Volume integral equation method for multiple circular and elliptical inclusion problems in antiplane elastostatics

A Volume Integral Equation Method (VIEM) is introduced for the solution of elastostatic problems in an unbounded isotropic elastic solid containing interacting multiple isotropic and anisotropic circular/elliptical inclusions subject to remote antiplane shear. This method is applied to two-dimension...

Full description

Saved in:
Bibliographic Details
Published inComposites. Part B, Engineering Vol. 43; no. 3; pp. 1224 - 1243
Main Authors Lee, Jungki, Kim, Hye-Ran
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.04.2012
Elsevier
Subjects
Online AccessGet full text
ISSN1359-8368
1879-1069
DOI10.1016/j.compositesb.2011.11.066

Cover

Abstract A Volume Integral Equation Method (VIEM) is introduced for the solution of elastostatic problems in an unbounded isotropic elastic solid containing interacting multiple isotropic and anisotropic circular/elliptical inclusions subject to remote antiplane shear. This method is applied to two-dimensional problems involving long parallel cylindrical inclusions. A detailed analysis of the stress field at the interface between the matrix and the central inclusion is carried out for square and hexagonal packing of isotropic and anisotropic inclusions. The effects of the number of isotropic and anisotropic inclusions and various fiber volume fractions on the stress field at the interface between the matrix and the central circular/elliptical inclusion are also investigated in detail. The accuracy of the method is validated by solving single isotropic and orthotropic circular/elliptical inclusion problems and multiple isotropic circular and elliptical inclusion problems for which solutions are available in the literature.
AbstractList A Volume Integral Equation Method (VIEM) is introduced for the solution of elastostatic problems in an unbounded isotropic elastic solid containing interacting multiple isotropic and anisotropic circular/elliptical inclusions subject to remote antiplane shear. This method is applied to two-dimensional problems involving long parallel cylindrical inclusions. A detailed analysis of the stress field at the interface between the matrix and the central inclusion is carried out for square and hexagonal packing of isotropic and anisotropic inclusions. The effects of the number of isotropic and anisotropic inclusions and various fiber volume fractions on the stress field at the interface between the matrix and the central circular/elliptical inclusion are also investigated in detail. The accuracy of the method is validated by solving single isotropic and orthotropic circular/elliptical inclusion problems and multiple isotropic circular and elliptical inclusion problems for which solutions are available in the literature.
Author Kim, Hye-Ran
Lee, Jungki
Author_xml – sequence: 1
  givenname: Jungki
  surname: Lee
  fullname: Lee, Jungki
  email: inq3jkl@wow.hongik.ac.kr
  organization: Department of Mechanical and Design Engineering, Hongik University, Jochiwon-Eup, Yeonki-Gun, Chungnam 339-701, Republic of Korea
– sequence: 2
  givenname: Hye-Ran
  surname: Kim
  fullname: Kim, Hye-Ran
  email: hkim7@wow.hongik.ac.kr
  organization: College of Business Management, Hongik University, Jochiwon-Eup, Yeonki-Gun, Chungnam 339-701, Republic of Korea
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25660631$$DView record in Pascal Francis
BookMark eNqNkVFrFTEQhYNUsK3-BtcHwZe9JrubbPZJ5FKtUPBB62uYzc7WXLLJNskW_PfO9VYQnwqBhPCdmTNzLthZiAEZeyP4TnCh3h92Ni5rzK5gHncNF2JHhyv1jJ0L3Q-14Go4o3crh1q3Sr9gFzkfOOedbJtzln5Evy1YuVDwLoGv8H6D4mKoFiw_41TNMVXL5otbPVbWJbt5SBWEqULv3VqcJZEL1m_5qFpTHD0umb4IOqogIKGQS8yFKtv8kj2fwWd89XhfsttPV9_31_XN189f9h9vatt1stS9FqJpJIyad6PU44gD70Q_jlx0ckLotOpBgRQWJo0aW2h7zRuJg-g0n8f2kr071SVP9xvmYhaXLbkmR3HLRqhey6bpB0Xo20cUMs0zJwjWZbMmt0D6ZRqpFFetIO7DibMp5pxwNtaVP-sqCZw3gptjKuZg_knFHFMxdCgVqjD8V-Fvk6doX5-0M0QDd4kc3n4jQHKCOhqbiP2JQNrrg8NksnUYLE4uoS1miu4JfX4DaV-9ZA
CitedBy_id crossref_primary_10_1016_j_aml_2021_107431
crossref_primary_10_1016_j_enganabound_2013_05_002
crossref_primary_10_1155_2015_809320
crossref_primary_10_1155_2013_942073
crossref_primary_10_1016_j_euromechsol_2013_09_008
crossref_primary_10_1177_0731684418796308
crossref_primary_10_1016_j_enganabound_2013_11_009
crossref_primary_10_1016_j_compositesb_2012_05_025
crossref_primary_10_1142_S021987621840025X
crossref_primary_10_1007_s12206_022_1225_0
crossref_primary_10_3390_ma14226996
crossref_primary_10_1016_j_enganabound_2013_07_007
Cites_doi 10.1007/BF00045701
10.1115/1.2787282
10.1016/0093-6413(95)00021-I
10.1007/s00466-010-0493-1
10.1007/s00466-009-0365-8
10.1023/A:1007698807293
10.1115/1.2338056
10.1115/1.2894041
10.1115/1.2787329
10.1093/imamat/3.4.376
10.1016/j.enganabound.2011.02.004
10.1016/S0020-7683(98)00023-7
10.2514/1.33983
10.1090/qam/1178429
10.1002/zamm.200700149
10.1115/1.2899477
10.1002/nme.1620211109
10.1098/rspa.1997.0136
10.1002/nme.1620320205
10.1016/j.enganabound.2005.08.013
10.1016/S0020-7683(98)00286-8
10.1016/S0020-7683(99)00174-2
ContentType Journal Article
Copyright 2011 Elsevier Ltd
2014 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier Ltd
– notice: 2014 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7S9
L.6
DOI 10.1016/j.compositesb.2011.11.066
DatabaseName AGRIS
CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1879-1069
EndPage 1243
ExternalDocumentID 25660631
10_1016_j_compositesb_2011_11_066
US201500114914
S135983681100535X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSM
SST
SSZ
T5K
VH1
ZMT
~02
~G-
AATTM
AAXKI
ABJNI
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
ANKPU
BNPGV
FBQ
SSH
AAYWO
AAYXX
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
APXCP
CITATION
EFKBS
IQODW
7S9
L.6
ID FETCH-LOGICAL-c445t-7811225ab804b58bbe90417bb0145dea4867a6a51cad8e8e3a378025e91480fb3
IEDL.DBID AIKHN
ISSN 1359-8368
IngestDate Fri Sep 05 06:33:15 EDT 2025
Mon Jul 21 09:12:09 EDT 2025
Tue Jul 01 01:25:04 EDT 2025
Thu Apr 24 23:04:06 EDT 2025
Thu Apr 03 09:46:01 EDT 2025
Fri Feb 23 02:49:11 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords C. Numerical analysis
A. Fibres
C. Computational modelling
Volume Integral Equation Method (VIEM)
B. Anisotropy
Polymer
Numerical simulation
Modeling
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-7811225ab804b58bbe90417bb0145dea4867a6a51cad8e8e3a378025e91480fb3
Notes http://dx.doi.org/10.1016/j.compositesb.2011.11.066
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1678522796
PQPubID 24069
PageCount 20
ParticipantIDs proquest_miscellaneous_1678522796
pascalfrancis_primary_25660631
crossref_citationtrail_10_1016_j_compositesb_2011_11_066
crossref_primary_10_1016_j_compositesb_2011_11_066
fao_agris_US201500114914
elsevier_sciencedirect_doi_10_1016_j_compositesb_2011_11_066
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-04-01
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Composites. Part B, Engineering
PublicationYear 2012
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Chou (b0035) 1997; 64
Lu, Ye (b0120) 1991; 32
PATRAN User’s Manual, Version 7.0, MSC/PATRAN; 1998.
Li, Han (b0115) 1985; 21
Ru, Schiavone (b0040) 1997; 453
Wang, Pan (b0085) 2008; 46
Wang, Pan (b0090) 2008; 88
Sendeckyj (b0015) 1971; 1
Lee, Ma (b0005) 1997; 64
Noda, Matsuo (b0060) 2000; 106
Lee, Ma (b0010) 1995; 67
Gong, Meguid (b0130) 1992; 59
Chao, Young (b0045) 1998; 35
Gong (b0030) 1995; 22
Mal, Singh (b0135) 1991
Honein, Honein, Herrmann (b0050) 2000; 37
Chen, Lee, Lee (b0080) 2010; 46
Chen, Wu (b0070) 2007; 74
Honein, Honein, Herrmann (b0025) 1992; 50
Buryachenko (b0105) 2007
Lee, Mal (b0100) 2011; 35
Honein, Honein, Herrmann (b0020) 1992; 59
Mal, Knopoff (b0095) 1967; 3
Chen, Lee (b0075) 2009; 44
Beskos DE, editor. Boundary element methods in structural analysis. New York: American Society of Civil Engineers, 1989.
Chen, Shen, Wu (b0065) 2006; 30
Shen, Schiavone, Ru, Mioduchowski (b0055) 2000; 37
Chen (10.1016/j.compositesb.2011.11.066_b0080) 2010; 46
Noda (10.1016/j.compositesb.2011.11.066_b0060) 2000; 106
Chen (10.1016/j.compositesb.2011.11.066_b0075) 2009; 44
Sendeckyj (10.1016/j.compositesb.2011.11.066_b0015) 1971; 1
Gong (10.1016/j.compositesb.2011.11.066_b0130) 1992; 59
Honein (10.1016/j.compositesb.2011.11.066_b0050) 2000; 37
Li (10.1016/j.compositesb.2011.11.066_b0115) 1985; 21
Gong (10.1016/j.compositesb.2011.11.066_b0030) 1995; 22
Wang (10.1016/j.compositesb.2011.11.066_b0090) 2008; 88
Mal (10.1016/j.compositesb.2011.11.066_b0095) 1967; 3
Chao (10.1016/j.compositesb.2011.11.066_b0045) 1998; 35
Lu (10.1016/j.compositesb.2011.11.066_b0120) 1991; 32
Mal (10.1016/j.compositesb.2011.11.066_b0135) 1991
Lee (10.1016/j.compositesb.2011.11.066_b0010) 1995; 67
Shen (10.1016/j.compositesb.2011.11.066_b0055) 2000; 37
Chou (10.1016/j.compositesb.2011.11.066_b0035) 1997; 64
Lee (10.1016/j.compositesb.2011.11.066_b0005) 1997; 64
Ru (10.1016/j.compositesb.2011.11.066_b0040) 1997; 453
10.1016/j.compositesb.2011.11.066_b0110
Chen (10.1016/j.compositesb.2011.11.066_b0070) 2007; 74
Lee (10.1016/j.compositesb.2011.11.066_b0100) 2011; 35
Honein (10.1016/j.compositesb.2011.11.066_b0020) 1992; 59
Chen (10.1016/j.compositesb.2011.11.066_b0065) 2006; 30
Buryachenko (10.1016/j.compositesb.2011.11.066_b0105) 2007
Wang (10.1016/j.compositesb.2011.11.066_b0085) 2008; 46
Honein (10.1016/j.compositesb.2011.11.066_b0025) 1992; 50
10.1016/j.compositesb.2011.11.066_b0125
References_xml – volume: 453
  start-page: 2551
  year: 1997
  end-page: 2572
  ident: b0040
  article-title: A circular inclusion with circumferentially inhomogeneous interface in antiplane shear
  publication-title: Proc Roy Soc London A
– volume: 50
  start-page: 479
  year: 1992
  end-page: 499
  ident: b0025
  article-title: On two circular inclusions in harmonic problems
  publication-title: Q Appl Math
– year: 2007
  ident: b0105
  article-title: Micromechanics of heterogeneous materials
– volume: 44
  start-page: 221
  year: 2009
  end-page: 232
  ident: b0075
  article-title: Torsional rigidity of a circular bar with multiple circular inclusions using a null field integral equations
  publication-title: Comput Mech
– reference: PATRAN User’s Manual, Version 7.0, MSC/PATRAN; 1998.
– volume: 35
  start-page: 3573
  year: 1998
  end-page: 3593
  ident: b0045
  article-title: On the general treatment of multiple inclusions in antiplane elastostatics
  publication-title: Int J Solids Struct
– volume: 64
  start-page: 23
  year: 1997
  end-page: 31
  ident: b0005
  article-title: A volume integral equation technique for multiple inclusion and crack interaction problems
  publication-title: J Appl Mech – T ASME
– year: 1991
  ident: b0135
  article-title: Deformation of elastic solids
– volume: 37
  start-page: 3667
  year: 2000
  end-page: 3679
  ident: b0050
  article-title: Energetics of two circular inclusions in anti-plane elastostatics
  publication-title: Int J Solids Struct
– volume: 59
  start-page: S131
  year: 1992
  end-page: S135
  ident: b0130
  article-title: A general treatment of the elastic field of an elliptical inhomogeneity under antiplane shear
  publication-title: J Appl Mech – T ASME
– volume: 1
  start-page: 83
  year: 1971
  end-page: 86
  ident: b0015
  article-title: Circular inclusion problems in longitudinal shear deformation
  publication-title: J Elasticity
– volume: 46
  start-page: 511
  year: 2010
  end-page: 519
  ident: b0080
  article-title: Torsional rigidity of a bar with multiple elliptical inclusions using a null-field integral approach
  publication-title: Comput Mech
– volume: 88
  start-page: 142
  year: 2008
  end-page: 150
  ident: b0090
  article-title: Antiplane shear deformations of an anisotropic elliptical inhomogeneity with imperfect or viscous interface
  publication-title: ZAMM-Z Angew Math Me
– volume: 37
  start-page: 4557
  year: 2000
  end-page: 4575
  ident: b0055
  article-title: An elliptic inclusion with imperfect interface in anti-plane shear
  publication-title: Int J Solids Struct
– volume: 3
  start-page: 376
  year: 1967
  end-page: 387
  ident: b0095
  article-title: Elastic wave velocities in two component systems
  publication-title: J Inst Math Appl
– volume: 59
  start-page: 774
  year: 1992
  end-page: 779
  ident: b0020
  article-title: Further aspects of the elastic field for two circular inclusions in antiplane elastostatics
  publication-title: J Appl Mech – T ASME
– reference: Beskos DE, editor. Boundary element methods in structural analysis. New York: American Society of Civil Engineers, 1989.
– volume: 64
  start-page: 432
  year: 1997
  end-page: 435
  ident: b0035
  article-title: Stress field around holes in antiplane shear using complex variable boundary element method
  publication-title: J Appl Mech – T ASME
– volume: 46
  start-page: 764
  year: 2008
  end-page: 769
  ident: b0085
  article-title: Circular inhomogeneity with viscoelastic interface under antiplane shear
  publication-title: AIAA J
– volume: 67
  start-page: 135
  year: 1995
  end-page: 159
  ident: b0010
  article-title: A volume integral equation technique for multiple scattering problems in elastodynamics
  publication-title: Appl Math Comput
– volume: 35
  start-page: 915
  year: 2011
  end-page: 924
  ident: b0100
  article-title: Elastic analysis of a half-plane containing an inclusion and a void using a mixed volume and boundary integral equation method
  publication-title: Eng Anal Bound Elem
– volume: 106
  start-page: 81
  year: 2000
  end-page: 93
  ident: b0060
  article-title: Stress analysis of arbitrarily distributed elliptical inclusions under longitudinal shear loading
  publication-title: Int J Fracture
– volume: 32
  start-page: 295
  year: 1991
  end-page: 311
  ident: b0120
  article-title: Direct evaluation of singular integrals in elastoplastic analysis by the boundary element method
  publication-title: Int J Numer Meth Eng
– volume: 74
  start-page: 469
  year: 2007
  end-page: 487
  ident: b0070
  article-title: Null-field approach for the multi-inclusion problem under antiplane shears
  publication-title: J Appl Mech – T ASME
– volume: 22
  start-page: 257
  year: 1995
  end-page: 262
  ident: b0030
  article-title: Antiplane interaction among multiple circular inclusions
  publication-title: Mech Res Commun
– volume: 21
  start-page: 2071
  year: 1985
  end-page: 2098
  ident: b0115
  article-title: A new method for evaluating singular integrals in stress analysis of solids by the direct boundary element method
  publication-title: Int J Numer Meth Eng
– volume: 30
  start-page: 205
  year: 2006
  end-page: 217
  ident: b0065
  article-title: Null-field integral equations for stress field around circular holes under antiplane shear
  publication-title: Eng Anal Bound Elem
– volume: 1
  start-page: 83
  year: 1971
  ident: 10.1016/j.compositesb.2011.11.066_b0015
  article-title: Circular inclusion problems in longitudinal shear deformation
  publication-title: J Elasticity
  doi: 10.1007/BF00045701
– volume: 64
  start-page: 23
  year: 1997
  ident: 10.1016/j.compositesb.2011.11.066_b0005
  article-title: A volume integral equation technique for multiple inclusion and crack interaction problems
  publication-title: J Appl Mech – T ASME
  doi: 10.1115/1.2787282
– volume: 22
  start-page: 257
  year: 1995
  ident: 10.1016/j.compositesb.2011.11.066_b0030
  article-title: Antiplane interaction among multiple circular inclusions
  publication-title: Mech Res Commun
  doi: 10.1016/0093-6413(95)00021-I
– volume: 46
  start-page: 511
  year: 2010
  ident: 10.1016/j.compositesb.2011.11.066_b0080
  article-title: Torsional rigidity of a bar with multiple elliptical inclusions using a null-field integral approach
  publication-title: Comput Mech
  doi: 10.1007/s00466-010-0493-1
– volume: 67
  start-page: 135
  year: 1995
  ident: 10.1016/j.compositesb.2011.11.066_b0010
  article-title: A volume integral equation technique for multiple scattering problems in elastodynamics
  publication-title: Appl Math Comput
– volume: 44
  start-page: 221
  issue: 2
  year: 2009
  ident: 10.1016/j.compositesb.2011.11.066_b0075
  article-title: Torsional rigidity of a circular bar with multiple circular inclusions using a null field integral equations
  publication-title: Comput Mech
  doi: 10.1007/s00466-009-0365-8
– volume: 106
  start-page: 81
  year: 2000
  ident: 10.1016/j.compositesb.2011.11.066_b0060
  article-title: Stress analysis of arbitrarily distributed elliptical inclusions under longitudinal shear loading
  publication-title: Int J Fracture
  doi: 10.1023/A:1007698807293
– volume: 74
  start-page: 469
  year: 2007
  ident: 10.1016/j.compositesb.2011.11.066_b0070
  article-title: Null-field approach for the multi-inclusion problem under antiplane shears
  publication-title: J Appl Mech – T ASME
  doi: 10.1115/1.2338056
– ident: 10.1016/j.compositesb.2011.11.066_b0110
– volume: 59
  start-page: 774
  year: 1992
  ident: 10.1016/j.compositesb.2011.11.066_b0020
  article-title: Further aspects of the elastic field for two circular inclusions in antiplane elastostatics
  publication-title: J Appl Mech – T ASME
  doi: 10.1115/1.2894041
– volume: 64
  start-page: 432
  year: 1997
  ident: 10.1016/j.compositesb.2011.11.066_b0035
  article-title: Stress field around holes in antiplane shear using complex variable boundary element method
  publication-title: J Appl Mech – T ASME
  doi: 10.1115/1.2787329
– volume: 3
  start-page: 376
  year: 1967
  ident: 10.1016/j.compositesb.2011.11.066_b0095
  article-title: Elastic wave velocities in two component systems
  publication-title: J Inst Math Appl
  doi: 10.1093/imamat/3.4.376
– volume: 35
  start-page: 915
  issue: 7
  year: 2011
  ident: 10.1016/j.compositesb.2011.11.066_b0100
  article-title: Elastic analysis of a half-plane containing an inclusion and a void using a mixed volume and boundary integral equation method
  publication-title: Eng Anal Bound Elem
  doi: 10.1016/j.enganabound.2011.02.004
– volume: 35
  start-page: 3573
  year: 1998
  ident: 10.1016/j.compositesb.2011.11.066_b0045
  article-title: On the general treatment of multiple inclusions in antiplane elastostatics
  publication-title: Int J Solids Struct
  doi: 10.1016/S0020-7683(98)00023-7
– volume: 46
  start-page: 764
  year: 2008
  ident: 10.1016/j.compositesb.2011.11.066_b0085
  article-title: Circular inhomogeneity with viscoelastic interface under antiplane shear
  publication-title: AIAA J
  doi: 10.2514/1.33983
– volume: 50
  start-page: 479
  year: 1992
  ident: 10.1016/j.compositesb.2011.11.066_b0025
  article-title: On two circular inclusions in harmonic problems
  publication-title: Q Appl Math
  doi: 10.1090/qam/1178429
– volume: 88
  start-page: 142
  issue: 2
  year: 2008
  ident: 10.1016/j.compositesb.2011.11.066_b0090
  article-title: Antiplane shear deformations of an anisotropic elliptical inhomogeneity with imperfect or viscous interface
  publication-title: ZAMM-Z Angew Math Me
  doi: 10.1002/zamm.200700149
– ident: 10.1016/j.compositesb.2011.11.066_b0125
– volume: 59
  start-page: S131
  issue: S2
  year: 1992
  ident: 10.1016/j.compositesb.2011.11.066_b0130
  article-title: A general treatment of the elastic field of an elliptical inhomogeneity under antiplane shear
  publication-title: J Appl Mech – T ASME
  doi: 10.1115/1.2899477
– volume: 21
  start-page: 2071
  year: 1985
  ident: 10.1016/j.compositesb.2011.11.066_b0115
  article-title: A new method for evaluating singular integrals in stress analysis of solids by the direct boundary element method
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.1620211109
– volume: 453
  start-page: 2551
  year: 1997
  ident: 10.1016/j.compositesb.2011.11.066_b0040
  article-title: A circular inclusion with circumferentially inhomogeneous interface in antiplane shear
  publication-title: Proc Roy Soc London A
  doi: 10.1098/rspa.1997.0136
– year: 2007
  ident: 10.1016/j.compositesb.2011.11.066_b0105
– volume: 32
  start-page: 295
  year: 1991
  ident: 10.1016/j.compositesb.2011.11.066_b0120
  article-title: Direct evaluation of singular integrals in elastoplastic analysis by the boundary element method
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.1620320205
– year: 1991
  ident: 10.1016/j.compositesb.2011.11.066_b0135
– volume: 30
  start-page: 205
  year: 2006
  ident: 10.1016/j.compositesb.2011.11.066_b0065
  article-title: Null-field integral equations for stress field around circular holes under antiplane shear
  publication-title: Eng Anal Bound Elem
  doi: 10.1016/j.enganabound.2005.08.013
– volume: 37
  start-page: 3667
  year: 2000
  ident: 10.1016/j.compositesb.2011.11.066_b0050
  article-title: Energetics of two circular inclusions in anti-plane elastostatics
  publication-title: Int J Solids Struct
  doi: 10.1016/S0020-7683(98)00286-8
– volume: 37
  start-page: 4557
  year: 2000
  ident: 10.1016/j.compositesb.2011.11.066_b0055
  article-title: An elliptic inclusion with imperfect interface in anti-plane shear
  publication-title: Int J Solids Struct
  doi: 10.1016/S0020-7683(99)00174-2
SSID ssj0004532
Score 2.0582745
Snippet A Volume Integral Equation Method (VIEM) is introduced for the solution of elastostatic problems in an unbounded isotropic elastic solid containing interacting...
SourceID proquest
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1224
SubjectTerms A. Fibres
Applied sciences
B. Anisotropy
C. Computational modelling
C. Numerical analysis
composite materials
Composites
elasticity (mechanics)
equations
Exact sciences and technology
Forms of application and semi-finished materials
Laminates
methodology
Physicochemistry of polymers
Polymer industry, paints, wood
Technology of polymers
Volume Integral Equation Method (VIEM)
Title Volume integral equation method for multiple circular and elliptical inclusion problems in antiplane elastostatics
URI https://dx.doi.org/10.1016/j.compositesb.2011.11.066
https://www.proquest.com/docview/1678522796
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NaxsxEB1iB0p7CEk_iPNhFOh1a2sl7cqQSwgJbktySV18E9KutjiYteu1r_ntmdnVJg7NIdCjFw3IetLMSHp6A_DVxl5hlC6iPE9lJLWn-11JzKnUCl24jHs6h7y5TcYT-WOqpjtw2b6FIVpl8P2NT6-9dfgyCKM5WM5mgztO4nMi0SR6poSadmA3FqNEdWH34vvP8e2WaHhdp4zaR2TwDs6eaV7E3CZ6lK9cI-hJmp61ZuKrYapT2AXxJ22FQ1g0tS_-ceN1bLreh72QVLKLpt8HsOPLj_BhS2rwE6x-126IBXmIOfN_G5Fv1tSQZpi8spZdyLLZquanMlvmjCQ7l_WRN1pn8w2dr7FQiKbCT9iIrGzpsanFZJIeKc2y6jNMrq9-XY6jUG8hyqRU64geneLytk4PpVPaOT8aSp46R1ePubckzmcTq3hmc-0RVitSjTmTR3T1sHDiC3TLRekPgdkCExuPoHtXSG75KPe4z3NpIazCcCh6oNvhNVkQI6eaGHPTss7uzRYyhpDBzYpBZHoQP5kuG0WOtxidtxiaF9PLYOR4i_kh4m7sH3S8ZnIX0zER7STxj_eg_2IyPPUJc0ncHAreg7N2dhhcunQfg4AsNpXhmCgoUnBMjv6ve8fwHn_FDaHoBLrr1cafYq60dn3ofHvg_bAiHgHQfhZU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7xkEp7qKCASB9gJK5L4tjOGqkXhIrC8wKpcrPGu14UFG3SbHLltzOzDwhqD0i9bjyS48-eGdufvwE4wm4wFKWzKE1jHWkb-H5XM3MqRmUzn8jA55A3t73-QF8OzXAFzpq3MEyrrH1_5dNLb11_adej2Z6ORu07yeJzqmdZ9MwoM1yFdW1UzLy-4ye5JBleVinj1hE3_wCHryQv5m0zOSoUvpLzZEXPUjHxn0FqNcMJsyexoAHMqsoXfznxMjKdb8LnOqUUp1Wvt2Al5F_g05LQ4DbMfpdOSNTiEGMR_lQS36KqIC0odRUNt1Ako1nJThWYp4IFO6flgTdZJ-MFn66JugxNQZ-oEVthHqgpUirJT5RGSbEDg_Nf92f9qK62ECVam3nET05pcaO3He2N9T6cdLSMveeLxzQgS_NhD41MMLWBQEUVW8qYAmFrO5lXu7CWT_KwBwIzSmsCQR58piXKkzTQLs_HmUJDwVC1wDbD65JaipwrYoxdwzl7dEvIOEaGtiqOkGlB98V0WulxvMfoZ4OhezO5HMWN95jvEe4OH8jtusFdlw-JeB9Jf7wF-28mw0ufKJOkraGSLThsZoejhcu3MQTIZFE4SWmCYf3G3tf_694BbPTvb67d9cXt1Tf4SL90K2rRd1ibzxbhB2VNc79fropnNQwXHw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Volume+integral+equation+method+for+multiple+circular+and+elliptical+inclusion+problems+in+antiplane+elastostatics&rft.jtitle=Composites.+Part+B%2C+Engineering&rft.au=Lee%2C+Jungki&rft.au=Kim%2C+Hye-Ran&rft.date=2012-04-01&rft.issn=1359-8368&rft.volume=43&rft.issue=3&rft.spage=1224&rft.epage=1243&rft_id=info:doi/10.1016%2Fj.compositesb.2011.11.066&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compositesb_2011_11_066
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-8368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-8368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-8368&client=summon