Evolution of High-redshift Quasar Hosts and Promotion of Massive Black Hole Seed Formation

High-redshift luminous quasars powered by accreting supermassive black holes (SMBHs) with mass ≳10 9 M ⊙ constrain their formation pathways. We investigate the formation of heavy seeds of SMBHs through gas collapse in the quasar host progenitors, using merger trees to trace the halo growth in highly...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 917; no. 2; pp. 60 - 75
Main Authors Li, Wenxiu, Inayoshi, Kohei, Qiu, Yu
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 01.08.2021
IOP Publishing
Subjects
Online AccessGet full text
ISSN0004-637X
1538-4357
DOI10.3847/1538-4357/ac0adc

Cover

Abstract High-redshift luminous quasars powered by accreting supermassive black holes (SMBHs) with mass ≳10 9 M ⊙ constrain their formation pathways. We investigate the formation of heavy seeds of SMBHs through gas collapse in the quasar host progenitors, using merger trees to trace the halo growth in highly biased, overdense regions of the universe. The progenitor halos are likely irradiated by intense H 2 -photodissociating radiation from nearby star-forming galaxies and heat the interior gas by successive mergers. The kinetic energy of the gas originating from mergers, as well as the baryonic streaming motion, prevents gas collapse and delays prior star formation. With a streaming velocity higher than the rms value, gas clouds in nearly all 10 4 realizations of merger trees enter the atomic-cooling stage and begin to collapse isothermally with T ≃ 8000 K via Ly α cooling. The fraction of trees that host isothermal gas collapse is 14% and increases with streaming velocity, while the rest form H 2 -cooled cores after short isothermal phases. If the collapsing gas is enriched to Z crit ∼ 2 × 10 −3 Z ⊙ , requiring efficient metal mixing, this fraction could be reduced by additional cooling via metal fine-structure lines. In the massive collapsing gas, the accretion rate onto a newly born protostar ranges between 3 × 10 −3 M ⊙ yr −1 and 5 M ⊙ yr −1 , among which a large fraction exceeds the critical rate suppressing stellar radiative feedback. As a result, we expect a distribution of stellar mass (presumably BH mass) ranging from several hundred to above 10 5 M ⊙ , potentially forming massive BH binary mergers and yielding gravitational-wave events.
AbstractList High-redshift luminous quasars powered by accreting supermassive black holes (SMBHs) with mass ≳10 9 M ⊙ constrain their formation pathways. We investigate the formation of heavy seeds of SMBHs through gas collapse in the quasar host progenitors, using merger trees to trace the halo growth in highly biased, overdense regions of the universe. The progenitor halos are likely irradiated by intense H 2 -photodissociating radiation from nearby star-forming galaxies and heat the interior gas by successive mergers. The kinetic energy of the gas originating from mergers, as well as the baryonic streaming motion, prevents gas collapse and delays prior star formation. With a streaming velocity higher than the rms value, gas clouds in nearly all 10 4 realizations of merger trees enter the atomic-cooling stage and begin to collapse isothermally with T ≃ 8000 K via Ly α cooling. The fraction of trees that host isothermal gas collapse is 14% and increases with streaming velocity, while the rest form H 2 -cooled cores after short isothermal phases. If the collapsing gas is enriched to Z crit ∼ 2 × 10 −3 Z ⊙ , requiring efficient metal mixing, this fraction could be reduced by additional cooling via metal fine-structure lines. In the massive collapsing gas, the accretion rate onto a newly born protostar ranges between 3 × 10 −3 M ⊙ yr −1 and 5 M ⊙ yr −1 , among which a large fraction exceeds the critical rate suppressing stellar radiative feedback. As a result, we expect a distribution of stellar mass (presumably BH mass) ranging from several hundred to above 10 5 M ⊙ , potentially forming massive BH binary mergers and yielding gravitational-wave events.
High-redshift luminous quasars powered by accreting supermassive black holes (SMBHs) with mass ≳109 M ⊙ constrain their formation pathways. We investigate the formation of heavy seeds of SMBHs through gas collapse in the quasar host progenitors, using merger trees to trace the halo growth in highly biased, overdense regions of the universe. The progenitor halos are likely irradiated by intense H2-photodissociating radiation from nearby star-forming galaxies and heat the interior gas by successive mergers. The kinetic energy of the gas originating from mergers, as well as the baryonic streaming motion, prevents gas collapse and delays prior star formation. With a streaming velocity higher than the rms value, gas clouds in nearly all 104 realizations of merger trees enter the atomic-cooling stage and begin to collapse isothermally with T ≃ 8000 K via Lyα cooling. The fraction of trees that host isothermal gas collapse is 14% and increases with streaming velocity, while the rest form H2-cooled cores after short isothermal phases. If the collapsing gas is enriched to Z crit ∼ 2 × 10−3 Z ⊙, requiring efficient metal mixing, this fraction could be reduced by additional cooling via metal fine-structure lines. In the massive collapsing gas, the accretion rate onto a newly born protostar ranges between 3 × 10−3 M ⊙ yr−1 and 5 M ⊙ yr−1, among which a large fraction exceeds the critical rate suppressing stellar radiative feedback. As a result, we expect a distribution of stellar mass (presumably BH mass) ranging from several hundred to above 105 M ⊙, potentially forming massive BH binary mergers and yielding gravitational-wave events.
Author Inayoshi, Kohei
Li, Wenxiu
Qiu, Yu
Author_xml – sequence: 1
  givenname: Wenxiu
  orcidid: 0000-0002-1044-4081
  surname: Li
  fullname: Li, Wenxiu
  organization: Peking University Kavli Institute for Astronomy and Astrophysics, Beijing 100871, People’s Republic of China
– sequence: 2
  givenname: Kohei
  orcidid: 0000-0001-9840-4959
  surname: Inayoshi
  fullname: Inayoshi, Kohei
  organization: Peking University Kavli Institute for Astronomy and Astrophysics, Beijing 100871, People’s Republic of China
– sequence: 3
  givenname: Yu
  orcidid: 0000-0002-6164-8463
  surname: Qiu
  fullname: Qiu, Yu
  organization: Peking University Kavli Institute for Astronomy and Astrophysics, Beijing 100871, People’s Republic of China
BookMark eNp9kE1Lw0AQhhepYK3ePS7o0dhN9is5ammtUFGxB_GybDa7NjXNxt2k4L83MX6ASE_DDM87MzyHYFDaUgNwEqILHBM-DimOA4IpH0uFZKb2wPBnNABDhBAJGOZPB-DQ-3XXRkkyBM_TrS2aOrcltAbO85dV4HTmV7mp4UMjvXRwbn3toSwzeO_sxn6zt9L7fKvhVSHVawsVGj5qncGZdRvZQUdg38jC6-OvOgLL2XQ5mQeLu-ubyeUiUITQOmBSUWQwZ4SkCCNl4hQRiY3JDFMyxpjiLA1VEsYpZREjCecRj8I0jXFI0wyPwGm_tnL2rdG-FmvbuLK9KCLKEhYjTFFLsZ5SznrvtBEqrz_frJ3MCxEi0WkUnTPRORO9xjaI_gQrl2-ke98VOe8jua1-n9mBn_2Dy2otkpCLSDAkqszgD9yskl4
CitedBy_id crossref_primary_10_1093_mnras_stac3715
crossref_primary_10_3847_1538_4357_accbbe
crossref_primary_10_1103_PhysRevD_111_043012
crossref_primary_10_3847_1538_4357_ac75d8
crossref_primary_10_1093_mnras_stac2238
crossref_primary_10_3847_1538_4357_ad46f9
crossref_primary_10_1093_mnras_stae1558
crossref_primary_10_1093_mnras_staf012
crossref_primary_10_1093_mnras_stae1449
crossref_primary_10_1093_mnras_stad1484
crossref_primary_10_1093_mnras_stad689
crossref_primary_10_3847_1538_4357_ac7daa
crossref_primary_10_1093_mnras_stac3191
crossref_primary_10_1093_mnras_stae2380
crossref_primary_10_1093_mnras_stae2066
crossref_primary_10_3847_1538_4357_ac4751
crossref_primary_10_3847_1538_4357_ad344c
crossref_primary_10_1093_mnras_stae2120
Cites_doi 10.1093/mnras/stz903
10.1093/mnras/stab692
10.1103/PhysRevD.94.021501
10.1093/mnras/stu1007
10.1093/mnras/stv1346
10.3847/1538-4357/abcfc2
10.1146/annurev-astro-032620-021835
10.1086/165375
10.1063/1.437823
10.1093/mnras/sty622
10.1111/j.1365-2966.2010.18080.x
10.1086/520036
10.1111/j.1365-2966.2012.21651.x
10.1046/j.1365-8711.1999.02346.x
10.1088/0067-0049/193/1/7
10.1086/375810
10.1063/1.453628
10.1086/152650
10.1093/mnras/stz013
10.1093/mnras/stz897
10.1111/j.1365-2966.2012.20812.x
10.1093/mnras/stw637
10.1088/0004-6256/139/3/906
10.1093/mnras/138.4.495
10.1093/mnras/staa863
10.1126/science.aai9119
10.3847/2041-8213/aa7412
10.1088/1361-6455/aa6c1f
10.1086/303647
10.1093/mnras/sts011
10.1088/0741-3335/44/7/315
10.1086/339393
10.1086/305665
10.1086/177343
10.1088/0004-637X/750/1/66
10.1111/j.1365-2966.2008.13224.x
10.1098/rspa.1951.0228
10.1093/mnras/stt834
10.1086/318296
10.1051/0004-6361/201321949
10.1093/mnras/118.5.523
10.1093/mnras/sty086
10.1093/mnras/sty2103
10.1046/j.1365-8711.2001.04068.x
10.1086/376499
10.1086/173948
10.1017/pasa.2019.14
10.1086/340063
10.1086/519445
10.1093/mnras/stu042
10.1086/500296
10.1093/mnras/stv1059
10.1093/mnras/262.3.627
10.1088/0022-3700/11/21/006
10.1111/j.1365-2966.2005.09621.x
10.1086/173677
10.1093/mnras/stu230
10.1093/mnrasl/slu151
10.3847/1538-4357/ab29e9
10.3847/2041-8213/abd8c6
10.3847/1538-4357/aa7263
10.1086/161149
10.1016/S1384-1076(97)00010-9
10.3847/0004-637X/832/2/134
10.1063/1.1711890
10.1093/mnras/145.3.271
10.1093/mnras/stx666
10.3847/1538-4365/aac724
10.1051/0004-6361/201525830
10.1086/421108
10.1088/0022-3700/15/6/020
10.1046/j.1365-8711.2002.05723.x
10.1086/591636
10.1088/0004-637X/778/2/178
10.1093/mnras/stw225
10.1086/324410
10.1103/PhysRev.158.25
10.1038/nature10159
10.1088/0004-637X/696/2/1798
10.1086/587434
10.1093/mnrasl/slu063
10.1046/j.1365-8711.2001.04006.x
10.1103/PhysRevA.40.2340
10.1093/mnrasl/sly091
10.1093/mnras/sty1720
10.1111/j.1365-2966.2008.13682.x
10.1111/j.1365-2966.2011.18906.x
10.1093/mnras/stv2117
10.1088/0264-9381/33/3/035010
10.1126/science.295.5552.93
10.3847/1538-4357/aa7b34
10.21105/astro.2008.08090
10.1093/mnras/stu1794
10.1093/mnras/sty040
10.21105/astro.2006.14625
10.1038/416059a
10.1086/165350
10.1093/mnras/stx2919
10.1086/377529
10.1126/science.1187191
10.1146/annurev-astro-082708-101811
10.1111/j.1365-2966.2007.12517.x
10.1098/rspa.1951.0227
10.1103/PhysRevD.82.083520
10.1038/s41586-019-0873-4
10.1093/mnras/stv1781
10.1111/j.1365-2966.2009.15960.x
10.1088/0004-637X/773/2/155
10.3847/1538-4357/833/2/222
10.1126/science.1207433
10.1093/mnras/stw836
10.1086/172410
10.1146/annurev-astro-081710-102608
10.1088/0953-4075/27/12/013
10.1038/nature14241
10.1093/mnras/stu1870
10.1088/0004-637X/795/2/137
10.1086/174411
10.1093/mnras/staa3227
10.1046/j.1365-8711.2000.03879.x
10.1046/j.1365-8711.1998.2970041073.x
10.1086/304888
10.3847/1538-4357/aaaaba
10.1146/annurev-astro-120419-014455
10.1111/j.1365-2966.2005.09858.x
10.1086/171063
10.1086/164017
10.1093/mnras/stu1778
10.1086/303434
10.1088/2041-8205/745/2/L29
10.1111/j.1365-2966.2008.14031.x
10.1046/j.1365-8711.2003.06410.x
10.1093/mnras/stu2284
10.1093/mnras/stv1337
10.1093/mnras/144.4.425
10.1088/0004-637X/756/1/93
ContentType Journal Article
Copyright 2021. The American Astronomical Society. All rights reserved.
Copyright IOP Publishing Aug 01, 2021
Copyright_xml – notice: 2021. The American Astronomical Society. All rights reserved.
– notice: Copyright IOP Publishing Aug 01, 2021
DBID AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOI 10.3847/1538-4357/ac0adc
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4357
ExternalDocumentID 10_3847_1538_4357_ac0adc
apjac0adc
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
WH7
XSW
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
ID FETCH-LOGICAL-c445t-6ac50f37644b030cf8b04a3ffdf6ca83353db1c918b562649772721bb8315bd3
IEDL.DBID IOP
ISSN 0004-637X
IngestDate Wed Aug 13 06:59:58 EDT 2025
Thu Apr 24 23:13:49 EDT 2025
Tue Jul 01 03:24:41 EDT 2025
Wed Aug 21 03:32:58 EDT 2024
Tue Aug 20 22:16:53 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-6ac50f37644b030cf8b04a3ffdf6ca83353db1c918b562649772721bb8315bd3
Notes Galaxies and Cosmology
AAS32433
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1044-4081
0000-0001-9840-4959
0000-0002-6164-8463
OpenAccessLink https://iopscience.iop.org/article/10.3847/1538-4357/ac0adc/pdf
PQID 2569680350
PQPubID 4562441
PageCount 16
ParticipantIDs crossref_citationtrail_10_3847_1538_4357_ac0adc
crossref_primary_10_3847_1538_4357_ac0adc
proquest_journals_2569680350
iop_journals_10_3847_1538_4357_ac0adc
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2021
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Haiman (apjac0adcbib39) 1997; 476
Oh (apjac0adcbib85) 2002; 569
Toyouchi (apjac0adcbib124) 2021; 907
Fan (apjac0adcbib29) 2006; 131
Dayal (apjac0adcbib23) 2019; 486
Dijkstra (apjac0adcbib25) 2014; 442
Yoshida (apjac0adcbib142) 2003; 592
Schulz (apjac0adcbib111) 1967; 158
Tseliakhovich (apjac0adcbib126) 2010; 82
Tanaka (apjac0adcbib121) 2009; 696
Becerra (apjac0adcbib6) 2015; 446
Tegmark (apjac0adcbib123) 1997; 474
Coppola (apjac0adcbib20) 2011; 193
Savin (apjac0adcbib105) 2004; 606
Janev (apjac0adcbib58) 1987
Croft (apjac0adcbib21) 1999; 304
Fernandez (apjac0adcbib31) 2014; 439
Shibata (apjac0adcbib116) 2016; 94
Abel (apjac0adcbib2) 2002; 295
Larson (apjac0adcbib67) 1969; 145
Willott (apjac0adcbib134) 2010; 139
Martin (apjac0adcbib77) 1998; 499
Latif (apjac0adcbib69) 2015; 452
Penston (apjac0adcbib93) 1969; 144
Planck Collaboration (apjac0adcbib94) 2016; 594
Li (apjac0adcbib72) 2017; 841
Haiman (apjac0adcbib40) 1996; 464
Hosokawa (apjac0adcbib44) 2012; 756
Trevisan (apjac0adcbib125) 2002; 44
Hartwig (apjac0adcbib41) 2018; 479
Tanaka (apjac0adcbib122) 2014; 439
Peart (apjac0adcbib92) 1994; 27
Omukai (apjac0adcbib86) 2001; 546
Wu (apjac0adcbib140) 2015; 518
Huq (apjac0adcbib48) 1982; 15
Wang (apjac0adcbib133) 2021; 907
Woods (apjac0adcbib139) 2017; 842
Navarro (apjac0adcbib84) 1997; 490
Bonnor (apjac0adcbib8) 1958; 118
Regan (apjac0adcbib99) 2014; 795
Shang (apjac0adcbib113) 2010; 402
Glover (apjac0adcbib35) 2007; 666
Hummer (apjac0adcbib47) 1998; 297
Dove (apjac0adcbib27) 1987; 318
Sesana (apjac0adcbib112) 2008; 390
Dijkstra (apjac0adcbib26) 2008; 391
Barlow (apjac0adcbib5) 1984
Omukai (apjac0adcbib87) 2001; 561
Pollack (apjac0adcbib95) 1994; 421
Smith (apjac0adcbib117) 2018; 480
Sheth (apjac0adcbib115) 2001; 323
Inayoshi (apjac0adcbib55) 2020; 58
Shapiro (apjac0adcbib114) 1987; 318
Zygelman (apjac0adcbib143) 1989; 40
Tanaka (apjac0adcbib120) 2013; 773
Johnson (apjac0adcbib61) 2012; 750
Lacey (apjac0adcbib66) 1993; 262
Inayoshi (apjac0adcbib54) 2014; 445
Lynden-Bell (apjac0adcbib75) 1968; 138
Inayoshi (apjac0adcbib53) 2012; 422
Poulaert (apjac0adcbib96) 1978; 11
Di Matteo (apjac0adcbib24) 2012; 745
Scannapieco (apjac0adcbib106) 2002; 571
Latif (apjac0adcbib70) 2018; 476
Sakurai (apjac0adcbib104) 2016; 459
Visbal (apjac0adcbib129) 2014a; 442
Mo (apjac0adcbib82) 2002; 336
Bonetti (apjac0adcbib7) 2019; 486
Mac Low (apjac0adcbib76) 1986; 302
Glover (apjac0adcbib32) 2015a; 451
Hirano (apjac0adcbib42) 2017; 357
Jiang (apjac0adcbib59) 2016; 833
Wyithe (apjac0adcbib141) 2006; 366
Glover (apjac0adcbib34) 2008; 388
McKee (apjac0adcbib79) 2002; 416
Sugimura (apjac0adcbib119) 2014; 445
McLaughlin (apjac0adcbib81) 2017; 50
Press (apjac0adcbib97) 1974; 187
Chandrasekhar (apjac0adcbib12) 1951a; 210
Amaro-Seoane (apjac0adcbib4) 2017
Bullock (apjac0adcbib11) 2001; 321
Sakurai (apjac0adcbib103) 2015; 452
Kormendy (apjac0adcbib64) 2013; 51
Ferland (apjac0adcbib30) 1992; 387
Bromm (apjac0adcbib9) 2003; 596
Greene (apjac0adcbib36) 2020; 58
Ebert (apjac0adcbib28) 1955; 37
Wise (apjac0adcbib136) 2019; 566
Chon (apjac0adcbib18) 2020; 494
Schleicher (apjac0adcbib109) 2013; 558
Schneider (apjac0adcbib110) 1994; 424
Woods (apjac0adcbib138) 2019; 36
Chen (apjac0adcbib14) 2017; 844
Wolcott-Green (apjac0adcbib137) 2011; 412
Schauer (apjac0adcbib108) 2015; 454
Lepp (apjac0adcbib71) 1983; 270
Orel (apjac0adcbib90) 1987; 87
Stancil (apjac0adcbib118) 1994; 430
Hosokawa (apjac0adcbib45) 2011; 334
Inayoshi (apjac0adcbib50) 2014; 445
Habouzit (apjac0adcbib37) 2017; 468
Bromm (apjac0adcbib10) 2011; 49
Karpas (apjac0adcbib62) 1979; 70
Chon (apjac0adcbib17) 2018; 475
Kimura (apjac0adcbib63) 1993; 405
Valiante (apjac0adcbib127) 2016; 457
Haemmerlé (apjac0adcbib38) 2018; 474
Visbal (apjac0adcbib128) 2014b; 445
Iliev (apjac0adcbib49) 2003; 341
Johnson (apjac0adcbib60) 2013; 428
Kreckel (apjac0adcbib65) 2010; 329
Abel (apjac0adcbib1) 1997; 2
Dalgarno (apjac0adcbib22) 1987; 120
Omukai (apjac0adcbib88) 2008; 686
Regan (apjac0adcbib100) 2020b; 3
Regan (apjac0adcbib98) 2020a; 3
McKee (apjac0adcbib80) 2008; 681
Schauer (apjac0adcbib107) 2019; 484
Inoue (apjac0adcbib56) 2011; 415
Lupi (apjac0adcbib74) 2021; 503
Jacobs (apjac0adcbib57) 1967; 47
Voit (apjac0adcbib130) 2003; 593
Luo (apjac0adcbib73) 2016; 33
Latif (apjac0adcbib68) 2013; 433
Mortlock (apjac0adcbib83) 2011; 474
Agarwal (apjac0adcbib3) 2012; 425
Cole (apjac0adcbib19) 2000; 319
Hosokawa (apjac0adcbib46) 2013; 778
Matsuoka (apjac0adcbib78) 2018; 237
Chon (apjac0adcbib16) 2016; 832
Hirano (apjac0adcbib43) 2018; 855
Onoue (apjac0adcbib89) 2019; 880
Glover (apjac0adcbib33) 2015b; 453
Inayoshi (apjac0adcbib51) 2016; 459
Inayoshi (apjac0adcbib52) 2018; 479
Voit (apjac0adcbib131) 2005; 364
Chiaki (apjac0adcbib15) 2018; 475
Chandrasekhar (apjac0adcbib13) 1951b; 210
Sakurai (apjac0adcbib101) 2020; 499
Parkinson (apjac0adcbib91) 2008; 383
Wise (apjac0adcbib135) 2007; 665
References_xml – volume: 486
  start-page: 4044
  year: 2019
  ident: apjac0adcbib7
  publication-title: MNRAS
  doi: 10.1093/mnras/stz903
– volume: 503
  start-page: 5046
  year: 2021
  ident: apjac0adcbib74
  publication-title: MNRAS
  doi: 10.1093/mnras/stab692
– volume: 94
  start-page: 021501
  year: 2016
  ident: apjac0adcbib116
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.94.021501
– volume: 442
  start-page: 2036
  year: 2014
  ident: apjac0adcbib25
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1007
– volume: 452
  start-page: 755
  year: 2015
  ident: apjac0adcbib103
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1346
– volume: 907
  start-page: 74
  year: 2021
  ident: apjac0adcbib124
  publication-title: ApJ
  doi: 10.3847/1538-4357/abcfc2
– volume: 58
  start-page: 257
  year: 2020
  ident: apjac0adcbib36
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-032620-021835
– volume: 318
  start-page: 379
  year: 1987
  ident: apjac0adcbib27
  publication-title: ApJ
  doi: 10.1086/165375
– volume: 70
  start-page: 2877
  year: 1979
  ident: apjac0adcbib62
  publication-title: JChPh
  doi: 10.1063/1.437823
– volume: 476
  start-page: 5016
  year: 2018
  ident: apjac0adcbib70
  publication-title: MNRAS
  doi: 10.1093/mnras/sty622
– start-page: 217
  year: 1987
  ident: apjac0adcbib58
– volume: 412
  start-page: 2603
  year: 2011
  ident: apjac0adcbib137
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.18080.x
– volume: 665
  start-page: 899
  year: 2007
  ident: apjac0adcbib135
  publication-title: ApJ
  doi: 10.1086/520036
– volume: 425
  start-page: 2854
  year: 2012
  ident: apjac0adcbib3
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21651.x
– volume: 304
  start-page: 327
  year: 1999
  ident: apjac0adcbib21
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.1999.02346.x
– volume: 193
  start-page: 7
  year: 2011
  ident: apjac0adcbib20
  publication-title: ApJS
  doi: 10.1088/0067-0049/193/1/7
– volume: 592
  start-page: 645
  year: 2003
  ident: apjac0adcbib142
  publication-title: ApJ
  doi: 10.1086/375810
– volume: 87
  start-page: 314
  year: 1987
  ident: apjac0adcbib90
  publication-title: JChPh
  doi: 10.1063/1.453628
– volume: 187
  start-page: 425
  year: 1974
  ident: apjac0adcbib97
  publication-title: ApJ
  doi: 10.1086/152650
– volume: 484
  start-page: 3510
  year: 2019
  ident: apjac0adcbib107
  publication-title: MNRAS
  doi: 10.1093/mnras/stz013
– volume: 486
  start-page: 2336
  year: 2019
  ident: apjac0adcbib23
  publication-title: MNRAS
  doi: 10.1093/mnras/stz897
– volume: 422
  start-page: 2539
  year: 2012
  ident: apjac0adcbib53
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.20812.x
– volume: 459
  start-page: 1137
  year: 2016
  ident: apjac0adcbib104
  publication-title: MNRAS
  doi: 10.1093/mnras/stw637
– volume: 120
  start-page: 109
  year: 1987
  ident: apjac0adcbib22
  article-title: IAU Symp. 120
– volume: 139
  start-page: 906
  year: 2010
  ident: apjac0adcbib134
  publication-title: AJ
  doi: 10.1088/0004-6256/139/3/906
– volume: 138
  start-page: 495
  year: 1968
  ident: apjac0adcbib75
  publication-title: MNRAS
  doi: 10.1093/mnras/138.4.495
– volume: 494
  start-page: 2851
  year: 2020
  ident: apjac0adcbib18
  publication-title: MNRAS
  doi: 10.1093/mnras/staa863
– volume: 357
  start-page: 1375
  year: 2017
  ident: apjac0adcbib42
  publication-title: Sci
  doi: 10.1126/science.aai9119
– volume: 842
  start-page: L6
  year: 2017
  ident: apjac0adcbib139
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa7412
– volume: 50
  start-page: 114001
  year: 2017
  ident: apjac0adcbib81
  publication-title: JPhB
  doi: 10.1088/1361-6455/aa6c1f
– volume: 476
  start-page: 458
  year: 1997
  ident: apjac0adcbib39
  publication-title: ApJ
  doi: 10.1086/303647
– volume: 428
  start-page: 1857
  year: 2013
  ident: apjac0adcbib60
  publication-title: MNRAS
  doi: 10.1093/mnras/sts011
– volume: 44
  start-page: 1263
  year: 2002
  ident: apjac0adcbib125
  publication-title: PPCF
  doi: 10.1088/0741-3335/44/7/315
– volume: 569
  start-page: 558
  year: 2002
  ident: apjac0adcbib85
  publication-title: ApJ
  doi: 10.1086/339393
– volume: 499
  start-page: 793
  year: 1998
  ident: apjac0adcbib77
  publication-title: ApJ
  doi: 10.1086/305665
– volume: 464
  start-page: 523
  year: 1996
  ident: apjac0adcbib40
  publication-title: ApJ
  doi: 10.1086/177343
– volume: 750
  start-page: 66
  year: 2012
  ident: apjac0adcbib61
  publication-title: ApJ
  doi: 10.1088/0004-637X/750/1/66
– volume: 388
  start-page: 1627
  year: 2008
  ident: apjac0adcbib34
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.13224.x
– volume: 210
  start-page: 26
  year: 1951b
  ident: apjac0adcbib13
  publication-title: RSPSA
  doi: 10.1098/rspa.1951.0228
– volume: 433
  start-page: 1607
  year: 2013
  ident: apjac0adcbib68
  publication-title: MNRAS
  doi: 10.1093/mnras/stt834
– volume: 546
  start-page: 635
  year: 2001
  ident: apjac0adcbib86
  publication-title: ApJ
  doi: 10.1086/318296
– volume: 558
  start-page: A59
  year: 2013
  ident: apjac0adcbib109
  publication-title: A&A
  doi: 10.1051/0004-6361/201321949
– volume: 118
  start-page: 523
  year: 1958
  ident: apjac0adcbib8
  publication-title: MNRAS
  doi: 10.1093/mnras/118.5.523
– volume: 475
  start-page: 4104
  year: 2018
  ident: apjac0adcbib17
  publication-title: MNRAS
  doi: 10.1093/mnras/sty086
– volume: 480
  start-page: 3762
  year: 2018
  ident: apjac0adcbib117
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2103
– volume: 321
  start-page: 559
  year: 2001
  ident: apjac0adcbib11
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2001.04068.x
– volume: 593
  start-page: 272
  year: 2003
  ident: apjac0adcbib130
  publication-title: ApJ
  doi: 10.1086/376499
– volume: 424
  start-page: 983
  year: 1994
  ident: apjac0adcbib110
  publication-title: ApJ
  doi: 10.1086/173948
– volume: 36
  start-page: e027
  year: 2019
  ident: apjac0adcbib138
  publication-title: PASA
  doi: 10.1017/pasa.2019.14
– volume: 571
  start-page: 585
  year: 2002
  ident: apjac0adcbib106
  publication-title: ApJ
  doi: 10.1086/340063
– volume: 666
  start-page: 1
  year: 2007
  ident: apjac0adcbib35
  publication-title: ApJ
  doi: 10.1086/519445
– volume: 439
  start-page: 1092
  year: 2014
  ident: apjac0adcbib122
  publication-title: MNRAS
  doi: 10.1093/mnras/stu042
– volume: 131
  start-page: 1203
  year: 2006
  ident: apjac0adcbib29
  publication-title: AJ
  doi: 10.1086/500296
– volume: 451
  start-page: 2082
  year: 2015a
  ident: apjac0adcbib32
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1059
– volume: 262
  start-page: 627
  year: 1993
  ident: apjac0adcbib66
  publication-title: MNRAS
  doi: 10.1093/mnras/262.3.627
– volume: 11
  start-page: L671
  year: 1978
  ident: apjac0adcbib96
  publication-title: JPhB
  doi: 10.1088/0022-3700/11/21/006
– volume: 364
  start-page: 909
  year: 2005
  ident: apjac0adcbib131
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.09621.x
– volume: 421
  start-page: 615
  year: 1994
  ident: apjac0adcbib95
  publication-title: ApJ
  doi: 10.1086/173677
– volume: 439
  start-page: 3798
  year: 2014
  ident: apjac0adcbib31
  publication-title: MNRAS
  doi: 10.1093/mnras/stu230
– volume: 445
  start-page: L109
  year: 2014
  ident: apjac0adcbib54
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slu151
– volume: 880
  start-page: 77
  year: 2019
  ident: apjac0adcbib89
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab29e9
– volume: 907
  start-page: L1
  year: 2021
  ident: apjac0adcbib133
  publication-title: ApJL
  doi: 10.3847/2041-8213/abd8c6
– volume: 841
  start-page: 101
  year: 2017
  ident: apjac0adcbib72
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa7263
– volume: 270
  start-page: 578
  year: 1983
  ident: apjac0adcbib71
  publication-title: ApJ
  doi: 10.1086/161149
– volume: 2
  start-page: 181
  year: 1997
  ident: apjac0adcbib1
  publication-title: NewA
  doi: 10.1016/S1384-1076(97)00010-9
– volume: 832
  start-page: 134
  year: 2016
  ident: apjac0adcbib16
  publication-title: ApJ
  doi: 10.3847/0004-637X/832/2/134
– volume: 47
  start-page: 54
  year: 1967
  ident: apjac0adcbib57
  publication-title: JChPh
  doi: 10.1063/1.1711890
– volume: 145
  start-page: 271
  year: 1969
  ident: apjac0adcbib67
  publication-title: MNRAS
  doi: 10.1093/mnras/145.3.271
– volume: 468
  start-page: 3935
  year: 2017
  ident: apjac0adcbib37
  publication-title: MNRAS
  doi: 10.1093/mnras/stx666
– volume: 237
  start-page: 5
  year: 2018
  ident: apjac0adcbib78
  publication-title: ApJS
  doi: 10.3847/1538-4365/aac724
– volume: 594
  start-page: A13
  year: 2016
  ident: apjac0adcbib94
  publication-title: A&A
  doi: 10.1051/0004-6361/201525830
– volume: 606
  start-page: L167
  year: 2004
  ident: apjac0adcbib105
  publication-title: ApJL
  doi: 10.1086/421108
– volume: 15
  start-page: 951
  year: 1982
  ident: apjac0adcbib48
  publication-title: JPhB
  doi: 10.1088/0022-3700/15/6/020
– volume: 336
  start-page: 112
  year: 2002
  ident: apjac0adcbib82
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2002.05723.x
– volume: 686
  start-page: 801
  year: 2008
  ident: apjac0adcbib88
  publication-title: ApJ
  doi: 10.1086/591636
– volume: 778
  start-page: 178
  year: 2013
  ident: apjac0adcbib46
  publication-title: ApJ
  doi: 10.1088/0004-637X/778/2/178
– volume: 457
  start-page: 3356
  year: 2016
  ident: apjac0adcbib127
  publication-title: MNRAS
  doi: 10.1093/mnras/stw225
– volume: 561
  start-page: L55
  year: 2001
  ident: apjac0adcbib87
  publication-title: ApJL
  doi: 10.1086/324410
– volume: 158
  start-page: 25
  year: 1967
  ident: apjac0adcbib111
  publication-title: PhRv
  doi: 10.1103/PhysRev.158.25
– volume: 474
  start-page: 616
  year: 2011
  ident: apjac0adcbib83
  publication-title: Natur
  doi: 10.1038/nature10159
– volume: 696
  start-page: 1798
  year: 2009
  ident: apjac0adcbib121
  publication-title: ApJ
  doi: 10.1088/0004-637X/696/2/1798
– volume: 681
  start-page: 771
  year: 2008
  ident: apjac0adcbib80
  publication-title: ApJ
  doi: 10.1086/587434
– volume: 442
  start-page: L100
  year: 2014a
  ident: apjac0adcbib129
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slu063
– volume: 323
  start-page: 1
  year: 2001
  ident: apjac0adcbib115
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2001.04006.x
– volume: 40
  start-page: 2340
  year: 1989
  ident: apjac0adcbib143
  publication-title: PhRvA
  doi: 10.1103/PhysRevA.40.2340
– volume: 479
  start-page: L23
  year: 2018
  ident: apjac0adcbib41
  publication-title: MNRAS
  doi: 10.1093/mnrasl/sly091
– volume: 479
  start-page: 4017
  year: 2018
  ident: apjac0adcbib52
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1720
– volume: 390
  start-page: 192
  year: 2008
  ident: apjac0adcbib112
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.13682.x
– volume: 415
  start-page: 2920
  year: 2011
  ident: apjac0adcbib56
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.18906.x
– volume: 454
  start-page: 2441
  year: 2015
  ident: apjac0adcbib108
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2117
– volume: 33
  year: 2016
  ident: apjac0adcbib73
  publication-title: CQGra
  doi: 10.1088/0264-9381/33/3/035010
– volume: 295
  start-page: 93
  year: 2002
  ident: apjac0adcbib2
  publication-title: Sci
  doi: 10.1126/science.295.5552.93
– year: 2017
  ident: apjac0adcbib4
– volume: 844
  start-page: 111
  year: 2017
  ident: apjac0adcbib14
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa7b34
– volume: 3
  start-page: 15
  year: 2020b
  ident: apjac0adcbib100
  publication-title: OJAp
  doi: 10.21105/astro.2008.08090
– volume: 445
  start-page: 1056
  year: 2014b
  ident: apjac0adcbib128
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1794
– volume: 475
  start-page: 4378
  year: 2018
  ident: apjac0adcbib15
  publication-title: MNRAS
  doi: 10.1093/mnras/sty040
– volume: 3
  start-page: E9
  year: 2020a
  ident: apjac0adcbib98
  publication-title: OJAp
  doi: 10.21105/astro.2006.14625
– volume: 416
  start-page: 59
  year: 2002
  ident: apjac0adcbib79
  publication-title: Natur
  doi: 10.1038/416059a
– volume: 318
  start-page: 32
  year: 1987
  ident: apjac0adcbib114
  publication-title: ApJ
  doi: 10.1086/165350
– volume: 474
  start-page: 2757
  year: 2018
  ident: apjac0adcbib38
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2919
– volume: 596
  start-page: 34
  year: 2003
  ident: apjac0adcbib9
  publication-title: ApJ
  doi: 10.1086/377529
– volume: 329
  start-page: 69
  year: 2010
  ident: apjac0adcbib65
  publication-title: Sci
  doi: 10.1126/science.1187191
– volume: 51
  start-page: 511
  year: 2013
  ident: apjac0adcbib64
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-082708-101811
– volume: 383
  start-page: 557
  year: 2008
  ident: apjac0adcbib91
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2007.12517.x
– volume: 210
  start-page: 18
  year: 1951a
  ident: apjac0adcbib12
  publication-title: RSPSA
  doi: 10.1098/rspa.1951.0227
– volume: 82
  start-page: 083520
  year: 2010
  ident: apjac0adcbib126
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.82.083520
– volume: 566
  start-page: 85
  year: 2019
  ident: apjac0adcbib136
  publication-title: Natur
  doi: 10.1038/s41586-019-0873-4
– volume: 453
  start-page: 2901
  year: 2015b
  ident: apjac0adcbib33
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1781
– volume: 402
  start-page: 1249
  year: 2010
  ident: apjac0adcbib113
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15960.x
– volume: 773
  start-page: 155
  year: 2013
  ident: apjac0adcbib120
  publication-title: ApJ
  doi: 10.1088/0004-637X/773/2/155
– volume: 833
  start-page: 222
  year: 2016
  ident: apjac0adcbib59
  publication-title: ApJ
  doi: 10.3847/1538-4357/833/2/222
– volume: 334
  start-page: 1250
  year: 2011
  ident: apjac0adcbib45
  publication-title: Sci
  doi: 10.1126/science.1207433
– volume: 459
  start-page: 3738
  year: 2016
  ident: apjac0adcbib51
  publication-title: MNRAS
  doi: 10.1093/mnras/stw836
– volume: 405
  start-page: 801
  year: 1993
  ident: apjac0adcbib63
  publication-title: ApJ
  doi: 10.1086/172410
– volume: 49
  start-page: 373
  year: 2011
  ident: apjac0adcbib10
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-081710-102608
– volume: 27
  start-page: 2551
  year: 1994
  ident: apjac0adcbib92
  publication-title: JPhB
  doi: 10.1088/0953-4075/27/12/013
– volume: 518
  start-page: 512
  year: 2015
  ident: apjac0adcbib140
  publication-title: Natur
  doi: 10.1038/nature14241
– volume: 445
  start-page: 1549
  year: 2014
  ident: apjac0adcbib50
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1870
– volume: 795
  start-page: 137
  year: 2014
  ident: apjac0adcbib99
  publication-title: ApJ
  doi: 10.1088/0004-637X/795/2/137
– volume: 430
  start-page: 360
  year: 1994
  ident: apjac0adcbib118
  publication-title: ApJ
  doi: 10.1086/174411
– volume: 499
  start-page: 5960
  year: 2020
  ident: apjac0adcbib101
  publication-title: MNRAS
  doi: 10.1093/mnras/staa3227
– volume: 319
  start-page: 168
  year: 2000
  ident: apjac0adcbib19
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2000.03879.x
– volume: 297
  start-page: 1073
  year: 1998
  ident: apjac0adcbib47
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.1998.2970041073.x
– volume: 490
  start-page: 493
  year: 1997
  ident: apjac0adcbib84
  publication-title: ApJ
  doi: 10.1086/304888
– year: 1984
  ident: apjac0adcbib5
– volume: 855
  start-page: 17
  year: 2018
  ident: apjac0adcbib43
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaaaba
– volume: 58
  start-page: 27
  year: 2020
  ident: apjac0adcbib55
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-120419-014455
– volume: 366
  start-page: 1029
  year: 2006
  ident: apjac0adcbib141
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.09858.x
– volume: 387
  start-page: 95
  year: 1992
  ident: apjac0adcbib30
  publication-title: ApJ
  doi: 10.1086/171063
– volume: 302
  start-page: 585
  year: 1986
  ident: apjac0adcbib76
  publication-title: ApJ
  doi: 10.1086/164017
– volume: 445
  start-page: 544
  year: 2014
  ident: apjac0adcbib119
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1778
– volume: 474
  start-page: 1
  year: 1997
  ident: apjac0adcbib123
  publication-title: ApJ
  doi: 10.1086/303434
– volume: 745
  start-page: L29
  year: 2012
  ident: apjac0adcbib24
  publication-title: ApJL
  doi: 10.1088/2041-8205/745/2/L29
– volume: 391
  start-page: 1961
  year: 2008
  ident: apjac0adcbib26
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.14031.x
– volume: 341
  start-page: 81
  year: 2003
  ident: apjac0adcbib49
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2003.06410.x
– volume: 446
  start-page: 2380
  year: 2015
  ident: apjac0adcbib6
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2284
– volume: 37
  start-page: 217
  year: 1955
  ident: apjac0adcbib28
  publication-title: ZA
– volume: 452
  start-page: 1026
  year: 2015
  ident: apjac0adcbib69
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1337
– volume: 144
  start-page: 425
  year: 1969
  ident: apjac0adcbib93
  publication-title: MNRAS
  doi: 10.1093/mnras/144.4.425
– volume: 756
  start-page: 93
  year: 2012
  ident: apjac0adcbib44
  publication-title: ApJ
  doi: 10.1088/0004-637X/756/1/93
SSID ssj0004299
Score 2.5063214
Snippet High-redshift luminous quasars powered by accreting supermassive black holes (SMBHs) with mass ≳10 9 M ⊙ constrain their formation pathways. We investigate the...
High-redshift luminous quasars powered by accreting supermassive black holes (SMBHs) with mass ≳109 M ⊙ constrain their formation pathways. We investigate the...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 60
SubjectTerms Astrophysics
Binary stars
Black holes
Collapse
Cooling
Deposition
Galactic halos
Galaxies
Gravitational waves
Halos
High-redshift galaxies
Kinetic energy
Quasars
Radiation
Red shift
Seeds
Star & galaxy formation
Star formation
Stellar mass
Supermassive black holes
Trees
Title Evolution of High-redshift Quasar Hosts and Promotion of Massive Black Hole Seed Formation
URI https://iopscience.iop.org/article/10.3847/1538-4357/ac0adc
https://www.proquest.com/docview/2569680350
Volume 917
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1dS-QwcPADwZc7P_GbPKjgQ3fbJpu2-CTisgrqioqLCCFJG_TO2y7b7sHdr3fSdBU_EPGl5GHapDOT-crMBGA7pSyTkUIKaIoOSiC5J2nGbelTwGXINa9C2adnvHPNTnqt3gTsP9fC5INa9Ddw6BoFOxTa_U1RljarPYpaPmpK7ctUT8K0vbjSsvfxefelKDJMatuXeZxGPXdG-eEXXumkSZz3nWCutE37J9yN1-mSTH43RqVq6P9vWjh-80fm4EdthZIDBzoPE1l_AVYOChsXz__8I7ukGruwR7EAM103WoTbo781s5LcEJsl4g2ztLh_MCW5GMlCDkknL8qCyH5Kui7Xz8GeopmOopVUIUMEeszIJapO0h6XTy7BVfvo6rDj1fczeJqxVulxqVu-QQnFmEJZoU2sfCapManhWtpqLpqqQCdBrNDK4gxNzRAdTqViGrRUSpdhqp_3sxUgEU9YnMUmUowypeMkCiTlUnEqE8Z9swrNMYGErnuX2ys0HgX6MBaXwuJSWFwKh8tV2Ht-Y-D6dnwCu4MkEvXmLT6B23wFJwe_BHq7IhTcF4MUV7kx5poXIDQpEx7b89u1L06zDrOhTZypsgw3YKocjrJNtHxKtVVxOD7P6c0TThL8tg
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xEFUvLY8itjzqA0XqIbtJ7DjJEbWslvLoooK06sXYTqzy2qw2WST49R3HWRBQoUq9-TCJkxl75pvxzBhgO6Msl7FCCWiKDkoguSdpzm3pU8BlyDWvQ9lHx7x3xr4PokFzz2ldC1OMGtXfxqFrFOxYaPc3RV3aqfcoWvm4I7UvM90ZZWYW5iNUxTana_9H_7EwMkwb_Ms8TuOBO6f861ue2KVZnPuFcq4tTvc9nE-_1SWaXLUnlWrr-2dtHP_jZxbhXYNGya4jX4KZfLgMa7uljY8XN3dkh9RjF_4ol2Gh70Yr8Gvvtlm0pDDEZot44zwrf1-YipxMZCnHpFeUVUnkMCN9l_PnaI8QrqOKJXXoEImuc_ITTSjpTssoP8Bpd-_0a89r7mnwNGNR5XGpI9-gpmJMoc7QJlE-k9SYzHAtbVUXzVSg0yBRiLY4Q8gZouOpVEKDSGV0FeaGxTBfAxLzlCV5YmLFKFM6SeNAUi4VpzJl3Dct6EyFJHTTw9xepXEt0Jex_BSWn8LyUzh-tuDLwxMj17_jFdrPKCbRbOLyFbrNJ3RydCnQ6xWh4L5A-bVgY7pyHokQWqY8see4H_9xmk_wpv-tKw73jw_W4W1oc2nqxMMNmKvGk3wTwVCltuoF_weARAEv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+High-redshift+Quasar+Hosts+and+Promotion+of+Massive+Black+Hole+Seed+Formation&rft.jtitle=The+Astrophysical+journal&rft.au=Li+%E6%9D%8E%2C+Wenxiu+%E6%96%87%E7%A7%80&rft.au=Inayoshi%2C+Kohei&rft.au=Qiu+%E9%82%B1%2C+Yu+%E5%AE%87&rft.date=2021-08-01&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=917&rft.issue=2&rft.spage=60&rft_id=info:doi/10.3847%2F1538-4357%2Fac0adc&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_4357_ac0adc
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon