Evolution of High-redshift Quasar Hosts and Promotion of Massive Black Hole Seed Formation
High-redshift luminous quasars powered by accreting supermassive black holes (SMBHs) with mass ≳10 9 M ⊙ constrain their formation pathways. We investigate the formation of heavy seeds of SMBHs through gas collapse in the quasar host progenitors, using merger trees to trace the halo growth in highly...
Saved in:
Published in | The Astrophysical journal Vol. 917; no. 2; pp. 60 - 75 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
01.08.2021
IOP Publishing |
Subjects | |
Online Access | Get full text |
ISSN | 0004-637X 1538-4357 |
DOI | 10.3847/1538-4357/ac0adc |
Cover
Abstract | High-redshift luminous quasars powered by accreting supermassive black holes (SMBHs) with mass ≳10
9
M
⊙
constrain their formation pathways. We investigate the formation of heavy seeds of SMBHs through gas collapse in the quasar host progenitors, using merger trees to trace the halo growth in highly biased, overdense regions of the universe. The progenitor halos are likely irradiated by intense H
2
-photodissociating radiation from nearby star-forming galaxies and heat the interior gas by successive mergers. The kinetic energy of the gas originating from mergers, as well as the baryonic streaming motion, prevents gas collapse and delays prior star formation. With a streaming velocity higher than the rms value, gas clouds in nearly all 10
4
realizations of merger trees enter the atomic-cooling stage and begin to collapse isothermally with
T
≃ 8000 K via Ly
α
cooling. The fraction of trees that host isothermal gas collapse is 14% and increases with streaming velocity, while the rest form H
2
-cooled cores after short isothermal phases. If the collapsing gas is enriched to
Z
crit
∼ 2 × 10
−3
Z
⊙
, requiring efficient metal mixing, this fraction could be reduced by additional cooling via metal fine-structure lines. In the massive collapsing gas, the accretion rate onto a newly born protostar ranges between 3 × 10
−3
M
⊙
yr
−1
and 5
M
⊙
yr
−1
, among which a large fraction exceeds the critical rate suppressing stellar radiative feedback. As a result, we expect a distribution of stellar mass (presumably BH mass) ranging from several hundred to above 10
5
M
⊙
, potentially forming massive BH binary mergers and yielding gravitational-wave events. |
---|---|
AbstractList | High-redshift luminous quasars powered by accreting supermassive black holes (SMBHs) with mass ≳10
9
M
⊙
constrain their formation pathways. We investigate the formation of heavy seeds of SMBHs through gas collapse in the quasar host progenitors, using merger trees to trace the halo growth in highly biased, overdense regions of the universe. The progenitor halos are likely irradiated by intense H
2
-photodissociating radiation from nearby star-forming galaxies and heat the interior gas by successive mergers. The kinetic energy of the gas originating from mergers, as well as the baryonic streaming motion, prevents gas collapse and delays prior star formation. With a streaming velocity higher than the rms value, gas clouds in nearly all 10
4
realizations of merger trees enter the atomic-cooling stage and begin to collapse isothermally with
T
≃ 8000 K via Ly
α
cooling. The fraction of trees that host isothermal gas collapse is 14% and increases with streaming velocity, while the rest form H
2
-cooled cores after short isothermal phases. If the collapsing gas is enriched to
Z
crit
∼ 2 × 10
−3
Z
⊙
, requiring efficient metal mixing, this fraction could be reduced by additional cooling via metal fine-structure lines. In the massive collapsing gas, the accretion rate onto a newly born protostar ranges between 3 × 10
−3
M
⊙
yr
−1
and 5
M
⊙
yr
−1
, among which a large fraction exceeds the critical rate suppressing stellar radiative feedback. As a result, we expect a distribution of stellar mass (presumably BH mass) ranging from several hundred to above 10
5
M
⊙
, potentially forming massive BH binary mergers and yielding gravitational-wave events. High-redshift luminous quasars powered by accreting supermassive black holes (SMBHs) with mass ≳109 M ⊙ constrain their formation pathways. We investigate the formation of heavy seeds of SMBHs through gas collapse in the quasar host progenitors, using merger trees to trace the halo growth in highly biased, overdense regions of the universe. The progenitor halos are likely irradiated by intense H2-photodissociating radiation from nearby star-forming galaxies and heat the interior gas by successive mergers. The kinetic energy of the gas originating from mergers, as well as the baryonic streaming motion, prevents gas collapse and delays prior star formation. With a streaming velocity higher than the rms value, gas clouds in nearly all 104 realizations of merger trees enter the atomic-cooling stage and begin to collapse isothermally with T ≃ 8000 K via Lyα cooling. The fraction of trees that host isothermal gas collapse is 14% and increases with streaming velocity, while the rest form H2-cooled cores after short isothermal phases. If the collapsing gas is enriched to Z crit ∼ 2 × 10−3 Z ⊙, requiring efficient metal mixing, this fraction could be reduced by additional cooling via metal fine-structure lines. In the massive collapsing gas, the accretion rate onto a newly born protostar ranges between 3 × 10−3 M ⊙ yr−1 and 5 M ⊙ yr−1, among which a large fraction exceeds the critical rate suppressing stellar radiative feedback. As a result, we expect a distribution of stellar mass (presumably BH mass) ranging from several hundred to above 105 M ⊙, potentially forming massive BH binary mergers and yielding gravitational-wave events. |
Author | Inayoshi, Kohei Li, Wenxiu Qiu, Yu |
Author_xml | – sequence: 1 givenname: Wenxiu orcidid: 0000-0002-1044-4081 surname: Li fullname: Li, Wenxiu organization: Peking University Kavli Institute for Astronomy and Astrophysics, Beijing 100871, People’s Republic of China – sequence: 2 givenname: Kohei orcidid: 0000-0001-9840-4959 surname: Inayoshi fullname: Inayoshi, Kohei organization: Peking University Kavli Institute for Astronomy and Astrophysics, Beijing 100871, People’s Republic of China – sequence: 3 givenname: Yu orcidid: 0000-0002-6164-8463 surname: Qiu fullname: Qiu, Yu organization: Peking University Kavli Institute for Astronomy and Astrophysics, Beijing 100871, People’s Republic of China |
BookMark | eNp9kE1Lw0AQhhepYK3ePS7o0dhN9is5ammtUFGxB_GybDa7NjXNxt2k4L83MX6ASE_DDM87MzyHYFDaUgNwEqILHBM-DimOA4IpH0uFZKb2wPBnNABDhBAJGOZPB-DQ-3XXRkkyBM_TrS2aOrcltAbO85dV4HTmV7mp4UMjvXRwbn3toSwzeO_sxn6zt9L7fKvhVSHVawsVGj5qncGZdRvZQUdg38jC6-OvOgLL2XQ5mQeLu-ubyeUiUITQOmBSUWQwZ4SkCCNl4hQRiY3JDFMyxpjiLA1VEsYpZREjCecRj8I0jXFI0wyPwGm_tnL2rdG-FmvbuLK9KCLKEhYjTFFLsZ5SznrvtBEqrz_frJ3MCxEi0WkUnTPRORO9xjaI_gQrl2-ke98VOe8jua1-n9mBn_2Dy2otkpCLSDAkqszgD9yskl4 |
CitedBy_id | crossref_primary_10_1093_mnras_stac3715 crossref_primary_10_3847_1538_4357_accbbe crossref_primary_10_1103_PhysRevD_111_043012 crossref_primary_10_3847_1538_4357_ac75d8 crossref_primary_10_1093_mnras_stac2238 crossref_primary_10_3847_1538_4357_ad46f9 crossref_primary_10_1093_mnras_stae1558 crossref_primary_10_1093_mnras_staf012 crossref_primary_10_1093_mnras_stae1449 crossref_primary_10_1093_mnras_stad1484 crossref_primary_10_1093_mnras_stad689 crossref_primary_10_3847_1538_4357_ac7daa crossref_primary_10_1093_mnras_stac3191 crossref_primary_10_1093_mnras_stae2380 crossref_primary_10_1093_mnras_stae2066 crossref_primary_10_3847_1538_4357_ac4751 crossref_primary_10_3847_1538_4357_ad344c crossref_primary_10_1093_mnras_stae2120 |
Cites_doi | 10.1093/mnras/stz903 10.1093/mnras/stab692 10.1103/PhysRevD.94.021501 10.1093/mnras/stu1007 10.1093/mnras/stv1346 10.3847/1538-4357/abcfc2 10.1146/annurev-astro-032620-021835 10.1086/165375 10.1063/1.437823 10.1093/mnras/sty622 10.1111/j.1365-2966.2010.18080.x 10.1086/520036 10.1111/j.1365-2966.2012.21651.x 10.1046/j.1365-8711.1999.02346.x 10.1088/0067-0049/193/1/7 10.1086/375810 10.1063/1.453628 10.1086/152650 10.1093/mnras/stz013 10.1093/mnras/stz897 10.1111/j.1365-2966.2012.20812.x 10.1093/mnras/stw637 10.1088/0004-6256/139/3/906 10.1093/mnras/138.4.495 10.1093/mnras/staa863 10.1126/science.aai9119 10.3847/2041-8213/aa7412 10.1088/1361-6455/aa6c1f 10.1086/303647 10.1093/mnras/sts011 10.1088/0741-3335/44/7/315 10.1086/339393 10.1086/305665 10.1086/177343 10.1088/0004-637X/750/1/66 10.1111/j.1365-2966.2008.13224.x 10.1098/rspa.1951.0228 10.1093/mnras/stt834 10.1086/318296 10.1051/0004-6361/201321949 10.1093/mnras/118.5.523 10.1093/mnras/sty086 10.1093/mnras/sty2103 10.1046/j.1365-8711.2001.04068.x 10.1086/376499 10.1086/173948 10.1017/pasa.2019.14 10.1086/340063 10.1086/519445 10.1093/mnras/stu042 10.1086/500296 10.1093/mnras/stv1059 10.1093/mnras/262.3.627 10.1088/0022-3700/11/21/006 10.1111/j.1365-2966.2005.09621.x 10.1086/173677 10.1093/mnras/stu230 10.1093/mnrasl/slu151 10.3847/1538-4357/ab29e9 10.3847/2041-8213/abd8c6 10.3847/1538-4357/aa7263 10.1086/161149 10.1016/S1384-1076(97)00010-9 10.3847/0004-637X/832/2/134 10.1063/1.1711890 10.1093/mnras/145.3.271 10.1093/mnras/stx666 10.3847/1538-4365/aac724 10.1051/0004-6361/201525830 10.1086/421108 10.1088/0022-3700/15/6/020 10.1046/j.1365-8711.2002.05723.x 10.1086/591636 10.1088/0004-637X/778/2/178 10.1093/mnras/stw225 10.1086/324410 10.1103/PhysRev.158.25 10.1038/nature10159 10.1088/0004-637X/696/2/1798 10.1086/587434 10.1093/mnrasl/slu063 10.1046/j.1365-8711.2001.04006.x 10.1103/PhysRevA.40.2340 10.1093/mnrasl/sly091 10.1093/mnras/sty1720 10.1111/j.1365-2966.2008.13682.x 10.1111/j.1365-2966.2011.18906.x 10.1093/mnras/stv2117 10.1088/0264-9381/33/3/035010 10.1126/science.295.5552.93 10.3847/1538-4357/aa7b34 10.21105/astro.2008.08090 10.1093/mnras/stu1794 10.1093/mnras/sty040 10.21105/astro.2006.14625 10.1038/416059a 10.1086/165350 10.1093/mnras/stx2919 10.1086/377529 10.1126/science.1187191 10.1146/annurev-astro-082708-101811 10.1111/j.1365-2966.2007.12517.x 10.1098/rspa.1951.0227 10.1103/PhysRevD.82.083520 10.1038/s41586-019-0873-4 10.1093/mnras/stv1781 10.1111/j.1365-2966.2009.15960.x 10.1088/0004-637X/773/2/155 10.3847/1538-4357/833/2/222 10.1126/science.1207433 10.1093/mnras/stw836 10.1086/172410 10.1146/annurev-astro-081710-102608 10.1088/0953-4075/27/12/013 10.1038/nature14241 10.1093/mnras/stu1870 10.1088/0004-637X/795/2/137 10.1086/174411 10.1093/mnras/staa3227 10.1046/j.1365-8711.2000.03879.x 10.1046/j.1365-8711.1998.2970041073.x 10.1086/304888 10.3847/1538-4357/aaaaba 10.1146/annurev-astro-120419-014455 10.1111/j.1365-2966.2005.09858.x 10.1086/171063 10.1086/164017 10.1093/mnras/stu1778 10.1086/303434 10.1088/2041-8205/745/2/L29 10.1111/j.1365-2966.2008.14031.x 10.1046/j.1365-8711.2003.06410.x 10.1093/mnras/stu2284 10.1093/mnras/stv1337 10.1093/mnras/144.4.425 10.1088/0004-637X/756/1/93 |
ContentType | Journal Article |
Copyright | 2021. The American Astronomical Society. All rights reserved. Copyright IOP Publishing Aug 01, 2021 |
Copyright_xml | – notice: 2021. The American Astronomical Society. All rights reserved. – notice: Copyright IOP Publishing Aug 01, 2021 |
DBID | AAYXX CITATION 7TG 8FD H8D KL. L7M |
DOI | 10.3847/1538-4357/ac0adc |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1538-4357 |
ExternalDocumentID | 10_3847_1538_4357_ac0adc apjac0adc |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 WH7 XSW AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M |
ID | FETCH-LOGICAL-c445t-6ac50f37644b030cf8b04a3ffdf6ca83353db1c918b562649772721bb8315bd3 |
IEDL.DBID | IOP |
ISSN | 0004-637X |
IngestDate | Wed Aug 13 06:59:58 EDT 2025 Thu Apr 24 23:13:49 EDT 2025 Tue Jul 01 03:24:41 EDT 2025 Wed Aug 21 03:32:58 EDT 2024 Tue Aug 20 22:16:53 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c445t-6ac50f37644b030cf8b04a3ffdf6ca83353db1c918b562649772721bb8315bd3 |
Notes | Galaxies and Cosmology AAS32433 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1044-4081 0000-0001-9840-4959 0000-0002-6164-8463 |
OpenAccessLink | https://iopscience.iop.org/article/10.3847/1538-4357/ac0adc/pdf |
PQID | 2569680350 |
PQPubID | 4562441 |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_3847_1538_4357_ac0adc crossref_primary_10_3847_1538_4357_ac0adc proquest_journals_2569680350 iop_journals_10_3847_1538_4357_ac0adc |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2021 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Haiman (apjac0adcbib39) 1997; 476 Oh (apjac0adcbib85) 2002; 569 Toyouchi (apjac0adcbib124) 2021; 907 Fan (apjac0adcbib29) 2006; 131 Dayal (apjac0adcbib23) 2019; 486 Dijkstra (apjac0adcbib25) 2014; 442 Yoshida (apjac0adcbib142) 2003; 592 Schulz (apjac0adcbib111) 1967; 158 Tseliakhovich (apjac0adcbib126) 2010; 82 Tanaka (apjac0adcbib121) 2009; 696 Becerra (apjac0adcbib6) 2015; 446 Tegmark (apjac0adcbib123) 1997; 474 Coppola (apjac0adcbib20) 2011; 193 Savin (apjac0adcbib105) 2004; 606 Janev (apjac0adcbib58) 1987 Croft (apjac0adcbib21) 1999; 304 Fernandez (apjac0adcbib31) 2014; 439 Shibata (apjac0adcbib116) 2016; 94 Abel (apjac0adcbib2) 2002; 295 Larson (apjac0adcbib67) 1969; 145 Willott (apjac0adcbib134) 2010; 139 Martin (apjac0adcbib77) 1998; 499 Latif (apjac0adcbib69) 2015; 452 Penston (apjac0adcbib93) 1969; 144 Planck Collaboration (apjac0adcbib94) 2016; 594 Li (apjac0adcbib72) 2017; 841 Haiman (apjac0adcbib40) 1996; 464 Hosokawa (apjac0adcbib44) 2012; 756 Trevisan (apjac0adcbib125) 2002; 44 Hartwig (apjac0adcbib41) 2018; 479 Tanaka (apjac0adcbib122) 2014; 439 Peart (apjac0adcbib92) 1994; 27 Omukai (apjac0adcbib86) 2001; 546 Wu (apjac0adcbib140) 2015; 518 Huq (apjac0adcbib48) 1982; 15 Wang (apjac0adcbib133) 2021; 907 Woods (apjac0adcbib139) 2017; 842 Navarro (apjac0adcbib84) 1997; 490 Bonnor (apjac0adcbib8) 1958; 118 Regan (apjac0adcbib99) 2014; 795 Shang (apjac0adcbib113) 2010; 402 Glover (apjac0adcbib35) 2007; 666 Hummer (apjac0adcbib47) 1998; 297 Dove (apjac0adcbib27) 1987; 318 Sesana (apjac0adcbib112) 2008; 390 Dijkstra (apjac0adcbib26) 2008; 391 Barlow (apjac0adcbib5) 1984 Omukai (apjac0adcbib87) 2001; 561 Pollack (apjac0adcbib95) 1994; 421 Smith (apjac0adcbib117) 2018; 480 Sheth (apjac0adcbib115) 2001; 323 Inayoshi (apjac0adcbib55) 2020; 58 Shapiro (apjac0adcbib114) 1987; 318 Zygelman (apjac0adcbib143) 1989; 40 Tanaka (apjac0adcbib120) 2013; 773 Johnson (apjac0adcbib61) 2012; 750 Lacey (apjac0adcbib66) 1993; 262 Inayoshi (apjac0adcbib54) 2014; 445 Lynden-Bell (apjac0adcbib75) 1968; 138 Inayoshi (apjac0adcbib53) 2012; 422 Poulaert (apjac0adcbib96) 1978; 11 Di Matteo (apjac0adcbib24) 2012; 745 Scannapieco (apjac0adcbib106) 2002; 571 Latif (apjac0adcbib70) 2018; 476 Sakurai (apjac0adcbib104) 2016; 459 Visbal (apjac0adcbib129) 2014a; 442 Mo (apjac0adcbib82) 2002; 336 Bonetti (apjac0adcbib7) 2019; 486 Mac Low (apjac0adcbib76) 1986; 302 Glover (apjac0adcbib32) 2015a; 451 Hirano (apjac0adcbib42) 2017; 357 Jiang (apjac0adcbib59) 2016; 833 Wyithe (apjac0adcbib141) 2006; 366 Glover (apjac0adcbib34) 2008; 388 McKee (apjac0adcbib79) 2002; 416 Sugimura (apjac0adcbib119) 2014; 445 McLaughlin (apjac0adcbib81) 2017; 50 Press (apjac0adcbib97) 1974; 187 Chandrasekhar (apjac0adcbib12) 1951a; 210 Amaro-Seoane (apjac0adcbib4) 2017 Bullock (apjac0adcbib11) 2001; 321 Sakurai (apjac0adcbib103) 2015; 452 Kormendy (apjac0adcbib64) 2013; 51 Ferland (apjac0adcbib30) 1992; 387 Bromm (apjac0adcbib9) 2003; 596 Greene (apjac0adcbib36) 2020; 58 Ebert (apjac0adcbib28) 1955; 37 Wise (apjac0adcbib136) 2019; 566 Chon (apjac0adcbib18) 2020; 494 Schleicher (apjac0adcbib109) 2013; 558 Schneider (apjac0adcbib110) 1994; 424 Woods (apjac0adcbib138) 2019; 36 Chen (apjac0adcbib14) 2017; 844 Wolcott-Green (apjac0adcbib137) 2011; 412 Schauer (apjac0adcbib108) 2015; 454 Lepp (apjac0adcbib71) 1983; 270 Orel (apjac0adcbib90) 1987; 87 Stancil (apjac0adcbib118) 1994; 430 Hosokawa (apjac0adcbib45) 2011; 334 Inayoshi (apjac0adcbib50) 2014; 445 Habouzit (apjac0adcbib37) 2017; 468 Bromm (apjac0adcbib10) 2011; 49 Karpas (apjac0adcbib62) 1979; 70 Chon (apjac0adcbib17) 2018; 475 Kimura (apjac0adcbib63) 1993; 405 Valiante (apjac0adcbib127) 2016; 457 Haemmerlé (apjac0adcbib38) 2018; 474 Visbal (apjac0adcbib128) 2014b; 445 Iliev (apjac0adcbib49) 2003; 341 Johnson (apjac0adcbib60) 2013; 428 Kreckel (apjac0adcbib65) 2010; 329 Abel (apjac0adcbib1) 1997; 2 Dalgarno (apjac0adcbib22) 1987; 120 Omukai (apjac0adcbib88) 2008; 686 Regan (apjac0adcbib100) 2020b; 3 Regan (apjac0adcbib98) 2020a; 3 McKee (apjac0adcbib80) 2008; 681 Schauer (apjac0adcbib107) 2019; 484 Inoue (apjac0adcbib56) 2011; 415 Lupi (apjac0adcbib74) 2021; 503 Jacobs (apjac0adcbib57) 1967; 47 Voit (apjac0adcbib130) 2003; 593 Luo (apjac0adcbib73) 2016; 33 Latif (apjac0adcbib68) 2013; 433 Mortlock (apjac0adcbib83) 2011; 474 Agarwal (apjac0adcbib3) 2012; 425 Cole (apjac0adcbib19) 2000; 319 Hosokawa (apjac0adcbib46) 2013; 778 Matsuoka (apjac0adcbib78) 2018; 237 Chon (apjac0adcbib16) 2016; 832 Hirano (apjac0adcbib43) 2018; 855 Onoue (apjac0adcbib89) 2019; 880 Glover (apjac0adcbib33) 2015b; 453 Inayoshi (apjac0adcbib51) 2016; 459 Inayoshi (apjac0adcbib52) 2018; 479 Voit (apjac0adcbib131) 2005; 364 Chiaki (apjac0adcbib15) 2018; 475 Chandrasekhar (apjac0adcbib13) 1951b; 210 Sakurai (apjac0adcbib101) 2020; 499 Parkinson (apjac0adcbib91) 2008; 383 Wise (apjac0adcbib135) 2007; 665 |
References_xml | – volume: 486 start-page: 4044 year: 2019 ident: apjac0adcbib7 publication-title: MNRAS doi: 10.1093/mnras/stz903 – volume: 503 start-page: 5046 year: 2021 ident: apjac0adcbib74 publication-title: MNRAS doi: 10.1093/mnras/stab692 – volume: 94 start-page: 021501 year: 2016 ident: apjac0adcbib116 publication-title: PhRvD doi: 10.1103/PhysRevD.94.021501 – volume: 442 start-page: 2036 year: 2014 ident: apjac0adcbib25 publication-title: MNRAS doi: 10.1093/mnras/stu1007 – volume: 452 start-page: 755 year: 2015 ident: apjac0adcbib103 publication-title: MNRAS doi: 10.1093/mnras/stv1346 – volume: 907 start-page: 74 year: 2021 ident: apjac0adcbib124 publication-title: ApJ doi: 10.3847/1538-4357/abcfc2 – volume: 58 start-page: 257 year: 2020 ident: apjac0adcbib36 publication-title: ARA&A doi: 10.1146/annurev-astro-032620-021835 – volume: 318 start-page: 379 year: 1987 ident: apjac0adcbib27 publication-title: ApJ doi: 10.1086/165375 – volume: 70 start-page: 2877 year: 1979 ident: apjac0adcbib62 publication-title: JChPh doi: 10.1063/1.437823 – volume: 476 start-page: 5016 year: 2018 ident: apjac0adcbib70 publication-title: MNRAS doi: 10.1093/mnras/sty622 – start-page: 217 year: 1987 ident: apjac0adcbib58 – volume: 412 start-page: 2603 year: 2011 ident: apjac0adcbib137 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.18080.x – volume: 665 start-page: 899 year: 2007 ident: apjac0adcbib135 publication-title: ApJ doi: 10.1086/520036 – volume: 425 start-page: 2854 year: 2012 ident: apjac0adcbib3 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.21651.x – volume: 304 start-page: 327 year: 1999 ident: apjac0adcbib21 publication-title: MNRAS doi: 10.1046/j.1365-8711.1999.02346.x – volume: 193 start-page: 7 year: 2011 ident: apjac0adcbib20 publication-title: ApJS doi: 10.1088/0067-0049/193/1/7 – volume: 592 start-page: 645 year: 2003 ident: apjac0adcbib142 publication-title: ApJ doi: 10.1086/375810 – volume: 87 start-page: 314 year: 1987 ident: apjac0adcbib90 publication-title: JChPh doi: 10.1063/1.453628 – volume: 187 start-page: 425 year: 1974 ident: apjac0adcbib97 publication-title: ApJ doi: 10.1086/152650 – volume: 484 start-page: 3510 year: 2019 ident: apjac0adcbib107 publication-title: MNRAS doi: 10.1093/mnras/stz013 – volume: 486 start-page: 2336 year: 2019 ident: apjac0adcbib23 publication-title: MNRAS doi: 10.1093/mnras/stz897 – volume: 422 start-page: 2539 year: 2012 ident: apjac0adcbib53 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.20812.x – volume: 459 start-page: 1137 year: 2016 ident: apjac0adcbib104 publication-title: MNRAS doi: 10.1093/mnras/stw637 – volume: 120 start-page: 109 year: 1987 ident: apjac0adcbib22 article-title: IAU Symp. 120 – volume: 139 start-page: 906 year: 2010 ident: apjac0adcbib134 publication-title: AJ doi: 10.1088/0004-6256/139/3/906 – volume: 138 start-page: 495 year: 1968 ident: apjac0adcbib75 publication-title: MNRAS doi: 10.1093/mnras/138.4.495 – volume: 494 start-page: 2851 year: 2020 ident: apjac0adcbib18 publication-title: MNRAS doi: 10.1093/mnras/staa863 – volume: 357 start-page: 1375 year: 2017 ident: apjac0adcbib42 publication-title: Sci doi: 10.1126/science.aai9119 – volume: 842 start-page: L6 year: 2017 ident: apjac0adcbib139 publication-title: ApJL doi: 10.3847/2041-8213/aa7412 – volume: 50 start-page: 114001 year: 2017 ident: apjac0adcbib81 publication-title: JPhB doi: 10.1088/1361-6455/aa6c1f – volume: 476 start-page: 458 year: 1997 ident: apjac0adcbib39 publication-title: ApJ doi: 10.1086/303647 – volume: 428 start-page: 1857 year: 2013 ident: apjac0adcbib60 publication-title: MNRAS doi: 10.1093/mnras/sts011 – volume: 44 start-page: 1263 year: 2002 ident: apjac0adcbib125 publication-title: PPCF doi: 10.1088/0741-3335/44/7/315 – volume: 569 start-page: 558 year: 2002 ident: apjac0adcbib85 publication-title: ApJ doi: 10.1086/339393 – volume: 499 start-page: 793 year: 1998 ident: apjac0adcbib77 publication-title: ApJ doi: 10.1086/305665 – volume: 464 start-page: 523 year: 1996 ident: apjac0adcbib40 publication-title: ApJ doi: 10.1086/177343 – volume: 750 start-page: 66 year: 2012 ident: apjac0adcbib61 publication-title: ApJ doi: 10.1088/0004-637X/750/1/66 – volume: 388 start-page: 1627 year: 2008 ident: apjac0adcbib34 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.13224.x – volume: 210 start-page: 26 year: 1951b ident: apjac0adcbib13 publication-title: RSPSA doi: 10.1098/rspa.1951.0228 – volume: 433 start-page: 1607 year: 2013 ident: apjac0adcbib68 publication-title: MNRAS doi: 10.1093/mnras/stt834 – volume: 546 start-page: 635 year: 2001 ident: apjac0adcbib86 publication-title: ApJ doi: 10.1086/318296 – volume: 558 start-page: A59 year: 2013 ident: apjac0adcbib109 publication-title: A&A doi: 10.1051/0004-6361/201321949 – volume: 118 start-page: 523 year: 1958 ident: apjac0adcbib8 publication-title: MNRAS doi: 10.1093/mnras/118.5.523 – volume: 475 start-page: 4104 year: 2018 ident: apjac0adcbib17 publication-title: MNRAS doi: 10.1093/mnras/sty086 – volume: 480 start-page: 3762 year: 2018 ident: apjac0adcbib117 publication-title: MNRAS doi: 10.1093/mnras/sty2103 – volume: 321 start-page: 559 year: 2001 ident: apjac0adcbib11 publication-title: MNRAS doi: 10.1046/j.1365-8711.2001.04068.x – volume: 593 start-page: 272 year: 2003 ident: apjac0adcbib130 publication-title: ApJ doi: 10.1086/376499 – volume: 424 start-page: 983 year: 1994 ident: apjac0adcbib110 publication-title: ApJ doi: 10.1086/173948 – volume: 36 start-page: e027 year: 2019 ident: apjac0adcbib138 publication-title: PASA doi: 10.1017/pasa.2019.14 – volume: 571 start-page: 585 year: 2002 ident: apjac0adcbib106 publication-title: ApJ doi: 10.1086/340063 – volume: 666 start-page: 1 year: 2007 ident: apjac0adcbib35 publication-title: ApJ doi: 10.1086/519445 – volume: 439 start-page: 1092 year: 2014 ident: apjac0adcbib122 publication-title: MNRAS doi: 10.1093/mnras/stu042 – volume: 131 start-page: 1203 year: 2006 ident: apjac0adcbib29 publication-title: AJ doi: 10.1086/500296 – volume: 451 start-page: 2082 year: 2015a ident: apjac0adcbib32 publication-title: MNRAS doi: 10.1093/mnras/stv1059 – volume: 262 start-page: 627 year: 1993 ident: apjac0adcbib66 publication-title: MNRAS doi: 10.1093/mnras/262.3.627 – volume: 11 start-page: L671 year: 1978 ident: apjac0adcbib96 publication-title: JPhB doi: 10.1088/0022-3700/11/21/006 – volume: 364 start-page: 909 year: 2005 ident: apjac0adcbib131 publication-title: MNRAS doi: 10.1111/j.1365-2966.2005.09621.x – volume: 421 start-page: 615 year: 1994 ident: apjac0adcbib95 publication-title: ApJ doi: 10.1086/173677 – volume: 439 start-page: 3798 year: 2014 ident: apjac0adcbib31 publication-title: MNRAS doi: 10.1093/mnras/stu230 – volume: 445 start-page: L109 year: 2014 ident: apjac0adcbib54 publication-title: MNRAS doi: 10.1093/mnrasl/slu151 – volume: 880 start-page: 77 year: 2019 ident: apjac0adcbib89 publication-title: ApJ doi: 10.3847/1538-4357/ab29e9 – volume: 907 start-page: L1 year: 2021 ident: apjac0adcbib133 publication-title: ApJL doi: 10.3847/2041-8213/abd8c6 – volume: 841 start-page: 101 year: 2017 ident: apjac0adcbib72 publication-title: ApJ doi: 10.3847/1538-4357/aa7263 – volume: 270 start-page: 578 year: 1983 ident: apjac0adcbib71 publication-title: ApJ doi: 10.1086/161149 – volume: 2 start-page: 181 year: 1997 ident: apjac0adcbib1 publication-title: NewA doi: 10.1016/S1384-1076(97)00010-9 – volume: 832 start-page: 134 year: 2016 ident: apjac0adcbib16 publication-title: ApJ doi: 10.3847/0004-637X/832/2/134 – volume: 47 start-page: 54 year: 1967 ident: apjac0adcbib57 publication-title: JChPh doi: 10.1063/1.1711890 – volume: 145 start-page: 271 year: 1969 ident: apjac0adcbib67 publication-title: MNRAS doi: 10.1093/mnras/145.3.271 – volume: 468 start-page: 3935 year: 2017 ident: apjac0adcbib37 publication-title: MNRAS doi: 10.1093/mnras/stx666 – volume: 237 start-page: 5 year: 2018 ident: apjac0adcbib78 publication-title: ApJS doi: 10.3847/1538-4365/aac724 – volume: 594 start-page: A13 year: 2016 ident: apjac0adcbib94 publication-title: A&A doi: 10.1051/0004-6361/201525830 – volume: 606 start-page: L167 year: 2004 ident: apjac0adcbib105 publication-title: ApJL doi: 10.1086/421108 – volume: 15 start-page: 951 year: 1982 ident: apjac0adcbib48 publication-title: JPhB doi: 10.1088/0022-3700/15/6/020 – volume: 336 start-page: 112 year: 2002 ident: apjac0adcbib82 publication-title: MNRAS doi: 10.1046/j.1365-8711.2002.05723.x – volume: 686 start-page: 801 year: 2008 ident: apjac0adcbib88 publication-title: ApJ doi: 10.1086/591636 – volume: 778 start-page: 178 year: 2013 ident: apjac0adcbib46 publication-title: ApJ doi: 10.1088/0004-637X/778/2/178 – volume: 457 start-page: 3356 year: 2016 ident: apjac0adcbib127 publication-title: MNRAS doi: 10.1093/mnras/stw225 – volume: 561 start-page: L55 year: 2001 ident: apjac0adcbib87 publication-title: ApJL doi: 10.1086/324410 – volume: 158 start-page: 25 year: 1967 ident: apjac0adcbib111 publication-title: PhRv doi: 10.1103/PhysRev.158.25 – volume: 474 start-page: 616 year: 2011 ident: apjac0adcbib83 publication-title: Natur doi: 10.1038/nature10159 – volume: 696 start-page: 1798 year: 2009 ident: apjac0adcbib121 publication-title: ApJ doi: 10.1088/0004-637X/696/2/1798 – volume: 681 start-page: 771 year: 2008 ident: apjac0adcbib80 publication-title: ApJ doi: 10.1086/587434 – volume: 442 start-page: L100 year: 2014a ident: apjac0adcbib129 publication-title: MNRAS doi: 10.1093/mnrasl/slu063 – volume: 323 start-page: 1 year: 2001 ident: apjac0adcbib115 publication-title: MNRAS doi: 10.1046/j.1365-8711.2001.04006.x – volume: 40 start-page: 2340 year: 1989 ident: apjac0adcbib143 publication-title: PhRvA doi: 10.1103/PhysRevA.40.2340 – volume: 479 start-page: L23 year: 2018 ident: apjac0adcbib41 publication-title: MNRAS doi: 10.1093/mnrasl/sly091 – volume: 479 start-page: 4017 year: 2018 ident: apjac0adcbib52 publication-title: MNRAS doi: 10.1093/mnras/sty1720 – volume: 390 start-page: 192 year: 2008 ident: apjac0adcbib112 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.13682.x – volume: 415 start-page: 2920 year: 2011 ident: apjac0adcbib56 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.18906.x – volume: 454 start-page: 2441 year: 2015 ident: apjac0adcbib108 publication-title: MNRAS doi: 10.1093/mnras/stv2117 – volume: 33 year: 2016 ident: apjac0adcbib73 publication-title: CQGra doi: 10.1088/0264-9381/33/3/035010 – volume: 295 start-page: 93 year: 2002 ident: apjac0adcbib2 publication-title: Sci doi: 10.1126/science.295.5552.93 – year: 2017 ident: apjac0adcbib4 – volume: 844 start-page: 111 year: 2017 ident: apjac0adcbib14 publication-title: ApJ doi: 10.3847/1538-4357/aa7b34 – volume: 3 start-page: 15 year: 2020b ident: apjac0adcbib100 publication-title: OJAp doi: 10.21105/astro.2008.08090 – volume: 445 start-page: 1056 year: 2014b ident: apjac0adcbib128 publication-title: MNRAS doi: 10.1093/mnras/stu1794 – volume: 475 start-page: 4378 year: 2018 ident: apjac0adcbib15 publication-title: MNRAS doi: 10.1093/mnras/sty040 – volume: 3 start-page: E9 year: 2020a ident: apjac0adcbib98 publication-title: OJAp doi: 10.21105/astro.2006.14625 – volume: 416 start-page: 59 year: 2002 ident: apjac0adcbib79 publication-title: Natur doi: 10.1038/416059a – volume: 318 start-page: 32 year: 1987 ident: apjac0adcbib114 publication-title: ApJ doi: 10.1086/165350 – volume: 474 start-page: 2757 year: 2018 ident: apjac0adcbib38 publication-title: MNRAS doi: 10.1093/mnras/stx2919 – volume: 596 start-page: 34 year: 2003 ident: apjac0adcbib9 publication-title: ApJ doi: 10.1086/377529 – volume: 329 start-page: 69 year: 2010 ident: apjac0adcbib65 publication-title: Sci doi: 10.1126/science.1187191 – volume: 51 start-page: 511 year: 2013 ident: apjac0adcbib64 publication-title: ARA&A doi: 10.1146/annurev-astro-082708-101811 – volume: 383 start-page: 557 year: 2008 ident: apjac0adcbib91 publication-title: MNRAS doi: 10.1111/j.1365-2966.2007.12517.x – volume: 210 start-page: 18 year: 1951a ident: apjac0adcbib12 publication-title: RSPSA doi: 10.1098/rspa.1951.0227 – volume: 82 start-page: 083520 year: 2010 ident: apjac0adcbib126 publication-title: PhRvD doi: 10.1103/PhysRevD.82.083520 – volume: 566 start-page: 85 year: 2019 ident: apjac0adcbib136 publication-title: Natur doi: 10.1038/s41586-019-0873-4 – volume: 453 start-page: 2901 year: 2015b ident: apjac0adcbib33 publication-title: MNRAS doi: 10.1093/mnras/stv1781 – volume: 402 start-page: 1249 year: 2010 ident: apjac0adcbib113 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.15960.x – volume: 773 start-page: 155 year: 2013 ident: apjac0adcbib120 publication-title: ApJ doi: 10.1088/0004-637X/773/2/155 – volume: 833 start-page: 222 year: 2016 ident: apjac0adcbib59 publication-title: ApJ doi: 10.3847/1538-4357/833/2/222 – volume: 334 start-page: 1250 year: 2011 ident: apjac0adcbib45 publication-title: Sci doi: 10.1126/science.1207433 – volume: 459 start-page: 3738 year: 2016 ident: apjac0adcbib51 publication-title: MNRAS doi: 10.1093/mnras/stw836 – volume: 405 start-page: 801 year: 1993 ident: apjac0adcbib63 publication-title: ApJ doi: 10.1086/172410 – volume: 49 start-page: 373 year: 2011 ident: apjac0adcbib10 publication-title: ARA&A doi: 10.1146/annurev-astro-081710-102608 – volume: 27 start-page: 2551 year: 1994 ident: apjac0adcbib92 publication-title: JPhB doi: 10.1088/0953-4075/27/12/013 – volume: 518 start-page: 512 year: 2015 ident: apjac0adcbib140 publication-title: Natur doi: 10.1038/nature14241 – volume: 445 start-page: 1549 year: 2014 ident: apjac0adcbib50 publication-title: MNRAS doi: 10.1093/mnras/stu1870 – volume: 795 start-page: 137 year: 2014 ident: apjac0adcbib99 publication-title: ApJ doi: 10.1088/0004-637X/795/2/137 – volume: 430 start-page: 360 year: 1994 ident: apjac0adcbib118 publication-title: ApJ doi: 10.1086/174411 – volume: 499 start-page: 5960 year: 2020 ident: apjac0adcbib101 publication-title: MNRAS doi: 10.1093/mnras/staa3227 – volume: 319 start-page: 168 year: 2000 ident: apjac0adcbib19 publication-title: MNRAS doi: 10.1046/j.1365-8711.2000.03879.x – volume: 297 start-page: 1073 year: 1998 ident: apjac0adcbib47 publication-title: MNRAS doi: 10.1046/j.1365-8711.1998.2970041073.x – volume: 490 start-page: 493 year: 1997 ident: apjac0adcbib84 publication-title: ApJ doi: 10.1086/304888 – year: 1984 ident: apjac0adcbib5 – volume: 855 start-page: 17 year: 2018 ident: apjac0adcbib43 publication-title: ApJ doi: 10.3847/1538-4357/aaaaba – volume: 58 start-page: 27 year: 2020 ident: apjac0adcbib55 publication-title: ARA&A doi: 10.1146/annurev-astro-120419-014455 – volume: 366 start-page: 1029 year: 2006 ident: apjac0adcbib141 publication-title: MNRAS doi: 10.1111/j.1365-2966.2005.09858.x – volume: 387 start-page: 95 year: 1992 ident: apjac0adcbib30 publication-title: ApJ doi: 10.1086/171063 – volume: 302 start-page: 585 year: 1986 ident: apjac0adcbib76 publication-title: ApJ doi: 10.1086/164017 – volume: 445 start-page: 544 year: 2014 ident: apjac0adcbib119 publication-title: MNRAS doi: 10.1093/mnras/stu1778 – volume: 474 start-page: 1 year: 1997 ident: apjac0adcbib123 publication-title: ApJ doi: 10.1086/303434 – volume: 745 start-page: L29 year: 2012 ident: apjac0adcbib24 publication-title: ApJL doi: 10.1088/2041-8205/745/2/L29 – volume: 391 start-page: 1961 year: 2008 ident: apjac0adcbib26 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.14031.x – volume: 341 start-page: 81 year: 2003 ident: apjac0adcbib49 publication-title: MNRAS doi: 10.1046/j.1365-8711.2003.06410.x – volume: 446 start-page: 2380 year: 2015 ident: apjac0adcbib6 publication-title: MNRAS doi: 10.1093/mnras/stu2284 – volume: 37 start-page: 217 year: 1955 ident: apjac0adcbib28 publication-title: ZA – volume: 452 start-page: 1026 year: 2015 ident: apjac0adcbib69 publication-title: MNRAS doi: 10.1093/mnras/stv1337 – volume: 144 start-page: 425 year: 1969 ident: apjac0adcbib93 publication-title: MNRAS doi: 10.1093/mnras/144.4.425 – volume: 756 start-page: 93 year: 2012 ident: apjac0adcbib44 publication-title: ApJ doi: 10.1088/0004-637X/756/1/93 |
SSID | ssj0004299 |
Score | 2.5063214 |
Snippet | High-redshift luminous quasars powered by accreting supermassive black holes (SMBHs) with mass ≳10
9
M
⊙
constrain their formation pathways. We investigate the... High-redshift luminous quasars powered by accreting supermassive black holes (SMBHs) with mass ≳109 M ⊙ constrain their formation pathways. We investigate the... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 60 |
SubjectTerms | Astrophysics Binary stars Black holes Collapse Cooling Deposition Galactic halos Galaxies Gravitational waves Halos High-redshift galaxies Kinetic energy Quasars Radiation Red shift Seeds Star & galaxy formation Star formation Stellar mass Supermassive black holes Trees |
Title | Evolution of High-redshift Quasar Hosts and Promotion of Massive Black Hole Seed Formation |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/ac0adc https://www.proquest.com/docview/2569680350 |
Volume | 917 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1dS-QwcPADwZc7P_GbPKjgQ3fbJpu2-CTisgrqioqLCCFJG_TO2y7b7sHdr3fSdBU_EPGl5GHapDOT-crMBGA7pSyTkUIKaIoOSiC5J2nGbelTwGXINa9C2adnvHPNTnqt3gTsP9fC5INa9Ddw6BoFOxTa_U1RljarPYpaPmpK7ctUT8K0vbjSsvfxefelKDJMatuXeZxGPXdG-eEXXumkSZz3nWCutE37J9yN1-mSTH43RqVq6P9vWjh-80fm4EdthZIDBzoPE1l_AVYOChsXz__8I7ukGruwR7EAM103WoTbo781s5LcEJsl4g2ztLh_MCW5GMlCDkknL8qCyH5Kui7Xz8GeopmOopVUIUMEeszIJapO0h6XTy7BVfvo6rDj1fczeJqxVulxqVu-QQnFmEJZoU2sfCapManhWtpqLpqqQCdBrNDK4gxNzRAdTqViGrRUSpdhqp_3sxUgEU9YnMUmUowypeMkCiTlUnEqE8Z9swrNMYGErnuX2ys0HgX6MBaXwuJSWFwKh8tV2Ht-Y-D6dnwCu4MkEvXmLT6B23wFJwe_BHq7IhTcF4MUV7kx5poXIDQpEx7b89u1L06zDrOhTZypsgw3YKocjrJNtHxKtVVxOD7P6c0TThL8tg |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xEFUvLY8itjzqA0XqIbtJ7DjJEbWslvLoooK06sXYTqzy2qw2WST49R3HWRBQoUq9-TCJkxl75pvxzBhgO6Msl7FCCWiKDkoguSdpzm3pU8BlyDWvQ9lHx7x3xr4PokFzz2ldC1OMGtXfxqFrFOxYaPc3RV3aqfcoWvm4I7UvM90ZZWYW5iNUxTana_9H_7EwMkwb_Ms8TuOBO6f861ue2KVZnPuFcq4tTvc9nE-_1SWaXLUnlWrr-2dtHP_jZxbhXYNGya4jX4KZfLgMa7uljY8XN3dkh9RjF_4ol2Gh70Yr8Gvvtlm0pDDEZot44zwrf1-YipxMZCnHpFeUVUnkMCN9l_PnaI8QrqOKJXXoEImuc_ITTSjpTssoP8Bpd-_0a89r7mnwNGNR5XGpI9-gpmJMoc7QJlE-k9SYzHAtbVUXzVSg0yBRiLY4Q8gZouOpVEKDSGV0FeaGxTBfAxLzlCV5YmLFKFM6SeNAUi4VpzJl3Dct6EyFJHTTw9xepXEt0Jex_BSWn8LyUzh-tuDLwxMj17_jFdrPKCbRbOLyFbrNJ3RydCnQ6xWh4L5A-bVgY7pyHokQWqY8see4H_9xmk_wpv-tKw73jw_W4W1oc2nqxMMNmKvGk3wTwVCltuoF_weARAEv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+High-redshift+Quasar+Hosts+and+Promotion+of+Massive+Black+Hole+Seed+Formation&rft.jtitle=The+Astrophysical+journal&rft.au=Li+%E6%9D%8E%2C+Wenxiu+%E6%96%87%E7%A7%80&rft.au=Inayoshi%2C+Kohei&rft.au=Qiu+%E9%82%B1%2C+Yu+%E5%AE%87&rft.date=2021-08-01&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=917&rft.issue=2&rft.spage=60&rft_id=info:doi/10.3847%2F1538-4357%2Fac0adc&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_4357_ac0adc |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |