Ability of biochar to facilitate anaerobic digestion is restricted to stressed surroundings
Additives or external voltage are usually applied to promote methane production and organics degradation through the possible means of enhancing direct interspecies electron transfer (DIET), but their effectiveness and explanation are controversial. In this work, external voltage and additives (bioc...
Saved in:
| Published in | Journal of cleaner production Vol. 238; p. 117959 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
20.11.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0959-6526 1879-1786 |
| DOI | 10.1016/j.jclepro.2019.117959 |
Cover
Loading…
| Abstract | Additives or external voltage are usually applied to promote methane production and organics degradation through the possible means of enhancing direct interspecies electron transfer (DIET), but their effectiveness and explanation are controversial. In this work, external voltage and additives (biochar and zeolite) were applied simultaneously and independently to laboratory-scale anaerobic reactors for further clues of DIET-enhancing mechanism. External voltage was indicated to impede methanogens early, and promote anaerobic process later. Boichar was discovered to benefit only stressed scenarios caused by external voltage or microbial inactivity, but express no significant influence on well-operating ones, which could be attributed to the finding that biochar enriched DIET-capable Methanosarcina and Methanosaeta which are sensitive to stress. Zeolite could not overcome external handicaps with only increase of microbial amounts and diversity but without selectivity. The BET specific areas of biochar (13.6 m2/g) and zeolite (15.1 m2/g) applied in this work are semblable, which excludes the discrepancy in adsorption of inhibitors between the biochar and zeolite. The electron donating capacities (EDC) of biochar and zeolite are, respectively, 0.17 and 0 mmol e−/g, while electron accepting capacities (EAC) are similar, revealing that EDC did great benefit to the promotion hence the enrichment of Methanosarcina and Methanosaeta while only containing EAC didn't function significantly. On the contrary, potential H2-competitors (e.g. Hydrogenophaga) of methanogens could also clone onto biochar that may weaken its DIET benefit for methanogenesis, which was observed in high throughout sequencing. Meanwhile, suspended microbes, which cannot conduct DIET with biochar, were far more extensive than those attached to additives, indicating that biochar also affects microbial activity through other surrounding biochemical connections. The identification of limited application scope of biochar and numerous suspended microbes provides new considerations into the mechanisms of surrounding limitation for biochar application and possible determinants except for DIET.
[Display omitted]
•The promotional effect of biochar on microbes was limited to stressed scenarios.•EDC plays a vital role in the promotional function of biochar.•Biochar has a selectivity of enriching Methanosaeta and Methanosarcina.•There could exist other pathways beyond DIET for biochar affecting microbes. |
|---|---|
| AbstractList | Additives or external voltage are usually applied to promote methane production and organics degradation through the possible means of enhancing direct interspecies electron transfer (DIET), but their effectiveness and explanation are controversial. In this work, external voltage and additives (biochar and zeolite) were applied simultaneously and independently to laboratory-scale anaerobic reactors for further clues of DIET-enhancing mechanism. External voltage was indicated to impede methanogens early, and promote anaerobic process later. Boichar was discovered to benefit only stressed scenarios caused by external voltage or microbial inactivity, but express no significant influence on well-operating ones, which could be attributed to the finding that biochar enriched DIET-capable Methanosarcina and Methanosaeta which are sensitive to stress. Zeolite could not overcome external handicaps with only increase of microbial amounts and diversity but without selectivity. The BET specific areas of biochar (13.6 m2/g) and zeolite (15.1 m2/g) applied in this work are semblable, which excludes the discrepancy in adsorption of inhibitors between the biochar and zeolite. The electron donating capacities (EDC) of biochar and zeolite are, respectively, 0.17 and 0 mmol e−/g, while electron accepting capacities (EAC) are similar, revealing that EDC did great benefit to the promotion hence the enrichment of Methanosarcina and Methanosaeta while only containing EAC didn't function significantly. On the contrary, potential H2-competitors (e.g. Hydrogenophaga) of methanogens could also clone onto biochar that may weaken its DIET benefit for methanogenesis, which was observed in high throughout sequencing. Meanwhile, suspended microbes, which cannot conduct DIET with biochar, were far more extensive than those attached to additives, indicating that biochar also affects microbial activity through other surrounding biochemical connections. The identification of limited application scope of biochar and numerous suspended microbes provides new considerations into the mechanisms of surrounding limitation for biochar application and possible determinants except for DIET.
[Display omitted]
•The promotional effect of biochar on microbes was limited to stressed scenarios.•EDC plays a vital role in the promotional function of biochar.•Biochar has a selectivity of enriching Methanosaeta and Methanosarcina.•There could exist other pathways beyond DIET for biochar affecting microbes. Additives or external voltage are usually applied to promote methane production and organics degradation through the possible means of enhancing direct interspecies electron transfer (DIET), but their effectiveness and explanation are controversial. In this work, external voltage and additives (biochar and zeolite) were applied simultaneously and independently to laboratory-scale anaerobic reactors for further clues of DIET-enhancing mechanism. External voltage was indicated to impede methanogens early, and promote anaerobic process later. Boichar was discovered to benefit only stressed scenarios caused by external voltage or other stresses, but express no significant influence on well-operating ones, which could be attributed to the finding that biochar enriched DIET-capable Methanosarcina and Methanosaeta which are sensitive to stress. Zeolite could not overcome external handicaps with only increase of microbial amounts and diversity but without selectivity. The BET specific areas of biochar (13.6 m2/g) and zeolite (15.1 m2/g) applied in this work are semblable, which excludes the discrepancy in adsorption of inhibitors between the biochar and zeolite. The electron donating capacities (EDC) of biochar and zeolite are, respectively, 0.17 and 0 mmol e−/g, while electron accepting capacities (EAC) are similar, revealing that EDC did great benefit to the promotion hence the enrichment of Methanosarcina and Methanosaeta while only containing EAC didn't function significantly. On the contrary, potential H2-competitors (e.g. Hydrogenophaga) of methanogens could also clone onto biochar that may weaken its DIET benefit for methanogenesis, which was observed in high throughout sequencing. Meanwhile, suspended microbes, which cannot conduct DIET with biochar, were far more extensive than those attached to additives, indicating that biochar also affects microbial activity through other surrounding biochemical connections. The identification of limited application scope of biochar and numerous suspended microbes provides new considerations into the mechanisms of surrounding limitation for biochar application and possible determinants except for DIET. |
| ArticleNumber | 117959 |
| Author | Cai, Jiao Li, Shasha Lü, Fan Shao, Liming He, Pinjing |
| Author_xml | – sequence: 1 givenname: Liming surname: Shao fullname: Shao, Liming organization: State Key Laboratory of Pollution Control and Source Reuse, Tongji University, Shanghai, 200092, PR China – sequence: 2 givenname: Shasha surname: Li fullname: Li, Shasha organization: State Key Laboratory of Pollution Control and Source Reuse, Tongji University, Shanghai, 200092, PR China – sequence: 3 givenname: Jiao surname: Cai fullname: Cai, Jiao organization: State Key Laboratory of Pollution Control and Source Reuse, Tongji University, Shanghai, 200092, PR China – sequence: 4 givenname: Pinjing surname: He fullname: He, Pinjing email: solidwaste@tongji.edu.cn organization: State Key Laboratory of Pollution Control and Source Reuse, Tongji University, Shanghai, 200092, PR China – sequence: 5 givenname: Fan surname: Lü fullname: Lü, Fan email: lvfan.rhodea@tongji.edu.cn organization: State Key Laboratory of Pollution Control and Source Reuse, Tongji University, Shanghai, 200092, PR China |
| BookMark | eNqFkE1Lw0AQhhepYFv9CUKOXhL3I9kkeJBS_IKCFz15WDaTSd2SZutuIvTfuyE9eSkMzMvLvMPMsyCzznZIyC2jCaNM3u-SHbR4cDbhlJUJY3mZlRdkzoq8jFleyBmZ02DFMuPyiiy831HKcpqnc_K1qkxr-mNkm6gyFr61i3obNRpGW_cY6U6js5WBqDZb9L2xXWR85IJ0Bnqsx_mg0fug_eCcHbradFt_TS4b3Xq8OfUl-Xx--li_xpv3l7f1ahNDmmZ9XNCmbETOGRdSg6R5k6W8YCiwlrmEWiPllKeasRRoU1U0vCUyER5CyQWAWJK7aW9A8DOEu9TeeMC21R3awSsuRMZEIUItSTaNgrPeO2zUwZm9dkfFqBphqp06wVQjTDXBDLmHfzkY6QQWvdOmPZt-nNIYKPwadMqDwQ6wNg6hV7U1Zzb8AXcClvg |
| CitedBy_id | crossref_primary_10_1016_j_biortech_2019_122485 crossref_primary_10_1016_j_cej_2020_124605 crossref_primary_10_3390_en17174506 crossref_primary_10_1016_j_biortech_2025_132155 crossref_primary_10_1016_j_grets_2023_100035 crossref_primary_10_1016_j_jclepro_2023_140531 crossref_primary_10_1016_j_biortech_2019_122252 crossref_primary_10_1016_j_biortech_2021_126353 crossref_primary_10_1021_acssuschemeng_0c04109 crossref_primary_10_1016_j_biortech_2020_122801 crossref_primary_10_1007_s41742_025_00766_y crossref_primary_10_1016_j_biortech_2021_124697 crossref_primary_10_1016_j_cej_2022_135078 crossref_primary_10_1007_s42773_022_00165_y crossref_primary_10_1016_j_cej_2024_152591 crossref_primary_10_3390_pr11082284 crossref_primary_10_1016_j_watres_2020_116732 crossref_primary_10_1016_j_cej_2023_144164 crossref_primary_10_1007_s44246_024_00110_7 crossref_primary_10_4491_eer_2020_648 crossref_primary_10_1021_acssuschemeng_0c03484 crossref_primary_10_1016_j_jwpe_2024_105262 crossref_primary_10_3390_en16062523 crossref_primary_10_1016_j_rser_2023_113536 crossref_primary_10_1016_j_renene_2020_07_126 crossref_primary_10_1007_s42773_021_00096_0 crossref_primary_10_1016_j_biteb_2021_100907 crossref_primary_10_1016_j_biortech_2021_124979 crossref_primary_10_1016_j_jece_2022_107960 crossref_primary_10_1016_j_scitotenv_2022_159984 crossref_primary_10_1016_j_energy_2023_127819 crossref_primary_10_1016_j_jenvman_2024_120593 crossref_primary_10_1016_j_biortech_2022_127092 crossref_primary_10_1016_j_scitotenv_2023_167681 crossref_primary_10_1007_s10311_024_01766_8 crossref_primary_10_1016_j_jhazmat_2020_122541 crossref_primary_10_1016_j_renene_2021_07_052 crossref_primary_10_1021_acsestengg_2c00170 crossref_primary_10_1016_j_biortech_2022_127519 crossref_primary_10_3390_fermentation9050433 crossref_primary_10_1016_j_scitotenv_2023_166549 crossref_primary_10_1016_j_cej_2022_140567 crossref_primary_10_1016_j_biortech_2020_124295 crossref_primary_10_1016_j_cej_2021_132203 crossref_primary_10_1016_j_biortech_2025_132322 crossref_primary_10_1016_j_jenvman_2023_117756 crossref_primary_10_1016_j_scitotenv_2022_153614 crossref_primary_10_3390_ma16206655 crossref_primary_10_1007_s43979_023_00078_0 |
| Cites_doi | 10.1021/es500906d 10.1016/j.renene.2017.10.084 10.1016/S0961-9534(97)00020-2 10.1038/srep16221 10.1264/jsme2.23.118 10.1016/j.tibtech.2016.04.009 10.1186/s13068-017-0994-7 10.1128/AEM.71.1.423-427.2005 10.1016/j.apenergy.2019.04.052 10.4056/sigs.2726028 10.1146/annurev-micro-030117-020420 10.1016/j.copbio.2019.03.018 10.1016/j.jclepro.2016.02.034 10.1016/j.watres.2015.12.029 10.1021/es501398j 10.1039/C5RA03496E 10.1016/j.rser.2015.12.261 10.3389/fmicb.2015.00477 10.1099/ijs.0.63894-0 10.1128/AEM.00895-14 10.1016/j.watres.2014.01.044 10.1016/j.bioelechem.2014.11.004 10.1039/C5RA24134K 10.1021/acs.estlett.5b00354 10.1021/acs.est.8b01200 10.1016/j.watres.2017.12.005 10.1016/j.biortech.2007.01.057 10.1016/j.watres.2014.10.052 10.1038/ismej.2014.256 10.1021/acs.est.7b01854 10.1016/j.biortech.2018.07.015 10.1021/es702668w 10.1111/1462-2920.13774 10.1016/j.biortech.2017.04.021 10.1021/es102228v 10.1016/j.tim.2007.02.002 10.1111/1462-2920.12485 10.1039/C3EE42189A 10.1177/0734242X16634196 10.1021/es504811a 10.1264/jsme2.ME09151S 10.1080/09593330.2017.1310934 10.1038/srep11094 10.1039/c2ee22459c 10.1038/srep05019 10.1128/.61.2.262-280.1997 10.1016/j.orggeochem.2004.09.006 10.1016/j.rser.2015.12.094 10.1021/acs.est.8b01913 10.1021/acs.est.8b00891 10.1073/pnas.1117592109 10.1016/j.jclepro.2018.05.242 10.1016/j.biortech.2015.08.018 10.1016/j.rser.2018.12.048 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd |
| Copyright_xml | – notice: 2019 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.jclepro.2019.117959 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-1786 |
| ExternalDocumentID | 10_1016_j_jclepro_2019_117959 S095965261932829X |
| GroupedDBID | --K --M ..I .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADHUB AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE J1W JARJE K-O KCYFY KOM LY9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSJ SSR SSZ T5K ~G- 29K AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION D-I FEDTE FGOYB G-2 HVGLF HZ~ R2- SEN SEW SSH WUQ ZY4 7S9 EFKBS L.6 |
| ID | FETCH-LOGICAL-c445t-80f9f3721236ac607f54281e3ed676cdae02024a114c0fbb0879353959e623cc3 |
| IEDL.DBID | .~1 |
| ISSN | 0959-6526 |
| IngestDate | Tue Aug 05 11:16:04 EDT 2025 Thu Apr 24 23:07:23 EDT 2025 Tue Jul 01 03:02:54 EDT 2025 Fri Feb 23 02:32:54 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Solid waste Redox property Multicycles Natural stable isotopic signature Anaerobic digestion Syntrophic |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c445t-80f9f3721236ac607f54281e3ed676cdae02024a114c0fbb0879353959e623cc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2335138338 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2335138338 crossref_primary_10_1016_j_jclepro_2019_117959 crossref_citationtrail_10_1016_j_jclepro_2019_117959 elsevier_sciencedirect_doi_10_1016_j_jclepro_2019_117959 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-11-20 |
| PublicationDateYYYYMMDD | 2019-11-20 |
| PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-20 day: 20 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of cleaner production |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Hattori (bib14) 2008; 23 Ozay, Ünşar, Işık, Yılmaz, Dizge, Perendeci, Mazmanci, Yalvac (bib36) 2018; 196 Saquing, Yu, Chiu (bib41) 2016; 3 Liu, Rotaru, Shrestha, Malvankar, Nevin, Lovley (bib23) 2015; 17 Rotaru, Shrestha, Liu, Markovaite, Chen, Nevin, Lovley (bib38) 2014; 80 Smith, Ingram-Smith (bib45) 2007; 15 Lovley (bib24) 2017; 71 Yuan, Zhu (bib55) 2016; 58 Kato, Hashimoto, Watanabe (bib16) 2012; 109 Luo, Xu, Jin, Han, Liu, Lü (bib29) 2018; 39 Lü, Zhang, Shao, He (bib27) 2018; 124 Beese-Vasbender, Grote, Garrelfs, Stratmann, Mayrhofer (bib1) 2015; 102 Cai, He, Wang, Shao, Lü (bib2) 2016; 34 Schink (bib42) 1997; 61 Desloover, De Vrieze, Van de Vijver, Mortelmans, Rozendal, Rabaey (bib11) 2015; 49 Lü, Luo, Shao, He (bib26) 2016; 90 Wu, Fang, Wang, Zheng, Wang, Zhao, Jaisi, Zhou (bib51) 2017; 51 Zhao, Zhang, Wang, Quan (bib57) 2015; 5 Thi, Lin, Kumar (bib46) 2016; 122 Ko, Wang, Yuan, Lü, He, Xu (bib18) 2018; 266 Yu, Yuan, Tang, Wang, Zhou (bib54) 2015; 5 Klüpfel, Keiluweit, Kleber, Sander (bib17) 2014; 48 Dang, Sun, Woodard, Wang, Nevin, Holmes (bib9) 2017; 238 Van Steendam, Smets, Skerlos, Raskin (bib48) 2019; 57 Masebinu, Akinlabi, Muzenda, Aboyade (bib32) 2019; 103 Willems, Busse, Goor, Pot, Falsen, Jantzen, Hoste, Gillis, Kersters, Auling, De ley (bib50) 1989; 39 Xu, He, Luo, Lü, He, Cui (bib52) 2015; 196 Rotaru, Shrestha, Liu, Shrestha, Shrestha, Embree, Zengler, Wardman, Nevin, Lovley (bib39) 2014; 7 Kouzuma, Kato, Watanabe (bib20) 2015; 6 Conrad (bib6) 2005; 36 De Vrieze, Gildemyn, Arends, Vanwonterghem, Verbeken, Boon, Verstraete, Tyson, Hennebel, Rabaey (bib10) 2014; 54 Yamada, Sekiguchi (bib53) 2009; 24 Hao, Lü, He, Li, Shao (bib13) 2011; 45 Nallathambi Gunaseelan (bib34) 1997; 13 Zannoni, Philippis (bib56) 2014 Thrash, Coates (bib47) 2008; 42 Lü, Liu, Shao, He (bib25) 2019; 247 Romero-Güiza, Vila, Mata-Alvarez, Chimenos, Astals (bib37) 2016; 58 Cruz Viggi, Simonetti, Palma, Pagliaccia, Braguglia, Fazi, Baronti, Navarra, Pettiti, Koch, Harnisch, Aulenta (bib7) 2017; 10 Sedlak (bib43) 2018; 52 Chen, Rotaru, Shrestha, Malvankar, Liu, Fan, Nevin, Lovley (bib3) 2014; 4 Moscoviz, Toledo-Alarcon, Trably, Bernet (bib33) 2016; 34 Goker, Saunders, Lapidus, Nolan, Lucas, Hammon, Deshpande, Cheng, Han, Tapia, Goodwin, Pitluck, Liolios, Mavromatis, Pagani, Ivanova, Mikhailova, Pati, Chen, Palaniappan, Land, Chang, Jeffries, Brambilla, Rohde, Spring, Detter, Woyke, Bristow, Eisen, Markowitz, Hugenholtz, Kyrpides, Klenk (bib12) 2012; 6 Liu, Rotaru, Shrestha, Malvankar, Nevin, Lovley (bib22) 2012; 5 Dahle, Birkeland (bib8) 2006; 56 Kracke, Vassilev, Krömer (bib21) 2015; 6 Luo, Wang, Zhang, Qian (bib30) 2005; 71 Martins, Salvador, Pereira, Alves (bib31) 2018; 52 Chen, Yu, Yin, Zhang, Dai, Yuan, Zhu (bib5) 2016; 6 Salvador, Martins, Melle-Franco, Serpa, Stams, Cavaleiro, Pereira, Alves (bib40) 2017; 19 Koch, Kuchenbuch, Kretzschmar, Wedwitschka, Liebetrau, Müller, Harnisch (bib19) 2015; 5 Wang, Zhang, Dai, Dong, Dai (bib49) 2018; 52 Nobu, Narihiro, Rinke, Kamagata, Tringe, Woyke, Liu (bib35) 2015; 9 Jiang, Shen, Xu, Chen, Mu, Sun, Han, Li, Wang (bib15) 2018; 130 Luo, Lü, Shao, He (bib28) 2015; 68 Shi, Wang, Yuan, Hu (bib44) 2014; 48 Chen, Cheng, Creamer (bib4) 2008; 99 Ozay (10.1016/j.jclepro.2019.117959_bib36) 2018; 196 Wu (10.1016/j.jclepro.2019.117959_bib51) 2017; 51 Yuan (10.1016/j.jclepro.2019.117959_bib55) 2016; 58 Luo (10.1016/j.jclepro.2019.117959_bib29) 2018; 39 Shi (10.1016/j.jclepro.2019.117959_bib44) 2014; 48 Van Steendam (10.1016/j.jclepro.2019.117959_bib48) 2019; 57 Zannoni (10.1016/j.jclepro.2019.117959_bib56) 2014 Conrad (10.1016/j.jclepro.2019.117959_bib6) 2005; 36 Schink (10.1016/j.jclepro.2019.117959_bib42) 1997; 61 Smith (10.1016/j.jclepro.2019.117959_bib45) 2007; 15 Koch (10.1016/j.jclepro.2019.117959_bib19) 2015; 5 Nallathambi Gunaseelan (10.1016/j.jclepro.2019.117959_bib34) 1997; 13 Dang (10.1016/j.jclepro.2019.117959_bib9) 2017; 238 Kouzuma (10.1016/j.jclepro.2019.117959_bib20) 2015; 6 Thrash (10.1016/j.jclepro.2019.117959_bib47) 2008; 42 Luo (10.1016/j.jclepro.2019.117959_bib30) 2005; 71 Cai (10.1016/j.jclepro.2019.117959_bib2) 2016; 34 Xu (10.1016/j.jclepro.2019.117959_bib52) 2015; 196 Liu (10.1016/j.jclepro.2019.117959_bib23) 2015; 17 Romero-Güiza (10.1016/j.jclepro.2019.117959_bib37) 2016; 58 Ko (10.1016/j.jclepro.2019.117959_bib18) 2018; 266 Luo (10.1016/j.jclepro.2019.117959_bib28) 2015; 68 Yamada (10.1016/j.jclepro.2019.117959_bib53) 2009; 24 Beese-Vasbender (10.1016/j.jclepro.2019.117959_bib1) 2015; 102 Chen (10.1016/j.jclepro.2019.117959_bib3) 2014; 4 Chen (10.1016/j.jclepro.2019.117959_bib4) 2008; 99 Thi (10.1016/j.jclepro.2019.117959_bib46) 2016; 122 Lovley (10.1016/j.jclepro.2019.117959_bib24) 2017; 71 Lü (10.1016/j.jclepro.2019.117959_bib27) 2018; 124 Yu (10.1016/j.jclepro.2019.117959_bib54) 2015; 5 Zhao (10.1016/j.jclepro.2019.117959_bib57) 2015; 5 Klüpfel (10.1016/j.jclepro.2019.117959_bib17) 2014; 48 Chen (10.1016/j.jclepro.2019.117959_bib5) 2016; 6 Wang (10.1016/j.jclepro.2019.117959_bib49) 2018; 52 Cruz Viggi (10.1016/j.jclepro.2019.117959_bib7) 2017; 10 Rotaru (10.1016/j.jclepro.2019.117959_bib39) 2014; 7 Saquing (10.1016/j.jclepro.2019.117959_bib41) 2016; 3 Kracke (10.1016/j.jclepro.2019.117959_bib21) 2015; 6 Dahle (10.1016/j.jclepro.2019.117959_bib8) 2006; 56 Lü (10.1016/j.jclepro.2019.117959_bib25) 2019; 247 Sedlak (10.1016/j.jclepro.2019.117959_bib43) 2018; 52 Desloover (10.1016/j.jclepro.2019.117959_bib11) 2015; 49 Moscoviz (10.1016/j.jclepro.2019.117959_bib33) 2016; 34 Liu (10.1016/j.jclepro.2019.117959_bib22) 2012; 5 Willems (10.1016/j.jclepro.2019.117959_bib50) 1989; 39 De Vrieze (10.1016/j.jclepro.2019.117959_bib10) 2014; 54 Martins (10.1016/j.jclepro.2019.117959_bib31) 2018; 52 Masebinu (10.1016/j.jclepro.2019.117959_bib32) 2019; 103 Jiang (10.1016/j.jclepro.2019.117959_bib15) 2018; 130 Kato (10.1016/j.jclepro.2019.117959_bib16) 2012; 109 Hao (10.1016/j.jclepro.2019.117959_bib13) 2011; 45 Hattori (10.1016/j.jclepro.2019.117959_bib14) 2008; 23 Nobu (10.1016/j.jclepro.2019.117959_bib35) 2015; 9 Goker (10.1016/j.jclepro.2019.117959_bib12) 2012; 6 Salvador (10.1016/j.jclepro.2019.117959_bib40) 2017; 19 Rotaru (10.1016/j.jclepro.2019.117959_bib38) 2014; 80 Lü (10.1016/j.jclepro.2019.117959_bib26) 2016; 90 |
| References_xml | – volume: 42 start-page: 3921 year: 2008 end-page: 3931 ident: bib47 article-title: Review: direct and indirect electrical stimulation of microbial metabolism publication-title: Environ. Sci. Technol. – volume: 51 start-page: 9709 year: 2017 end-page: 9717 ident: bib51 article-title: Redox-active oxygen-containing functional groups in activated carbon facilitate microbial reduction of ferrihydrite publication-title: Environ. Sci. Technol. – volume: 54 start-page: 211 year: 2014 end-page: 221 ident: bib10 article-title: Biomass retention on electrodes rather than electrical current enhances stability in anaerobic digestion publication-title: Water Res. – volume: 3 start-page: 62 year: 2016 end-page: 66 ident: bib41 article-title: Wood-derived black carbon (biochar) as a microbial electron donor and acceptor publication-title: Environ. Sci. Technol. Lett. – volume: 5 start-page: 8982 year: 2012 end-page: 8989 ident: bib22 article-title: Promoting direct interspecies electron transfer with activated carbon publication-title: Energy Environ. Sci. – volume: 45 start-page: 508 year: 2011 end-page: 513 ident: bib13 article-title: Predominant contribution of syntrophic acetate oxidation to thermophilic methane formation at high acetate concentrations publication-title: Environ. Sci. Technol. – volume: 122 start-page: 29 year: 2016 end-page: 41 ident: bib46 article-title: Waste-to-wealth for valorization of food waste to hydrogen and methane towards creating a sustainable ideal source of bioenergy publication-title: J. Clean. Prod. – volume: 4 start-page: 5019 year: 2014 ident: bib3 article-title: Promoting interspecies electron transfer with biochar publication-title: Sci. Rep. – volume: 103 start-page: 291 year: 2019 end-page: 307 ident: bib32 article-title: A review of biochar properties and their roles in mitigating challenges with anaerobic digestion publication-title: Renew. Sustain. Energy Rev. – volume: 13 start-page: 83 year: 1997 end-page: 114 ident: bib34 article-title: Anaerobic digestion of biomass for methane production: a review publication-title: Biomass Bioenergy – volume: 90 start-page: 34 year: 2016 end-page: 43 ident: bib26 article-title: Biochar alleviates combined stress of ammonium and acids by firstly enriching publication-title: Water Res. – volume: 23 start-page: 118 year: 2008 end-page: 127 ident: bib14 article-title: Syntrophic acetate-oxidizing microbes in methanogenic environments publication-title: Microb. Environ. – volume: 6 start-page: 1581 year: 2016 end-page: 1588 ident: bib5 article-title: Biostimulation by direct voltage to enhance anaerobic digestion of waste activated sludge publication-title: RSC Adv. – volume: 247 start-page: 605 year: 2019 end-page: 614 ident: bib25 article-title: Powdered biochar doubled microbial growth in anaerobic digestion of oil publication-title: Appl. Energy – volume: 48 start-page: 5601 year: 2014 end-page: 5611 ident: bib17 article-title: Redox properties of plant biomass-derived black carbon (biochar) publication-title: Environ. Sci. Technol. – volume: 71 start-page: 423 year: 2005 end-page: 427 ident: bib30 article-title: Effect of direct electric current on the cell surface properties of phenol-degrading bacteria publication-title: Appl. Environ. Microbiol. – volume: 124 start-page: 202 year: 2018 end-page: 211 ident: bib27 article-title: Loop bioenergy production and carbon sequestration of polymeric waste by integrating biochemical and thermochemical conversion processes: a conceptual framework and recent advances publication-title: Renew. Energy – volume: 102 start-page: 50 year: 2015 end-page: 55 ident: bib1 article-title: Selective microbial electrosynthesis of methane by a pure culture of a marine lithoautotrophic archaeon publication-title: Bioelectrochemistry – volume: 130 start-page: 291 year: 2018 end-page: 299 ident: bib15 article-title: Substantial enhancement of anaerobic pyridine bio-mineralization by electrical stimulation publication-title: Water Res. – volume: 36 start-page: 739 year: 2005 end-page: 752 ident: bib6 article-title: Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal publication-title: Org. Geochem. – volume: 6 start-page: 230 year: 2012 end-page: 239 ident: bib12 article-title: Genome sequence of the moderately thermophilic, amino-acid-degrading and sulfur-reducing bacterium publication-title: Standards in Genomic Sciences – volume: 24 start-page: 205 year: 2009 end-page: 216 ident: bib53 article-title: Cultivation of uncultured publication-title: Microb. Environ. – volume: 10 start-page: 303 year: 2017 ident: bib7 article-title: Enhancing methane production from food waste fermentate using biochar: the added value of electrochemical testing in pre-selecting the most effective type of biochar publication-title: Biotechnol. Biofuels – volume: 49 start-page: 948 year: 2015 end-page: 955 ident: bib11 article-title: Electrochemical nutrient recovery enables ammonia toxicity control and biogas desulfurization in anaerobic digestion publication-title: Environ. Sci. Technol. – volume: 17 start-page: 648 year: 2015 end-page: 655 ident: bib23 article-title: Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange publication-title: Environ. Microbiol. – volume: 52 start-page: 3327 year: 2018 end-page: 3328 ident: bib43 article-title: Sifting through the embers publication-title: Environ. Sci. Technol. – volume: 68 start-page: 710 year: 2015 end-page: 718 ident: bib28 article-title: Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes publication-title: Water Res. – volume: 52 start-page: 10241 year: 2018 end-page: 10253 ident: bib31 article-title: Methane production and conductive materials: a critical review publication-title: Environ. Sci. Technol. – volume: 196 start-page: 42 year: 2018 end-page: 50 ident: bib36 article-title: Optimization of electrocoagulation process and combination of anaerobic digestion for the treatment of pistachio processing wastewater publication-title: J. Clean. Prod. – volume: 39 start-page: 739 year: 2018 end-page: 748 ident: bib29 article-title: Evaluation of methanogenic microbial electrolysis cells under closed/open circuit operations publication-title: Environ. Technol. – volume: 57 start-page: 183 year: 2019 end-page: 190 ident: bib48 article-title: Improving anaerobic digestion via direct interspecies electron transfer requires development of suitable characterization methods publication-title: Curr. Opin. Biotechnol. – volume: 48 start-page: 7951 year: 2014 end-page: 7958 ident: bib44 article-title: Electrochemical stimulation of microbial roxarsone degradation under anaerobic conditions publication-title: Environ. Sci. Technol. – volume: 9 start-page: 1710 year: 2015 end-page: 1722 ident: bib35 article-title: Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor publication-title: ISME J. – volume: 34 start-page: 409 year: 2016 end-page: 416 ident: bib2 article-title: Effects and optimization of the use of biochar in anaerobic digestion of food wastes publication-title: Waste Manag. Res. – volume: 56 start-page: 1539 year: 2006 end-page: 1545 ident: bib8 article-title: gen. nov., sp. nov., a novel moderately thermophilic, anaerobic, amino-acid-degrading bacterium isolated from a North Sea oil well publication-title: Int. J. Syst. Evol. Microbiol. – volume: 71 start-page: 643 year: 2017 end-page: 664 ident: bib24 article-title: Syntrophy goes electric: direct interspecies electron transfer publication-title: Annu. Rev. Microbiol. – volume: 39 start-page: 319 year: 1989 end-page: 333 ident: bib50 article-title: , a new genus of hydrogen-oxidizing bacteria that includes publication-title: Int. J. Syst. Evol. Microbiol. – volume: 7 start-page: 408 year: 2014 end-page: 415 ident: bib39 article-title: A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to publication-title: Energy Environ. Sci. – volume: 238 start-page: 30 year: 2017 end-page: 38 ident: bib9 article-title: Stimulation of the anaerobic digestion of the dry organic fraction of municipal solid waste (OFMSW) with carbon-based conductive materials publication-title: Bioresour. Technol. – volume: 5 start-page: 31329 year: 2015 end-page: 31340 ident: bib19 article-title: Coupling electric energy and biogas production in anaerobic digesters – impacts on the microbiome publication-title: RSC Adv. – volume: 58 start-page: 1486 year: 2016 end-page: 1499 ident: bib37 article-title: The role of additives on anaerobic digestion: a review publication-title: Renew. Sustain. Energy Rev. – volume: 6 start-page: 477 year: 2015 ident: bib20 article-title: Microbial interspecies interactions: recent findings in syntrophic consortia publication-title: Front. Microbiol. – year: 2014 ident: bib56 article-title: Microbial Bioenergy: Hydrogen Production – volume: 6 year: 2015 ident: bib21 article-title: Microbial electron transport and energy conservation – the foundation for optimizing bioelectrochemical systems publication-title: Front. Microbiol. – volume: 34 start-page: 856 year: 2016 end-page: 865 ident: bib33 article-title: Electro-fermentation: how to drive fermentation using electrochemical systems publication-title: Trends Biotechnol. – volume: 109 start-page: 10042 year: 2012 end-page: 10046 ident: bib16 article-title: Microbial interspecies electron transfer via electric currents through conductive minerals publication-title: Proc. Natl. Acad. Sci. – volume: 5 start-page: 16221 year: 2015 ident: bib54 article-title: Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens publication-title: Sci. Rep. – volume: 19 start-page: 2727 year: 2017 end-page: 2739 ident: bib40 article-title: Carbon nanotubes accelerate methane production in pure cultures of methanogens and in a syntrophic coculture publication-title: Environ. Microbiol. – volume: 15 start-page: 150 year: 2007 end-page: 155 ident: bib45 article-title: Methanosaeta, the forgotten methanogen? publication-title: Trends Microbiol. – volume: 99 start-page: 4044 year: 2008 end-page: 4064 ident: bib4 article-title: Inhibition of anaerobic digestion process: a review publication-title: Bioresour. Technol. – volume: 61 start-page: 262 year: 1997 end-page: 280 ident: bib42 article-title: Energetics of syntrophic cooperation in methanogenic degradation publication-title: Microbiol. Mol. Biol. Rev. – volume: 52 start-page: 7160 year: 2018 end-page: 7169 ident: bib49 article-title: Magnetite triggering enhanced direct interspecies electron transfer: a scavenger for the blockage of electron transfer in anaerobic digestion of high-solids sewage sludge publication-title: Environ. Sci. Technol. – volume: 5 start-page: 11094 year: 2015 ident: bib57 article-title: Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion publication-title: Sci. Rep. – volume: 58 start-page: 429 year: 2016 end-page: 438 ident: bib55 article-title: Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion publication-title: Renew. Sustain. Energy Rev. – volume: 196 start-page: 606 year: 2015 end-page: 612 ident: bib52 article-title: Comparing activated carbon of different particle sizes on enhancing methane generation in upflow anaerobic digester publication-title: Bioresour. Technol. – volume: 266 start-page: 516 year: 2018 end-page: 523 ident: bib18 article-title: Effect of nickel-containing activated carbon on food waste anaerobic digestion publication-title: Bioresour. Technol. – volume: 80 start-page: 4599 year: 2014 end-page: 4605 ident: bib38 article-title: Direct interspecies electron transfer between publication-title: Appl. Environ. Microbiol. – volume: 6 issue: 575 year: 2015 ident: 10.1016/j.jclepro.2019.117959_bib21 article-title: Microbial electron transport and energy conservation – the foundation for optimizing bioelectrochemical systems publication-title: Front. Microbiol. – volume: 48 start-page: 5601 issue: 10 year: 2014 ident: 10.1016/j.jclepro.2019.117959_bib17 article-title: Redox properties of plant biomass-derived black carbon (biochar) publication-title: Environ. Sci. Technol. doi: 10.1021/es500906d – volume: 124 start-page: 202 year: 2018 ident: 10.1016/j.jclepro.2019.117959_bib27 article-title: Loop bioenergy production and carbon sequestration of polymeric waste by integrating biochemical and thermochemical conversion processes: a conceptual framework and recent advances publication-title: Renew. Energy doi: 10.1016/j.renene.2017.10.084 – volume: 13 start-page: 83 issue: 1 year: 1997 ident: 10.1016/j.jclepro.2019.117959_bib34 article-title: Anaerobic digestion of biomass for methane production: a review publication-title: Biomass Bioenergy doi: 10.1016/S0961-9534(97)00020-2 – volume: 39 start-page: 319 issue: 3 year: 1989 ident: 10.1016/j.jclepro.2019.117959_bib50 publication-title: Int. J. Syst. Evol. Microbiol. – volume: 5 start-page: 16221 year: 2015 ident: 10.1016/j.jclepro.2019.117959_bib54 article-title: Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens publication-title: Sci. Rep. doi: 10.1038/srep16221 – volume: 23 start-page: 118 issue: 2 year: 2008 ident: 10.1016/j.jclepro.2019.117959_bib14 article-title: Syntrophic acetate-oxidizing microbes in methanogenic environments publication-title: Microb. Environ. doi: 10.1264/jsme2.23.118 – volume: 34 start-page: 856 issue: 11 year: 2016 ident: 10.1016/j.jclepro.2019.117959_bib33 article-title: Electro-fermentation: how to drive fermentation using electrochemical systems publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2016.04.009 – volume: 10 start-page: 303 issue: 1 year: 2017 ident: 10.1016/j.jclepro.2019.117959_bib7 article-title: Enhancing methane production from food waste fermentate using biochar: the added value of electrochemical testing in pre-selecting the most effective type of biochar publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-017-0994-7 – volume: 71 start-page: 423 issue: 1 year: 2005 ident: 10.1016/j.jclepro.2019.117959_bib30 article-title: Effect of direct electric current on the cell surface properties of phenol-degrading bacteria publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.71.1.423-427.2005 – volume: 247 start-page: 605 year: 2019 ident: 10.1016/j.jclepro.2019.117959_bib25 article-title: Powdered biochar doubled microbial growth in anaerobic digestion of oil publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.04.052 – volume: 6 start-page: 230 issue: 2 year: 2012 ident: 10.1016/j.jclepro.2019.117959_bib12 article-title: Genome sequence of the moderately thermophilic, amino-acid-degrading and sulfur-reducing bacterium Thermovirga lienii type strain (Cas60314T) publication-title: Standards in Genomic Sciences doi: 10.4056/sigs.2726028 – volume: 71 start-page: 643 year: 2017 ident: 10.1016/j.jclepro.2019.117959_bib24 article-title: Syntrophy goes electric: direct interspecies electron transfer publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev-micro-030117-020420 – volume: 57 start-page: 183 year: 2019 ident: 10.1016/j.jclepro.2019.117959_bib48 article-title: Improving anaerobic digestion via direct interspecies electron transfer requires development of suitable characterization methods publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2019.03.018 – volume: 122 start-page: 29 year: 2016 ident: 10.1016/j.jclepro.2019.117959_bib46 article-title: Waste-to-wealth for valorization of food waste to hydrogen and methane towards creating a sustainable ideal source of bioenergy publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.02.034 – volume: 90 start-page: 34 year: 2016 ident: 10.1016/j.jclepro.2019.117959_bib26 article-title: Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina publication-title: Water Res. doi: 10.1016/j.watres.2015.12.029 – volume: 48 start-page: 7951 issue: 14 year: 2014 ident: 10.1016/j.jclepro.2019.117959_bib44 article-title: Electrochemical stimulation of microbial roxarsone degradation under anaerobic conditions publication-title: Environ. Sci. Technol. doi: 10.1021/es501398j – volume: 5 start-page: 31329 issue: 40 year: 2015 ident: 10.1016/j.jclepro.2019.117959_bib19 article-title: Coupling electric energy and biogas production in anaerobic digesters – impacts on the microbiome publication-title: RSC Adv. doi: 10.1039/C5RA03496E – volume: 58 start-page: 429 year: 2016 ident: 10.1016/j.jclepro.2019.117959_bib55 article-title: Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.12.261 – volume: 6 start-page: 477 year: 2015 ident: 10.1016/j.jclepro.2019.117959_bib20 article-title: Microbial interspecies interactions: recent findings in syntrophic consortia publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00477 – volume: 56 start-page: 1539 issue: 7 year: 2006 ident: 10.1016/j.jclepro.2019.117959_bib8 article-title: Thermovirga lienii gen. nov., sp. nov., a novel moderately thermophilic, anaerobic, amino-acid-degrading bacterium isolated from a North Sea oil well publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijs.0.63894-0 – volume: 80 start-page: 4599 year: 2014 ident: 10.1016/j.jclepro.2019.117959_bib38 article-title: Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00895-14 – volume: 54 start-page: 211 year: 2014 ident: 10.1016/j.jclepro.2019.117959_bib10 article-title: Biomass retention on electrodes rather than electrical current enhances stability in anaerobic digestion publication-title: Water Res. doi: 10.1016/j.watres.2014.01.044 – volume: 102 start-page: 50 year: 2015 ident: 10.1016/j.jclepro.2019.117959_bib1 article-title: Selective microbial electrosynthesis of methane by a pure culture of a marine lithoautotrophic archaeon publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2014.11.004 – volume: 6 start-page: 1581 issue: 2 year: 2016 ident: 10.1016/j.jclepro.2019.117959_bib5 article-title: Biostimulation by direct voltage to enhance anaerobic digestion of waste activated sludge publication-title: RSC Adv. doi: 10.1039/C5RA24134K – year: 2014 ident: 10.1016/j.jclepro.2019.117959_bib56 – volume: 3 start-page: 62 issue: 2 year: 2016 ident: 10.1016/j.jclepro.2019.117959_bib41 article-title: Wood-derived black carbon (biochar) as a microbial electron donor and acceptor publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.5b00354 – volume: 52 start-page: 3327 issue: 6 year: 2018 ident: 10.1016/j.jclepro.2019.117959_bib43 article-title: Sifting through the embers publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b01200 – volume: 130 start-page: 291 year: 2018 ident: 10.1016/j.jclepro.2019.117959_bib15 article-title: Substantial enhancement of anaerobic pyridine bio-mineralization by electrical stimulation publication-title: Water Res. doi: 10.1016/j.watres.2017.12.005 – volume: 99 start-page: 4044 issue: 10 year: 2008 ident: 10.1016/j.jclepro.2019.117959_bib4 article-title: Inhibition of anaerobic digestion process: a review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2007.01.057 – volume: 68 start-page: 710 year: 2015 ident: 10.1016/j.jclepro.2019.117959_bib28 article-title: Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes publication-title: Water Res. doi: 10.1016/j.watres.2014.10.052 – volume: 9 start-page: 1710 issue: 8 year: 2015 ident: 10.1016/j.jclepro.2019.117959_bib35 article-title: Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor publication-title: ISME J. doi: 10.1038/ismej.2014.256 – volume: 51 start-page: 9709 issue: 17 year: 2017 ident: 10.1016/j.jclepro.2019.117959_bib51 article-title: Redox-active oxygen-containing functional groups in activated carbon facilitate microbial reduction of ferrihydrite publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b01854 – volume: 266 start-page: 516 year: 2018 ident: 10.1016/j.jclepro.2019.117959_bib18 article-title: Effect of nickel-containing activated carbon on food waste anaerobic digestion publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.07.015 – volume: 42 start-page: 3921 issue: 11 year: 2008 ident: 10.1016/j.jclepro.2019.117959_bib47 article-title: Review: direct and indirect electrical stimulation of microbial metabolism publication-title: Environ. Sci. Technol. doi: 10.1021/es702668w – volume: 19 start-page: 2727 issue: 7 year: 2017 ident: 10.1016/j.jclepro.2019.117959_bib40 article-title: Carbon nanotubes accelerate methane production in pure cultures of methanogens and in a syntrophic coculture publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.13774 – volume: 238 start-page: 30 year: 2017 ident: 10.1016/j.jclepro.2019.117959_bib9 article-title: Stimulation of the anaerobic digestion of the dry organic fraction of municipal solid waste (OFMSW) with carbon-based conductive materials publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.04.021 – volume: 45 start-page: 508 issue: 2 year: 2011 ident: 10.1016/j.jclepro.2019.117959_bib13 article-title: Predominant contribution of syntrophic acetate oxidation to thermophilic methane formation at high acetate concentrations publication-title: Environ. Sci. Technol. doi: 10.1021/es102228v – volume: 15 start-page: 150 issue: 4 year: 2007 ident: 10.1016/j.jclepro.2019.117959_bib45 article-title: Methanosaeta, the forgotten methanogen? publication-title: Trends Microbiol. doi: 10.1016/j.tim.2007.02.002 – volume: 17 start-page: 648 issue: 3 year: 2015 ident: 10.1016/j.jclepro.2019.117959_bib23 article-title: Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.12485 – volume: 7 start-page: 408 issue: 1 year: 2014 ident: 10.1016/j.jclepro.2019.117959_bib39 article-title: A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane publication-title: Energy Environ. Sci. doi: 10.1039/C3EE42189A – volume: 34 start-page: 409 issue: 5 year: 2016 ident: 10.1016/j.jclepro.2019.117959_bib2 article-title: Effects and optimization of the use of biochar in anaerobic digestion of food wastes publication-title: Waste Manag. Res. doi: 10.1177/0734242X16634196 – volume: 49 start-page: 948 issue: 2 year: 2015 ident: 10.1016/j.jclepro.2019.117959_bib11 article-title: Electrochemical nutrient recovery enables ammonia toxicity control and biogas desulfurization in anaerobic digestion publication-title: Environ. Sci. Technol. doi: 10.1021/es504811a – volume: 24 start-page: 205 issue: 3 year: 2009 ident: 10.1016/j.jclepro.2019.117959_bib53 article-title: Cultivation of uncultured Chloroflexi subphyla: significance and ecophysiology of formerly uncultured Chloroflexi 'Subphylum I' with natural and biotechnological relevance publication-title: Microb. Environ. doi: 10.1264/jsme2.ME09151S – volume: 39 start-page: 739 issue: 6 year: 2018 ident: 10.1016/j.jclepro.2019.117959_bib29 article-title: Evaluation of methanogenic microbial electrolysis cells under closed/open circuit operations publication-title: Environ. Technol. doi: 10.1080/09593330.2017.1310934 – volume: 5 start-page: 11094 year: 2015 ident: 10.1016/j.jclepro.2019.117959_bib57 article-title: Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion publication-title: Sci. Rep. doi: 10.1038/srep11094 – volume: 5 start-page: 8982 issue: 10 year: 2012 ident: 10.1016/j.jclepro.2019.117959_bib22 article-title: Promoting direct interspecies electron transfer with activated carbon publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22459c – volume: 4 start-page: 5019 year: 2014 ident: 10.1016/j.jclepro.2019.117959_bib3 article-title: Promoting interspecies electron transfer with biochar publication-title: Sci. Rep. doi: 10.1038/srep05019 – volume: 61 start-page: 262 year: 1997 ident: 10.1016/j.jclepro.2019.117959_bib42 article-title: Energetics of syntrophic cooperation in methanogenic degradation publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/.61.2.262-280.1997 – volume: 36 start-page: 739 issue: 5 year: 2005 ident: 10.1016/j.jclepro.2019.117959_bib6 article-title: Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2004.09.006 – volume: 58 start-page: 1486 year: 2016 ident: 10.1016/j.jclepro.2019.117959_bib37 article-title: The role of additives on anaerobic digestion: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.12.094 – volume: 52 start-page: 10241 issue: 18 year: 2018 ident: 10.1016/j.jclepro.2019.117959_bib31 article-title: Methane production and conductive materials: a critical review publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b01913 – volume: 52 start-page: 7160 issue: 12 year: 2018 ident: 10.1016/j.jclepro.2019.117959_bib49 article-title: Magnetite triggering enhanced direct interspecies electron transfer: a scavenger for the blockage of electron transfer in anaerobic digestion of high-solids sewage sludge publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b00891 – volume: 109 start-page: 10042 issue: 25 year: 2012 ident: 10.1016/j.jclepro.2019.117959_bib16 article-title: Microbial interspecies electron transfer via electric currents through conductive minerals publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1117592109 – volume: 196 start-page: 42 year: 2018 ident: 10.1016/j.jclepro.2019.117959_bib36 article-title: Optimization of electrocoagulation process and combination of anaerobic digestion for the treatment of pistachio processing wastewater publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.05.242 – volume: 196 start-page: 606 year: 2015 ident: 10.1016/j.jclepro.2019.117959_bib52 article-title: Comparing activated carbon of different particle sizes on enhancing methane generation in upflow anaerobic digester publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.08.018 – volume: 103 start-page: 291 year: 2019 ident: 10.1016/j.jclepro.2019.117959_bib32 article-title: A review of biochar properties and their roles in mitigating challenges with anaerobic digestion publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.12.048 |
| SSID | ssj0017074 |
| Score | 2.479259 |
| Snippet | Additives or external voltage are usually applied to promote methane production and organics degradation through the possible means of enhancing direct... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 117959 |
| SubjectTerms | additives adsorption anaerobic digesters Anaerobic digestion biochar electron transfer Hydrogenophaga methane production methanogens Methanosaeta Methanosarcina microbial activity Multicycles Natural stable isotopic signature Redox property Solid waste Syntrophic zeolites |
| Title | Ability of biochar to facilitate anaerobic digestion is restricted to stressed surroundings |
| URI | https://dx.doi.org/10.1016/j.jclepro.2019.117959 https://www.proquest.com/docview/2335138338 |
| Volume | 238 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DL3oQP3F-jAheu3VNmrbHMRxTcRcdDDyENEmhQ9qxdQcv_u2-14_5gTDw1pYklJfkvd_7JuQWEH0CYrzvRIYbh1tPOIp52hFMxMYwhOSYO_w0EeMpf5j5sxYZNrkwGFZZ8_6Kp5fcuv7Sq6nZW6Rp7xktWMJHDYChO3CGGew8wLC-7scmzKMfuFUlZjR34eivLJ7evDuHxYBRYYRXhO7LCEuW_i2ffnHqUvyMDslBjRvpoPq1I9Ky2THZ_1ZN8IS8DspA13eaJzROc8ynokVOE6WrStyWqkxZrLukqSn9SrAnNF1RbM8B7BCwJ46vskfgebVeLrHpEtrST8l0dPcyHDt17wRHc-4XIHiSKGEBCiahtHCDxAdFo2-ZNSIQ2igLONHjCtQh7SZx7IZwUX0GBLAAiLRmZ2QnyzN7Tqjy3NjzGajRPuPCmIgZEVnPhIi1DGNtwhuKSV0XFsf-Fm-yiSCby5rQEgktK0K3SXczbVFV1tg2IWy2Q_44IhK4_7apN832Sbg-6BNRmc3XK-kx5vdBS2fhxf-XvyR7-IYpip57RXaK5dpeA1Yp4k55GDtkd3D_OJ58AvMf6Tg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60PagH8Yn1uYLX2DS72TTHIkprtRcVCh6Wze4GWiQpfRz89840SX0gCN5Ckglhdnfmm52ZbwGuENGn6MZbXmyF9YQLpKd5YDzJZWItJ0hOvcOPA9l9EffDcLgGN1UvDJVVlra_sOlLa13eaZbabE5Go-YT7WDJkCIATunA4TrUiZ1K1KDe6fW7g1UyIfILMmba8SKBz0ae5vh6jN9DW0VFXjFlMGNiLf3dRf0w1ksPdLcD2yV0ZJ3i73ZhzWV7sPWFUHAfXjvLWtd3lqcsGeXUUsXmOUu1Kci4HdOZdkS9ZJhdppZwWNhoxuiEDrSICD_p_aKBBK9ni-mUzl2i7fQDeLm7fb7peuXxCZ4RIpyj70njlEfkm6Q20o_SEGONluPOykgaqx1CxUBojIiMnyaJ38a1GnJUgENMZAw_hFqWZ-4ImA78JAg5RtIhF9LamFsZu8C2CW5ZzhsgKo0pU3KL0xEXb6oqIhurUtGKFK0KRTfgeiU2Kcg1_hJoV8Ohvs0ShQ7gL9HLavgUriBKi-jM5YuZCjgPWxio8_bx_z9_ARvd58cH9dAb9E9gk55Qx2Lgn0JtPl24M4Qu8-S8nJof9O_r6Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ability+of+biochar+to+facilitate+anaerobic+digestion+is+restricted+to+stressed+surroundings&rft.jtitle=Journal+of+cleaner+production&rft.au=Shao%2C+Liming&rft.au=Li%2C+Shasha&rft.au=Cai%2C+Jiao&rft.au=He%2C+Pinjing&rft.date=2019-11-20&rft.pub=Elsevier+Ltd&rft.issn=0959-6526&rft.eissn=1879-1786&rft.volume=238&rft_id=info:doi/10.1016%2Fj.jclepro.2019.117959&rft.externalDocID=S095965261932829X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon |