Resistance to aztreonam-avibactam due to CTX-M-15 in the presence of penicillin-binding protein 3 with extra amino acids in Escherichia coli
Aztreonam-avibactam is a promising combination to treat carbapenem-resistant Enterobacterales including coverage for metallo-β-lactamases. Escherichia coli strains resistant to aztreonam-avibactam have emerged but resistance mechanisms remain to be elucidated. We performed a study to investigate the...
Saved in:
Published in | Frontiers in microbiology Vol. 13; p. 1047109 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
04.11.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1664-302X 1664-302X |
DOI | 10.3389/fmicb.2022.1047109 |
Cover
Loading…
Abstract | Aztreonam-avibactam is a promising combination to treat carbapenem-resistant Enterobacterales including coverage for metallo-β-lactamases.
Escherichia coli
strains resistant to aztreonam-avibactam have emerged but resistance mechanisms remain to be elucidated. We performed a study to investigate the mechanism for aztreonam-avibactam in a carbapenem-resistant
Escherichia coli
clinical strain. This strain was resistant to aztreonam-avibactam (aztreonam MIC, 16 mg/L in the presence of 4 mg/L avibactam). Whole genome sequencing revealed that the strain carried metallo-β-lactamase gene
bla
NDM-4
and the extended-spectrum β-lactamase (ESBL) gene
bla
CTX-M-15
and had a YRIK four amino acid insertion in penicillin-binding protein 3 (PBP3).
bla
CTX-M-15
was cloned into pET-28a(+), followed by the transformation, with the gene, of
E. coli
strain 035125∆pCMY42 possessing the YRIK insertion in PBP3 and strain BL21 with the wildtype PBP3.
bla
CTX-M-14
, another common ESBL gene, and
bla
CTX-M-199
, a hybrid of
bla
CTX-M-14
and
bla
CTX-M-15
were also individually cloned into both
E. coli
strains for comparison. Aztreonam-avibactam resistance was only observed in the
E. coli
strains with the YRIK insertion in PBP3 that produced CTX-M-15 or its hybrid enzyme CTX-M-199. Checkerboard titration assays were performed to determine the synergistic effects between aztreonam-avibactam and ceftazidime or meropenem. Doubling avibactam concentration
in vitro
reversed aztreonam-avibactam resistance, while the combination of aztreonam-avibactam and ceftazidime or meropenem did not. In conclusion, CTX-M enzymes with activity against aztreonam, (e.g., CTX-M-15 and CTX-M-199), can confer resistance in the combination of PBP3 with YRIK insertions in metallo-β-lactamase-producing carbapenem-resistant
E. coli
. Doubling the concentration of avibactam may overcome such resistance. |
---|---|
AbstractList | Aztreonam-avibactam is a promising combination to treat carbapenem-resistant Enterobacterales including coverage for metallo-β-lactamases. Escherichia coli strains resistant to aztreonam-avibactam have emerged but resistance mechanisms remain to be elucidated. We performed a study to investigate the mechanism for aztreonam-avibactam in a carbapenem-resistant Escherichia coli clinical strain. This strain was resistant to aztreonam-avibactam (aztreonam MIC, 16 mg/L in the presence of 4 mg/L avibactam). Whole genome sequencing revealed that the strain carried metallo-β-lactamase gene bla NDM-4 and the extended-spectrum β-lactamase (ESBL) gene bla CTX-M-15 and had a YRIK four amino acid insertion in penicillin-binding protein 3 (PBP3). bla CTX-M-15 was cloned into pET-28a(+), followed by the transformation, with the gene, of E. coli strain 035125∆pCMY42 possessing the YRIK insertion in PBP3 and strain BL21 with the wildtype PBP3. bla CTX-M-14, another common ESBL gene, and bla CTX-M-199, a hybrid of bla CTX-M-14 and bla CTX-M-15 were also individually cloned into both E. coli strains for comparison. Aztreonam-avibactam resistance was only observed in the E. coli strains with the YRIK insertion in PBP3 that produced CTX-M-15 or its hybrid enzyme CTX-M-199. Checkerboard titration assays were performed to determine the synergistic effects between aztreonam-avibactam and ceftazidime or meropenem. Doubling avibactam concentration in vitro reversed aztreonam-avibactam resistance, while the combination of aztreonam-avibactam and ceftazidime or meropenem did not. In conclusion, CTX-M enzymes with activity against aztreonam, (e.g., CTX-M-15 and CTX-M-199), can confer resistance in the combination of PBP3 with YRIK insertions in metallo-β-lactamase-producing carbapenem-resistant E. coli. Doubling the concentration of avibactam may overcome such resistance.Aztreonam-avibactam is a promising combination to treat carbapenem-resistant Enterobacterales including coverage for metallo-β-lactamases. Escherichia coli strains resistant to aztreonam-avibactam have emerged but resistance mechanisms remain to be elucidated. We performed a study to investigate the mechanism for aztreonam-avibactam in a carbapenem-resistant Escherichia coli clinical strain. This strain was resistant to aztreonam-avibactam (aztreonam MIC, 16 mg/L in the presence of 4 mg/L avibactam). Whole genome sequencing revealed that the strain carried metallo-β-lactamase gene bla NDM-4 and the extended-spectrum β-lactamase (ESBL) gene bla CTX-M-15 and had a YRIK four amino acid insertion in penicillin-binding protein 3 (PBP3). bla CTX-M-15 was cloned into pET-28a(+), followed by the transformation, with the gene, of E. coli strain 035125∆pCMY42 possessing the YRIK insertion in PBP3 and strain BL21 with the wildtype PBP3. bla CTX-M-14, another common ESBL gene, and bla CTX-M-199, a hybrid of bla CTX-M-14 and bla CTX-M-15 were also individually cloned into both E. coli strains for comparison. Aztreonam-avibactam resistance was only observed in the E. coli strains with the YRIK insertion in PBP3 that produced CTX-M-15 or its hybrid enzyme CTX-M-199. Checkerboard titration assays were performed to determine the synergistic effects between aztreonam-avibactam and ceftazidime or meropenem. Doubling avibactam concentration in vitro reversed aztreonam-avibactam resistance, while the combination of aztreonam-avibactam and ceftazidime or meropenem did not. In conclusion, CTX-M enzymes with activity against aztreonam, (e.g., CTX-M-15 and CTX-M-199), can confer resistance in the combination of PBP3 with YRIK insertions in metallo-β-lactamase-producing carbapenem-resistant E. coli. Doubling the concentration of avibactam may overcome such resistance. Aztreonam-avibactam is a promising combination to treat carbapenem-resistant Enterobacterales including coverage for metallo-β-lactamases. Escherichia coli strains resistant to aztreonam-avibactam have emerged but resistance mechanisms remain to be elucidated. We performed a study to investigate the mechanism for aztreonam-avibactam in a carbapenem-resistant Escherichia coli clinical strain. This strain was resistant to aztreonam-avibactam (aztreonam MIC, 16 mg/L in the presence of 4 mg/L avibactam). Whole genome sequencing revealed that the strain carried metallo-β-lactamase gene blaNDM-4 and the extended-spectrum β-lactamase (ESBL) gene blaCTX-M-15 and had a YRIK four amino acid insertion in penicillin-binding protein 3 (PBP3). blaCTX-M-15 was cloned into pET-28a(+), followed by the transformation, with the gene, of E. coli strain 035125∆pCMY42 possessing the YRIK insertion in PBP3 and strain BL21 with the wildtype PBP3. blaCTX-M-14, another common ESBL gene, and blaCTX-M-199, a hybrid of blaCTX-M-14 and blaCTX-M-15 were also individually cloned into both E. coli strains for comparison. Aztreonam-avibactam resistance was only observed in the E. coli strains with the YRIK insertion in PBP3 that produced CTX-M-15 or its hybrid enzyme CTX-M-199. Checkerboard titration assays were performed to determine the synergistic effects between aztreonam-avibactam and ceftazidime or meropenem. Doubling avibactam concentration in vitro reversed aztreonam-avibactam resistance, while the combination of aztreonam-avibactam and ceftazidime or meropenem did not. In conclusion, CTX-M enzymes with activity against aztreonam, (e.g., CTX-M-15 and CTX-M-199), can confer resistance in the combination of PBP3 with YRIK insertions in metallo-β-lactamase-producing carbapenem-resistant E. coli. Doubling the concentration of avibactam may overcome such resistance. Aztreonam-avibactam is a promising combination to treat carbapenem-resistant Enterobacterales including coverage for metallo-β-lactamases. Escherichia coli strains resistant to aztreonam-avibactam have emerged but resistance mechanisms remain to be elucidated. We performed a study to investigate the mechanism for aztreonam-avibactam in a carbapenem-resistant Escherichia coli clinical strain. This strain was resistant to aztreonam-avibactam (aztreonam MIC, 16 mg/L in the presence of 4 mg/L avibactam). Whole genome sequencing revealed that the strain carried metallo-β-lactamase gene bla NDM-4 and the extended-spectrum β-lactamase (ESBL) gene bla CTX-M-15 and had a YRIK four amino acid insertion in penicillin-binding protein 3 (PBP3). bla CTX-M-15 was cloned into pET-28a(+), followed by the transformation, with the gene, of E. coli strain 035125∆pCMY42 possessing the YRIK insertion in PBP3 and strain BL21 with the wildtype PBP3. bla CTX-M-14 , another common ESBL gene, and bla CTX-M-199 , a hybrid of bla CTX-M-14 and bla CTX-M-15 were also individually cloned into both E. coli strains for comparison. Aztreonam-avibactam resistance was only observed in the E. coli strains with the YRIK insertion in PBP3 that produced CTX-M-15 or its hybrid enzyme CTX-M-199. Checkerboard titration assays were performed to determine the synergistic effects between aztreonam-avibactam and ceftazidime or meropenem. Doubling avibactam concentration in vitro reversed aztreonam-avibactam resistance, while the combination of aztreonam-avibactam and ceftazidime or meropenem did not. In conclusion, CTX-M enzymes with activity against aztreonam, (e.g., CTX-M-15 and CTX-M-199), can confer resistance in the combination of PBP3 with YRIK insertions in metallo-β-lactamase-producing carbapenem-resistant E. coli . Doubling the concentration of avibactam may overcome such resistance. |
Author | Ma, Ke Zong, Zhiyong |
AuthorAffiliation | 1 Center of Infectious Diseases, West China Hospital, Sichuan University , Chengdu , China 2 Center for Pathogen Research, West China Hospital, Sichuan University , Chengdu , China 3 Division of Infectious Diseases, State Key Laboratory of Biotherapy , Chengdu , China |
AuthorAffiliation_xml | – name: 1 Center of Infectious Diseases, West China Hospital, Sichuan University , Chengdu , China – name: 3 Division of Infectious Diseases, State Key Laboratory of Biotherapy , Chengdu , China – name: 2 Center for Pathogen Research, West China Hospital, Sichuan University , Chengdu , China |
Author_xml | – sequence: 1 givenname: Ke surname: Ma fullname: Ma, Ke – sequence: 2 givenname: Zhiyong surname: Zong fullname: Zong, Zhiyong |
BookMark | eNp9ks1u1DAUhSNUJErpC7Dykk0Gx3HiZIOERgUqFSGhInVnXTs3M7dK7MH2lJ9n4KFxZkaIssAL2_K557u2fJ4XZ847LIqXFV_Vdde_HmeyZiW4EKuKS1Xx_klxXrWtLGsu7s7-2j8rLmO853lILvJ8Xvz6jJFiAmeRJc_gZwroHcwlPJABm2Bmw_4grW_vyo9l1TByLG2R7QJGXGx-ZDt0ZGmayJWG3EBuk2WfMJfW7BulLcPvKQCDmVxuYmmIC-Yq2i0GslsCZv1EL4qnI0wRL0_rRfHl3dXt-kN58-n99frtTWmlbFLZDj2YQQIX2DTN2LTKCNOLusfWIHJlZGVEZ0Ap6HhlAbDpsRG2aoGbWpr6org-cgcP93oXaIbwQ3sgfTjwYaMhJLITam64bQ03puuMlCC6vu8GhcoMzSBaLjPrzZG125sZB4suP3R6BH2sONrqjX_QfatkzVUGvDoBgv-6x5j0TNHiNIFDv49aqLqTvcrfm0vFsdQGH2PA8U-biuslCvoQBb1EQZ-ikE3dPyZLCRL55To0_c_6Gx6yvug |
CitedBy_id | crossref_primary_10_1089_mdr_2024_0150 crossref_primary_10_1016_j_micpath_2024_106668 crossref_primary_10_1128_aac_01548_23 crossref_primary_10_1093_jac_dkad249 crossref_primary_10_1128_spectrum_00953_24 crossref_primary_10_3390_antibiotics13080766 crossref_primary_10_1016_j_ijantimicag_2023_106985 |
Cites_doi | 10.1074/jbc.271.37.22538 10.1038/s41598-017-18910-w 10.1093/jac/dku568 10.1128/AAC.05961-11 10.1093/cid/ciaa1478 10.1016/j.ijantimicag.2022.106642 10.1128/AAC.01659-20 10.1093/jac/dkx146 10.3389/fmicb.2021.616687 10.1128/AAC.45.8.2269-2275.2001 10.1093/jac/dkf240 10.1128/AAC.03057-14 10.1016/j.diagmicrobio.2017.05.009 10.1089/mdr.2010.0137 10.1073/pnas.1205073109 10.1016/j.cmi.2021.11.025 10.1093/cid/ciy660 10.1128/CMR.00115-18 10.1128/AAC.01658-07 10.1038/s41467-020-15666-2 10.1046/j.1469-0691.2000.00149.x 10.1128/AAC.46.2.534-537.2002 10.1093/jac/dkab279 10.1021/bi501547k 10.1128/AAC.48.6.2308-2313.2004 10.1128/AAC.46.6.1985-1988.2002 10.1016/j.ijantimicag.2006.09.005 10.1128/mSystems.00821-20 10.1016/j.ebiom.2017.04.032 10.1093/jac/dkg256 10.1128/AAC.00389-17 10.1128/spectrum.02670-21 10.1128/AAC.44.11.3061-3068.2000 10.1128/AAC.00756-10 10.1128/AAC.00562-17 10.1016/j.tim.2011.09.005 10.1093/jac/dkn339 10.1371/journal.pone.0056926 10.1128/AAC.00774-09 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Ma and Zong. Copyright © 2022 Ma and Zong. 2022 Ma and Zong |
Copyright_xml | – notice: Copyright © 2022 Ma and Zong. – notice: Copyright © 2022 Ma and Zong. 2022 Ma and Zong |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/fmicb.2022.1047109 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-302X |
ExternalDocumentID | oai_doaj_org_article_0b0c6b0bb88b44a28998d7e7bd5d2604 PMC9674307 10_3389_fmicb_2022_1047109 |
GrantInformation_xml | – fundername: ; grantid: 82172309; 81861138055 – fundername: West China Hospital of Sichuan University grantid: ZYYC08006; ZYGD22001 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM 7X8 5PM |
ID | FETCH-LOGICAL-c445t-6d9abd4a02e555f567b2b9239e6bee07b41b28ba77a801caae59e52c16a0b34b3 |
IEDL.DBID | DOA |
ISSN | 1664-302X |
IngestDate | Wed Aug 27 01:24:25 EDT 2025 Thu Aug 21 18:39:55 EDT 2025 Fri Jul 11 14:10:15 EDT 2025 Tue Jul 01 00:57:50 EDT 2025 Thu Apr 24 23:09:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c445t-6d9abd4a02e555f567b2b9239e6bee07b41b28ba77a801caae59e52c16a0b34b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Xian-Zhi Li, Health Canada, Canada Reviewed by: Qi Wang, Peking University People's Hospital, China; Fabrice Compain, L'Institut Mutualiste Montsouris, France; Siqiang Niu, The First Affiliated Hospital of Chongqing Medical University, China This article was submitted to Antimicrobials, Resistance and Chemotherapy, a section of the journal Frontiers in Microbiology |
OpenAccessLink | https://doaj.org/article/0b0c6b0bb88b44a28998d7e7bd5d2604 |
PQID | 2738497202 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0b0c6b0bb88b44a28998d7e7bd5d2604 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9674307 proquest_miscellaneous_2738497202 crossref_primary_10_3389_fmicb_2022_1047109 crossref_citationtrail_10_3389_fmicb_2022_1047109 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-04 |
PublicationDateYYYYMMDD | 2022-11-04 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-04 day: 04 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in microbiology |
PublicationYear | 2022 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Lahiri (ref18) 2014; 58 Mendes (ref23) 2021; 76 Faheem (ref15) 2013; 8 Bonnet (ref4) 2003; 52 Bonnet (ref5) 2000; 44 Bonnet (ref3) 2001; 45 Paul (ref28) 2022; 28 Dutour (ref12) 2002; 46 Cantu (ref7) 1996; 271 Celenza (ref9) 2008; 62 Livermore (ref19) 2011; 55 Ehmann (ref13) 2012; 109 Nordmann (ref25) 2012; 56 Alm (ref1) 2015; 70 Wang (ref33) 2022; 10 Hentschke (ref16) 2011; 17 Wenzler (ref35) 2017; 88 Poirel (ref29) 2002; 50 (ref14) 2000; 6 Zhang (ref40) 2017; 19 Wang (ref34) 2018; 67 Wu (ref36) 2019; 32 Ma (ref20) 2020; 5 Tamma (ref32) 2021; 72 Chen (ref10) 2021; 12 Cai (ref6) 2017; 61 (ref11) 2022 Cartelle (ref8) 2004; 48 Mitchell (ref24) 2015; 54 Novais (ref27) 2008; 52 Zhang (ref38) 2018; 8 Yong (ref37) 2009; 53 Nordmann (ref26) 2011; 19 Zhang (ref39) 2017; 61 Ma (ref22) 2002; 46 Russ (ref30) 2020; 11 Bevan (ref2) 2017; 72 Sadek (ref31) 2020; 64 Ishii (ref17) 2007; 29 Ma (ref21) 2022; 60 |
References_xml | – volume: 271 start-page: 22538 year: 1996 ident: ref7 article-title: Selection and characterization of amino acid substitutions at residues 237-240 of TEM-1 β-lactamase with altered substrate specificity for aztreonam and ceftazidime publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.37.22538 – volume: 8 start-page: 390 year: 2018 ident: ref38 article-title: Cryptic transmission of ST405 Escherichia coli carrying Bla NDM-4 in hospital publication-title: Sci. Rep. doi: 10.1038/s41598-017-18910-w – volume: 70 start-page: 1420 year: 2015 ident: ref1 article-title: Characterization of Escherichia coli NDM isolates with decreased susceptibility to aztreonam/avibactam: role of a novel insertion in PBP3 publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dku568 – volume: 56 start-page: 2184 year: 2012 ident: ref25 article-title: NDM-4 metallo-β-lactamase with increased carbapenemase activity from Escherichia coli publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.05961-11 – volume: 72 start-page: e169 year: 2021 ident: ref32 article-title: Infectious Diseases Society of America guidance on the treatment of extended-spectrum β-lactamase producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa) publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciaa1478 – volume: 60 start-page: 106642 year: 2022 ident: ref21 article-title: Aztreonam-avibactam may not replace ceftazidime/avibactam: the case of KPC-21 carbapenemase and penicillin-binding protein 3 with four extra amino acids publication-title: Int. J. Antimicrob. Agents doi: 10.1016/j.ijantimicag.2022.106642 – volume: 64 start-page: 01659 year: 2020 ident: ref31 article-title: Genetic features leading to reduced susceptibility to aztreonam-avibactam among metallo-β-lactamase-producing Escherichia coli isolates publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01659-20 – volume: 72 start-page: 2145 year: 2017 ident: ref2 article-title: Global epidemiology of CTX-M β-lactamases: temporal and geographical shifts in genotype publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkx146 – volume: 12 start-page: 616687 year: 2021 ident: ref10 article-title: Fecal carriage and genetic characterization of CTX-M-1/9/1-producing Escherichia coli from healthy humans in Hangzhou, China publication-title: Front. Microbiol. doi: 10.3389/fmicb.2021.616687 – volume: 45 start-page: 2269 year: 2001 ident: ref3 article-title: Novel cefotaximase (CTX-M-16) with increased catalytic efficiency due to substitution Asp-240-->Gly publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.45.8.2269-2275.2001 – volume: 50 start-page: 1031 year: 2002 ident: ref29 article-title: Biochemical analysis of the ceftazidime-hydrolysing extended-spectrum β-lactamase CTX-M-15 and of its structurally related β-lactamase CTX-M-3 publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkf240 – volume: 58 start-page: 5704 year: 2014 ident: ref18 article-title: Avibactam and class C β-lactamases: mechanism of inhibition, conservation of the binding pocket, and implications for resistance publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.03057-14 – volume: 88 start-page: 352 year: 2017 ident: ref35 article-title: Synergistic activity of ceftazidime-avibactam and aztreonam against serine and metallo-β-lactamase-producing gram-negative pathogens publication-title: Diagn. Microbiol. Infect. Dis. doi: 10.1016/j.diagmicrobio.2017.05.009 – volume: 17 start-page: 165 year: 2011 ident: ref16 article-title: CMY-42, a novel plasmid-mediated CMY-2 variant AmpC β-lactamase publication-title: Microb. Drug Resist. doi: 10.1089/mdr.2010.0137 – volume: 109 start-page: 11663 year: 2012 ident: ref13 article-title: Avibactam is a covalent, reversible, non-β-lactam β-lactamase inhibitor publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1205073109 – volume: 28 start-page: 521 year: 2022 ident: ref28 article-title: European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant gram-negative bacilli (endorsed by European society of intensive care medicine) publication-title: Clin. Microbiol. Infect. doi: 10.1016/j.cmi.2021.11.025 – volume: 67 start-page: S196 year: 2018 ident: ref34 article-title: Phenotypic and genotypic characterization of carbapenem-resistant Enterobacteriaceae: data from a longitudinal large-scale CRE study in China (2012-2016) publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciy660 – volume: 32 start-page: e00115 year: 2019 ident: ref36 article-title: NDM metallo-β-lactamases and their bacterial producers in health care settings publication-title: Clin. Microbiol. Rev. doi: 10.1128/CMR.00115-18 – volume: 52 start-page: 2377 year: 2008 ident: ref27 article-title: Mutational events in cefotaximase extended-spectrum β-lactamases of the CTX-M-1 cluster involved in ceftazidime resistance publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01658-07 – volume: 11 start-page: 2029 year: 2020 ident: ref30 article-title: Escape mutations circumvent a tradeoff between resistance to a β-lactam and resistance to a β-lactamase inhibitor publication-title: Nat. Commun. doi: 10.1038/s41467-020-15666-2 – volume: 6 start-page: 503 year: 2000 ident: ref14 article-title: EUCAST definitive document e.Def 1.2, may 2000: terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents publication-title: Clin. Microbiol. Infect. doi: 10.1046/j.1469-0691.2000.00149.x – volume: 46 start-page: 534 year: 2002 ident: ref12 article-title: CTX-M-1, CTX-M-3, and CTX-M-14 β-lactamases from Enterobacteriaceae isolated in France publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.46.2.534-537.2002 – volume: 76 start-page: 2833 year: 2021 ident: ref23 article-title: Investigation of mechanisms responsible for decreased susceptibility of aztreonam/avibactam activity in clinical isolates of Enterobacterales collected in Europe, Asia and Latin America in 2019 publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkab279 – volume: 54 start-page: 1976 year: 2015 ident: ref24 article-title: Structural basis of activity against aztreonam and extended spectrum cephalosporins for two carbapenem-hydrolyzing class D β-lactamases from Acinetobacter baumannii publication-title: Biochemistry doi: 10.1021/bi501547k – volume: 48 start-page: 2308 year: 2004 ident: ref8 article-title: High-level resistance to ceftazidime conferred by a novel enzyme, CTX-M-32, derived from CTX-M-1 through a single Asp240-Gly substitution publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.48.6.2308-2313.2004 – volume: 46 start-page: 1985 year: 2002 ident: ref22 article-title: CTX-M-14, a plasmid-mediated CTX-M type extended-spectrum β-lactamase isolated from Escherichia coli publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.46.6.1985-1988.2002 – volume-title: Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically year: 2022 ident: ref11 – volume: 29 start-page: 159 year: 2007 ident: ref17 article-title: Biochemical characterisation of the CTX-M-14 β-lactamase publication-title: Int. J. Antimicrob. Agents doi: 10.1016/j.ijantimicag.2006.09.005 – volume: 5 start-page: 00821 year: 2020 ident: ref20 article-title: Struggle to survive: the choir of target alteration, hydrolyzing enzyme, and plasmid expression as a novel aztreonam-avibactam resistance mechanism publication-title: mSystems doi: 10.1128/mSystems.00821-20 – volume: 19 start-page: 98 year: 2017 ident: ref40 article-title: Nationwide surveillance of clinical carbapenem-resistant Enterobacteriaceae (CRE) strains in China publication-title: EBioMedicine doi: 10.1016/j.ebiom.2017.04.032 – volume: 52 start-page: 29 year: 2003 ident: ref4 article-title: Effect of D240G substitution in a novel ESBL CTX-M-27 publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkg256 – volume: 61 start-page: 00389 year: 2017 ident: ref39 article-title: Unusual Escherichia coli PBP 3 insertion sequence identified from a collection of carbapenem-resistant Enterobacteriaceae tested in vitro with a combination of ceftazidime-, ceftaroline-, or aztreonam-avibactam publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00389-17 – volume: 10 start-page: e0267021 year: 2022 ident: ref33 article-title: Occurrence of high levels of Cefiderocol resistance in Carbapenem-resistant Escherichia coli before its approval in China: a Report from China CRE-network publication-title: Microbiol. Spectr. doi: 10.1128/spectrum.02670-21 – volume: 44 start-page: 3061 year: 2000 ident: ref5 article-title: A novel class a extended-spectrum β-lactamase (BES-1) in Serratia marcescens isolated in Brazil publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.44.11.3061-3068.2000 – volume: 55 start-page: 390 year: 2011 ident: ref19 article-title: Activities of NXL104 combinations with ceftazidime and aztreonam against carbapenemase-producing Enterobacteriaceae publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00756-10 – volume: 61 start-page: e00562 year: 2017 ident: ref6 article-title: Genetic and functional characterization of blaCTX-M-199, a novel tazobactam and sulbactam resistance-encoding gene located in a conjugative mcr-1-bearing IncI2 plasmid publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00562-17 – volume: 19 start-page: 588 year: 2011 ident: ref26 article-title: The emerging NDM carbapenemases publication-title: Trends Microbiol. doi: 10.1016/j.tim.2011.09.005 – volume: 62 start-page: 991 year: 2008 ident: ref9 article-title: Natural D240G Toho-1 mutant conferring resistance to ceftazidime: biochemical characterization of CTX-M-43 publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkn339 – volume: 8 start-page: e56926 year: 2013 ident: ref15 article-title: Biochemical characterization of CTX-M-15 from Enterobacter cloacae and designing a novel non-β-lactam-β-lactamase inhibitor publication-title: PLoS One doi: 10.1371/journal.pone.0056926 – volume: 53 start-page: 5046 year: 2009 ident: ref37 article-title: Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00774-09 |
SSID | ssj0000402000 |
Score | 2.376228 |
Snippet | Aztreonam-avibactam is a promising combination to treat carbapenem-resistant Enterobacterales including coverage for metallo-β-lactamases.
Escherichia coli... Aztreonam-avibactam is a promising combination to treat carbapenem-resistant Enterobacterales including coverage for metallo-β-lactamases. Escherichia coli... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 1047109 |
SubjectTerms | avibactam aztreonam CTX-M Escherichia coli Microbiology resistance |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG7WFcGL-MTxRQveJNKT9CM5iOiyyyKMB9mBuYWqTo8GdpLdJCOuv8EfbVVPZjGgnrxOutOT_rq6vi_pqhLiFRQhq2hhJL6iLVBbmyeQYZ7Y1PvcQ1pY4EDhxSd7utQfV2Z1IPbljsYJ7P8o7bie1LI7f_P98uodGfxbVpzkbwmB2iNJvTTlL5Z8uPCGuEmeybGhLka6H3dmFktK7WJn_tJ14p9iGv8J95yenPzNFZ3cFXdGDinf70C_Jw5Cc1_c2lWVvHogfn4OPbNCglMOrYQfQxeIb28S-FYj-AE2strGS0dnq2SRzI2sG0lEUF7EWCTq1q4lzULt-WVMw-KZPZyMOR2oaSb57a2kbb0DCZu6oUF8XfV8m-OeV0HNJ6glrbH6oVieHJ8dnSZj0YXEa22GxFYFYKVBpcEYszbWYYrEAotgMQTlUM8xzRGcA3JuHiCYIpjUzy0ozDRmj8Rh0zbhsZAZWO_CGuZog86oQ-qIAJGkXGe8q6qZmO-nuvRjRnIujHFekjJheMoIT8nwlCM8M_H6us_FLh_HP1t_YASvW3Iu7fhD230pR9MsFSpvUSHmOWoNUYFWLjisTEVqT8_Eyz3-Jdkef1CBJrTbvuSwJl04GnEm3GRhTEacXmnqrzGLd8HhH8o9-R9_8am4zY8dYyT1M3E4dNvwnMjSgC-iBfwCOCQWPg priority: 102 providerName: Scholars Portal |
Title | Resistance to aztreonam-avibactam due to CTX-M-15 in the presence of penicillin-binding protein 3 with extra amino acids in Escherichia coli |
URI | https://www.proquest.com/docview/2738497202 https://pubmed.ncbi.nlm.nih.gov/PMC9674307 https://doaj.org/article/0b0c6b0bb88b44a28998d7e7bd5d2604 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA-ysOBFdFUcXSWCNymmaT7aoy77gTAeZBfmVt5LM1hwOsNMR9C_Yf9o30u7y_TiXrz00CRNmt9L3u8leS9CfIAqFg0JRhYamgKNc2UGBZaZ0yGUAXTlgB2F59_c1Y35urCLg6u--EzYEB546LhPClVwqBDLEo2BZB80PnpsbENcPEUCJZ13YEylOZjNIqUGLxmywiqCqQ1I9qDWvK05nEA80EQpYP-EZU7PSB4onYun4snIFuXnoZXPxKPYnYjj4f7I38_F7fe4Y_5HwMl-LeFPv43ErFcZ_GoRQg8r2exT0tn1IptnuZVtJ4nyyU3yOqJi66XcxK4NvOzSsZnMukym6A2UtZC8TitpAt-ChFXbUSWhbXb8mfMd493yWWlJ0tS-EDcX59dnV9l4vUIWjLF95poKsDGgdLTWLq3zqJH4XhUdxqg8mhx1ieA9kBoLANFW0eqQO1BYGCxeiqNu3cVXQhbggo9LyNFFU1AB7YnqkPG4LHj-VDOR33V1HcbY43wFxs-abBCGp07w1AxPPcIzEx_vy2yGyBv_zP2FEbzPyVGz0wuSpXqUpfohWZqJ93f41zTKeOsEurje72p2YDKVpxpnwk8EY1LjNKVrf6R43RU7eij_-n808Y14zL-dvCHNqTjqt_v4lmhRj-_SCKDn5SKn59yUfwFWDA-g |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resistance+to+aztreonam-avibactam+due+to+CTX-M-15+in+the+presence+of+penicillin-binding+protein+3+with+extra+amino+acids+in+Escherichia+coli&rft.jtitle=Frontiers+in+microbiology&rft.au=Ke+Ma&rft.au=Zhiyong+Zong&rft.au=Zhiyong+Zong&rft.au=Zhiyong+Zong&rft.date=2022-11-04&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-302X&rft.volume=13&rft_id=info:doi/10.3389%2Ffmicb.2022.1047109&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0b0c6b0bb88b44a28998d7e7bd5d2604 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon |