An MHD Modeling of the Successive X2.2 and X9.3 Solar Flares of 2017 September 6
The solar active region 12673 produced two successive X-class flares (X2.2 and X9.3) approximately 3 hr apart in 2017 September. The X9.3 flare was the largest recorded solar flare in Solar Cycle 24. In this study we perform a data-constrained magnetohydrodynamic simulation taking into account the o...
Saved in:
Published in | The Astrophysical journal Vol. 914; no. 1; pp. 71 - 84 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
01.06.2021
IOP Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The solar active region 12673 produced two successive X-class flares (X2.2 and X9.3) approximately 3 hr apart in 2017 September. The X9.3 flare was the largest recorded solar flare in Solar Cycle 24. In this study we perform a data-constrained magnetohydrodynamic simulation taking into account the observed photospheric magnetic field to reveal the initiation and dynamics of the X2.2 and X9.3 flares. According to our simulation, the X2.2 flare is first triggered by magnetic reconnection at a local site where at the photosphere the negative polarity intrudes into the opposite-polarity region. This magnetic reconnection expels the innermost field lines upward, beneath which the magnetic flux rope is formed through continuous reconnection with external twisted field lines. Continuous magnetic reconnection after the X2.2 flare enhances the magnetic flux rope, which is lifted up and eventually erupts via the torus instability. This gives rise to the X9.3 flare. |
---|---|
AbstractList | The solar active region 12673 produced two successive X-class flares (X2.2 and X9.3) approximately 3 hr apart in 2017 September. The X9.3 flare was the largest recorded solar flare in Solar Cycle 24. In this study we perform a data-constrained magnetohydrodynamic simulation taking into account the observed photospheric magnetic field to reveal the initiation and dynamics of the X2.2 and X9.3 flares. According to our simulation, the X2.2 flare is first triggered by magnetic reconnection at a local site where at the photosphere the negative polarity intrudes into the opposite-polarity region. This magnetic reconnection expels the innermost field lines upward, beneath which the magnetic flux rope is formed through continuous reconnection with external twisted field lines. Continuous magnetic reconnection after the X2.2 flare enhances the magnetic flux rope, which is lifted up and eventually erupts via the torus instability. This gives rise to the X9.3 flare. |
Author | Inoue, Satoshi Bamba, Yumi |
Author_xml | – sequence: 1 givenname: Satoshi orcidid: 0000-0001-5121-5122 surname: Inoue fullname: Inoue, Satoshi organization: Nagoya University Institute for Space-Earth Environmental Research, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan – sequence: 2 givenname: Yumi orcidid: 0000-0001-8385-8990 surname: Bamba fullname: Bamba, Yumi organization: Nagoya University Institute for Advanced Research, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan |
BookMark | eNp9kM1LAzEQxYNUsK3ePQb06Lb5zu6xVGuFFoUq9Bay2US3tJs12Qr-9-5SURD1MsMMv_dmeAPQq3xlATjHaERTJseY0zRhlMuxzl1K-RHof616oI8QYomgcn0CBjFuupFkWR88TCq4nF_DpS_stqyeoXewebFwtTfGxli-WbgmIwJ1VcB1NqJw5bc6wFlbbOxggrCEK1s3dpfbAMUpOHZ6G-3ZZx-Cp9nN43SeLO5v76aTRWIY400iMeWII0yFK_KCSiu4sdylaZYzlwmGciMK6VJDipzaXIjCSoY4k0ITYgSnQ3Bx8K2Df93b2KiN34eqPakIZ1QKLohsKXSgTPAxButUHcqdDu8KI9XlprqQVBeSOuTWSsQPiSkb3ZS-aoIut_8JLw_C0tffz-h6ozLMFFYSq7pwLXb1C_an6wfNXopD |
CitedBy_id | crossref_primary_10_1088_1674_4527_21_12_312 crossref_primary_10_1051_0004_6361_202346183 crossref_primary_10_1093_mnras_stad3292 crossref_primary_10_1093_pasj_psac072 crossref_primary_10_1051_0004_6361_202347895 crossref_primary_10_3847_2041_8213_ac31b7 crossref_primary_10_1051_0004_6361_202449731 crossref_primary_10_1360_N072023_0309 crossref_primary_10_3847_1538_4357_ac9df4 crossref_primary_10_1007_s11430_023_1402_3 crossref_primary_10_3847_1538_4357_ad088d crossref_primary_10_1007_s41614_024_00166_3 crossref_primary_10_1016_j_xinn_2022_100236 crossref_primary_10_1088_1402_4896_acd3bb crossref_primary_10_1093_pasj_psad027 |
Cites_doi | 10.1051/0004-6361/201732530 10.3847/1538-4357/ab0200 10.1117/12.586032 10.1007/s11207-011-9841-3 10.1051/0004-6361/201935535 10.1007/s41116-019-0019-7 10.1007/s11207-018-1388-0 10.1051/0004-6361/201219311 10.1007/s11207-014-0529-3 10.3847/1538-4357/aaacd1 10.1007/s11207-011-9776-8 10.1088/0004-637X/780/1/101 10.3847/1538-4357/aaeacc 10.3847/0004-637X/818/2/148 10.3847/2041-8213/aa9476 10.3847/1538-4357/ab037a 10.1007/s11207-018-1318-1 10.3847/1538-4357/aaed26 10.1088/0305-4470/39/26/005 10.3847/1538-4357/ab6aa8 10.1186/s40645-016-0084-7 10.1006/jcph.2001.6961 10.1007/s11207-017-1214-0 10.12942/lrsp-2012-5 10.1038/s41467-017-02616-8 10.1088/0004-637X/778/1/48 10.3847/1538-4357/aaf3b7 10.1088/1367-2630/9/8/301 10.3847/1538-4357/ab822c 10.1103/PhysRevLett.96.255002 10.1088/0004-637X/718/1/433 10.1051/0004-6361:20031691 10.1086/312053 10.3847/2041-8213/aae826 10.3847/1538-4357/ab1be0 10.1007/s11207-006-2092-z 10.1051/0004-6361/201321164 10.1007/s001590100013 10.3847/1538-4357/ab6b1f 10.3847/1538-4357/abcfbb 10.3847/1538-4357/abb60e 10.3847/1538-4365/ab6216 10.3847/1538-4357/aae079 10.1126/science.aaz2511 10.1007/s11207-011-9834-2 10.1038/s41550-017-0085 10.3847/1538-4357/aaed48 10.3847/1538-4357/ab85ca 10.1007/BF00170988 10.3847/1538-4357/ab5582 10.1007/s11207-019-1446-2 10.3847/1538-4357/aab153 10.1088/0004-637X/788/2/182 10.1088/0004-637X/814/2/126 10.1007/s11430-017-9081-x |
ContentType | Journal Article |
Copyright | 2021. The American Astronomical Society. All rights reserved. Copyright IOP Publishing Jun 01, 2021 |
Copyright_xml | – notice: 2021. The American Astronomical Society. All rights reserved. – notice: Copyright IOP Publishing Jun 01, 2021 |
DBID | AAYXX CITATION 7TG 8FD H8D KL. L7M |
DOI | 10.3847/1538-4357/abf835 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1538-4357 |
ExternalDocumentID | 10_3847_1538_4357_abf835 apjabf835 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 WH7 XSW AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M |
ID | FETCH-LOGICAL-c445t-7135050136fdbd37e65ce5f889b4f9640bc6d7f8c2db3eb66de7405476a22c653 |
IEDL.DBID | IOP |
ISSN | 0004-637X |
IngestDate | Wed Aug 13 09:50:13 EDT 2025 Tue Jul 01 03:24:39 EDT 2025 Thu Apr 24 22:57:02 EDT 2025 Wed Aug 21 03:33:08 EDT 2024 Tue Aug 20 22:16:46 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c445t-7135050136fdbd37e65ce5f889b4f9640bc6d7f8c2db3eb66de7405476a22c653 |
Notes | AAS24801 The Sun and the Heliosphere ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8385-8990 0000-0001-5121-5122 |
OpenAccessLink | https://iopscience.iop.org/article/10.3847/1538-4357/abf835/pdf |
PQID | 2543765627 |
PQPubID | 4562441 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_3847_1538_4357_abf835 proquest_journals_2543765627 iop_journals_10_3847_1538_4357_abf835 crossref_primary_10_3847_1538_4357_abf835 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2021 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Janvier (apjabf835bib21) 2013; 555 Bamba (apjabf835bib5) 2013; 778 Kusano (apjabf835bib26) 2020; 369 Clyne (apjabf835bib10) 2005; 5669 Zou (apjabf835bib56) 2019; 870 Scolini (apjabf835bib41) 2020; 247 Clyne (apjabf835bib9) 2007; 9 Inoue (apjabf835bib17) 2014; 788 Wu (apjabf835bib51) 2019; 294 Wiegelmann (apjabf835bib50) 2012; 9 Bamba (apjabf835bib4) 2018; 856 Lin (apjabf835bib28) 2020; 894 Olmedo (apjabf835bib34) 2010; 718 Vemareddy (apjabf835bib46) 2019; 872 Bateman (apjabf835bib6) 1978 Mitra (apjabf835bib33) 2018; 869 Inoue (apjabf835bib20) 2018; 867 Yang (apjabf835bib54) 2017; 849 Inoue (apjabf835bib16) 2016; 3 Dedner (apjabf835bib11) 2002; 175 Jiang (apjabf835bib23) 2018; 869 Zou (apjabf835bib57) 2020; 890 Wang (apjabf835bib48) 2018; 869 Inoue (apjabf835bib18) 2018; 9 Hou (apjabf835bib15) 2018; 619 Wiegelmann (apjabf835bib49) 2006; 233 Sakurai (apjabf835bib39) 1982; 76 Jenkins (apjabf835bib22) 2019; 873 Kliem (apjabf835bib25) 2006; 96 Lemen (apjabf835bib27) 2012; 275 Pesnell (apjabf835bib35) 2012; 275 Inoue (apjabf835bib19) 2014; 780 Bamba (apjabf835bib3) 2020; 894 Guo (apjabf835bib14) 2017; 60 Zuccarello (apjabf835bib58) 2015; 814 Liu (apjabf835bib29) 2018; 867 Threlfall (apjabf835bib42) 2018; 293 Gordovskyy (apjabf835bib12) 2020; 902 Lysenko (apjabf835bib32) 2019; 877 Scherrer (apjabf835bib40) 2012; 275 Amari (apjabf835bib1) 1999; 518 Wang (apjabf835bib47) 2017; 1 Yamasaki (apjabf835bib52) 2021; 908 Aulanier (apjabf835bib2) 2012; 543 Kang (apjabf835bib24) 2019; 887 Török (apjabf835bib45) 2004; 413 Yan (apjabf835bib53) 2018; 856 Priest (apjabf835bib37) 2002; 10 Bobra (apjabf835bib8) 2014; 289 Liu (apjabf835bib30) 2016; 818 Price (apjabf835bib36) 2019; 628 Berger (apjabf835bib7) 2006; 39 Romano (apjabf835bib38) 2019; 294 Toriumi (apjabf835bib44) 2019; 16 Toriumi (apjabf835bib43) 2020; 890 Lumme (apjabf835bib31) 2017; 292 |
References_xml | – volume: 619 start-page: A100 year: 2018 ident: apjabf835bib15 publication-title: A&A doi: 10.1051/0004-6361/201732530 – volume: 872 start-page: 182 year: 2019 ident: apjabf835bib46 publication-title: ApJ doi: 10.3847/1538-4357/ab0200 – volume: 5669 start-page: 284 year: 2005 ident: apjabf835bib10 publication-title: Proc. SPIE doi: 10.1117/12.586032 – volume: 275 start-page: 3 year: 2012 ident: apjabf835bib35 publication-title: SoPh doi: 10.1007/s11207-011-9841-3 – volume: 628 start-page: A114 year: 2019 ident: apjabf835bib36 publication-title: A&A doi: 10.1051/0004-6361/201935535 – volume: 16 start-page: 3 year: 2019 ident: apjabf835bib44 publication-title: LRSP doi: 10.1007/s41116-019-0019-7 – volume: 294 start-page: 4 year: 2019 ident: apjabf835bib38 publication-title: SoPh doi: 10.1007/s11207-018-1388-0 – volume: 543 start-page: A110 year: 2012 ident: apjabf835bib2 publication-title: A&A doi: 10.1051/0004-6361/201219311 – volume: 289 start-page: 3549 year: 2014 ident: apjabf835bib8 publication-title: SoPh doi: 10.1007/s11207-014-0529-3 – volume: 856 start-page: 43 year: 2018 ident: apjabf835bib4 publication-title: ApJ doi: 10.3847/1538-4357/aaacd1 – volume: 275 start-page: 17 year: 2012 ident: apjabf835bib27 publication-title: SoPh doi: 10.1007/s11207-011-9776-8 – volume: 780 start-page: 101 year: 2014 ident: apjabf835bib19 publication-title: ApJ doi: 10.1088/0004-637X/780/1/101 – volume: 869 start-page: 13 year: 2018 ident: apjabf835bib23 publication-title: ApJ doi: 10.3847/1538-4357/aaeacc – volume: 818 start-page: 148 year: 2016 ident: apjabf835bib30 publication-title: ApJ doi: 10.3847/0004-637X/818/2/148 – volume: 849 start-page: L21 year: 2017 ident: apjabf835bib54 publication-title: ApJL doi: 10.3847/2041-8213/aa9476 – volume: 873 start-page: 49 year: 2019 ident: apjabf835bib22 publication-title: ApJ doi: 10.3847/1538-4357/ab037a – volume: 293 start-page: 98 year: 2018 ident: apjabf835bib42 publication-title: SoPh doi: 10.1007/s11207-018-1318-1 – volume: 869 start-page: 69 year: 2018 ident: apjabf835bib33 publication-title: ApJ doi: 10.3847/1538-4357/aaed26 – volume: 39 start-page: 8321 year: 2006 ident: apjabf835bib7 publication-title: JPhA doi: 10.1088/0305-4470/39/26/005 – volume: 890 start-page: 10 year: 2020 ident: apjabf835bib57 publication-title: ApJ doi: 10.3847/1538-4357/ab6aa8 – volume: 3 start-page: 19 year: 2016 ident: apjabf835bib16 publication-title: PEPS doi: 10.1186/s40645-016-0084-7 – volume: 175 start-page: 645 year: 2002 ident: apjabf835bib11 publication-title: JCoPh doi: 10.1006/jcph.2001.6961 – volume: 292 start-page: 191 year: 2017 ident: apjabf835bib31 publication-title: SoPh doi: 10.1007/s11207-017-1214-0 – volume: 9 start-page: 5 year: 2012 ident: apjabf835bib50 publication-title: LRSP doi: 10.12942/lrsp-2012-5 – volume: 9 start-page: 174 year: 2018 ident: apjabf835bib18 publication-title: NatCo doi: 10.1038/s41467-017-02616-8 – volume: 778 start-page: 48 year: 2013 ident: apjabf835bib5 publication-title: ApJ doi: 10.1088/0004-637X/778/1/48 – year: 1978 ident: apjabf835bib6 – volume: 870 start-page: 97 year: 2019 ident: apjabf835bib56 publication-title: ApJ doi: 10.3847/1538-4357/aaf3b7 – volume: 9 start-page: 301 year: 2007 ident: apjabf835bib9 publication-title: NJPh doi: 10.1088/1367-2630/9/8/301 – volume: 894 start-page: 20 year: 2020 ident: apjabf835bib28 publication-title: ApJ doi: 10.3847/1538-4357/ab822c – volume: 96 year: 2006 ident: apjabf835bib25 publication-title: PhRvL doi: 10.1103/PhysRevLett.96.255002 – volume: 718 start-page: 433 year: 2010 ident: apjabf835bib34 publication-title: ApJ doi: 10.1088/0004-637X/718/1/433 – volume: 413 start-page: L27 year: 2004 ident: apjabf835bib45 publication-title: A&A doi: 10.1051/0004-6361:20031691 – volume: 518 start-page: L57 year: 1999 ident: apjabf835bib1 publication-title: ApJL doi: 10.1086/312053 – volume: 867 start-page: L5 year: 2018 ident: apjabf835bib29 publication-title: ApJL doi: 10.3847/2041-8213/aae826 – volume: 877 start-page: 145 year: 2019 ident: apjabf835bib32 publication-title: ApJ doi: 10.3847/1538-4357/ab1be0 – volume: 233 start-page: 215 year: 2006 ident: apjabf835bib49 publication-title: SoPh doi: 10.1007/s11207-006-2092-z – volume: 555 start-page: A77 year: 2013 ident: apjabf835bib21 publication-title: A&A doi: 10.1051/0004-6361/201321164 – volume: 10 start-page: 313 year: 2002 ident: apjabf835bib37 publication-title: A&ARv doi: 10.1007/s001590100013 – volume: 890 start-page: 103 year: 2020 ident: apjabf835bib43 publication-title: ApJ doi: 10.3847/1538-4357/ab6b1f – volume: 908 start-page: 132 year: 2021 ident: apjabf835bib52 publication-title: ApJ doi: 10.3847/1538-4357/abcfbb – volume: 902 start-page: 147 year: 2020 ident: apjabf835bib12 publication-title: ApJ doi: 10.3847/1538-4357/abb60e – volume: 247 start-page: 21 year: 2020 ident: apjabf835bib41 publication-title: ApJS doi: 10.3847/1538-4365/ab6216 – volume: 867 start-page: 83 year: 2018 ident: apjabf835bib20 publication-title: ApJ doi: 10.3847/1538-4357/aae079 – volume: 369 start-page: 587 year: 2020 ident: apjabf835bib26 publication-title: Sci doi: 10.1126/science.aaz2511 – volume: 275 start-page: 207 year: 2012 ident: apjabf835bib40 publication-title: SoPh doi: 10.1007/s11207-011-9834-2 – volume: 1 start-page: 0085 year: 2017 ident: apjabf835bib47 publication-title: NatAs doi: 10.1038/s41550-017-0085 – volume: 869 start-page: 90 year: 2018 ident: apjabf835bib48 publication-title: ApJ doi: 10.3847/1538-4357/aaed48 – volume: 894 start-page: 29 year: 2020 ident: apjabf835bib3 publication-title: ApJ doi: 10.3847/1538-4357/ab85ca – volume: 76 start-page: 301 year: 1982 ident: apjabf835bib39 publication-title: SoPh doi: 10.1007/BF00170988 – volume: 887 start-page: 263 year: 2019 ident: apjabf835bib24 publication-title: ApJ doi: 10.3847/1538-4357/ab5582 – volume: 294 start-page: 110 year: 2019 ident: apjabf835bib51 publication-title: SoPh doi: 10.1007/s11207-019-1446-2 – volume: 856 start-page: 79 year: 2018 ident: apjabf835bib53 publication-title: ApJ doi: 10.3847/1538-4357/aab153 – volume: 788 start-page: 182 year: 2014 ident: apjabf835bib17 publication-title: ApJ doi: 10.1088/0004-637X/788/2/182 – volume: 814 start-page: 126 year: 2015 ident: apjabf835bib58 publication-title: ApJ doi: 10.1088/0004-637X/814/2/126 – volume: 60 start-page: 1408 year: 2017 ident: apjabf835bib14 publication-title: ScChD doi: 10.1007/s11430-017-9081-x |
SSID | ssj0004299 |
Score | 2.4828327 |
SecondaryResourceType | review_article |
Snippet | The solar active region 12673 produced two successive X-class flares (X2.2 and X9.3) approximately 3 hr apart in 2017 September. The X9.3 flare was the largest... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 71 |
SubjectTerms | Astrophysics Computational fluid dynamics Fluid flow Magnetic fields Magnetic flux Magnetic reconnection Magnetism Magnetohydrodynamic simulation Magnetohydrodynamical simulations Photosphere Photospheric magnetic fields Polarity Solar active regions Solar activity Solar activity regions Solar cycle Solar flares Solar magnetic fields Toruses |
Title | An MHD Modeling of the Successive X2.2 and X9.3 Solar Flares of 2017 September 6 |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/abf835 https://www.proquest.com/docview/2543765627 |
Volume | 914 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RUhceBRQF1rkAyBxSHbXduxYnFbAaoVUutJSkQOSFb8OULIRmz3Ar8cTZ1sVUIW4RHOYxMnYnvk8mQfAc2UDi4Y8ZBhDmPHau0yJ0mWGTakUItSyz3o__SAW5_x9VVR78PoyF2bdDqo_j2QqFJxEiPubRV067vdotPJyXJsQAcQ-3GJlNJyYvXe2vEqKpGrAvjwTTFbpH-Vfn3DNJu3Hcf9QzL21md-Dz7v3TEEmX_NtZ3L787cSjv_5Iffh7oBCySyxPoA93xzC0WyDfvH1tx_kJenp5PbYHMLtZaIewnLWkNPFW4I91DCTnawDiRiSrLZ958WoO0lFc0rqxpFK5Yys8OxM5heY54TMEQpIsvJt57EVCRGP4Hz-7uObRTZ0Zcgs50WXYU-_SYGl3oIzjkkvCuuLUJbK8KAEnxgrnAylpc4wb4RwXkZUyKWoKbWiYI_hoFk3_giIMoqbiStrVkfYxqzxVFDDXDBGTYyQIxjv5kXboWQ5ds640PHogiLUKEKNItRJhCN4dXlHm8p13MD7Is6MHvbs5ga-k2t8dftFqynXUy2nunVhBMe7xXLFhDUGZMTKVD75x2Gewh2K8TK9h-cYDrrvW38SAU9nnvULO17P2Kdf9cf0YQ |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIhAXBAXUpS34QJE4ZD9sx44PHFYsqy2lZaWlIjcTx_YBlWzU3Qr1V_EXmUnSVhWo4tKbDxPt5tkz8-x45gG8MWUUmMhjQncIE1kEnxiV-cSJEddKxUI3Ve9Hx2p2Ij_lab4Bv69qYZZ1F_r7OGwbBbcQkn8LjKWDxkcxy-tB4SISiEHtY3er8jBc_MI92-r9wQQneJ_z6cevH2ZJJyuQlFKm64RE6YYp9SqL3nmhg0rLkMYsM05Go-TQlcrrmJXcOxGcUj5opDVSq4LzUpFMBMb8-6nA1IYO9EV8uy7E5Kbj2zJRQuftd9F__usbefAevutfyaDJcNMn8LijpmzcAvEUNkK1BdvjFR2WL39esLesGbdnIasteDBvR89gPq7Y0WzCSFiNytvZMjIklmxx3sgxYkBlOe9zVlSe5aYv2II21Gx6SsVPZIz8QLNFqNeB9EmYeg4nd4LpC9isllXYBmackW7os0IUyOVE6QJX3AkfnTNDp3QPBpfA2bLrY05yGqcW9zMEtSWoLUFtW6h78O7qibrt4XGL7T7Ohe0ceXWL3d4Nu6L-Yc1I2pHVI4sLsge7l7N5bUSNBzQSaK5f_ufPvIaH88nUfj44PtyBR5zu0zQnQLuwuT47D3tIiNbuVbMIGXy_61X_B56NEcU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+MHD+Modeling+of+the+Successive+X2.2+and+X9.3+Solar+Flares+of+2017+September+6&rft.jtitle=The+Astrophysical+journal&rft.au=Inoue%2C+Satoshi&rft.au=Bamba%2C+Yumi&rft.date=2021-06-01&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=914&rft.issue=1&rft.spage=71&rft_id=info:doi/10.3847%2F1538-4357%2Fabf835&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_4357_abf835 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |