds, vol 3, pp 67–142
Sears JK, Darby JR (1982) The technology of plasticizers
WeiCTaubenböckHBlaschkeTMeasuring urban agglomeration using a city-scale dasymetric population map: A study in the Pearl River Delta, ChinaHabitat Int2017593243
Library WP (2013) Ministry of environmental protection of the People's Republic of China
YuanSYLiuCLiaoCSChangBVOccurrence and microbial degradation of phthalate esters in Taiwan river sedimentsCHEMOSPHERE200249
6819_CR41
PMD Foster (6819_CR20) 2015; 109
6819_CR1
H Liu (6819_CR43) 2014; 83
Y Sha (6819_CR62) 2007; 124
X Li (6819_CR39) 2000; 15
6819_CR44
O Horn (6819_CR31) 2004; 38
ZP Lin (6819_CR42) 2003; 37
6819_CR46
CW Chen (6819_CR8) 2013; 22
T Ye (6819_CR84) 2016; 31
S Net (6819_CR53) 2015; 49
M Boas (6819_CR2) 2010; 118
HK Florig (6819_CR19) 1997; 31
AJ Martino-Andrade (6819_CR50) 2010; 54
MJ Teil (6819_CR71) 2013; 224
WL Wang (6819_CR78) 2015; 22
WJ Peijnenburg (6819_CR55) 2006; 63
DW Gao (6819_CR22) 2016; 541
AP Van Wezel (6819_CR73) 2000; 46
KK Selvaraj (6819_CR60) 2015; 37
B Mai (6819_CR47) 2005; 39
R Mankidy (6819_CR48) 2013; 217
6819_CR4
SJ Chen (6819_CR6) 2006; 144
6819_CR7
KC Ho (6819_CR30) 2001; 26
F Zeng (6819_CR86) 2008; 34
KM Shea (6819_CR63) 2003; 111
6819_CR9
Z Xie (6819_CR82) 2005; 39
C Wei (6819_CR79) 2017; 59
T Krüger (6819_CR37) 2008; 246
RA Doong (6819_CR12) 2004; 38
6819_CR75
H He (6819_CR28) 2011; 18
6819_CR35
H Yang (6819_CR83) 2013; 185
R Kavlock (6819_CR33) 2002; 16
A Srivastava (6819_CR67) 2010; 169
V Larcinese (6819_CR38) 2013; 20
Z Zeng (6819_CR87) 2009; 164
VA Santhi (6819_CR58) 2013; 185
XT Wang (6819_CR77) 2006; 76
Y Wang (6819_CR76) 2005; 383
6819_CR80
XZ Meng (6819_CR51) 2014; 476-477
H Chen (6819_CR5) 1999; 28
6819_CR23
6819_CR66
6819_CR25
6819_CR69
I Colón (6819_CR11) 2000; 108
6819_CR24
6819_CR27
J Oehlmann (6819_CR54) 2009; 364
S Enríquez (6819_CR13) 1993; 94
H Fromme (6819_CR21) 2002; 36
Z Shi (6819_CR65) 2007; 146
B Martine (6819_CR49) 2013; 90
AD Vethaak (6819_CR74) 2005; 59
T Lovekampswan (6819_CR45) 2003; 111
B Kolarik (6819_CR36) 2008; 42
C Casalscasas (6819_CR3) 2011; 73
AWM Wong (6819_CR81) 2004; 4
BR Ramaswamy (6819_CR56) 2011; 186
MP Fernandez (6819_CR17) 2007; 373
MR Hadjmohammadi (6819_CR26) 2011; 8
6819_CR70
P Hills (6819_CR29) 1998; 41
J Sun (6819_CR68) 2013; 248-249
W Fan (6819_CR15) 2008; 154
AR Zota (6819_CR89) 2014; 122
6819_CR14
6819_CR16
6819_CR59
6819_CR18
Q Zhang (6819_CR88) 2013; 69
JA Colacino (6819_CR10) 2010; 118
Z Shi (6819_CR64) 2005; 134
N Li (6819_CR40) 2010; 44
SY Yuan (6819_CR85) 2002; 49
C Mo (6819_CR52) 2001; 21
K Kambia (6819_CR32) 2001; 755
HJ Klamer (6819_CR34) 2005; 58
S Rengarajan (6819_CR57) 2007; 21
SE Serrano (6819_CR61) 2014; 13
LJT van der Pas (6819_CR72) 1999; 99
References_xml – reference: ChenCWChenCFDongCDDistribution of Phthalate Esters in Sediments of Kaohsiung Harbor, TaiwanJ Soil Contam2013221191311:CAS:528:DC%2BC3sXhtFSjtr8%3D
– reference: van der PasLJTMatserANMBoestenJJTLeistraMBehaviour of metamitron and hydroxy-chlorothalonil in low-humic sandy soilsPestic Sci199999923934
– reference: Giam CS, Atlas E, Powers MA, Leonard JE (1984) Phthalic acid esters. In: Handbook of Environmental Chemistry, Anthropogenic Compounds, vol 3, pp 67–142
– reference: WeiCTaubenböckHBlaschkeTMeasuring urban agglomeration using a city-scale dasymetric population map: A study in the Pearl River Delta, ChinaHabitat Int2017593243
– reference: DoongRALinYTCharacterization and distribution of polycyclic aromatic hydrocarbon contaminations in surface sediment and water from Gao-ping River, TaiwanWater Res200438173317441:CAS:528:DC%2BD2cXitVGrtLc%3D
– reference: GaoDWWenZDPhthalate esters in the environment: A critical review of their occurrence, biodegradation, and removal during wastewater treatment processesSci Total Environ201654198610011:CAS:528:DC%2BC2MXhs1Krt7jF
– reference: SanthiVAMustafaAMAssessment of organochlorine pesticides and plasticisers in the Selangor River basin and possible pollution sourcesEnviron Monit Assess2013185154115541:CAS:528:DC%2BC3sXntVWntA%3D%3D
– reference: World Health Organization (2011) Recent highlights-hazards
– reference: Library WP (2013) Ministry of environmental protection of the People's Republic of China
– reference: WangWLWuQYWangCHeTHuHYHealth risk assessment of phthalate esters (PAEs) in drinking water sources of ChinaEnviron Sci Pollut Res201522362036301:CAS:528:DC%2BC2cXhs1Ohs7%2FK
– reference: ZengFCuiKXieZLiuMLiYLinYZengZLiFOccurrence of phthalate esters in water and sediment of urban lakes in a subtropical city, Guangzhou, South ChinaEnviron Int2008343721:CAS:528:DC%2BD1cXktlOgtrw%3D
– reference: MartineBMarie-JeanneTCendrineDFabriceAMarcCA ssessment of Adult Human Exposure to Phthalate Esters in the Urban Centre of Paris (France)Bull Environ Contam Toxicol20139091961:CAS:528:DC%2BC3sXjvVOitA%3D%3D
– reference: FanWXiaXShaYDistribution of Phthalic Acid Esters in Wuhan section of the Yangtze River, ChinaJ Hazard Mater2008154317
– reference: ChenHZhuYHeavy Metal Pollution in Soils in China: Status and CountermeasuresAmbio199928130134
– reference: Chen L, Zhao Y Li L, Chen B, & Zhang Y (2012) Exposure assessment of phthalates in non-occupational populations in China. Sci Total Environ 427–428
– reference: Group W B (2014) World bank group and world bank corporate scorecards, October 2015
– reference: KolarikBBornehagCGNaydenovKSundellJStavovaPNielsenOFThe concentrations of phthalates in settled dust in Bulgarian homes in relation to building characteristic and cleaning habits in the familyAtmos Environ200842855385591:CAS:528:DC%2BD1cXhtlWhtL%2FM
– reference: OehlmannJSchulte-OehlmannUKloasWJagnytschOLutzIKuskKOWollenbergerLSantosEMPaullGCVan LookKJA critical analysis of the biological impacts of plasticizers on wildlifePhilos Trans Biol Sci200936420471:CAS:528:DC%2BD1MXpt1Skt7s%3D
– reference: Flaherty E (2008) Consumer product safety improvement act of 2008. Loyola Consumer Law Review 21
– reference: LiNWangDZhouYMaMLiJWangZDibutyl Phthalate Contributes to the Thyroid Receptor Antagonistic Activity in Drinking Water ProcessesEnviron Sci Technol20104468631:CAS:528:DC%2BC3cXpslWis7g%3D
– reference: LovekampswanTDavisBJMechanisms of phthalate ester toxicity in the female reproductive systemEnviron Health Persp20031111391:CAS:528:DC%2BD3sXhsFygtbk%3D
– reference: ZotaARCalafatAMWoodruffTJTemporal trends in phthalate exposures: findings from the National Health and Nutrition Examination Survey, 2001-2010Environ Health Perspect20141222352411:CAS:528:DC%2BC1MXhtVWntLjN
– reference: SerranoSEBraunJTrasandeLDillsRSathyanarayanaSPhthalates and diet: a review of the food monitoring and epidemiology dataEnviron Health201413143
– reference: Tan GH (1995) Residue levels of phthalate esters in water and sediment samples from the klang river basin. Bull Environ Contam Toxicol 54(2):171–176
– reference: ZhangQLuXMZhangXLSunYGZhuDMWangBLZhaoRZZhangZDLevels of phthalate esters in settled house dust from urban dwellings with young children in Nanjing, ChinaAtmos Environ201369258264
– reference: MankidyRWisemanSMaHGiesyJPBiological impact of phthalatesToxicol Lett201321750581:CAS:528:DC%2BC3sXnvFCmsg%3D%3D
– reference: Chen CF, Chen CW, Ju YR, Dong CD (2016) Determination and assessment of phthalate esters content in sediments from Kaohsiung Harbor, Taiwan. Mar Pollut Bull 124
– reference: HadjmohammadiMRFatemiMHTanehTCoacervative extraction of phthalates from water and their determination by high performance liquid chromatographyJ Iran Chem Soc201181001061:CAS:528:DC%2BC3MXks1Khurw%3D
– reference: KrügerTLongMBonefeld-JørgensenECPlastic components affect the activation of the aryl hydrocarbon and the androgen receptorToxicology2008246112123
– reference: VethaakADLahrJSchrapSMBelfroidACRijsGBGerritsenADeBJBulderASGrinwisGCKuiperRVAn integrated assessment of estrogenic contamination and biological effects in the aquatic environment of The NetherlandsChemosphere2005595111:CAS:528:DC%2BD2MXisFGltLg%3D
– reference: MengXZWangYXiangNChenLLiuZWuBDaiXZhangYHXieZEbinghausRFlow of sewage sludge-borne phthalate esters (PAEs) from human release to human intake: implication for risk assessment of sludge applied to soilSci Total Environ2014476-4772422491:CAS:528:DC%2BC2cXjt1artLc%3D
– reference: ShaYXiaXYangZHuangGHDistribution of PAEs in the middle and lower reaches of the Yellow River, ChinaEnviron Monit Assess20071242772871:CAS:528:DC%2BD2sXis1yns7o%3D
– reference: CasalscasasCDesvergneBEndocrine disruptors: from endocrine to metabolic disruptionAnnu Rev Physiol2011731351621:CAS:528:DC%2BC3MXktVKjtb8%3D
– reference: Fatoki OS, Bornman M, Ravandhalala L, Chimuka L, Genthe B, Adeniyi A (2010) Phthalate ester plasticizers in freshwater systems of Venda, South Africa and potential health effects. Water SA 36(1)
– reference: Gopal A, Aarti J, Chetna G, Arvinder D, Cooper HL (2010) A practical method to extract and dechlorinate pcbs in soils. Practice Periodical of Hazardous Toxic & Radioactive Waste Management 14(2)
– reference: Hashizume K, Nanya J, Toda C, Yasui T, Nagano H, Kojima N (2002) Phthalate esters detected in various water samples and biodegradation of the phthalates by microbes isolated from river water. Biol Pharm Bull 25(2):209–214
– reference: YeTKangMHuangQFangCChenYLiuLDongSAccumulation of di(2-ethylhexyl) phthalate causes endocrine-disruptive effects in marine medaka (Oryzias melastigma) embryosEnviron Toxicol2016311161271:CAS:528:DC%2BC2cXht1Wkt7fO
– reference: Martino-AndradeAJChahoudIReproductive toxicity of phthalate estersMol Nutr Food Res2010541481571:CAS:528:DC%2BC3cXktVeitg%3D%3D
– reference: Koch HM, Wittassek M, Brüning T, Angerer J, Heudorf U (2011) Exposure to phthalates in 5-6 years old primary school starters in Germany-a human biomonitoring study and a cumulative risk assessment. Int J Hyg Environ Health 214(3):188–195
– reference: Van WezelAPVanVPPosthumusRCrommentuijnGHSijmDTEnvironmental risk limits for two phthalates, with special emphasis on endocrine disruptive propertiesEcotoxicol Environ Saf200046305321
– reference: Sears JK, Darby JR (1982) The technology of plasticizers
– reference: ColacinoJAHarrisTRSchecterADietary intake is associated with phthalate body burden in a nationally representative sampleEnviron Health Persp201011899810031:CAS:528:DC%2BC3cXpvFaisLg%3D
– reference: HornONalliSCooperDNicellJPlasticizer metabolites in the environmentWater Res200438369336981:CAS:528:DC%2BD2cXnt1GqsLs%3D
– reference: PeijnenburgWJStruijsJOccurrence of phthalate esters in the environment of The NetherlandsEcotoxicol Environ Saf2006632042151:CAS:528:DC%2BD28XisFKisb0%3D
– reference: WangXTMaLLSunYZXuXBPhthalate Esters in Sediments from Guanting Reservoir and the Yongding River, Beijing, People's Republic of ChinaBull Environ Contam Toxicol2006767998061:CAS:528:DC%2BD28XlvFahuro%3D
– reference: LiuHCuiKZengFChenLChengYLiHLiSZhouXZhuFOuyangGOccurrence and distribution of phthalate esters in riverine sediments from the Pearl River Delta region, South ChinaMar Pollut Bull2014833583651:CAS:528:DC%2BC2cXmslKjsr8%3D
– reference: Mackintosh CE, Maldonado JA, Ikonomou MG, Gobas FAPC (2006) Sorption of phthalate esters and pcbs in a marine ecosystem. Environ Scie Technol 40(11):3481–3488
– reference: RamaswamyBRShanmugamGVeluGRengarajanBLarssonDGGC-MS analysis and ecotoxicological risk assessment of triclosan, carbamazepine and parabens in Indian riversJ Hazard Mater2011186158615931:CAS:528:DC%2BC3MXhvVaisrc%3D
– reference: RengarajanSParthasarathyCAnithaMBalasubramanianKDiethylhexyl phthalate impairs insulin binding and glucose oxidation in Chang liver cellsToxicol in Vitro200721991021:CAS:528:DC%2BD28Xht12rt7jK
– reference: WongAWMWongMHRecent socio-economic changes in relation to environmental quality of the Pearl River deltaReg Environ Chang200442838
– reference: YangHXieWLiuQLiuJYuHLuZDistribution of phthalate esters in topsoil: a case study in the Yellow River Delta, ChinaEnviron Monit Assess201318584891:CAS:528:DC%2BC3sXhtl2ktLbI
– reference: FlorigHKChina's air pollution risksEnviron Sci Technol199731274A275A1:CAS:528:DyaK2sXjsFGjtrc%3D
– reference: ColónICaroDBourdonyCJRosarioOIdentification of phthalate esters in the serum of young Puerto Rican girls with premature breast developmentEnviron Health Persp2000108895900
– reference: Lin G (2003) China's compliance management system. Electromagnetic compatibility, 2003, IEEE International Symposium on. IEEE
– reference: HoKCHuiKCCChemical contamination of the East River (Dongjiang) and its implication on sustainable development in the Pearl River DeltaEnviron Int2001263033081:CAS:528:DC%2BD3MXkslOjt7s%3D
– reference: XieZEbinghausRTemmeCCabaARuckWAtmospheric concentrations and air–sea exchanges of phthalates in the North Sea (German Bight)Atmos Environ200539320932191:CAS:528:DC%2BD2MXksV2itLw%3D
– reference: EnríquezSDuarteCMSandjensenKPatterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P contentOecologia199394457471
– reference: HillsPZhangLLiuJTransboundary Pollution between Guangdong Province and Hong Kong: Threats to Water Quality in the Pearl River Estuary and Their Implications for Environmental Policy and PlanningJ Environ Plan Manag199841375396
– reference: MaiBChenSLuoXChenLYangQShengGPengPFuJZengYDistribution of Polybrominated Diphenyl Ethers in Sediments of the Pearl River Delta and Adjacent South China SeaEnviron Sci Technol200539352135271:CAS:528:DC%2BD2MXivFCmu7c%3D
– reference: ZengZCuiKXieZWuLLuoDChenLLinYMinLSunGDistribution of phthalate esters in urban soils of subtropical city, Guangzhou, ChinaJ Hazard Mater2009164117111781:CAS:528:DC%2BD1MXjsVClt7o%3D
– reference: WangYHuWCaoZFuXZhuTOccurrence of endocrine-disrupting compounds in reclaimed water from Tianjin, ChinaAnal Bioanal Chem20053838578631:CAS:528:DC%2BD2MXhtFyisLfP
– reference: FernandezMPIkonomouMGBuchananIAn assessment of estrogenic organic contaminants in Canadian wastewatersSci Total Environ20073732502691:CAS:528:DC%2BD2sXnsFOnuw%3D%3D
– reference: SunJHuangJZhangALiuWChengWOccurrence of phthalate esters in sediments in Qiantang River, China and inference with urbanization and river flow regimeJ Hazard Mater2013248-2491421491:CAS:528:DC%2BC3sXjsFOlsbk%3D
– reference: NetSSempéréRDelmontAPaluselliAOuddaneBOccurrence, Fate, Behavior and Ecotoxicological State of Phthalates in Different Environmental MatricesEnviron Sci Technol201549401940351:CAS:528:DC%2BC2MXjs1Wgs7Y%3D
– reference: EPAJ (Environmental Protection Agency of Japan) (1993) Chemicals in the environment, Report on Environmental Survey and Wildlife Monitoring of Chemicals in F.Y
– reference: FrommeHKüchlerTOttoTPilzKMüllerJWenzelAOccurrence of phthalates and bisphenol A and F in the environmentWater Res20023614291:CAS:528:DC%2BD38Xhslygu7o%3D
– reference: HeHHuGJSunCChenSLYangMNLiJZhaoYWangHTrace analysis of persistent toxic substances in the main stream of Jiangsu section of the Yangtze River, ChinaEnviron Sci Pollut Res2011186386481:CAS:528:DC%2BC3MXkvFaisrg%3D
– reference: SelvarajKKSundaramoorthyGRavichandranPKGirijanGKSampathSRamaswamyBRPhthalate esters in water and sediments of the Kaveri River, India: environmental levels and ecotoxicological evaluationsEnviron Geochem Health20153783961:CAS:528:DC%2BC2cXht1WksrjI
– reference: SheaKMPediatric exposure and potential toxicity of phthalate plasticizersPEDIATRICS20031111467
– reference: KlamerHJLeonardsPELamoreeMHVilleriusLAÅkermanJEBakkerJFA chemical and toxicological profile of Dutch North Sea surface sedimentsChemosphere200558157915871:CAS:528:DC%2BD2MXhtVKjtbY%3D
– reference: ShiZTaoSPanBLiuWXShenWRPartitioning and source diagnostics of polycyclic aromatic hydrocarbons in rivers in Tianjin, ChinaEnviron Pollut20071464925001:CAS:528:DC%2BD2sXit12gsbc%3D
– reference: Bartolomé L, Cortazar E, Raposo JC, Usobiaga A, Zuloaga O, Etxebarria N et al (2005) Simultaneous microwave-assisted extraction of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, phthalate esters and nonylphenols in sediments. J Chromatogr A 1068(2):229–236
– reference: Chen ZS (1992): Metal contamination of flooded soils, rice plants, and surface waters in Asia
– reference: LiXWaiOWHLiYSColesBJRamseyMHThorntonIHeavy metal distribution in sediment profiles of the Pearl River estuary, South ChinaAppl Geochem2000155675811:CAS:528:DC%2BD3cXhtFajs7g%3D
– reference: ShiZTaoSPanBFanWHeXCZuoQWuSPLiBGCaoJLiuWXXuFLWangXJShenWRWongPKContamination of rivers in Tianjin, China by polycyclic aromatic hydrocarbonsEnviron Pollut2005134971111:CAS:528:DC%2BD2cXhtVaksLbO
– reference: LinZPIkonomouMGJingHMackintoshCGobasFADetermination of phthalate ester congeners and mixtures by LC/ESI-MS in sediments and biota of an urbanized marine inletEnviron Sci Technol20033721001:CAS:528:DC%2BD3sXislSitb4%3D
– reference: MoCCaiQWuQWangBWangJWCZhouLA study of phthalic acid esters (PAEs) in the municipal sludges of ChinaChina Environ Sci2001213623661:CAS:528:DC%2BD3MXmvFOktL0%3D
– reference: YuanSYLiuCLiaoCSChangBVOccurrence and microbial degradation of phthalate esters in Taiwan river sedimentsCHEMOSPHERE200249129512991:CAS:528:DC%2BD38Xotlymsrk%3D
– reference: BoasMFrederiksenHFeldtrasmussenUSkakkebækNEHegedüsLHilstedLChildhood Exposure to Phthalates: Associations with Thyroid Function, Insulin-like Growth Factor I, and GrowthEnviron Health Persp2010118145814641:CAS:528:DC%2BC3cXhtlyjtrbL
– reference: Shore MWC (1995) Toxicological profile for diethyl phthalate. Agency for Toxic Substances and Disease Registry
– reference: Sung HH, Kao WY, Su YJ (2003) Effects and toxicity of phthalate esters to hemocytes of giant freshwater prawn, macrobrachium rosenbergii. Aquat Toxicol (Amsterdam), 64(1), 0–37
– reference: KambiaKDineTGressierBGermeAFLuyckxMBrunetCMichaudLGottrandFHigh-performance liquid chromatographic method for the determination of di(2-ethylhexyl) phthalate in total parenteral nutrition and in plasmaJ Chromatogr B Biomed Sci Appl20017552973031:CAS:528:DC%2BD3MXislGmtLw%3D
– reference: KavlockRBoekelheideKChapinRCunninghamMFaustmanEFosterPGolubMHendersonRHinbergILittleRNTP Center for the Evaluation of Risks to Human Reproduction: phthalates expert panel report on the reproductive and developmental toxicity of butyl benzyl phthalateReprod Toxicol200216451
– reference: Vitali M, Guidotti M, Macilenti G, Cremisini C (1997) Phthalate esters in freshwaters as markers of contamination sources – a site study in Italy. Environ Int 23(3):337–347
– reference: SrivastavaASharmaVPTripathiRKumarRPatelDKMathurPKOccurrence of phthalic acid esters in Gomti River Sediment, IndiaEnviron Monit Assess20101693974061:CAS:528:DC%2BC3cXhtFSnt7zM
– reference: FosterPMDMylchreestEGaidoKWSarMEffects of phthalate esters on the developing reproductive tract of male ratsAPMIS2015109S272S277
– reference: LarcineseVTestaCMeta-analysis of environmental contamination by phthalatesEnviron Sci Pollut Res20132080578076
– reference: TeilMJBlanchardMMoreau-GuigonEDargnatCAlliotFBourgesCDesportesAChevreuilMPhthalate Fate in the Hydrographic Network of the River Seine Basin (France) Under Contrasted Hydrological ConditionsWater Air Soil Pollut20132241141:CAS:528:DC%2BC3sXpsVGlsLY%3D
– reference: ChenSJGaoXJMaiBXChenZMLuoXJShengGYFuJMZengEYPolybrominated diphenyl ethers in surface sediments of the Yangtze River Delta: Levels, distribution and potential hydrodynamic influenceEnviron Pollut20061449511:CAS:528:DC%2BD28XpslSltr8%3D
– volume: 364
  start-page: 2047
  year: 2009
  ident: 6819_CR54
  publication-title: Philos Trans Biol Sci
  doi: 10.1098/rstb.2008.0242
– volume: 122
  start-page: 235
  year: 2014
  ident: 6819_CR89
  publication-title: Environ Health Perspect
  doi: 10.1289/ehp.1306681
– volume: 8
  start-page: 100
  year: 2011
  ident: 6819_CR26
  publication-title: J Iran Chem Soc
  doi: 10.1007/BF03246206
– volume: 59
  start-page: 32
  year: 2017
  ident: 6819_CR79
  publication-title: Habitat Int
  doi: 10.1016/j.habitatint.2016.11.007
– volume: 383
  start-page: 857
  year: 2005
  ident: 6819_CR76
  publication-title: Anal Bioanal Chem
  doi: 10.1007/s00216-005-0082-x
– volume: 38
  start-page: 3693
  year: 2004
  ident: 6819_CR31
  publication-title: Water Res
  doi: 10.1016/j.watres.2004.06.012
– ident: 6819_CR25
– volume: 54
  start-page: 148
  year: 2010
  ident: 6819_CR50
  publication-title: Mol Nutr Food Res
  doi: 10.1002/mnfr.200800312
– volume: 31
  start-page: 274A
  year: 1997
  ident: 6819_CR19
  publication-title: Environ Sci Technol
  doi: 10.1021/es972315t
– volume: 39
  start-page: 3521
  year: 2005
  ident: 6819_CR47
  publication-title: Environ Sci Technol
  doi: 10.1021/es048083x
– volume: 15
  start-page: 567
  year: 2000
  ident: 6819_CR39
  publication-title: Appl Geochem
  doi: 10.1016/S0883-2927(99)00072-4
– ident: 6819_CR9
– volume: 37
  start-page: 83
  year: 2015
  ident: 6819_CR60
  publication-title: Environ Geochem Health
  doi: 10.1007/s10653-014-9632-5
– volume: 124
  start-page: 277
  year: 2007
  ident: 6819_CR62
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-006-9225-6
– ident: 6819_CR44
– ident: 6819_CR75
  doi: 10.1016/S0160-4120(97)00035-4
– volume: 186
  start-page: 1586
  year: 2011
  ident: 6819_CR56
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2010.12.037
– volume: 73
  start-page: 135
  year: 2011
  ident: 6819_CR3
  publication-title: Annu Rev Physiol
  doi: 10.1146/annurev-physiol-012110-142200
– volume: 99
  start-page: 923
  year: 1999
  ident: 6819_CR72
  publication-title: Pestic Sci
– volume: 541
  start-page: 986
  year: 2016
  ident: 6819_CR22
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2015.09.148
– ident: 6819_CR1
  doi: 10.1016/j.chroma.2005.02.003
– ident: 6819_CR70
  doi: 10.1007/BF00197427
– ident: 6819_CR35
  doi: 10.1016/j.ijheh.2011.01.009
– ident: 6819_CR80
– volume: 164
  start-page: 1171
  year: 2009
  ident: 6819_CR87
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2008.09.029
– volume: 217
  start-page: 50
  year: 2013
  ident: 6819_CR48
  publication-title: Toxicol Lett
  doi: 10.1016/j.toxlet.2012.11.025
– volume: 38
  start-page: 1733
  year: 2004
  ident: 6819_CR12
  publication-title: Water Res
  doi: 10.1016/j.watres.2003.12.042
– volume: 109
  start-page: S272
  year: 2015
  ident: 6819_CR20
  publication-title: APMIS
  doi: 10.1111/j.1600-0463.2001.tb05776.x
– volume: 21
  start-page: 362
  year: 2001
  ident: 6819_CR52
  publication-title: China Environ Sci
– volume: 46
  start-page: 305
  year: 2000
  ident: 6819_CR73
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1006/eesa.2000.1930
– volume: 21
  start-page: 99
  year: 2007
  ident: 6819_CR57
  publication-title: Toxicol in Vitro
  doi: 10.1016/j.tiv.2006.07.005
– volume: 185
  start-page: 1541
  year: 2013
  ident: 6819_CR58
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-012-2649-2
– volume: 59
  start-page: 511
  year: 2005
  ident: 6819_CR74
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2004.12.053
– volume: 49
  start-page: 4019
  year: 2015
  ident: 6819_CR53
  publication-title: Environ Sci Technol
  doi: 10.1021/es505233b
– volume: 13
  start-page: 43
  issue: 1
  year: 2014
  ident: 6819_CR61
  publication-title: Environ Health
  doi: 10.1186/1476-069X-13-43
– volume: 144
  start-page: 951
  year: 2006
  ident: 6819_CR6
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2006.01.044
– volume: 118
  start-page: 1458
  year: 2010
  ident: 6819_CR2
  publication-title: Environ Health Persp
  doi: 10.1289/ehp.0901331
– volume: 41
  start-page: 375
  year: 1998
  ident: 6819_CR29
  publication-title: J Environ Plan Manag
  doi: 10.1080/09640569811641
– volume: 373
  start-page: 250
  year: 2007
  ident: 6819_CR17
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2006.11.018
– volume: 118
  start-page: 998
  year: 2010
  ident: 6819_CR10
  publication-title: Environ Health Persp
  doi: 10.1289/ehp.0901712
– ident: 6819_CR7
  doi: 10.1016/j.scitotenv.2012.03.090
– volume: 39
  start-page: 3209
  year: 2005
  ident: 6819_CR82
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2005.02.021
– volume: 28
  start-page: 130
  year: 1999
  ident: 6819_CR5
  publication-title: Ambio
– volume: 246
  start-page: 112
  year: 2008
  ident: 6819_CR37
  publication-title: Toxicology
  doi: 10.1016/j.tox.2007.12.028
– volume: 58
  start-page: 1579
  year: 2005
  ident: 6819_CR34
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2004.11.027
– volume: 20
  start-page: 8057
  year: 2013
  ident: 6819_CR38
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-013-1982-5
– volume: 31
  start-page: 116
  year: 2016
  ident: 6819_CR84
  publication-title: Environ Toxicol
  doi: 10.1002/tox.22028
– volume: 22
  start-page: 119
  year: 2013
  ident: 6819_CR8
  publication-title: J Soil Contam
  doi: 10.1080/15320383.2013.722141
– ident: 6819_CR16
  doi: 10.4314/wsa.v36i1.50916
– volume: 69
  start-page: 258
  year: 2013
  ident: 6819_CR88
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2012.12.029
– volume: 111
  start-page: 1467
  year: 2003
  ident: 6819_CR63
  publication-title: PEDIATRICS
  doi: 10.1542/peds.111.6.1467
– volume: 44
  start-page: 6863
  year: 2010
  ident: 6819_CR40
  publication-title: Environ Sci Technol
  doi: 10.1021/es101254c
– ident: 6819_CR18
– volume: 42
  start-page: 8553
  year: 2008
  ident: 6819_CR36
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2008.08.028
– ident: 6819_CR46
  doi: 10.1021/es0519637
– volume: 146
  start-page: 492
  year: 2007
  ident: 6819_CR65
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2006.07.009
– volume: 248-249
  start-page: 142
  year: 2013
  ident: 6819_CR68
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2012.12.057
– ident: 6819_CR14
– volume: 154
  start-page: 317
  year: 2008
  ident: 6819_CR15
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2007.10.028
– volume: 476-477
  start-page: 242
  year: 2014
  ident: 6819_CR51
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2014.01.007
– volume: 224
  start-page: 1
  year: 2013
  ident: 6819_CR71
  publication-title: Water Air Soil Pollut
– volume: 76
  start-page: 799
  year: 2006
  ident: 6819_CR77
  publication-title: Bull Environ Contam Toxicol
  doi: 10.1007/s00128-006-0990-2
– ident: 6819_CR23
  doi: 10.1007/978-3-540-38819-7_3
– ident: 6819_CR27
  doi: 10.1248/bpb.25.209
– volume: 26
  start-page: 303
  year: 2001
  ident: 6819_CR30
  publication-title: Environ Int
  doi: 10.1016/S0160-4120(01)00004-6
– volume: 169
  start-page: 397
  year: 2010
  ident: 6819_CR67
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-009-1182-4
– ident: 6819_CR4
– volume: 4
  start-page: 28
  year: 2004
  ident: 6819_CR81
  publication-title: Reg Environ Chang
  doi: 10.1007/s10113-003-0061-8
– volume: 22
  start-page: 3620
  year: 2015
  ident: 6819_CR78
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-014-3615-z
– volume: 18
  start-page: 638
  year: 2011
  ident: 6819_CR28
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-010-0414-z
– volume: 63
  start-page: 204
  year: 2006
  ident: 6819_CR55
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/j.ecoenv.2005.07.023
– ident: 6819_CR66
– volume: 49
  start-page: 1295
  year: 2002
  ident: 6819_CR85
  publication-title: CHEMOSPHERE
  doi: 10.1016/S0045-6535(02)00495-2
– volume: 94
  start-page: 457
  year: 1993
  ident: 6819_CR13
  publication-title: Oecologia
  doi: 10.1007/BF00566960
– ident: 6819_CR69
  doi: 10.1016/S0166-445X(03)00011-0
– volume: 185
  start-page: 8489
  year: 2013
  ident: 6819_CR83
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-012-2838-z
– volume: 108
  start-page: 895
  year: 2000
  ident: 6819_CR11
  publication-title: Environ Health Persp
– ident: 6819_CR24
  doi: 10.1061/(ASCE)1090-025X(2010)14:2(98)
– volume: 90
  start-page: 91
  year: 2013
  ident: 6819_CR49
  publication-title: Bull Environ Contam Toxicol
  doi: 10.1007/s00128-012-0859-5
– ident: 6819_CR41
– volume: 111
  start-page: 139
  year: 2003
  ident: 6819_CR45
  publication-title: Environ Health Persp
  doi: 10.1289/ehp.5658
– volume: 755
  start-page: 297
  year: 2001
  ident: 6819_CR32
  publication-title: J Chromatogr B Biomed Sci Appl
  doi: 10.1016/S0378-4347(01)00125-6
– volume: 37
  start-page: 2100
  year: 2003
  ident: 6819_CR42
  publication-title: Environ Sci Technol
  doi: 10.1021/es026361r
– ident: 6819_CR59
– volume: 34
  start-page: 372
  year: 2008
  ident: 6819_CR86
  publication-title: Environ Int
  doi: 10.1016/j.envint.2007.09.002
– volume: 83
  start-page: 358
  year: 2014
  ident: 6819_CR43
  publication-title: Mar Pollut Bull
  doi: 10.1016/j.marpolbul.2014.03.038
– volume: 16
  start-page: 451
  year: 2002
  ident: 6819_CR33
  publication-title: Reprod Toxicol
  doi: 10.1016/S0890-6238(02)00045-X
– volume: 134
  start-page: 97
  year: 2005
  ident: 6819_CR64
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2004.07.014
– volume: 36
  start-page: 1429
  year: 2002
  ident: 6819_CR21
  publication-title: Water Res
  doi: 10.1016/S0043-1354(01)00367-0
SSID ssj0020927
Score 2.5290022
Snippet Phthalate esters (PAEs) are widely used industrial raw materials that are well known for their environmental contamination and toxicological effects as...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12550
SubjectTerms Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Butyl phthalate
China
conservation areas
Contamination
Dibutyl Phthalate - analysis
Earth and Environmental Science
Ecological effects
Ecological risk assessment
Ecotoxicology
Endocrine disruptors
Environment
Environmental Chemistry
Environmental Health
Environmental risk
Environmental science
Esters
Esters - analysis
Estuaries
Gas chromatography
Molecular weight
Molecular weight distribution
Monomers
Nature reserves
Phthalate esters
Phthalates
Phthalic acid
Phthalic Acids - analysis
Plasticizers
pollution
Raw materials
Research Article
Reservoirs
risk
Risk Assessment
Risk levels
river deltas
River networks
Rivers
Sediment samplers
Sediments
Solid phases
Ultrasonic methods
Ultrasonic testing
ultrasonics
Waste Water Technology
Water
Water analysis
Water Management
Water Pollutants, Chemical - analysis
Water Pollution Control
Water sampling
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB58XLyIb-uLCN602EfSbk8iuosIehCFvUhJkxSFpbvuVsR_70yabhFxb4VMw5DJZL5J5gFwplOFZgQViYql-TyMCr8IqJBrpAkwC11YST88Jncv_H4ohu7CbebCKtsz0R7UeqzojvwS50t6iP55cDX58KlrFL2uuhYay7BKpcsopCsddg5XkDUtWzPO_TDm3CXNNKlzYSzIl6YcfLSK_vdvw_QHbf55KbUGaLAB6w45sutG1JuwZKot2O13iWo46DR1tg2vt1QR1zWzYrLSjILImZwX4mTjkk3e6jc5IrTJ3iv2hR9TSzpDi9bSIEBkeG5OR-yJQjjYrRnVcgdeBv3nmzvftVLwFeei9nuJ4ULFkTDKaDRHQqsk1GmKYK40QgWZLrTgpUSdlAhSEPYodKR0LCk3NSvTeBdWqnFl9oHJxKhMS6UlL3HupBCxKZUIpFZFWPRKD8J2HXPl6oxTu4tR3lVIprXPce1zu_b5twfn838mTZWNhdRHrXhyp3GzvNsfHpzOh1FX6AFEVmb8STSCbnAQRC2g4bEFjSL1YK8R_ZylOLKtnbgHF-1e6Bj4n9-DxfwewlpETrwNBzqClXr6aY4R6dTFid3OPwWR-Lc
  priority: 102
  providerName: ProQuest
Title Distribution and risk assessment of phthalates in water and sediment of the Pearl River Delta
URI https://link.springer.com/article/10.1007/s11356-019-06819-y
https://www.ncbi.nlm.nih.gov/pubmed/32002834
https://www.proquest.com/docview/2386814440
https://www.proquest.com/docview/2350093741
https://www.proquest.com/docview/2431839257
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90vvgifludI4JvWuhH0q6PU6eiKCIO5oOUNElRGJ1sFfG_9y5rO8QP8KUt5FrCXS73u-Y-AA51rNCMoCJRsTSX-0HmZh4Vcg00AWahMyvpm9vocsCvhmJYJYVN62j3-kjS7tTzZDc_FOT9UtY82jH3YxGWBPnuuIoHQa9xs7xk1qg14dz1Q86rVJmfv_HVHH3DmN_OR63ZOV-FlQovst5MwGuwYIp12OrP09NwsNLP6QY8nVEd3KqFFZOFZhQ6zmRTfpONc_b6XD7LEWFM9lKwd3yYWNIp2rGaBmEhw91yMmL3FLjBzsyolJswOO8_nF66VQMFV3EuSrcbGS5UGAijjEYjJLSKfB3HCOFyI5SX6EwLnkvURInQBMGOQvdJh5IyUpM8DregVYwLswNMRkYlWioteY7fjjIRmlwJT2qV-Vk3d8Cv-Ziqqro4NbkYpfO6yMT7FHmfWt6nHw4cNe-8zmpr_EndrsWTVno2TXGV4Sjn3HPgoBlGDaFjD1mY8RvRCPpvg9DpDxoeWqgoYge2Z6JvphQGtqETd-C4XgvzCfw-393_ke_BckCuvA0KakOrnLyZfcQ7ZdaBxXgY47V76ndgqXfxeN3H-0n_9u6-Y5f-Jzgg-yA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED-x8rC9TLCNLXzNk7anLVoS20nzgBCsRWVANSGQeJmCYzsCqUpLG4T6T_E3cpevakLrG2-RfLGsu_Pd72zfHcBXE2l0I7iRqFiaK_wgdVOPCrkGhgCzNGkp6bNhOLgUv6_k1Qo8Nrkw9KyysYmloTZjTWfkP3G-sIvoX3j7kzuXukbR7WrTQqNSixM7f8CQbbZ33EP5fguCo_7Fr4FbdxVwtRCycLuhFVLzQFptDVpmaXTomyhCXJNZqb3YpEaKTKF6KvTXiAA0xhSGK0rTjLOI47yvYFVwDGU6sHrYH_45b0M8L66axMZCuD4Xok7TqZL1fC4peqesf_TD7vxfV_gM3z67my1d3tEavK2xKjuolGsdVmz-Djb6i9Q4HKxtw-w9_O1RDd66fRZTuWH0bJ2ptvQnG2dsclPcqBHhW3abswf8mJakM_ShDQ1CUoaWejpi5_RohPXsqFAf4PJF2LwBnXyc20_AVGh1bJQ2SmQ4d5hKbjMtPWV06qfdzAG_4WOi68rm1GBjlCxqMhPvE-R9UvI-mTvwvf1nUtX1WEq93Ygnqff4LFlopANf2mHcnXTlonI7vicaSWdGCNuW0AhewlQZOfCxEn27JB6UzaSEAz8aXVgs4P_r3Vy-3s_wenBxdpqcHg9PtuBNQEcI5WOkbegU03u7gzirSHdr5WZw_dL76QnkdDYb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7SFEIvpW1ebpJWgfbUmNiWZK8PJZRulqRpQwgN7CU4siSTwOLd7DqE_Wv9dZ2R7TUldG-5GTQWYjSPT9I8AD6ZRKMbQUWiYmm-CKPczwMq5BoZAszS5G6nf53HJ1fix1AOV-BPmwtDYZWtTXSG2ow13ZEf4nxxD9G_CA6LJizioj84mtz71EGKXlrbdhq1iJzZ-SMe32ZfT_u415-jaHD8-_uJ33QY8LUQsvJ7sRVS80habQ1aaWl0HJokQYxTWKmD1ORGikKhqCr03YgGNJ4vDFeUspkWCcd5X8DLhMuQdCwZdoe9IK3bxaZC-CEXoknYqdP2Qi7pHE_5_-iR_fm_TvEJ0n3ySuuc3-ANvG5QK_tWi9lbWLHlO9g87pLkcLCxErN1uO5TNd6mkRZTpWEUwM7UoggoGxdsclvdqhEhXXZXskf8mDrSGXrTlgbBKUObPR2xSwofYX07qtQGXD0LkzdhtRyXdhuYiq1OjdJGiQLnjnPJbaFloIzOw7xXeBC2fMx0U-OcWm2Msq46M_E-Q95njvfZ3IMvi38mdYWPpdS77fZkjbbPsk42PdhfDKOe0uOLKu34gWgk3R4hgFtCI7gDrDLxYKve-sWSeOTaSgkPDlpZ6Bbw__W-X77ej7CGWpT9PD0_24FXEd0luKikXVitpg92DwFXlX9wks3g5rlV6S8ZeDjr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distribution+and+risk+assessment+of+phthalates+in+water+and+sediment+of+the+Pearl+River+Delta&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Weizhen%2C+Zhang&rft.au=Xiaowei%2C+Zheng&rft.au=Peng%2C+Gu&rft.au=Ning%2C+Wang&rft.date=2020-04-01&rft.issn=0944-1344&rft.eissn=1614-7499&rft.volume=27&rft.issue=11&rft.spage=12550&rft.epage=12565&rft_id=info:doi/10.1007%2Fs11356-019-06819-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11356_019_06819_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-1344&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-1344&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-1344&client=summon