Volume integral equation method for multiple circular and elliptical inclusion problems in antiplane elastostatics
A Volume Integral Equation Method (VIEM) is introduced for the solution of elastostatic problems in an unbounded isotropic elastic solid containing interacting multiple isotropic and anisotropic circular/elliptical inclusions subject to remote antiplane shear. This method is applied to two-dimension...
Saved in:
Published in | Composites. Part B, Engineering Vol. 43; no. 3; pp. 1224 - 1243 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.04.2012
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1359-8368 1879-1069 |
DOI | 10.1016/j.compositesb.2011.11.066 |
Cover
Abstract | A Volume Integral Equation Method (VIEM) is introduced for the solution of elastostatic problems in an unbounded isotropic elastic solid containing interacting multiple isotropic and anisotropic circular/elliptical inclusions subject to remote antiplane shear. This method is applied to two-dimensional problems involving long parallel cylindrical inclusions. A detailed analysis of the stress field at the interface between the matrix and the central inclusion is carried out for square and hexagonal packing of isotropic and anisotropic inclusions. The effects of the number of isotropic and anisotropic inclusions and various fiber volume fractions on the stress field at the interface between the matrix and the central circular/elliptical inclusion are also investigated in detail. The accuracy of the method is validated by solving single isotropic and orthotropic circular/elliptical inclusion problems and multiple isotropic circular and elliptical inclusion problems for which solutions are available in the literature. |
---|---|
AbstractList | A Volume Integral Equation Method (VIEM) is introduced for the solution of elastostatic problems in an unbounded isotropic elastic solid containing interacting multiple isotropic and anisotropic circular/elliptical inclusions subject to remote antiplane shear. This method is applied to two-dimensional problems involving long parallel cylindrical inclusions. A detailed analysis of the stress field at the interface between the matrix and the central inclusion is carried out for square and hexagonal packing of isotropic and anisotropic inclusions. The effects of the number of isotropic and anisotropic inclusions and various fiber volume fractions on the stress field at the interface between the matrix and the central circular/elliptical inclusion are also investigated in detail. The accuracy of the method is validated by solving single isotropic and orthotropic circular/elliptical inclusion problems and multiple isotropic circular and elliptical inclusion problems for which solutions are available in the literature. |
Author | Kim, Hye-Ran Lee, Jungki |
Author_xml | – sequence: 1 givenname: Jungki surname: Lee fullname: Lee, Jungki email: inq3jkl@wow.hongik.ac.kr organization: Department of Mechanical and Design Engineering, Hongik University, Jochiwon-Eup, Yeonki-Gun, Chungnam 339-701, Republic of Korea – sequence: 2 givenname: Hye-Ran surname: Kim fullname: Kim, Hye-Ran email: hkim7@wow.hongik.ac.kr organization: College of Business Management, Hongik University, Jochiwon-Eup, Yeonki-Gun, Chungnam 339-701, Republic of Korea |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25660631$$DView record in Pascal Francis |
BookMark | eNqNkVFrFTEQhYNUsK3-BtcHwZe9JrubbPZJ5FKtUPBB62uYzc7WXLLJNskW_PfO9VYQnwqBhPCdmTNzLthZiAEZeyP4TnCh3h92Ni5rzK5gHncNF2JHhyv1jJ0L3Q-14Go4o3crh1q3Sr9gFzkfOOedbJtzln5Evy1YuVDwLoGv8H6D4mKoFiw_41TNMVXL5otbPVbWJbt5SBWEqULv3VqcJZEL1m_5qFpTHD0umb4IOqogIKGQS8yFKtv8kj2fwWd89XhfsttPV9_31_XN189f9h9vatt1stS9FqJpJIyad6PU44gD70Q_jlx0ckLotOpBgRQWJo0aW2h7zRuJg-g0n8f2kr071SVP9xvmYhaXLbkmR3HLRqhey6bpB0Xo20cUMs0zJwjWZbMmt0D6ZRqpFFetIO7DibMp5pxwNtaVP-sqCZw3gptjKuZg_knFHFMxdCgVqjD8V-Fvk6doX5-0M0QDd4kc3n4jQHKCOhqbiP2JQNrrg8NksnUYLE4uoS1miu4JfX4DaV-9ZA |
CitedBy_id | crossref_primary_10_1016_j_aml_2021_107431 crossref_primary_10_1016_j_enganabound_2013_05_002 crossref_primary_10_1155_2015_809320 crossref_primary_10_1155_2013_942073 crossref_primary_10_1016_j_euromechsol_2013_09_008 crossref_primary_10_1177_0731684418796308 crossref_primary_10_1016_j_enganabound_2013_11_009 crossref_primary_10_1016_j_compositesb_2012_05_025 crossref_primary_10_1142_S021987621840025X crossref_primary_10_1007_s12206_022_1225_0 crossref_primary_10_3390_ma14226996 crossref_primary_10_1016_j_enganabound_2013_07_007 |
Cites_doi | 10.1007/BF00045701 10.1115/1.2787282 10.1016/0093-6413(95)00021-I 10.1007/s00466-010-0493-1 10.1007/s00466-009-0365-8 10.1023/A:1007698807293 10.1115/1.2338056 10.1115/1.2894041 10.1115/1.2787329 10.1093/imamat/3.4.376 10.1016/j.enganabound.2011.02.004 10.1016/S0020-7683(98)00023-7 10.2514/1.33983 10.1090/qam/1178429 10.1002/zamm.200700149 10.1115/1.2899477 10.1002/nme.1620211109 10.1098/rspa.1997.0136 10.1002/nme.1620320205 10.1016/j.enganabound.2005.08.013 10.1016/S0020-7683(98)00286-8 10.1016/S0020-7683(99)00174-2 |
ContentType | Journal Article |
Copyright | 2011 Elsevier Ltd 2014 INIST-CNRS |
Copyright_xml | – notice: 2011 Elsevier Ltd – notice: 2014 INIST-CNRS |
DBID | FBQ AAYXX CITATION IQODW 7S9 L.6 |
DOI | 10.1016/j.compositesb.2011.11.066 |
DatabaseName | AGRIS CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1879-1069 |
EndPage | 1243 |
ExternalDocumentID | 25660631 10_1016_j_compositesb_2011_11_066 US201500114914 S135983681100535X |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSM SST SSZ T5K VH1 ZMT ~02 ~G- AATTM AAXKI ABJNI ABWVN ACRPL ADNMO AEIPS AFJKZ ANKPU BNPGV FBQ SSH AAYWO AAYXX AFXIZ AGCQF AGQPQ AGRNS AIIUN APXCP CITATION EFKBS IQODW 7S9 L.6 |
ID | FETCH-LOGICAL-c445t-7811225ab804b58bbe90417bb0145dea4867a6a51cad8e8e3a378025e91480fb3 |
IEDL.DBID | AIKHN |
ISSN | 1359-8368 |
IngestDate | Fri Sep 05 06:33:15 EDT 2025 Mon Jul 21 09:12:09 EDT 2025 Tue Jul 01 01:25:04 EDT 2025 Thu Apr 24 23:04:06 EDT 2025 Thu Apr 03 09:46:01 EDT 2025 Fri Feb 23 02:49:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | C. Numerical analysis A. Fibres C. Computational modelling Volume Integral Equation Method (VIEM) B. Anisotropy Polymer Numerical simulation Modeling |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c445t-7811225ab804b58bbe90417bb0145dea4867a6a51cad8e8e3a378025e91480fb3 |
Notes | http://dx.doi.org/10.1016/j.compositesb.2011.11.066 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1678522796 |
PQPubID | 24069 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_1678522796 pascalfrancis_primary_25660631 crossref_citationtrail_10_1016_j_compositesb_2011_11_066 crossref_primary_10_1016_j_compositesb_2011_11_066 fao_agris_US201500114914 elsevier_sciencedirect_doi_10_1016_j_compositesb_2011_11_066 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-04-01 |
PublicationDateYYYYMMDD | 2012-04-01 |
PublicationDate_xml | – month: 04 year: 2012 text: 2012-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Composites. Part B, Engineering |
PublicationYear | 2012 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Chou (b0035) 1997; 64 Lu, Ye (b0120) 1991; 32 PATRAN User’s Manual, Version 7.0, MSC/PATRAN; 1998. Li, Han (b0115) 1985; 21 Ru, Schiavone (b0040) 1997; 453 Wang, Pan (b0085) 2008; 46 Wang, Pan (b0090) 2008; 88 Sendeckyj (b0015) 1971; 1 Lee, Ma (b0005) 1997; 64 Noda, Matsuo (b0060) 2000; 106 Lee, Ma (b0010) 1995; 67 Gong, Meguid (b0130) 1992; 59 Chao, Young (b0045) 1998; 35 Gong (b0030) 1995; 22 Mal, Singh (b0135) 1991 Honein, Honein, Herrmann (b0050) 2000; 37 Chen, Lee, Lee (b0080) 2010; 46 Chen, Wu (b0070) 2007; 74 Honein, Honein, Herrmann (b0025) 1992; 50 Buryachenko (b0105) 2007 Lee, Mal (b0100) 2011; 35 Honein, Honein, Herrmann (b0020) 1992; 59 Mal, Knopoff (b0095) 1967; 3 Chen, Lee (b0075) 2009; 44 Beskos DE, editor. Boundary element methods in structural analysis. New York: American Society of Civil Engineers, 1989. Chen, Shen, Wu (b0065) 2006; 30 Shen, Schiavone, Ru, Mioduchowski (b0055) 2000; 37 Chen (10.1016/j.compositesb.2011.11.066_b0080) 2010; 46 Noda (10.1016/j.compositesb.2011.11.066_b0060) 2000; 106 Chen (10.1016/j.compositesb.2011.11.066_b0075) 2009; 44 Sendeckyj (10.1016/j.compositesb.2011.11.066_b0015) 1971; 1 Gong (10.1016/j.compositesb.2011.11.066_b0130) 1992; 59 Honein (10.1016/j.compositesb.2011.11.066_b0050) 2000; 37 Li (10.1016/j.compositesb.2011.11.066_b0115) 1985; 21 Gong (10.1016/j.compositesb.2011.11.066_b0030) 1995; 22 Wang (10.1016/j.compositesb.2011.11.066_b0090) 2008; 88 Mal (10.1016/j.compositesb.2011.11.066_b0095) 1967; 3 Chao (10.1016/j.compositesb.2011.11.066_b0045) 1998; 35 Lu (10.1016/j.compositesb.2011.11.066_b0120) 1991; 32 Mal (10.1016/j.compositesb.2011.11.066_b0135) 1991 Lee (10.1016/j.compositesb.2011.11.066_b0010) 1995; 67 Shen (10.1016/j.compositesb.2011.11.066_b0055) 2000; 37 Chou (10.1016/j.compositesb.2011.11.066_b0035) 1997; 64 Lee (10.1016/j.compositesb.2011.11.066_b0005) 1997; 64 Ru (10.1016/j.compositesb.2011.11.066_b0040) 1997; 453 10.1016/j.compositesb.2011.11.066_b0110 Chen (10.1016/j.compositesb.2011.11.066_b0070) 2007; 74 Lee (10.1016/j.compositesb.2011.11.066_b0100) 2011; 35 Honein (10.1016/j.compositesb.2011.11.066_b0020) 1992; 59 Chen (10.1016/j.compositesb.2011.11.066_b0065) 2006; 30 Buryachenko (10.1016/j.compositesb.2011.11.066_b0105) 2007 Wang (10.1016/j.compositesb.2011.11.066_b0085) 2008; 46 Honein (10.1016/j.compositesb.2011.11.066_b0025) 1992; 50 10.1016/j.compositesb.2011.11.066_b0125 |
References_xml | – volume: 453 start-page: 2551 year: 1997 end-page: 2572 ident: b0040 article-title: A circular inclusion with circumferentially inhomogeneous interface in antiplane shear publication-title: Proc Roy Soc London A – volume: 50 start-page: 479 year: 1992 end-page: 499 ident: b0025 article-title: On two circular inclusions in harmonic problems publication-title: Q Appl Math – year: 2007 ident: b0105 article-title: Micromechanics of heterogeneous materials – volume: 44 start-page: 221 year: 2009 end-page: 232 ident: b0075 article-title: Torsional rigidity of a circular bar with multiple circular inclusions using a null field integral equations publication-title: Comput Mech – reference: PATRAN User’s Manual, Version 7.0, MSC/PATRAN; 1998. – volume: 35 start-page: 3573 year: 1998 end-page: 3593 ident: b0045 article-title: On the general treatment of multiple inclusions in antiplane elastostatics publication-title: Int J Solids Struct – volume: 64 start-page: 23 year: 1997 end-page: 31 ident: b0005 article-title: A volume integral equation technique for multiple inclusion and crack interaction problems publication-title: J Appl Mech – T ASME – year: 1991 ident: b0135 article-title: Deformation of elastic solids – volume: 37 start-page: 3667 year: 2000 end-page: 3679 ident: b0050 article-title: Energetics of two circular inclusions in anti-plane elastostatics publication-title: Int J Solids Struct – volume: 59 start-page: S131 year: 1992 end-page: S135 ident: b0130 article-title: A general treatment of the elastic field of an elliptical inhomogeneity under antiplane shear publication-title: J Appl Mech – T ASME – volume: 1 start-page: 83 year: 1971 end-page: 86 ident: b0015 article-title: Circular inclusion problems in longitudinal shear deformation publication-title: J Elasticity – volume: 46 start-page: 511 year: 2010 end-page: 519 ident: b0080 article-title: Torsional rigidity of a bar with multiple elliptical inclusions using a null-field integral approach publication-title: Comput Mech – volume: 88 start-page: 142 year: 2008 end-page: 150 ident: b0090 article-title: Antiplane shear deformations of an anisotropic elliptical inhomogeneity with imperfect or viscous interface publication-title: ZAMM-Z Angew Math Me – volume: 37 start-page: 4557 year: 2000 end-page: 4575 ident: b0055 article-title: An elliptic inclusion with imperfect interface in anti-plane shear publication-title: Int J Solids Struct – volume: 3 start-page: 376 year: 1967 end-page: 387 ident: b0095 article-title: Elastic wave velocities in two component systems publication-title: J Inst Math Appl – volume: 59 start-page: 774 year: 1992 end-page: 779 ident: b0020 article-title: Further aspects of the elastic field for two circular inclusions in antiplane elastostatics publication-title: J Appl Mech – T ASME – reference: Beskos DE, editor. Boundary element methods in structural analysis. New York: American Society of Civil Engineers, 1989. – volume: 64 start-page: 432 year: 1997 end-page: 435 ident: b0035 article-title: Stress field around holes in antiplane shear using complex variable boundary element method publication-title: J Appl Mech – T ASME – volume: 46 start-page: 764 year: 2008 end-page: 769 ident: b0085 article-title: Circular inhomogeneity with viscoelastic interface under antiplane shear publication-title: AIAA J – volume: 67 start-page: 135 year: 1995 end-page: 159 ident: b0010 article-title: A volume integral equation technique for multiple scattering problems in elastodynamics publication-title: Appl Math Comput – volume: 35 start-page: 915 year: 2011 end-page: 924 ident: b0100 article-title: Elastic analysis of a half-plane containing an inclusion and a void using a mixed volume and boundary integral equation method publication-title: Eng Anal Bound Elem – volume: 106 start-page: 81 year: 2000 end-page: 93 ident: b0060 article-title: Stress analysis of arbitrarily distributed elliptical inclusions under longitudinal shear loading publication-title: Int J Fracture – volume: 32 start-page: 295 year: 1991 end-page: 311 ident: b0120 article-title: Direct evaluation of singular integrals in elastoplastic analysis by the boundary element method publication-title: Int J Numer Meth Eng – volume: 74 start-page: 469 year: 2007 end-page: 487 ident: b0070 article-title: Null-field approach for the multi-inclusion problem under antiplane shears publication-title: J Appl Mech – T ASME – volume: 22 start-page: 257 year: 1995 end-page: 262 ident: b0030 article-title: Antiplane interaction among multiple circular inclusions publication-title: Mech Res Commun – volume: 21 start-page: 2071 year: 1985 end-page: 2098 ident: b0115 article-title: A new method for evaluating singular integrals in stress analysis of solids by the direct boundary element method publication-title: Int J Numer Meth Eng – volume: 30 start-page: 205 year: 2006 end-page: 217 ident: b0065 article-title: Null-field integral equations for stress field around circular holes under antiplane shear publication-title: Eng Anal Bound Elem – volume: 1 start-page: 83 year: 1971 ident: 10.1016/j.compositesb.2011.11.066_b0015 article-title: Circular inclusion problems in longitudinal shear deformation publication-title: J Elasticity doi: 10.1007/BF00045701 – volume: 64 start-page: 23 year: 1997 ident: 10.1016/j.compositesb.2011.11.066_b0005 article-title: A volume integral equation technique for multiple inclusion and crack interaction problems publication-title: J Appl Mech – T ASME doi: 10.1115/1.2787282 – volume: 22 start-page: 257 year: 1995 ident: 10.1016/j.compositesb.2011.11.066_b0030 article-title: Antiplane interaction among multiple circular inclusions publication-title: Mech Res Commun doi: 10.1016/0093-6413(95)00021-I – volume: 46 start-page: 511 year: 2010 ident: 10.1016/j.compositesb.2011.11.066_b0080 article-title: Torsional rigidity of a bar with multiple elliptical inclusions using a null-field integral approach publication-title: Comput Mech doi: 10.1007/s00466-010-0493-1 – volume: 67 start-page: 135 year: 1995 ident: 10.1016/j.compositesb.2011.11.066_b0010 article-title: A volume integral equation technique for multiple scattering problems in elastodynamics publication-title: Appl Math Comput – volume: 44 start-page: 221 issue: 2 year: 2009 ident: 10.1016/j.compositesb.2011.11.066_b0075 article-title: Torsional rigidity of a circular bar with multiple circular inclusions using a null field integral equations publication-title: Comput Mech doi: 10.1007/s00466-009-0365-8 – volume: 106 start-page: 81 year: 2000 ident: 10.1016/j.compositesb.2011.11.066_b0060 article-title: Stress analysis of arbitrarily distributed elliptical inclusions under longitudinal shear loading publication-title: Int J Fracture doi: 10.1023/A:1007698807293 – volume: 74 start-page: 469 year: 2007 ident: 10.1016/j.compositesb.2011.11.066_b0070 article-title: Null-field approach for the multi-inclusion problem under antiplane shears publication-title: J Appl Mech – T ASME doi: 10.1115/1.2338056 – ident: 10.1016/j.compositesb.2011.11.066_b0110 – volume: 59 start-page: 774 year: 1992 ident: 10.1016/j.compositesb.2011.11.066_b0020 article-title: Further aspects of the elastic field for two circular inclusions in antiplane elastostatics publication-title: J Appl Mech – T ASME doi: 10.1115/1.2894041 – volume: 64 start-page: 432 year: 1997 ident: 10.1016/j.compositesb.2011.11.066_b0035 article-title: Stress field around holes in antiplane shear using complex variable boundary element method publication-title: J Appl Mech – T ASME doi: 10.1115/1.2787329 – volume: 3 start-page: 376 year: 1967 ident: 10.1016/j.compositesb.2011.11.066_b0095 article-title: Elastic wave velocities in two component systems publication-title: J Inst Math Appl doi: 10.1093/imamat/3.4.376 – volume: 35 start-page: 915 issue: 7 year: 2011 ident: 10.1016/j.compositesb.2011.11.066_b0100 article-title: Elastic analysis of a half-plane containing an inclusion and a void using a mixed volume and boundary integral equation method publication-title: Eng Anal Bound Elem doi: 10.1016/j.enganabound.2011.02.004 – volume: 35 start-page: 3573 year: 1998 ident: 10.1016/j.compositesb.2011.11.066_b0045 article-title: On the general treatment of multiple inclusions in antiplane elastostatics publication-title: Int J Solids Struct doi: 10.1016/S0020-7683(98)00023-7 – volume: 46 start-page: 764 year: 2008 ident: 10.1016/j.compositesb.2011.11.066_b0085 article-title: Circular inhomogeneity with viscoelastic interface under antiplane shear publication-title: AIAA J doi: 10.2514/1.33983 – volume: 50 start-page: 479 year: 1992 ident: 10.1016/j.compositesb.2011.11.066_b0025 article-title: On two circular inclusions in harmonic problems publication-title: Q Appl Math doi: 10.1090/qam/1178429 – volume: 88 start-page: 142 issue: 2 year: 2008 ident: 10.1016/j.compositesb.2011.11.066_b0090 article-title: Antiplane shear deformations of an anisotropic elliptical inhomogeneity with imperfect or viscous interface publication-title: ZAMM-Z Angew Math Me doi: 10.1002/zamm.200700149 – ident: 10.1016/j.compositesb.2011.11.066_b0125 – volume: 59 start-page: S131 issue: S2 year: 1992 ident: 10.1016/j.compositesb.2011.11.066_b0130 article-title: A general treatment of the elastic field of an elliptical inhomogeneity under antiplane shear publication-title: J Appl Mech – T ASME doi: 10.1115/1.2899477 – volume: 21 start-page: 2071 year: 1985 ident: 10.1016/j.compositesb.2011.11.066_b0115 article-title: A new method for evaluating singular integrals in stress analysis of solids by the direct boundary element method publication-title: Int J Numer Meth Eng doi: 10.1002/nme.1620211109 – volume: 453 start-page: 2551 year: 1997 ident: 10.1016/j.compositesb.2011.11.066_b0040 article-title: A circular inclusion with circumferentially inhomogeneous interface in antiplane shear publication-title: Proc Roy Soc London A doi: 10.1098/rspa.1997.0136 – year: 2007 ident: 10.1016/j.compositesb.2011.11.066_b0105 – volume: 32 start-page: 295 year: 1991 ident: 10.1016/j.compositesb.2011.11.066_b0120 article-title: Direct evaluation of singular integrals in elastoplastic analysis by the boundary element method publication-title: Int J Numer Meth Eng doi: 10.1002/nme.1620320205 – year: 1991 ident: 10.1016/j.compositesb.2011.11.066_b0135 – volume: 30 start-page: 205 year: 2006 ident: 10.1016/j.compositesb.2011.11.066_b0065 article-title: Null-field integral equations for stress field around circular holes under antiplane shear publication-title: Eng Anal Bound Elem doi: 10.1016/j.enganabound.2005.08.013 – volume: 37 start-page: 3667 year: 2000 ident: 10.1016/j.compositesb.2011.11.066_b0050 article-title: Energetics of two circular inclusions in anti-plane elastostatics publication-title: Int J Solids Struct doi: 10.1016/S0020-7683(98)00286-8 – volume: 37 start-page: 4557 year: 2000 ident: 10.1016/j.compositesb.2011.11.066_b0055 article-title: An elliptic inclusion with imperfect interface in anti-plane shear publication-title: Int J Solids Struct doi: 10.1016/S0020-7683(99)00174-2 |
SSID | ssj0004532 |
Score | 2.0582745 |
Snippet | A Volume Integral Equation Method (VIEM) is introduced for the solution of elastostatic problems in an unbounded isotropic elastic solid containing interacting... |
SourceID | proquest pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1224 |
SubjectTerms | A. Fibres Applied sciences B. Anisotropy C. Computational modelling C. Numerical analysis composite materials Composites elasticity (mechanics) equations Exact sciences and technology Forms of application and semi-finished materials Laminates methodology Physicochemistry of polymers Polymer industry, paints, wood Technology of polymers Volume Integral Equation Method (VIEM) |
Title | Volume integral equation method for multiple circular and elliptical inclusion problems in antiplane elastostatics |
URI | https://dx.doi.org/10.1016/j.compositesb.2011.11.066 https://www.proquest.com/docview/1678522796 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NaxsxEB1iB0p7CEk_iPNhFOh1a2sl7cqQSwgJbktySV18E9KutjiYteu1r_ntmdnVJg7NIdCjFw3IetLMSHp6A_DVxl5hlC6iPE9lJLWn-11JzKnUCl24jHs6h7y5TcYT-WOqpjtw2b6FIVpl8P2NT6-9dfgyCKM5WM5mgztO4nMi0SR6poSadmA3FqNEdWH34vvP8e2WaHhdp4zaR2TwDs6eaV7E3CZ6lK9cI-hJmp61ZuKrYapT2AXxJ22FQ1g0tS_-ceN1bLreh72QVLKLpt8HsOPLj_BhS2rwE6x-126IBXmIOfN_G5Fv1tSQZpi8spZdyLLZquanMlvmjCQ7l_WRN1pn8w2dr7FQiKbCT9iIrGzpsanFZJIeKc2y6jNMrq9-XY6jUG8hyqRU64geneLytk4PpVPaOT8aSp46R1ePubckzmcTq3hmc-0RVitSjTmTR3T1sHDiC3TLRekPgdkCExuPoHtXSG75KPe4z3NpIazCcCh6oNvhNVkQI6eaGHPTss7uzRYyhpDBzYpBZHoQP5kuG0WOtxidtxiaF9PLYOR4i_kh4m7sH3S8ZnIX0zER7STxj_eg_2IyPPUJc0ncHAreg7N2dhhcunQfg4AsNpXhmCgoUnBMjv6ve8fwHn_FDaHoBLrr1cafYq60dn3ofHvg_bAiHgHQfhZU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7xkEp7qKCASB9gJK5L4tjOGqkXhIrC8wKpcrPGu14UFG3SbHLltzOzDwhqD0i9bjyS48-eGdufvwE4wm4wFKWzKE1jHWkb-H5XM3MqRmUzn8jA55A3t73-QF8OzXAFzpq3MEyrrH1_5dNLb11_adej2Z6ORu07yeJzqmdZ9MwoM1yFdW1UzLy-4ye5JBleVinj1hE3_wCHryQv5m0zOSoUvpLzZEXPUjHxn0FqNcMJsyexoAHMqsoXfznxMjKdb8LnOqUUp1Wvt2Al5F_g05LQ4DbMfpdOSNTiEGMR_lQS36KqIC0odRUNt1Ako1nJThWYp4IFO6flgTdZJ-MFn66JugxNQZ-oEVthHqgpUirJT5RGSbEDg_Nf92f9qK62ECVam3nET05pcaO3He2N9T6cdLSMveeLxzQgS_NhD41MMLWBQEUVW8qYAmFrO5lXu7CWT_KwBwIzSmsCQR58piXKkzTQLs_HmUJDwVC1wDbD65JaipwrYoxdwzl7dEvIOEaGtiqOkGlB98V0WulxvMfoZ4OhezO5HMWN95jvEe4OH8jtusFdlw-JeB9Jf7wF-28mw0ufKJOkraGSLThsZoejhcu3MQTIZFE4SWmCYf3G3tf_694BbPTvb67d9cXt1Tf4SL90K2rRd1ibzxbhB2VNc79fropnNQwXHw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Volume+integral+equation+method+for+multiple+circular+and+elliptical+inclusion+problems+in+antiplane+elastostatics&rft.jtitle=Composites.+Part+B%2C+Engineering&rft.au=Lee%2C+Jungki&rft.au=Kim%2C+Hye-Ran&rft.date=2012-04-01&rft.issn=1359-8368&rft.volume=43&rft.issue=3&rft.spage=1224&rft.epage=1243&rft_id=info:doi/10.1016%2Fj.compositesb.2011.11.066&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compositesb_2011_11_066 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-8368&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-8368&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-8368&client=summon |