An MHD Modeling of the Successive X2.2 and X9.3 Solar Flares of 2017 September 6

The solar active region 12673 produced two successive X-class flares (X2.2 and X9.3) approximately 3 hr apart in 2017 September. The X9.3 flare was the largest recorded solar flare in Solar Cycle 24. In this study we perform a data-constrained magnetohydrodynamic simulation taking into account the o...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 914; no. 1; pp. 71 - 84
Main Authors Inoue, Satoshi, Bamba, Yumi
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 01.06.2021
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The solar active region 12673 produced two successive X-class flares (X2.2 and X9.3) approximately 3 hr apart in 2017 September. The X9.3 flare was the largest recorded solar flare in Solar Cycle 24. In this study we perform a data-constrained magnetohydrodynamic simulation taking into account the observed photospheric magnetic field to reveal the initiation and dynamics of the X2.2 and X9.3 flares. According to our simulation, the X2.2 flare is first triggered by magnetic reconnection at a local site where at the photosphere the negative polarity intrudes into the opposite-polarity region. This magnetic reconnection expels the innermost field lines upward, beneath which the magnetic flux rope is formed through continuous reconnection with external twisted field lines. Continuous magnetic reconnection after the X2.2 flare enhances the magnetic flux rope, which is lifted up and eventually erupts via the torus instability. This gives rise to the X9.3 flare.
AbstractList The solar active region 12673 produced two successive X-class flares (X2.2 and X9.3) approximately 3 hr apart in 2017 September. The X9.3 flare was the largest recorded solar flare in Solar Cycle 24. In this study we perform a data-constrained magnetohydrodynamic simulation taking into account the observed photospheric magnetic field to reveal the initiation and dynamics of the X2.2 and X9.3 flares. According to our simulation, the X2.2 flare is first triggered by magnetic reconnection at a local site where at the photosphere the negative polarity intrudes into the opposite-polarity region. This magnetic reconnection expels the innermost field lines upward, beneath which the magnetic flux rope is formed through continuous reconnection with external twisted field lines. Continuous magnetic reconnection after the X2.2 flare enhances the magnetic flux rope, which is lifted up and eventually erupts via the torus instability. This gives rise to the X9.3 flare.
Author Inoue, Satoshi
Bamba, Yumi
Author_xml – sequence: 1
  givenname: Satoshi
  orcidid: 0000-0001-5121-5122
  surname: Inoue
  fullname: Inoue, Satoshi
  organization: Nagoya University Institute for Space-Earth Environmental Research, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
– sequence: 2
  givenname: Yumi
  orcidid: 0000-0001-8385-8990
  surname: Bamba
  fullname: Bamba, Yumi
  organization: Nagoya University Institute for Advanced Research, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
BookMark eNp9kM1LAzEQxYNUsK3ePQb06Lb5zu6xVGuFFoUq9Bay2US3tJs12Qr-9-5SURD1MsMMv_dmeAPQq3xlATjHaERTJseY0zRhlMuxzl1K-RHof616oI8QYomgcn0CBjFuupFkWR88TCq4nF_DpS_stqyeoXewebFwtTfGxli-WbgmIwJ1VcB1NqJw5bc6wFlbbOxggrCEK1s3dpfbAMUpOHZ6G-3ZZx-Cp9nN43SeLO5v76aTRWIY400iMeWII0yFK_KCSiu4sdylaZYzlwmGciMK6VJDipzaXIjCSoY4k0ITYgSnQ3Bx8K2Df93b2KiN34eqPakIZ1QKLohsKXSgTPAxButUHcqdDu8KI9XlprqQVBeSOuTWSsQPiSkb3ZS-aoIut_8JLw_C0tffz-h6ozLMFFYSq7pwLXb1C_an6wfNXopD
CitedBy_id crossref_primary_10_1088_1674_4527_21_12_312
crossref_primary_10_1051_0004_6361_202346183
crossref_primary_10_1093_mnras_stad3292
crossref_primary_10_1093_pasj_psac072
crossref_primary_10_1051_0004_6361_202347895
crossref_primary_10_3847_2041_8213_ac31b7
crossref_primary_10_1051_0004_6361_202449731
crossref_primary_10_1360_N072023_0309
crossref_primary_10_3847_1538_4357_ac9df4
crossref_primary_10_1007_s11430_023_1402_3
crossref_primary_10_3847_1538_4357_ad088d
crossref_primary_10_1007_s41614_024_00166_3
crossref_primary_10_1016_j_xinn_2022_100236
crossref_primary_10_1088_1402_4896_acd3bb
crossref_primary_10_1093_pasj_psad027
Cites_doi 10.1051/0004-6361/201732530
10.3847/1538-4357/ab0200
10.1117/12.586032
10.1007/s11207-011-9841-3
10.1051/0004-6361/201935535
10.1007/s41116-019-0019-7
10.1007/s11207-018-1388-0
10.1051/0004-6361/201219311
10.1007/s11207-014-0529-3
10.3847/1538-4357/aaacd1
10.1007/s11207-011-9776-8
10.1088/0004-637X/780/1/101
10.3847/1538-4357/aaeacc
10.3847/0004-637X/818/2/148
10.3847/2041-8213/aa9476
10.3847/1538-4357/ab037a
10.1007/s11207-018-1318-1
10.3847/1538-4357/aaed26
10.1088/0305-4470/39/26/005
10.3847/1538-4357/ab6aa8
10.1186/s40645-016-0084-7
10.1006/jcph.2001.6961
10.1007/s11207-017-1214-0
10.12942/lrsp-2012-5
10.1038/s41467-017-02616-8
10.1088/0004-637X/778/1/48
10.3847/1538-4357/aaf3b7
10.1088/1367-2630/9/8/301
10.3847/1538-4357/ab822c
10.1103/PhysRevLett.96.255002
10.1088/0004-637X/718/1/433
10.1051/0004-6361:20031691
10.1086/312053
10.3847/2041-8213/aae826
10.3847/1538-4357/ab1be0
10.1007/s11207-006-2092-z
10.1051/0004-6361/201321164
10.1007/s001590100013
10.3847/1538-4357/ab6b1f
10.3847/1538-4357/abcfbb
10.3847/1538-4357/abb60e
10.3847/1538-4365/ab6216
10.3847/1538-4357/aae079
10.1126/science.aaz2511
10.1007/s11207-011-9834-2
10.1038/s41550-017-0085
10.3847/1538-4357/aaed48
10.3847/1538-4357/ab85ca
10.1007/BF00170988
10.3847/1538-4357/ab5582
10.1007/s11207-019-1446-2
10.3847/1538-4357/aab153
10.1088/0004-637X/788/2/182
10.1088/0004-637X/814/2/126
10.1007/s11430-017-9081-x
ContentType Journal Article
Copyright 2021. The American Astronomical Society. All rights reserved.
Copyright IOP Publishing Jun 01, 2021
Copyright_xml – notice: 2021. The American Astronomical Society. All rights reserved.
– notice: Copyright IOP Publishing Jun 01, 2021
DBID AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOI 10.3847/1538-4357/abf835
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4357
ExternalDocumentID 10_3847_1538_4357_abf835
apjabf835
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
WH7
XSW
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
ID FETCH-LOGICAL-c445t-7135050136fdbd37e65ce5f889b4f9640bc6d7f8c2db3eb66de7405476a22c653
IEDL.DBID IOP
ISSN 0004-637X
IngestDate Wed Aug 13 09:50:13 EDT 2025
Tue Jul 01 03:24:39 EDT 2025
Thu Apr 24 22:57:02 EDT 2025
Wed Aug 21 03:33:08 EDT 2024
Tue Aug 20 22:16:46 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-7135050136fdbd37e65ce5f889b4f9640bc6d7f8c2db3eb66de7405476a22c653
Notes AAS24801
The Sun and the Heliosphere
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8385-8990
0000-0001-5121-5122
OpenAccessLink https://iopscience.iop.org/article/10.3847/1538-4357/abf835/pdf
PQID 2543765627
PQPubID 4562441
PageCount 14
ParticipantIDs crossref_citationtrail_10_3847_1538_4357_abf835
proquest_journals_2543765627
iop_journals_10_3847_1538_4357_abf835
crossref_primary_10_3847_1538_4357_abf835
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2021
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Janvier (apjabf835bib21) 2013; 555
Bamba (apjabf835bib5) 2013; 778
Kusano (apjabf835bib26) 2020; 369
Clyne (apjabf835bib10) 2005; 5669
Zou (apjabf835bib56) 2019; 870
Scolini (apjabf835bib41) 2020; 247
Clyne (apjabf835bib9) 2007; 9
Inoue (apjabf835bib17) 2014; 788
Wu (apjabf835bib51) 2019; 294
Wiegelmann (apjabf835bib50) 2012; 9
Bamba (apjabf835bib4) 2018; 856
Lin (apjabf835bib28) 2020; 894
Olmedo (apjabf835bib34) 2010; 718
Vemareddy (apjabf835bib46) 2019; 872
Bateman (apjabf835bib6) 1978
Mitra (apjabf835bib33) 2018; 869
Inoue (apjabf835bib20) 2018; 867
Yang (apjabf835bib54) 2017; 849
Inoue (apjabf835bib16) 2016; 3
Dedner (apjabf835bib11) 2002; 175
Jiang (apjabf835bib23) 2018; 869
Zou (apjabf835bib57) 2020; 890
Wang (apjabf835bib48) 2018; 869
Inoue (apjabf835bib18) 2018; 9
Hou (apjabf835bib15) 2018; 619
Wiegelmann (apjabf835bib49) 2006; 233
Sakurai (apjabf835bib39) 1982; 76
Jenkins (apjabf835bib22) 2019; 873
Kliem (apjabf835bib25) 2006; 96
Lemen (apjabf835bib27) 2012; 275
Pesnell (apjabf835bib35) 2012; 275
Inoue (apjabf835bib19) 2014; 780
Bamba (apjabf835bib3) 2020; 894
Guo (apjabf835bib14) 2017; 60
Zuccarello (apjabf835bib58) 2015; 814
Liu (apjabf835bib29) 2018; 867
Threlfall (apjabf835bib42) 2018; 293
Gordovskyy (apjabf835bib12) 2020; 902
Lysenko (apjabf835bib32) 2019; 877
Scherrer (apjabf835bib40) 2012; 275
Amari (apjabf835bib1) 1999; 518
Wang (apjabf835bib47) 2017; 1
Yamasaki (apjabf835bib52) 2021; 908
Aulanier (apjabf835bib2) 2012; 543
Kang (apjabf835bib24) 2019; 887
Török (apjabf835bib45) 2004; 413
Yan (apjabf835bib53) 2018; 856
Priest (apjabf835bib37) 2002; 10
Bobra (apjabf835bib8) 2014; 289
Liu (apjabf835bib30) 2016; 818
Price (apjabf835bib36) 2019; 628
Berger (apjabf835bib7) 2006; 39
Romano (apjabf835bib38) 2019; 294
Toriumi (apjabf835bib44) 2019; 16
Toriumi (apjabf835bib43) 2020; 890
Lumme (apjabf835bib31) 2017; 292
References_xml – volume: 619
  start-page: A100
  year: 2018
  ident: apjabf835bib15
  publication-title: A&A
  doi: 10.1051/0004-6361/201732530
– volume: 872
  start-page: 182
  year: 2019
  ident: apjabf835bib46
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab0200
– volume: 5669
  start-page: 284
  year: 2005
  ident: apjabf835bib10
  publication-title: Proc. SPIE
  doi: 10.1117/12.586032
– volume: 275
  start-page: 3
  year: 2012
  ident: apjabf835bib35
  publication-title: SoPh
  doi: 10.1007/s11207-011-9841-3
– volume: 628
  start-page: A114
  year: 2019
  ident: apjabf835bib36
  publication-title: A&A
  doi: 10.1051/0004-6361/201935535
– volume: 16
  start-page: 3
  year: 2019
  ident: apjabf835bib44
  publication-title: LRSP
  doi: 10.1007/s41116-019-0019-7
– volume: 294
  start-page: 4
  year: 2019
  ident: apjabf835bib38
  publication-title: SoPh
  doi: 10.1007/s11207-018-1388-0
– volume: 543
  start-page: A110
  year: 2012
  ident: apjabf835bib2
  publication-title: A&A
  doi: 10.1051/0004-6361/201219311
– volume: 289
  start-page: 3549
  year: 2014
  ident: apjabf835bib8
  publication-title: SoPh
  doi: 10.1007/s11207-014-0529-3
– volume: 856
  start-page: 43
  year: 2018
  ident: apjabf835bib4
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaacd1
– volume: 275
  start-page: 17
  year: 2012
  ident: apjabf835bib27
  publication-title: SoPh
  doi: 10.1007/s11207-011-9776-8
– volume: 780
  start-page: 101
  year: 2014
  ident: apjabf835bib19
  publication-title: ApJ
  doi: 10.1088/0004-637X/780/1/101
– volume: 869
  start-page: 13
  year: 2018
  ident: apjabf835bib23
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaeacc
– volume: 818
  start-page: 148
  year: 2016
  ident: apjabf835bib30
  publication-title: ApJ
  doi: 10.3847/0004-637X/818/2/148
– volume: 849
  start-page: L21
  year: 2017
  ident: apjabf835bib54
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa9476
– volume: 873
  start-page: 49
  year: 2019
  ident: apjabf835bib22
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab037a
– volume: 293
  start-page: 98
  year: 2018
  ident: apjabf835bib42
  publication-title: SoPh
  doi: 10.1007/s11207-018-1318-1
– volume: 869
  start-page: 69
  year: 2018
  ident: apjabf835bib33
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaed26
– volume: 39
  start-page: 8321
  year: 2006
  ident: apjabf835bib7
  publication-title: JPhA
  doi: 10.1088/0305-4470/39/26/005
– volume: 890
  start-page: 10
  year: 2020
  ident: apjabf835bib57
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab6aa8
– volume: 3
  start-page: 19
  year: 2016
  ident: apjabf835bib16
  publication-title: PEPS
  doi: 10.1186/s40645-016-0084-7
– volume: 175
  start-page: 645
  year: 2002
  ident: apjabf835bib11
  publication-title: JCoPh
  doi: 10.1006/jcph.2001.6961
– volume: 292
  start-page: 191
  year: 2017
  ident: apjabf835bib31
  publication-title: SoPh
  doi: 10.1007/s11207-017-1214-0
– volume: 9
  start-page: 5
  year: 2012
  ident: apjabf835bib50
  publication-title: LRSP
  doi: 10.12942/lrsp-2012-5
– volume: 9
  start-page: 174
  year: 2018
  ident: apjabf835bib18
  publication-title: NatCo
  doi: 10.1038/s41467-017-02616-8
– volume: 778
  start-page: 48
  year: 2013
  ident: apjabf835bib5
  publication-title: ApJ
  doi: 10.1088/0004-637X/778/1/48
– year: 1978
  ident: apjabf835bib6
– volume: 870
  start-page: 97
  year: 2019
  ident: apjabf835bib56
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaf3b7
– volume: 9
  start-page: 301
  year: 2007
  ident: apjabf835bib9
  publication-title: NJPh
  doi: 10.1088/1367-2630/9/8/301
– volume: 894
  start-page: 20
  year: 2020
  ident: apjabf835bib28
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab822c
– volume: 96
  year: 2006
  ident: apjabf835bib25
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.96.255002
– volume: 718
  start-page: 433
  year: 2010
  ident: apjabf835bib34
  publication-title: ApJ
  doi: 10.1088/0004-637X/718/1/433
– volume: 413
  start-page: L27
  year: 2004
  ident: apjabf835bib45
  publication-title: A&A
  doi: 10.1051/0004-6361:20031691
– volume: 518
  start-page: L57
  year: 1999
  ident: apjabf835bib1
  publication-title: ApJL
  doi: 10.1086/312053
– volume: 867
  start-page: L5
  year: 2018
  ident: apjabf835bib29
  publication-title: ApJL
  doi: 10.3847/2041-8213/aae826
– volume: 877
  start-page: 145
  year: 2019
  ident: apjabf835bib32
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab1be0
– volume: 233
  start-page: 215
  year: 2006
  ident: apjabf835bib49
  publication-title: SoPh
  doi: 10.1007/s11207-006-2092-z
– volume: 555
  start-page: A77
  year: 2013
  ident: apjabf835bib21
  publication-title: A&A
  doi: 10.1051/0004-6361/201321164
– volume: 10
  start-page: 313
  year: 2002
  ident: apjabf835bib37
  publication-title: A&ARv
  doi: 10.1007/s001590100013
– volume: 890
  start-page: 103
  year: 2020
  ident: apjabf835bib43
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab6b1f
– volume: 908
  start-page: 132
  year: 2021
  ident: apjabf835bib52
  publication-title: ApJ
  doi: 10.3847/1538-4357/abcfbb
– volume: 902
  start-page: 147
  year: 2020
  ident: apjabf835bib12
  publication-title: ApJ
  doi: 10.3847/1538-4357/abb60e
– volume: 247
  start-page: 21
  year: 2020
  ident: apjabf835bib41
  publication-title: ApJS
  doi: 10.3847/1538-4365/ab6216
– volume: 867
  start-page: 83
  year: 2018
  ident: apjabf835bib20
  publication-title: ApJ
  doi: 10.3847/1538-4357/aae079
– volume: 369
  start-page: 587
  year: 2020
  ident: apjabf835bib26
  publication-title: Sci
  doi: 10.1126/science.aaz2511
– volume: 275
  start-page: 207
  year: 2012
  ident: apjabf835bib40
  publication-title: SoPh
  doi: 10.1007/s11207-011-9834-2
– volume: 1
  start-page: 0085
  year: 2017
  ident: apjabf835bib47
  publication-title: NatAs
  doi: 10.1038/s41550-017-0085
– volume: 869
  start-page: 90
  year: 2018
  ident: apjabf835bib48
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaed48
– volume: 894
  start-page: 29
  year: 2020
  ident: apjabf835bib3
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab85ca
– volume: 76
  start-page: 301
  year: 1982
  ident: apjabf835bib39
  publication-title: SoPh
  doi: 10.1007/BF00170988
– volume: 887
  start-page: 263
  year: 2019
  ident: apjabf835bib24
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab5582
– volume: 294
  start-page: 110
  year: 2019
  ident: apjabf835bib51
  publication-title: SoPh
  doi: 10.1007/s11207-019-1446-2
– volume: 856
  start-page: 79
  year: 2018
  ident: apjabf835bib53
  publication-title: ApJ
  doi: 10.3847/1538-4357/aab153
– volume: 788
  start-page: 182
  year: 2014
  ident: apjabf835bib17
  publication-title: ApJ
  doi: 10.1088/0004-637X/788/2/182
– volume: 814
  start-page: 126
  year: 2015
  ident: apjabf835bib58
  publication-title: ApJ
  doi: 10.1088/0004-637X/814/2/126
– volume: 60
  start-page: 1408
  year: 2017
  ident: apjabf835bib14
  publication-title: ScChD
  doi: 10.1007/s11430-017-9081-x
SSID ssj0004299
Score 2.4828327
SecondaryResourceType review_article
Snippet The solar active region 12673 produced two successive X-class flares (X2.2 and X9.3) approximately 3 hr apart in 2017 September. The X9.3 flare was the largest...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 71
SubjectTerms Astrophysics
Computational fluid dynamics
Fluid flow
Magnetic fields
Magnetic flux
Magnetic reconnection
Magnetism
Magnetohydrodynamic simulation
Magnetohydrodynamical simulations
Photosphere
Photospheric magnetic fields
Polarity
Solar active regions
Solar activity
Solar activity regions
Solar cycle
Solar flares
Solar magnetic fields
Toruses
Title An MHD Modeling of the Successive X2.2 and X9.3 Solar Flares of 2017 September 6
URI https://iopscience.iop.org/article/10.3847/1538-4357/abf835
https://www.proquest.com/docview/2543765627
Volume 914
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RUhceBRQF1rkAyBxSHbXduxYnFbAaoVUutJSkQOSFb8OULIRmz3Ar8cTZ1sVUIW4RHOYxMnYnvk8mQfAc2UDi4Y8ZBhDmPHau0yJ0mWGTakUItSyz3o__SAW5_x9VVR78PoyF2bdDqo_j2QqFJxEiPubRV067vdotPJyXJsQAcQ-3GJlNJyYvXe2vEqKpGrAvjwTTFbpH-Vfn3DNJu3Hcf9QzL21md-Dz7v3TEEmX_NtZ3L787cSjv_5Iffh7oBCySyxPoA93xzC0WyDfvH1tx_kJenp5PbYHMLtZaIewnLWkNPFW4I91DCTnawDiRiSrLZ958WoO0lFc0rqxpFK5Yys8OxM5heY54TMEQpIsvJt57EVCRGP4Hz-7uObRTZ0Zcgs50WXYU-_SYGl3oIzjkkvCuuLUJbK8KAEnxgrnAylpc4wb4RwXkZUyKWoKbWiYI_hoFk3_giIMoqbiStrVkfYxqzxVFDDXDBGTYyQIxjv5kXboWQ5ds640PHogiLUKEKNItRJhCN4dXlHm8p13MD7Is6MHvbs5ga-k2t8dftFqynXUy2nunVhBMe7xXLFhDUGZMTKVD75x2Gewh2K8TK9h-cYDrrvW38SAU9nnvULO17P2Kdf9cf0YQ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIhAXBAXUpS34QJE4ZD9sx44PHFYsqy2lZaWlIjcTx_YBlWzU3Qr1V_EXmUnSVhWo4tKbDxPt5tkz8-x45gG8MWUUmMhjQncIE1kEnxiV-cSJEddKxUI3Ve9Hx2p2Ij_lab4Bv69qYZZ1F_r7OGwbBbcQkn8LjKWDxkcxy-tB4SISiEHtY3er8jBc_MI92-r9wQQneJ_z6cevH2ZJJyuQlFKm64RE6YYp9SqL3nmhg0rLkMYsM05Go-TQlcrrmJXcOxGcUj5opDVSq4LzUpFMBMb8-6nA1IYO9EV8uy7E5Kbj2zJRQuftd9F__usbefAevutfyaDJcNMn8LijpmzcAvEUNkK1BdvjFR2WL39esLesGbdnIasteDBvR89gPq7Y0WzCSFiNytvZMjIklmxx3sgxYkBlOe9zVlSe5aYv2II21Gx6SsVPZIz8QLNFqNeB9EmYeg4nd4LpC9isllXYBmackW7os0IUyOVE6QJX3AkfnTNDp3QPBpfA2bLrY05yGqcW9zMEtSWoLUFtW6h78O7qibrt4XGL7T7Ohe0ceXWL3d4Nu6L-Yc1I2pHVI4sLsge7l7N5bUSNBzQSaK5f_ufPvIaH88nUfj44PtyBR5zu0zQnQLuwuT47D3tIiNbuVbMIGXy_61X_B56NEcU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+MHD+Modeling+of+the+Successive+X2.2+and+X9.3+Solar+Flares+of+2017+September+6&rft.jtitle=The+Astrophysical+journal&rft.au=Inoue%2C+Satoshi&rft.au=Bamba%2C+Yumi&rft.date=2021-06-01&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=914&rft.issue=1&rft.spage=71&rft_id=info:doi/10.3847%2F1538-4357%2Fabf835&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_4357_abf835
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon