Ability of biochar to facilitate anaerobic digestion is restricted to stressed surroundings

Additives or external voltage are usually applied to promote methane production and organics degradation through the possible means of enhancing direct interspecies electron transfer (DIET), but their effectiveness and explanation are controversial. In this work, external voltage and additives (bioc...

Full description

Saved in:
Bibliographic Details
Published inJournal of cleaner production Vol. 238; p. 117959
Main Authors Shao, Liming, Li, Shasha, Cai, Jiao, He, Pinjing, Lü, Fan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 20.11.2019
Subjects
Online AccessGet full text
ISSN0959-6526
1879-1786
DOI10.1016/j.jclepro.2019.117959

Cover

Loading…
Abstract Additives or external voltage are usually applied to promote methane production and organics degradation through the possible means of enhancing direct interspecies electron transfer (DIET), but their effectiveness and explanation are controversial. In this work, external voltage and additives (biochar and zeolite) were applied simultaneously and independently to laboratory-scale anaerobic reactors for further clues of DIET-enhancing mechanism. External voltage was indicated to impede methanogens early, and promote anaerobic process later. Boichar was discovered to benefit only stressed scenarios caused by external voltage or microbial inactivity, but express no significant influence on well-operating ones, which could be attributed to the finding that biochar enriched DIET-capable Methanosarcina and Methanosaeta which are sensitive to stress. Zeolite could not overcome external handicaps with only increase of microbial amounts and diversity but without selectivity. The BET specific areas of biochar (13.6 m2/g) and zeolite (15.1 m2/g) applied in this work are semblable, which excludes the discrepancy in adsorption of inhibitors between the biochar and zeolite. The electron donating capacities (EDC) of biochar and zeolite are, respectively, 0.17 and 0 mmol e−/g, while electron accepting capacities (EAC) are similar, revealing that EDC did great benefit to the promotion hence the enrichment of Methanosarcina and Methanosaeta while only containing EAC didn't function significantly. On the contrary, potential H2-competitors (e.g. Hydrogenophaga) of methanogens could also clone onto biochar that may weaken its DIET benefit for methanogenesis, which was observed in high throughout sequencing. Meanwhile, suspended microbes, which cannot conduct DIET with biochar, were far more extensive than those attached to additives, indicating that biochar also affects microbial activity through other surrounding biochemical connections. The identification of limited application scope of biochar and numerous suspended microbes provides new considerations into the mechanisms of surrounding limitation for biochar application and possible determinants except for DIET. [Display omitted] •The promotional effect of biochar on microbes was limited to stressed scenarios.•EDC plays a vital role in the promotional function of biochar.•Biochar has a selectivity of enriching Methanosaeta and Methanosarcina.•There could exist other pathways beyond DIET for biochar affecting microbes.
AbstractList Additives or external voltage are usually applied to promote methane production and organics degradation through the possible means of enhancing direct interspecies electron transfer (DIET), but their effectiveness and explanation are controversial. In this work, external voltage and additives (biochar and zeolite) were applied simultaneously and independently to laboratory-scale anaerobic reactors for further clues of DIET-enhancing mechanism. External voltage was indicated to impede methanogens early, and promote anaerobic process later. Boichar was discovered to benefit only stressed scenarios caused by external voltage or microbial inactivity, but express no significant influence on well-operating ones, which could be attributed to the finding that biochar enriched DIET-capable Methanosarcina and Methanosaeta which are sensitive to stress. Zeolite could not overcome external handicaps with only increase of microbial amounts and diversity but without selectivity. The BET specific areas of biochar (13.6 m2/g) and zeolite (15.1 m2/g) applied in this work are semblable, which excludes the discrepancy in adsorption of inhibitors between the biochar and zeolite. The electron donating capacities (EDC) of biochar and zeolite are, respectively, 0.17 and 0 mmol e−/g, while electron accepting capacities (EAC) are similar, revealing that EDC did great benefit to the promotion hence the enrichment of Methanosarcina and Methanosaeta while only containing EAC didn't function significantly. On the contrary, potential H2-competitors (e.g. Hydrogenophaga) of methanogens could also clone onto biochar that may weaken its DIET benefit for methanogenesis, which was observed in high throughout sequencing. Meanwhile, suspended microbes, which cannot conduct DIET with biochar, were far more extensive than those attached to additives, indicating that biochar also affects microbial activity through other surrounding biochemical connections. The identification of limited application scope of biochar and numerous suspended microbes provides new considerations into the mechanisms of surrounding limitation for biochar application and possible determinants except for DIET. [Display omitted] •The promotional effect of biochar on microbes was limited to stressed scenarios.•EDC plays a vital role in the promotional function of biochar.•Biochar has a selectivity of enriching Methanosaeta and Methanosarcina.•There could exist other pathways beyond DIET for biochar affecting microbes.
Additives or external voltage are usually applied to promote methane production and organics degradation through the possible means of enhancing direct interspecies electron transfer (DIET), but their effectiveness and explanation are controversial. In this work, external voltage and additives (biochar and zeolite) were applied simultaneously and independently to laboratory-scale anaerobic reactors for further clues of DIET-enhancing mechanism. External voltage was indicated to impede methanogens early, and promote anaerobic process later. Boichar was discovered to benefit only stressed scenarios caused by external voltage or other stresses, but express no significant influence on well-operating ones, which could be attributed to the finding that biochar enriched DIET-capable Methanosarcina and Methanosaeta which are sensitive to stress. Zeolite could not overcome external handicaps with only increase of microbial amounts and diversity but without selectivity. The BET specific areas of biochar (13.6 m2/g) and zeolite (15.1 m2/g) applied in this work are semblable, which excludes the discrepancy in adsorption of inhibitors between the biochar and zeolite. The electron donating capacities (EDC) of biochar and zeolite are, respectively, 0.17 and 0 mmol e−/g, while electron accepting capacities (EAC) are similar, revealing that EDC did great benefit to the promotion hence the enrichment of Methanosarcina and Methanosaeta while only containing EAC didn't function significantly. On the contrary, potential H2-competitors (e.g. Hydrogenophaga) of methanogens could also clone onto biochar that may weaken its DIET benefit for methanogenesis, which was observed in high throughout sequencing. Meanwhile, suspended microbes, which cannot conduct DIET with biochar, were far more extensive than those attached to additives, indicating that biochar also affects microbial activity through other surrounding biochemical connections. The identification of limited application scope of biochar and numerous suspended microbes provides new considerations into the mechanisms of surrounding limitation for biochar application and possible determinants except for DIET.
ArticleNumber 117959
Author Cai, Jiao
Li, Shasha
Lü, Fan
Shao, Liming
He, Pinjing
Author_xml – sequence: 1
  givenname: Liming
  surname: Shao
  fullname: Shao, Liming
  organization: State Key Laboratory of Pollution Control and Source Reuse, Tongji University, Shanghai, 200092, PR China
– sequence: 2
  givenname: Shasha
  surname: Li
  fullname: Li, Shasha
  organization: State Key Laboratory of Pollution Control and Source Reuse, Tongji University, Shanghai, 200092, PR China
– sequence: 3
  givenname: Jiao
  surname: Cai
  fullname: Cai, Jiao
  organization: State Key Laboratory of Pollution Control and Source Reuse, Tongji University, Shanghai, 200092, PR China
– sequence: 4
  givenname: Pinjing
  surname: He
  fullname: He, Pinjing
  email: solidwaste@tongji.edu.cn
  organization: State Key Laboratory of Pollution Control and Source Reuse, Tongji University, Shanghai, 200092, PR China
– sequence: 5
  givenname: Fan
  surname:
  fullname: Lü, Fan
  email: lvfan.rhodea@tongji.edu.cn
  organization: State Key Laboratory of Pollution Control and Source Reuse, Tongji University, Shanghai, 200092, PR China
BookMark eNqFkE1Lw0AQhhepYFv9CUKOXhL3I9kkeJBS_IKCFz15WDaTSd2SZutuIvTfuyE9eSkMzMvLvMPMsyCzznZIyC2jCaNM3u-SHbR4cDbhlJUJY3mZlRdkzoq8jFleyBmZ02DFMuPyiiy831HKcpqnc_K1qkxr-mNkm6gyFr61i3obNRpGW_cY6U6js5WBqDZb9L2xXWR85IJ0Bnqsx_mg0fug_eCcHbradFt_TS4b3Xq8OfUl-Xx--li_xpv3l7f1ahNDmmZ9XNCmbETOGRdSg6R5k6W8YCiwlrmEWiPllKeasRRoU1U0vCUyER5CyQWAWJK7aW9A8DOEu9TeeMC21R3awSsuRMZEIUItSTaNgrPeO2zUwZm9dkfFqBphqp06wVQjTDXBDLmHfzkY6QQWvdOmPZt-nNIYKPwadMqDwQ6wNg6hV7U1Zzb8AXcClvg
CitedBy_id crossref_primary_10_1016_j_biortech_2019_122485
crossref_primary_10_1016_j_cej_2020_124605
crossref_primary_10_3390_en17174506
crossref_primary_10_1016_j_biortech_2025_132155
crossref_primary_10_1016_j_grets_2023_100035
crossref_primary_10_1016_j_jclepro_2023_140531
crossref_primary_10_1016_j_biortech_2019_122252
crossref_primary_10_1016_j_biortech_2021_126353
crossref_primary_10_1021_acssuschemeng_0c04109
crossref_primary_10_1016_j_biortech_2020_122801
crossref_primary_10_1007_s41742_025_00766_y
crossref_primary_10_1016_j_biortech_2021_124697
crossref_primary_10_1016_j_cej_2022_135078
crossref_primary_10_1007_s42773_022_00165_y
crossref_primary_10_1016_j_cej_2024_152591
crossref_primary_10_3390_pr11082284
crossref_primary_10_1016_j_watres_2020_116732
crossref_primary_10_1016_j_cej_2023_144164
crossref_primary_10_1007_s44246_024_00110_7
crossref_primary_10_4491_eer_2020_648
crossref_primary_10_1021_acssuschemeng_0c03484
crossref_primary_10_1016_j_jwpe_2024_105262
crossref_primary_10_3390_en16062523
crossref_primary_10_1016_j_rser_2023_113536
crossref_primary_10_1016_j_renene_2020_07_126
crossref_primary_10_1007_s42773_021_00096_0
crossref_primary_10_1016_j_biteb_2021_100907
crossref_primary_10_1016_j_biortech_2021_124979
crossref_primary_10_1016_j_jece_2022_107960
crossref_primary_10_1016_j_scitotenv_2022_159984
crossref_primary_10_1016_j_energy_2023_127819
crossref_primary_10_1016_j_jenvman_2024_120593
crossref_primary_10_1016_j_biortech_2022_127092
crossref_primary_10_1016_j_scitotenv_2023_167681
crossref_primary_10_1007_s10311_024_01766_8
crossref_primary_10_1016_j_jhazmat_2020_122541
crossref_primary_10_1016_j_renene_2021_07_052
crossref_primary_10_1021_acsestengg_2c00170
crossref_primary_10_1016_j_biortech_2022_127519
crossref_primary_10_3390_fermentation9050433
crossref_primary_10_1016_j_scitotenv_2023_166549
crossref_primary_10_1016_j_cej_2022_140567
crossref_primary_10_1016_j_biortech_2020_124295
crossref_primary_10_1016_j_cej_2021_132203
crossref_primary_10_1016_j_biortech_2025_132322
crossref_primary_10_1016_j_jenvman_2023_117756
crossref_primary_10_1016_j_scitotenv_2022_153614
crossref_primary_10_3390_ma16206655
crossref_primary_10_1007_s43979_023_00078_0
Cites_doi 10.1021/es500906d
10.1016/j.renene.2017.10.084
10.1016/S0961-9534(97)00020-2
10.1038/srep16221
10.1264/jsme2.23.118
10.1016/j.tibtech.2016.04.009
10.1186/s13068-017-0994-7
10.1128/AEM.71.1.423-427.2005
10.1016/j.apenergy.2019.04.052
10.4056/sigs.2726028
10.1146/annurev-micro-030117-020420
10.1016/j.copbio.2019.03.018
10.1016/j.jclepro.2016.02.034
10.1016/j.watres.2015.12.029
10.1021/es501398j
10.1039/C5RA03496E
10.1016/j.rser.2015.12.261
10.3389/fmicb.2015.00477
10.1099/ijs.0.63894-0
10.1128/AEM.00895-14
10.1016/j.watres.2014.01.044
10.1016/j.bioelechem.2014.11.004
10.1039/C5RA24134K
10.1021/acs.estlett.5b00354
10.1021/acs.est.8b01200
10.1016/j.watres.2017.12.005
10.1016/j.biortech.2007.01.057
10.1016/j.watres.2014.10.052
10.1038/ismej.2014.256
10.1021/acs.est.7b01854
10.1016/j.biortech.2018.07.015
10.1021/es702668w
10.1111/1462-2920.13774
10.1016/j.biortech.2017.04.021
10.1021/es102228v
10.1016/j.tim.2007.02.002
10.1111/1462-2920.12485
10.1039/C3EE42189A
10.1177/0734242X16634196
10.1021/es504811a
10.1264/jsme2.ME09151S
10.1080/09593330.2017.1310934
10.1038/srep11094
10.1039/c2ee22459c
10.1038/srep05019
10.1128/.61.2.262-280.1997
10.1016/j.orggeochem.2004.09.006
10.1016/j.rser.2015.12.094
10.1021/acs.est.8b01913
10.1021/acs.est.8b00891
10.1073/pnas.1117592109
10.1016/j.jclepro.2018.05.242
10.1016/j.biortech.2015.08.018
10.1016/j.rser.2018.12.048
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jclepro.2019.117959
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1786
ExternalDocumentID 10_1016_j_jclepro_2019_117959
S095965261932829X
GroupedDBID --K
--M
..I
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADHUB
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
J1W
JARJE
K-O
KCYFY
KOM
LY9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSJ
SSR
SSZ
T5K
~G-
29K
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
D-I
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEN
SEW
SSH
WUQ
ZY4
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c445t-80f9f3721236ac607f54281e3ed676cdae02024a114c0fbb0879353959e623cc3
IEDL.DBID .~1
ISSN 0959-6526
IngestDate Tue Aug 05 11:16:04 EDT 2025
Thu Apr 24 23:07:23 EDT 2025
Tue Jul 01 03:02:54 EDT 2025
Fri Feb 23 02:32:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Solid waste
Redox property
Multicycles
Natural stable isotopic signature
Anaerobic digestion
Syntrophic
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-80f9f3721236ac607f54281e3ed676cdae02024a114c0fbb0879353959e623cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2335138338
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2335138338
crossref_primary_10_1016_j_jclepro_2019_117959
crossref_citationtrail_10_1016_j_jclepro_2019_117959
elsevier_sciencedirect_doi_10_1016_j_jclepro_2019_117959
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-20
PublicationDateYYYYMMDD 2019-11-20
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-20
  day: 20
PublicationDecade 2010
PublicationTitle Journal of cleaner production
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hattori (bib14) 2008; 23
Ozay, Ünşar, Işık, Yılmaz, Dizge, Perendeci, Mazmanci, Yalvac (bib36) 2018; 196
Saquing, Yu, Chiu (bib41) 2016; 3
Liu, Rotaru, Shrestha, Malvankar, Nevin, Lovley (bib23) 2015; 17
Rotaru, Shrestha, Liu, Markovaite, Chen, Nevin, Lovley (bib38) 2014; 80
Smith, Ingram-Smith (bib45) 2007; 15
Lovley (bib24) 2017; 71
Yuan, Zhu (bib55) 2016; 58
Kato, Hashimoto, Watanabe (bib16) 2012; 109
Luo, Xu, Jin, Han, Liu, Lü (bib29) 2018; 39
Lü, Zhang, Shao, He (bib27) 2018; 124
Beese-Vasbender, Grote, Garrelfs, Stratmann, Mayrhofer (bib1) 2015; 102
Cai, He, Wang, Shao, Lü (bib2) 2016; 34
Schink (bib42) 1997; 61
Desloover, De Vrieze, Van de Vijver, Mortelmans, Rozendal, Rabaey (bib11) 2015; 49
Lü, Luo, Shao, He (bib26) 2016; 90
Wu, Fang, Wang, Zheng, Wang, Zhao, Jaisi, Zhou (bib51) 2017; 51
Zhao, Zhang, Wang, Quan (bib57) 2015; 5
Thi, Lin, Kumar (bib46) 2016; 122
Ko, Wang, Yuan, Lü, He, Xu (bib18) 2018; 266
Yu, Yuan, Tang, Wang, Zhou (bib54) 2015; 5
Klüpfel, Keiluweit, Kleber, Sander (bib17) 2014; 48
Dang, Sun, Woodard, Wang, Nevin, Holmes (bib9) 2017; 238
Van Steendam, Smets, Skerlos, Raskin (bib48) 2019; 57
Masebinu, Akinlabi, Muzenda, Aboyade (bib32) 2019; 103
Willems, Busse, Goor, Pot, Falsen, Jantzen, Hoste, Gillis, Kersters, Auling, De ley (bib50) 1989; 39
Xu, He, Luo, Lü, He, Cui (bib52) 2015; 196
Rotaru, Shrestha, Liu, Shrestha, Shrestha, Embree, Zengler, Wardman, Nevin, Lovley (bib39) 2014; 7
Kouzuma, Kato, Watanabe (bib20) 2015; 6
Conrad (bib6) 2005; 36
De Vrieze, Gildemyn, Arends, Vanwonterghem, Verbeken, Boon, Verstraete, Tyson, Hennebel, Rabaey (bib10) 2014; 54
Yamada, Sekiguchi (bib53) 2009; 24
Hao, Lü, He, Li, Shao (bib13) 2011; 45
Nallathambi Gunaseelan (bib34) 1997; 13
Zannoni, Philippis (bib56) 2014
Thrash, Coates (bib47) 2008; 42
Lü, Liu, Shao, He (bib25) 2019; 247
Romero-Güiza, Vila, Mata-Alvarez, Chimenos, Astals (bib37) 2016; 58
Cruz Viggi, Simonetti, Palma, Pagliaccia, Braguglia, Fazi, Baronti, Navarra, Pettiti, Koch, Harnisch, Aulenta (bib7) 2017; 10
Sedlak (bib43) 2018; 52
Chen, Rotaru, Shrestha, Malvankar, Liu, Fan, Nevin, Lovley (bib3) 2014; 4
Moscoviz, Toledo-Alarcon, Trably, Bernet (bib33) 2016; 34
Goker, Saunders, Lapidus, Nolan, Lucas, Hammon, Deshpande, Cheng, Han, Tapia, Goodwin, Pitluck, Liolios, Mavromatis, Pagani, Ivanova, Mikhailova, Pati, Chen, Palaniappan, Land, Chang, Jeffries, Brambilla, Rohde, Spring, Detter, Woyke, Bristow, Eisen, Markowitz, Hugenholtz, Kyrpides, Klenk (bib12) 2012; 6
Liu, Rotaru, Shrestha, Malvankar, Nevin, Lovley (bib22) 2012; 5
Dahle, Birkeland (bib8) 2006; 56
Kracke, Vassilev, Krömer (bib21) 2015; 6
Luo, Wang, Zhang, Qian (bib30) 2005; 71
Martins, Salvador, Pereira, Alves (bib31) 2018; 52
Chen, Yu, Yin, Zhang, Dai, Yuan, Zhu (bib5) 2016; 6
Salvador, Martins, Melle-Franco, Serpa, Stams, Cavaleiro, Pereira, Alves (bib40) 2017; 19
Koch, Kuchenbuch, Kretzschmar, Wedwitschka, Liebetrau, Müller, Harnisch (bib19) 2015; 5
Wang, Zhang, Dai, Dong, Dai (bib49) 2018; 52
Nobu, Narihiro, Rinke, Kamagata, Tringe, Woyke, Liu (bib35) 2015; 9
Jiang, Shen, Xu, Chen, Mu, Sun, Han, Li, Wang (bib15) 2018; 130
Luo, Lü, Shao, He (bib28) 2015; 68
Shi, Wang, Yuan, Hu (bib44) 2014; 48
Chen, Cheng, Creamer (bib4) 2008; 99
Ozay (10.1016/j.jclepro.2019.117959_bib36) 2018; 196
Wu (10.1016/j.jclepro.2019.117959_bib51) 2017; 51
Yuan (10.1016/j.jclepro.2019.117959_bib55) 2016; 58
Luo (10.1016/j.jclepro.2019.117959_bib29) 2018; 39
Shi (10.1016/j.jclepro.2019.117959_bib44) 2014; 48
Van Steendam (10.1016/j.jclepro.2019.117959_bib48) 2019; 57
Zannoni (10.1016/j.jclepro.2019.117959_bib56) 2014
Conrad (10.1016/j.jclepro.2019.117959_bib6) 2005; 36
Schink (10.1016/j.jclepro.2019.117959_bib42) 1997; 61
Smith (10.1016/j.jclepro.2019.117959_bib45) 2007; 15
Koch (10.1016/j.jclepro.2019.117959_bib19) 2015; 5
Nallathambi Gunaseelan (10.1016/j.jclepro.2019.117959_bib34) 1997; 13
Dang (10.1016/j.jclepro.2019.117959_bib9) 2017; 238
Kouzuma (10.1016/j.jclepro.2019.117959_bib20) 2015; 6
Thrash (10.1016/j.jclepro.2019.117959_bib47) 2008; 42
Luo (10.1016/j.jclepro.2019.117959_bib30) 2005; 71
Cai (10.1016/j.jclepro.2019.117959_bib2) 2016; 34
Xu (10.1016/j.jclepro.2019.117959_bib52) 2015; 196
Liu (10.1016/j.jclepro.2019.117959_bib23) 2015; 17
Romero-Güiza (10.1016/j.jclepro.2019.117959_bib37) 2016; 58
Ko (10.1016/j.jclepro.2019.117959_bib18) 2018; 266
Luo (10.1016/j.jclepro.2019.117959_bib28) 2015; 68
Yamada (10.1016/j.jclepro.2019.117959_bib53) 2009; 24
Beese-Vasbender (10.1016/j.jclepro.2019.117959_bib1) 2015; 102
Chen (10.1016/j.jclepro.2019.117959_bib3) 2014; 4
Chen (10.1016/j.jclepro.2019.117959_bib4) 2008; 99
Thi (10.1016/j.jclepro.2019.117959_bib46) 2016; 122
Lovley (10.1016/j.jclepro.2019.117959_bib24) 2017; 71
Lü (10.1016/j.jclepro.2019.117959_bib27) 2018; 124
Yu (10.1016/j.jclepro.2019.117959_bib54) 2015; 5
Zhao (10.1016/j.jclepro.2019.117959_bib57) 2015; 5
Klüpfel (10.1016/j.jclepro.2019.117959_bib17) 2014; 48
Chen (10.1016/j.jclepro.2019.117959_bib5) 2016; 6
Wang (10.1016/j.jclepro.2019.117959_bib49) 2018; 52
Cruz Viggi (10.1016/j.jclepro.2019.117959_bib7) 2017; 10
Rotaru (10.1016/j.jclepro.2019.117959_bib39) 2014; 7
Saquing (10.1016/j.jclepro.2019.117959_bib41) 2016; 3
Kracke (10.1016/j.jclepro.2019.117959_bib21) 2015; 6
Dahle (10.1016/j.jclepro.2019.117959_bib8) 2006; 56
Lü (10.1016/j.jclepro.2019.117959_bib25) 2019; 247
Sedlak (10.1016/j.jclepro.2019.117959_bib43) 2018; 52
Desloover (10.1016/j.jclepro.2019.117959_bib11) 2015; 49
Moscoviz (10.1016/j.jclepro.2019.117959_bib33) 2016; 34
Liu (10.1016/j.jclepro.2019.117959_bib22) 2012; 5
Willems (10.1016/j.jclepro.2019.117959_bib50) 1989; 39
De Vrieze (10.1016/j.jclepro.2019.117959_bib10) 2014; 54
Martins (10.1016/j.jclepro.2019.117959_bib31) 2018; 52
Masebinu (10.1016/j.jclepro.2019.117959_bib32) 2019; 103
Jiang (10.1016/j.jclepro.2019.117959_bib15) 2018; 130
Kato (10.1016/j.jclepro.2019.117959_bib16) 2012; 109
Hao (10.1016/j.jclepro.2019.117959_bib13) 2011; 45
Hattori (10.1016/j.jclepro.2019.117959_bib14) 2008; 23
Nobu (10.1016/j.jclepro.2019.117959_bib35) 2015; 9
Goker (10.1016/j.jclepro.2019.117959_bib12) 2012; 6
Salvador (10.1016/j.jclepro.2019.117959_bib40) 2017; 19
Rotaru (10.1016/j.jclepro.2019.117959_bib38) 2014; 80
Lü (10.1016/j.jclepro.2019.117959_bib26) 2016; 90
References_xml – volume: 42
  start-page: 3921
  year: 2008
  end-page: 3931
  ident: bib47
  article-title: Review: direct and indirect electrical stimulation of microbial metabolism
  publication-title: Environ. Sci. Technol.
– volume: 51
  start-page: 9709
  year: 2017
  end-page: 9717
  ident: bib51
  article-title: Redox-active oxygen-containing functional groups in activated carbon facilitate microbial reduction of ferrihydrite
  publication-title: Environ. Sci. Technol.
– volume: 54
  start-page: 211
  year: 2014
  end-page: 221
  ident: bib10
  article-title: Biomass retention on electrodes rather than electrical current enhances stability in anaerobic digestion
  publication-title: Water Res.
– volume: 3
  start-page: 62
  year: 2016
  end-page: 66
  ident: bib41
  article-title: Wood-derived black carbon (biochar) as a microbial electron donor and acceptor
  publication-title: Environ. Sci. Technol. Lett.
– volume: 5
  start-page: 8982
  year: 2012
  end-page: 8989
  ident: bib22
  article-title: Promoting direct interspecies electron transfer with activated carbon
  publication-title: Energy Environ. Sci.
– volume: 45
  start-page: 508
  year: 2011
  end-page: 513
  ident: bib13
  article-title: Predominant contribution of syntrophic acetate oxidation to thermophilic methane formation at high acetate concentrations
  publication-title: Environ. Sci. Technol.
– volume: 122
  start-page: 29
  year: 2016
  end-page: 41
  ident: bib46
  article-title: Waste-to-wealth for valorization of food waste to hydrogen and methane towards creating a sustainable ideal source of bioenergy
  publication-title: J. Clean. Prod.
– volume: 4
  start-page: 5019
  year: 2014
  ident: bib3
  article-title: Promoting interspecies electron transfer with biochar
  publication-title: Sci. Rep.
– volume: 103
  start-page: 291
  year: 2019
  end-page: 307
  ident: bib32
  article-title: A review of biochar properties and their roles in mitigating challenges with anaerobic digestion
  publication-title: Renew. Sustain. Energy Rev.
– volume: 13
  start-page: 83
  year: 1997
  end-page: 114
  ident: bib34
  article-title: Anaerobic digestion of biomass for methane production: a review
  publication-title: Biomass Bioenergy
– volume: 90
  start-page: 34
  year: 2016
  end-page: 43
  ident: bib26
  article-title: Biochar alleviates combined stress of ammonium and acids by firstly enriching
  publication-title: Water Res.
– volume: 23
  start-page: 118
  year: 2008
  end-page: 127
  ident: bib14
  article-title: Syntrophic acetate-oxidizing microbes in methanogenic environments
  publication-title: Microb. Environ.
– volume: 6
  start-page: 1581
  year: 2016
  end-page: 1588
  ident: bib5
  article-title: Biostimulation by direct voltage to enhance anaerobic digestion of waste activated sludge
  publication-title: RSC Adv.
– volume: 247
  start-page: 605
  year: 2019
  end-page: 614
  ident: bib25
  article-title: Powdered biochar doubled microbial growth in anaerobic digestion of oil
  publication-title: Appl. Energy
– volume: 48
  start-page: 5601
  year: 2014
  end-page: 5611
  ident: bib17
  article-title: Redox properties of plant biomass-derived black carbon (biochar)
  publication-title: Environ. Sci. Technol.
– volume: 71
  start-page: 423
  year: 2005
  end-page: 427
  ident: bib30
  article-title: Effect of direct electric current on the cell surface properties of phenol-degrading bacteria
  publication-title: Appl. Environ. Microbiol.
– volume: 124
  start-page: 202
  year: 2018
  end-page: 211
  ident: bib27
  article-title: Loop bioenergy production and carbon sequestration of polymeric waste by integrating biochemical and thermochemical conversion processes: a conceptual framework and recent advances
  publication-title: Renew. Energy
– volume: 102
  start-page: 50
  year: 2015
  end-page: 55
  ident: bib1
  article-title: Selective microbial electrosynthesis of methane by a pure culture of a marine lithoautotrophic archaeon
  publication-title: Bioelectrochemistry
– volume: 130
  start-page: 291
  year: 2018
  end-page: 299
  ident: bib15
  article-title: Substantial enhancement of anaerobic pyridine bio-mineralization by electrical stimulation
  publication-title: Water Res.
– volume: 36
  start-page: 739
  year: 2005
  end-page: 752
  ident: bib6
  article-title: Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal
  publication-title: Org. Geochem.
– volume: 6
  start-page: 230
  year: 2012
  end-page: 239
  ident: bib12
  article-title: Genome sequence of the moderately thermophilic, amino-acid-degrading and sulfur-reducing bacterium
  publication-title: Standards in Genomic Sciences
– volume: 24
  start-page: 205
  year: 2009
  end-page: 216
  ident: bib53
  article-title: Cultivation of uncultured
  publication-title: Microb. Environ.
– volume: 10
  start-page: 303
  year: 2017
  ident: bib7
  article-title: Enhancing methane production from food waste fermentate using biochar: the added value of electrochemical testing in pre-selecting the most effective type of biochar
  publication-title: Biotechnol. Biofuels
– volume: 49
  start-page: 948
  year: 2015
  end-page: 955
  ident: bib11
  article-title: Electrochemical nutrient recovery enables ammonia toxicity control and biogas desulfurization in anaerobic digestion
  publication-title: Environ. Sci. Technol.
– volume: 17
  start-page: 648
  year: 2015
  end-page: 655
  ident: bib23
  article-title: Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange
  publication-title: Environ. Microbiol.
– volume: 52
  start-page: 3327
  year: 2018
  end-page: 3328
  ident: bib43
  article-title: Sifting through the embers
  publication-title: Environ. Sci. Technol.
– volume: 68
  start-page: 710
  year: 2015
  end-page: 718
  ident: bib28
  article-title: Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes
  publication-title: Water Res.
– volume: 52
  start-page: 10241
  year: 2018
  end-page: 10253
  ident: bib31
  article-title: Methane production and conductive materials: a critical review
  publication-title: Environ. Sci. Technol.
– volume: 196
  start-page: 42
  year: 2018
  end-page: 50
  ident: bib36
  article-title: Optimization of electrocoagulation process and combination of anaerobic digestion for the treatment of pistachio processing wastewater
  publication-title: J. Clean. Prod.
– volume: 39
  start-page: 739
  year: 2018
  end-page: 748
  ident: bib29
  article-title: Evaluation of methanogenic microbial electrolysis cells under closed/open circuit operations
  publication-title: Environ. Technol.
– volume: 57
  start-page: 183
  year: 2019
  end-page: 190
  ident: bib48
  article-title: Improving anaerobic digestion via direct interspecies electron transfer requires development of suitable characterization methods
  publication-title: Curr. Opin. Biotechnol.
– volume: 48
  start-page: 7951
  year: 2014
  end-page: 7958
  ident: bib44
  article-title: Electrochemical stimulation of microbial roxarsone degradation under anaerobic conditions
  publication-title: Environ. Sci. Technol.
– volume: 9
  start-page: 1710
  year: 2015
  end-page: 1722
  ident: bib35
  article-title: Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor
  publication-title: ISME J.
– volume: 34
  start-page: 409
  year: 2016
  end-page: 416
  ident: bib2
  article-title: Effects and optimization of the use of biochar in anaerobic digestion of food wastes
  publication-title: Waste Manag. Res.
– volume: 56
  start-page: 1539
  year: 2006
  end-page: 1545
  ident: bib8
  article-title: gen. nov., sp. nov., a novel moderately thermophilic, anaerobic, amino-acid-degrading bacterium isolated from a North Sea oil well
  publication-title: Int. J. Syst. Evol. Microbiol.
– volume: 71
  start-page: 643
  year: 2017
  end-page: 664
  ident: bib24
  article-title: Syntrophy goes electric: direct interspecies electron transfer
  publication-title: Annu. Rev. Microbiol.
– volume: 39
  start-page: 319
  year: 1989
  end-page: 333
  ident: bib50
  article-title: , a new genus of hydrogen-oxidizing bacteria that includes
  publication-title: Int. J. Syst. Evol. Microbiol.
– volume: 7
  start-page: 408
  year: 2014
  end-page: 415
  ident: bib39
  article-title: A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to
  publication-title: Energy Environ. Sci.
– volume: 238
  start-page: 30
  year: 2017
  end-page: 38
  ident: bib9
  article-title: Stimulation of the anaerobic digestion of the dry organic fraction of municipal solid waste (OFMSW) with carbon-based conductive materials
  publication-title: Bioresour. Technol.
– volume: 5
  start-page: 31329
  year: 2015
  end-page: 31340
  ident: bib19
  article-title: Coupling electric energy and biogas production in anaerobic digesters – impacts on the microbiome
  publication-title: RSC Adv.
– volume: 58
  start-page: 1486
  year: 2016
  end-page: 1499
  ident: bib37
  article-title: The role of additives on anaerobic digestion: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 6
  start-page: 477
  year: 2015
  ident: bib20
  article-title: Microbial interspecies interactions: recent findings in syntrophic consortia
  publication-title: Front. Microbiol.
– year: 2014
  ident: bib56
  article-title: Microbial Bioenergy: Hydrogen Production
– volume: 6
  year: 2015
  ident: bib21
  article-title: Microbial electron transport and energy conservation – the foundation for optimizing bioelectrochemical systems
  publication-title: Front. Microbiol.
– volume: 34
  start-page: 856
  year: 2016
  end-page: 865
  ident: bib33
  article-title: Electro-fermentation: how to drive fermentation using electrochemical systems
  publication-title: Trends Biotechnol.
– volume: 109
  start-page: 10042
  year: 2012
  end-page: 10046
  ident: bib16
  article-title: Microbial interspecies electron transfer via electric currents through conductive minerals
  publication-title: Proc. Natl. Acad. Sci.
– volume: 5
  start-page: 16221
  year: 2015
  ident: bib54
  article-title: Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens
  publication-title: Sci. Rep.
– volume: 19
  start-page: 2727
  year: 2017
  end-page: 2739
  ident: bib40
  article-title: Carbon nanotubes accelerate methane production in pure cultures of methanogens and in a syntrophic coculture
  publication-title: Environ. Microbiol.
– volume: 15
  start-page: 150
  year: 2007
  end-page: 155
  ident: bib45
  article-title: Methanosaeta, the forgotten methanogen?
  publication-title: Trends Microbiol.
– volume: 99
  start-page: 4044
  year: 2008
  end-page: 4064
  ident: bib4
  article-title: Inhibition of anaerobic digestion process: a review
  publication-title: Bioresour. Technol.
– volume: 61
  start-page: 262
  year: 1997
  end-page: 280
  ident: bib42
  article-title: Energetics of syntrophic cooperation in methanogenic degradation
  publication-title: Microbiol. Mol. Biol. Rev.
– volume: 52
  start-page: 7160
  year: 2018
  end-page: 7169
  ident: bib49
  article-title: Magnetite triggering enhanced direct interspecies electron transfer: a scavenger for the blockage of electron transfer in anaerobic digestion of high-solids sewage sludge
  publication-title: Environ. Sci. Technol.
– volume: 5
  start-page: 11094
  year: 2015
  ident: bib57
  article-title: Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion
  publication-title: Sci. Rep.
– volume: 58
  start-page: 429
  year: 2016
  end-page: 438
  ident: bib55
  article-title: Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion
  publication-title: Renew. Sustain. Energy Rev.
– volume: 196
  start-page: 606
  year: 2015
  end-page: 612
  ident: bib52
  article-title: Comparing activated carbon of different particle sizes on enhancing methane generation in upflow anaerobic digester
  publication-title: Bioresour. Technol.
– volume: 266
  start-page: 516
  year: 2018
  end-page: 523
  ident: bib18
  article-title: Effect of nickel-containing activated carbon on food waste anaerobic digestion
  publication-title: Bioresour. Technol.
– volume: 80
  start-page: 4599
  year: 2014
  end-page: 4605
  ident: bib38
  article-title: Direct interspecies electron transfer between
  publication-title: Appl. Environ. Microbiol.
– volume: 6
  issue: 575
  year: 2015
  ident: 10.1016/j.jclepro.2019.117959_bib21
  article-title: Microbial electron transport and energy conservation – the foundation for optimizing bioelectrochemical systems
  publication-title: Front. Microbiol.
– volume: 48
  start-page: 5601
  issue: 10
  year: 2014
  ident: 10.1016/j.jclepro.2019.117959_bib17
  article-title: Redox properties of plant biomass-derived black carbon (biochar)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es500906d
– volume: 124
  start-page: 202
  year: 2018
  ident: 10.1016/j.jclepro.2019.117959_bib27
  article-title: Loop bioenergy production and carbon sequestration of polymeric waste by integrating biochemical and thermochemical conversion processes: a conceptual framework and recent advances
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.10.084
– volume: 13
  start-page: 83
  issue: 1
  year: 1997
  ident: 10.1016/j.jclepro.2019.117959_bib34
  article-title: Anaerobic digestion of biomass for methane production: a review
  publication-title: Biomass Bioenergy
  doi: 10.1016/S0961-9534(97)00020-2
– volume: 39
  start-page: 319
  issue: 3
  year: 1989
  ident: 10.1016/j.jclepro.2019.117959_bib50
  publication-title: Int. J. Syst. Evol. Microbiol.
– volume: 5
  start-page: 16221
  year: 2015
  ident: 10.1016/j.jclepro.2019.117959_bib54
  article-title: Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens
  publication-title: Sci. Rep.
  doi: 10.1038/srep16221
– volume: 23
  start-page: 118
  issue: 2
  year: 2008
  ident: 10.1016/j.jclepro.2019.117959_bib14
  article-title: Syntrophic acetate-oxidizing microbes in methanogenic environments
  publication-title: Microb. Environ.
  doi: 10.1264/jsme2.23.118
– volume: 34
  start-page: 856
  issue: 11
  year: 2016
  ident: 10.1016/j.jclepro.2019.117959_bib33
  article-title: Electro-fermentation: how to drive fermentation using electrochemical systems
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2016.04.009
– volume: 10
  start-page: 303
  issue: 1
  year: 2017
  ident: 10.1016/j.jclepro.2019.117959_bib7
  article-title: Enhancing methane production from food waste fermentate using biochar: the added value of electrochemical testing in pre-selecting the most effective type of biochar
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-017-0994-7
– volume: 71
  start-page: 423
  issue: 1
  year: 2005
  ident: 10.1016/j.jclepro.2019.117959_bib30
  article-title: Effect of direct electric current on the cell surface properties of phenol-degrading bacteria
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.71.1.423-427.2005
– volume: 247
  start-page: 605
  year: 2019
  ident: 10.1016/j.jclepro.2019.117959_bib25
  article-title: Powdered biochar doubled microbial growth in anaerobic digestion of oil
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.04.052
– volume: 6
  start-page: 230
  issue: 2
  year: 2012
  ident: 10.1016/j.jclepro.2019.117959_bib12
  article-title: Genome sequence of the moderately thermophilic, amino-acid-degrading and sulfur-reducing bacterium Thermovirga lienii type strain (Cas60314T)
  publication-title: Standards in Genomic Sciences
  doi: 10.4056/sigs.2726028
– volume: 71
  start-page: 643
  year: 2017
  ident: 10.1016/j.jclepro.2019.117959_bib24
  article-title: Syntrophy goes electric: direct interspecies electron transfer
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev-micro-030117-020420
– volume: 57
  start-page: 183
  year: 2019
  ident: 10.1016/j.jclepro.2019.117959_bib48
  article-title: Improving anaerobic digestion via direct interspecies electron transfer requires development of suitable characterization methods
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2019.03.018
– volume: 122
  start-page: 29
  year: 2016
  ident: 10.1016/j.jclepro.2019.117959_bib46
  article-title: Waste-to-wealth for valorization of food waste to hydrogen and methane towards creating a sustainable ideal source of bioenergy
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.02.034
– volume: 90
  start-page: 34
  year: 2016
  ident: 10.1016/j.jclepro.2019.117959_bib26
  article-title: Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.12.029
– volume: 48
  start-page: 7951
  issue: 14
  year: 2014
  ident: 10.1016/j.jclepro.2019.117959_bib44
  article-title: Electrochemical stimulation of microbial roxarsone degradation under anaerobic conditions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es501398j
– volume: 5
  start-page: 31329
  issue: 40
  year: 2015
  ident: 10.1016/j.jclepro.2019.117959_bib19
  article-title: Coupling electric energy and biogas production in anaerobic digesters – impacts on the microbiome
  publication-title: RSC Adv.
  doi: 10.1039/C5RA03496E
– volume: 58
  start-page: 429
  year: 2016
  ident: 10.1016/j.jclepro.2019.117959_bib55
  article-title: Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.12.261
– volume: 6
  start-page: 477
  year: 2015
  ident: 10.1016/j.jclepro.2019.117959_bib20
  article-title: Microbial interspecies interactions: recent findings in syntrophic consortia
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.00477
– volume: 56
  start-page: 1539
  issue: 7
  year: 2006
  ident: 10.1016/j.jclepro.2019.117959_bib8
  article-title: Thermovirga lienii gen. nov., sp. nov., a novel moderately thermophilic, anaerobic, amino-acid-degrading bacterium isolated from a North Sea oil well
  publication-title: Int. J. Syst. Evol. Microbiol.
  doi: 10.1099/ijs.0.63894-0
– volume: 80
  start-page: 4599
  year: 2014
  ident: 10.1016/j.jclepro.2019.117959_bib38
  article-title: Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00895-14
– volume: 54
  start-page: 211
  year: 2014
  ident: 10.1016/j.jclepro.2019.117959_bib10
  article-title: Biomass retention on electrodes rather than electrical current enhances stability in anaerobic digestion
  publication-title: Water Res.
  doi: 10.1016/j.watres.2014.01.044
– volume: 102
  start-page: 50
  year: 2015
  ident: 10.1016/j.jclepro.2019.117959_bib1
  article-title: Selective microbial electrosynthesis of methane by a pure culture of a marine lithoautotrophic archaeon
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2014.11.004
– volume: 6
  start-page: 1581
  issue: 2
  year: 2016
  ident: 10.1016/j.jclepro.2019.117959_bib5
  article-title: Biostimulation by direct voltage to enhance anaerobic digestion of waste activated sludge
  publication-title: RSC Adv.
  doi: 10.1039/C5RA24134K
– year: 2014
  ident: 10.1016/j.jclepro.2019.117959_bib56
– volume: 3
  start-page: 62
  issue: 2
  year: 2016
  ident: 10.1016/j.jclepro.2019.117959_bib41
  article-title: Wood-derived black carbon (biochar) as a microbial electron donor and acceptor
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.5b00354
– volume: 52
  start-page: 3327
  issue: 6
  year: 2018
  ident: 10.1016/j.jclepro.2019.117959_bib43
  article-title: Sifting through the embers
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b01200
– volume: 130
  start-page: 291
  year: 2018
  ident: 10.1016/j.jclepro.2019.117959_bib15
  article-title: Substantial enhancement of anaerobic pyridine bio-mineralization by electrical stimulation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.12.005
– volume: 99
  start-page: 4044
  issue: 10
  year: 2008
  ident: 10.1016/j.jclepro.2019.117959_bib4
  article-title: Inhibition of anaerobic digestion process: a review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2007.01.057
– volume: 68
  start-page: 710
  year: 2015
  ident: 10.1016/j.jclepro.2019.117959_bib28
  article-title: Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes
  publication-title: Water Res.
  doi: 10.1016/j.watres.2014.10.052
– volume: 9
  start-page: 1710
  issue: 8
  year: 2015
  ident: 10.1016/j.jclepro.2019.117959_bib35
  article-title: Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor
  publication-title: ISME J.
  doi: 10.1038/ismej.2014.256
– volume: 51
  start-page: 9709
  issue: 17
  year: 2017
  ident: 10.1016/j.jclepro.2019.117959_bib51
  article-title: Redox-active oxygen-containing functional groups in activated carbon facilitate microbial reduction of ferrihydrite
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b01854
– volume: 266
  start-page: 516
  year: 2018
  ident: 10.1016/j.jclepro.2019.117959_bib18
  article-title: Effect of nickel-containing activated carbon on food waste anaerobic digestion
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.07.015
– volume: 42
  start-page: 3921
  issue: 11
  year: 2008
  ident: 10.1016/j.jclepro.2019.117959_bib47
  article-title: Review: direct and indirect electrical stimulation of microbial metabolism
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es702668w
– volume: 19
  start-page: 2727
  issue: 7
  year: 2017
  ident: 10.1016/j.jclepro.2019.117959_bib40
  article-title: Carbon nanotubes accelerate methane production in pure cultures of methanogens and in a syntrophic coculture
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.13774
– volume: 238
  start-page: 30
  year: 2017
  ident: 10.1016/j.jclepro.2019.117959_bib9
  article-title: Stimulation of the anaerobic digestion of the dry organic fraction of municipal solid waste (OFMSW) with carbon-based conductive materials
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.04.021
– volume: 45
  start-page: 508
  issue: 2
  year: 2011
  ident: 10.1016/j.jclepro.2019.117959_bib13
  article-title: Predominant contribution of syntrophic acetate oxidation to thermophilic methane formation at high acetate concentrations
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es102228v
– volume: 15
  start-page: 150
  issue: 4
  year: 2007
  ident: 10.1016/j.jclepro.2019.117959_bib45
  article-title: Methanosaeta, the forgotten methanogen?
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2007.02.002
– volume: 17
  start-page: 648
  issue: 3
  year: 2015
  ident: 10.1016/j.jclepro.2019.117959_bib23
  article-title: Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.12485
– volume: 7
  start-page: 408
  issue: 1
  year: 2014
  ident: 10.1016/j.jclepro.2019.117959_bib39
  article-title: A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE42189A
– volume: 34
  start-page: 409
  issue: 5
  year: 2016
  ident: 10.1016/j.jclepro.2019.117959_bib2
  article-title: Effects and optimization of the use of biochar in anaerobic digestion of food wastes
  publication-title: Waste Manag. Res.
  doi: 10.1177/0734242X16634196
– volume: 49
  start-page: 948
  issue: 2
  year: 2015
  ident: 10.1016/j.jclepro.2019.117959_bib11
  article-title: Electrochemical nutrient recovery enables ammonia toxicity control and biogas desulfurization in anaerobic digestion
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es504811a
– volume: 24
  start-page: 205
  issue: 3
  year: 2009
  ident: 10.1016/j.jclepro.2019.117959_bib53
  article-title: Cultivation of uncultured Chloroflexi subphyla: significance and ecophysiology of formerly uncultured Chloroflexi 'Subphylum I' with natural and biotechnological relevance
  publication-title: Microb. Environ.
  doi: 10.1264/jsme2.ME09151S
– volume: 39
  start-page: 739
  issue: 6
  year: 2018
  ident: 10.1016/j.jclepro.2019.117959_bib29
  article-title: Evaluation of methanogenic microbial electrolysis cells under closed/open circuit operations
  publication-title: Environ. Technol.
  doi: 10.1080/09593330.2017.1310934
– volume: 5
  start-page: 11094
  year: 2015
  ident: 10.1016/j.jclepro.2019.117959_bib57
  article-title: Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion
  publication-title: Sci. Rep.
  doi: 10.1038/srep11094
– volume: 5
  start-page: 8982
  issue: 10
  year: 2012
  ident: 10.1016/j.jclepro.2019.117959_bib22
  article-title: Promoting direct interspecies electron transfer with activated carbon
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22459c
– volume: 4
  start-page: 5019
  year: 2014
  ident: 10.1016/j.jclepro.2019.117959_bib3
  article-title: Promoting interspecies electron transfer with biochar
  publication-title: Sci. Rep.
  doi: 10.1038/srep05019
– volume: 61
  start-page: 262
  year: 1997
  ident: 10.1016/j.jclepro.2019.117959_bib42
  article-title: Energetics of syntrophic cooperation in methanogenic degradation
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/.61.2.262-280.1997
– volume: 36
  start-page: 739
  issue: 5
  year: 2005
  ident: 10.1016/j.jclepro.2019.117959_bib6
  article-title: Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2004.09.006
– volume: 58
  start-page: 1486
  year: 2016
  ident: 10.1016/j.jclepro.2019.117959_bib37
  article-title: The role of additives on anaerobic digestion: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.12.094
– volume: 52
  start-page: 10241
  issue: 18
  year: 2018
  ident: 10.1016/j.jclepro.2019.117959_bib31
  article-title: Methane production and conductive materials: a critical review
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b01913
– volume: 52
  start-page: 7160
  issue: 12
  year: 2018
  ident: 10.1016/j.jclepro.2019.117959_bib49
  article-title: Magnetite triggering enhanced direct interspecies electron transfer: a scavenger for the blockage of electron transfer in anaerobic digestion of high-solids sewage sludge
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b00891
– volume: 109
  start-page: 10042
  issue: 25
  year: 2012
  ident: 10.1016/j.jclepro.2019.117959_bib16
  article-title: Microbial interspecies electron transfer via electric currents through conductive minerals
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1117592109
– volume: 196
  start-page: 42
  year: 2018
  ident: 10.1016/j.jclepro.2019.117959_bib36
  article-title: Optimization of electrocoagulation process and combination of anaerobic digestion for the treatment of pistachio processing wastewater
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.05.242
– volume: 196
  start-page: 606
  year: 2015
  ident: 10.1016/j.jclepro.2019.117959_bib52
  article-title: Comparing activated carbon of different particle sizes on enhancing methane generation in upflow anaerobic digester
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.08.018
– volume: 103
  start-page: 291
  year: 2019
  ident: 10.1016/j.jclepro.2019.117959_bib32
  article-title: A review of biochar properties and their roles in mitigating challenges with anaerobic digestion
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.12.048
SSID ssj0017074
Score 2.479259
Snippet Additives or external voltage are usually applied to promote methane production and organics degradation through the possible means of enhancing direct...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 117959
SubjectTerms additives
adsorption
anaerobic digesters
Anaerobic digestion
biochar
electron transfer
Hydrogenophaga
methane production
methanogens
Methanosaeta
Methanosarcina
microbial activity
Multicycles
Natural stable isotopic signature
Redox property
Solid waste
Syntrophic
zeolites
Title Ability of biochar to facilitate anaerobic digestion is restricted to stressed surroundings
URI https://dx.doi.org/10.1016/j.jclepro.2019.117959
https://www.proquest.com/docview/2335138338
Volume 238
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DL3oQP3F-jAheu3VNmrbHMRxTcRcdDDyENEmhQ9qxdQcv_u2-14_5gTDw1pYklJfkvd_7JuQWEH0CYrzvRIYbh1tPOIp52hFMxMYwhOSYO_w0EeMpf5j5sxYZNrkwGFZZ8_6Kp5fcuv7Sq6nZW6Rp7xktWMJHDYChO3CGGew8wLC-7scmzKMfuFUlZjR34eivLJ7evDuHxYBRYYRXhO7LCEuW_i2ffnHqUvyMDslBjRvpoPq1I9Ky2THZ_1ZN8IS8DspA13eaJzROc8ynokVOE6WrStyWqkxZrLukqSn9SrAnNF1RbM8B7BCwJ46vskfgebVeLrHpEtrST8l0dPcyHDt17wRHc-4XIHiSKGEBCiahtHCDxAdFo2-ZNSIQ2igLONHjCtQh7SZx7IZwUX0GBLAAiLRmZ2QnyzN7Tqjy3NjzGajRPuPCmIgZEVnPhIi1DGNtwhuKSV0XFsf-Fm-yiSCby5rQEgktK0K3SXczbVFV1tg2IWy2Q_44IhK4_7apN832Sbg-6BNRmc3XK-kx5vdBS2fhxf-XvyR7-IYpip57RXaK5dpeA1Yp4k55GDtkd3D_OJ58AvMf6Tg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60PagH8Yn1uYLX2DS72TTHIkprtRcVCh6Wze4GWiQpfRz89840SX0gCN5Ckglhdnfmm52ZbwGuENGn6MZbXmyF9YQLpKd5YDzJZWItJ0hOvcOPA9l9EffDcLgGN1UvDJVVlra_sOlLa13eaZbabE5Go-YT7WDJkCIATunA4TrUiZ1K1KDe6fW7g1UyIfILMmba8SKBz0ae5vh6jN9DW0VFXjFlMGNiLf3dRf0w1ksPdLcD2yV0ZJ3i73ZhzWV7sPWFUHAfXjvLWtd3lqcsGeXUUsXmOUu1Kci4HdOZdkS9ZJhdppZwWNhoxuiEDrSICD_p_aKBBK9ni-mUzl2i7fQDeLm7fb7peuXxCZ4RIpyj70njlEfkm6Q20o_SEGONluPOykgaqx1CxUBojIiMnyaJ38a1GnJUgENMZAw_hFqWZ-4ImA78JAg5RtIhF9LamFsZu8C2CW5ZzhsgKo0pU3KL0xEXb6oqIhurUtGKFK0KRTfgeiU2Kcg1_hJoV8Ohvs0ShQ7gL9HLavgUriBKi-jM5YuZCjgPWxio8_bx_z9_ARvd58cH9dAb9E9gk55Qx2Lgn0JtPl24M4Qu8-S8nJof9O_r6Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ability+of+biochar+to+facilitate+anaerobic+digestion+is+restricted+to+stressed+surroundings&rft.jtitle=Journal+of+cleaner+production&rft.au=Shao%2C+Liming&rft.au=Li%2C+Shasha&rft.au=Cai%2C+Jiao&rft.au=He%2C+Pinjing&rft.date=2019-11-20&rft.pub=Elsevier+Ltd&rft.issn=0959-6526&rft.eissn=1879-1786&rft.volume=238&rft_id=info:doi/10.1016%2Fj.jclepro.2019.117959&rft.externalDocID=S095965261932829X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon