A robotic model to investigate human motor control
The role of the mechanical properties of the neuromuscular system in motor control has been investigated for a long time in both human and animal subjects, mainly through the application of mechanical perturbations to the limb during natural movements and the observation of its corrective responses....
Saved in:
Published in | Biological cybernetics Vol. 105; no. 1; pp. 1 - 19 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer-Verlag
01.07.2011
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0340-1200 1432-0770 1432-0770 |
DOI | 10.1007/s00422-011-0444-8 |
Cover
Abstract | The role of the mechanical properties of the neuromuscular system in motor control has been investigated for a long time in both human and animal subjects, mainly through the application of mechanical perturbations to the limb during natural movements and the observation of its corrective responses. These methods have provided a wealth of insight into how the central nervous system controls the limb. They suffer, however, from the fact that it is almost impossible to separate the active and passive components of the measured arm stiffness and that the measurement may themselves alter the stiffness characteristic of the arm. As a complement to these analyses, the implementation of a given neuroscientific hypothesis on a real mechanical system could overcome these measurement artifact and provide a tool that is, under full control of the experimenter, able to replicate the relevant functional features of the human arm. In this article, we introduce the NEURARM platform, a robotic arm intended to test hypotheses on the human motor control system. As such, NEURARM satisfies two key requirements. First, its kinematic parameters and inertia are similar to that of the human arm. Second, NEURARM mimics the main physical features of the human actuation system, specifically, the use of tendons to transfer force, the presence of antagonistic muscle pairs, the passive elasticity of muscles in the absence of any neural feedback and the non-linear elastic behaviour. This article presents the design and characterization of the NEURARM actuation system. The resulting mechanical behaviour, which has been tested in joint and Cartesian space under static and dynamic conditions, proves that the NEURARM platform can be exploited as a robotic model of the human arm, and could thus represent a powerful tool for neuroscience investigations. |
---|---|
AbstractList | The role of the mechanical properties of the neuromuscular system in motor control has been investigated for a long time in both human and animal subjects, mainly through the application of mechanical perturbations to the limb during natural movements and the observation of its corrective responses. These methods have provided a wealth of insight into how the central nervous system controls the limb. They suffer, however, from the fact that it is almost impossible to separate the active and passive components of the measured arm stiffness and that the measurement may themselves alter the stiffness characteristic of the arm. As a complement to these analyses, the implementation of a given neuroscientific hypothesis on a real mechanical system could overcome these measurement artifact and provide a tool that is, under full control of the experimenter, able to replicate the relevant functional features of the human arm. In this article, we introduce the NEURARM platform, a robotic arm intended to test hypotheses on the human motor control system. As such, NEURARM satisfies two key requirements. First, its kinematic parameters and inertia are similar to that of the human arm. Second, NEURARM mimics the main physical features of the human actuation system, specifically, the use of tendons to transfer force, the presence of antagonistic muscle pairs, the passive elasticity of muscles in the absence of any neural feedback and the non-linear elastic behaviour. This article presents the design and characterization of the NEURARM actuation system. The resulting mechanical behaviour, which has been tested in joint and Cartesian space under static and dynamic conditions, proves that the NEURARM platform can be exploited as a robotic model of the human arm, and could thus represent a powerful tool for neuroscience investigations. The role of the mechanical properties of the neuromuscular system in motor control has been investigated for a long time in both human and animal subjects, mainly through the application of mechanical perturbations to the limb during natural movements and the observation of its corrective responses. These methods have provided a wealth of insight into how the central nervous system controls the limb. They suffer, however, from the fact that it is almost impossible to separate the active and passive components of the measured arm stiffness and that the measurement may themselves alter the stiffness characteristic of the arm. As a complement to these analyses, the implementation of a given neuroscientific hypothesis on a real mechanical system could overcome these measurement artifact and provide a tool that is, under full control of the experimenter, able to replicate the relevant functional features of the human arm. In this article, we introduce the NEURARM platform, a robotic arm intended to test hypotheses on the human motor control system. As such, NEURARM satisfies two key requirements. First, its kinematic parameters and inertia are similar to that of the human arm. Second, NEURARM mimics the main physical features of the human actuation system, specifically, the use of tendons to transfer force, the presence of antagonistic muscle pairs, the passive elasticity of muscles in the absence of any neural feedback and the non-linear elastic behaviour. This article presents the design and characterization of the NEURARM actuation system. The resulting mechanical behaviour, which has been tested in joint and Cartesian space under static and dynamic conditions, proves that the NEURARM platform can be exploited as a robotic model of the human arm, and could thus represent a powerful tool for neuroscience investigations.The role of the mechanical properties of the neuromuscular system in motor control has been investigated for a long time in both human and animal subjects, mainly through the application of mechanical perturbations to the limb during natural movements and the observation of its corrective responses. These methods have provided a wealth of insight into how the central nervous system controls the limb. They suffer, however, from the fact that it is almost impossible to separate the active and passive components of the measured arm stiffness and that the measurement may themselves alter the stiffness characteristic of the arm. As a complement to these analyses, the implementation of a given neuroscientific hypothesis on a real mechanical system could overcome these measurement artifact and provide a tool that is, under full control of the experimenter, able to replicate the relevant functional features of the human arm. In this article, we introduce the NEURARM platform, a robotic arm intended to test hypotheses on the human motor control system. As such, NEURARM satisfies two key requirements. First, its kinematic parameters and inertia are similar to that of the human arm. Second, NEURARM mimics the main physical features of the human actuation system, specifically, the use of tendons to transfer force, the presence of antagonistic muscle pairs, the passive elasticity of muscles in the absence of any neural feedback and the non-linear elastic behaviour. This article presents the design and characterization of the NEURARM actuation system. The resulting mechanical behaviour, which has been tested in joint and Cartesian space under static and dynamic conditions, proves that the NEURARM platform can be exploited as a robotic model of the human arm, and could thus represent a powerful tool for neuroscience investigations. The role of the mechanical properties of the neuromuscular system in motor control has been investigated for a long time in both human and animal subjects, mainly through the application of mechanical perturbations to the limb during natural movements and the observation of its corrective responses. These methods have provided a wealth of insight into how the central nervous system controls the limb. They suffer, however, from the fact that it is almost impossible to separate the active and passive components of the measured arm stiffness and that the measurement may themselves alter the stiffness characteristic of the arm. As a complement to these analyses, the implementation of a given neuroscientific hypothesis on a real mechanical system could overcome these measurement artifact and provide a tool that is, under full control of the experimenter, able to replicate the relevant functional features of the human arm. In this article, we introduce the NEURARM platform, a robotic arm intended to test hypotheses on the human motor control system. As such, NEURARM satisfies two key requirements. First, its kinematic parameters and inertia are similar to that of the human arm. Second, NEURARM mimics the main physical features of the human actuation system, specifically, the use of tendons to transfer force, the presence of antagonistic muscle pairs, the passive elasticity of muscles in the absence of any neural feedback and the non-linear elastic behaviour. This article presents the design and characterization of the NEURARM actuation system. The resulting mechanical behaviour, which has been tested in joint and Cartesian space under static and dynamic conditions, proves that the NEURARM platform can be exploited as a robotic model of the human arm, and could thus represent a powerful tool for neuroscience investigations.[PUBLICATION ABSTRACT] |
Author | McIntyre, Joseph Roccella, Stefano Vitiello, Nicola Carrozza, Maria Chiara Lenzi, Tommaso |
Author_xml | – sequence: 1 givenname: Tommaso surname: Lenzi fullname: Lenzi, Tommaso email: lenzi@ieee.org organization: The BioRobotics Institute – sequence: 2 givenname: Nicola surname: Vitiello fullname: Vitiello, Nicola organization: The BioRobotics Institute – sequence: 3 givenname: Joseph surname: McIntyre fullname: McIntyre, Joseph organization: Centre d’Etudes de la Sensorimotricité (CESEM), Université Paris Descartes-CNRS – sequence: 4 givenname: Stefano surname: Roccella fullname: Roccella, Stefano organization: The BioRobotics Institute – sequence: 5 givenname: Maria Chiara surname: Carrozza fullname: Carrozza, Maria Chiara organization: The BioRobotics Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21769741$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkVtLxDAQhYMo7kV_gC9SfPGpOpOmt0cRbyD4os8hTadrl7ZZk1Tw35tlV4UFFQIDyXdmJufM2P5gBmLsBOECAfJLByA4jwExBiFEXOyxKYok3OQ57LMpJAJi5AATNnNuCQAlT8tDNuGYZ2UucMr4VWRNZXyro97U1EXeRO3wTs63C-Upeh17NYQnb2ykzeCt6Y7YQaM6R8fbOmcvtzfP1_fx49Pdw_XVY6yFSH2cCco5iUYTTzRUdQ3UKBB5nYmS67pSulGcsrRUIqUGKqowQaVQK6gRUkrm7HzTd2XN2xg2kn3rNHWdGsiMTpaAWQFJOP-RRRHswqIUgTzbIZdmtEP4RoAgSQos0wCdbqGx6qmWK9v2yn7IL9cCgBtAW-OcpeYbQZDrZOQmGRmSketkZBE0-Y5Gt175du2pars_lXyjdGHKsCD7s_Pvok8XWKBH |
CitedBy_id | crossref_primary_10_1109_TRO_2012_2211492 crossref_primary_10_3390_biomimetics10030138 crossref_primary_10_1109_TMECH_2013_2294970 crossref_primary_10_1152_jn_00531_2021 crossref_primary_10_2478_s13230_012_0022_3 crossref_primary_10_3390_biomimetics9030164 crossref_primary_10_1016_j_clinbiomech_2013_11_022 crossref_primary_10_1108_IR_02_2016_0073 crossref_primary_10_3390_act12050196 crossref_primary_10_1109_TBME_2012_2198821 crossref_primary_10_3389_frobt_2022_877041 |
Cites_doi | 10.1080/00207178808906161 10.1126/science.272.5258.117 10.1007/BF00338819 10.1038/35106566 10.1177/0278364905052437 10.1126/science.99813 10.1016/j.mechatronics.2010.02.001 10.1249/00003677-198700150-00009 10.1007/s004220050329 10.1115/1.3140701 10.1016/S0021-9290(00)00142-1 10.1115/1.3140702 10.1152/jn.00983.2005 10.1109/MRA.2008.927696 10.1016/0021-9290(82)90043-4 10.1093/brain/105.2.331 10.1088/0964-1726/15/2/048 10.1109/37.341863 10.1115/1.3140713 10.1007/BF00228556 10.1523/JNEUROSCI.04-11-02745.1984 10.1109/IROS.2006.281712 10.1523/JNEUROSCI.05-07-01688.1985 10.1080/00222895.1986.10735369 10.1109/BIOROB.2006.1639223 10.1152/jn.1979.42.1.183 10.1523/JNEUROSCI.05-10-02732.1985 10.1109/IROS.2007.4399310 10.1109/BIOROB.2008.4762817 10.1523/JNEUROSCI.04-11-02738.1984 10.1109/ROBOT.2005.1570814 10.1152/jn.1999.81.4.1458 10.1109/IEMBS.2009.5334957 |
ContentType | Journal Article |
Copyright | The Author(s) 2011 Springer-Verlag 2011 |
Copyright_xml | – notice: The Author(s) 2011 – notice: Springer-Verlag 2011 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7TK 7X7 7XB 88A 88E 88I 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H8D HCIFZ JQ2 K7- K9. L7M LK8 M0N M0S M1P M2P M7P P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 |
DOI | 10.1007/s00422-011-0444-8 |
DatabaseName | SpringerOpen CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Neurosciences Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central (New) Technology Collection ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computing Database ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Aerospace Database ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE MEDLINE - Academic Computer Science Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Mathematics |
EISSN | 1432-0770 |
EndPage | 19 |
ExternalDocumentID | 2413355601 21769741 10_1007_s00422_011_0444_8 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | -4W -56 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .GJ .VR 06C 06D 0R~ 0VY 1N0 203 23N 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40D 40E 4P2 53G 5QI 5VS 67N 67Z 6NX 78A 7X7 88A 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBC EBD EBLON EBS ECS EDH EDO EIOEI EJD EMB EMK EMOBN EN4 EPAXT EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW KPH LAS LK8 LLZTM M0L M0N M1P M2P M4Y M7P MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZOVNA ZXP ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QO 7TK 7XB 8AL 8FD 8FK ABRTQ FR3 H8D JQ2 K9. L7M P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U 7X8 PUEGO |
ID | FETCH-LOGICAL-c445t-64e72e4fce23c0bdd0efa047d6492cdbacfa2e659a45ef0beb131aa1ca0d105e3 |
IEDL.DBID | 8FG |
ISSN | 0340-1200 1432-0770 |
IngestDate | Thu Sep 04 20:31:37 EDT 2025 Thu Sep 04 19:26:17 EDT 2025 Fri Jul 25 18:57:48 EDT 2025 Wed Feb 19 01:57:58 EST 2025 Tue Jul 01 01:28:32 EDT 2025 Thu Apr 24 23:11:00 EDT 2025 Fri Feb 21 02:36:44 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Equilibrium point hypothesis Neurorobotics Impedance control Anthropomorphic robotic arm |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c445t-64e72e4fce23c0bdd0efa047d6492cdbacfa2e659a45ef0beb131aa1ca0d105e3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://link.springer.com/10.1007/s00422-011-0444-8 |
PMID | 21769741 |
PQID | 880338195 |
PQPubID | 54056 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_901680380 proquest_miscellaneous_881001894 proquest_journals_880338195 pubmed_primary_21769741 crossref_primary_10_1007_s00422_011_0444_8 crossref_citationtrail_10_1007_s00422_011_0444_8 springer_journals_10_1007_s00422_011_0444_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20110700 2011-7-00 2011-Jul 20110701 |
PublicationDateYYYYMMDD | 2011-07-01 |
PublicationDate_xml | – month: 7 year: 2011 text: 20110700 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationSubtitle | Advances in Computational Neuroscience |
PublicationTitle | Biological cybernetics |
PublicationTitleAbbrev | Biol Cybern |
PublicationTitleAlternate | Biol Cybern |
PublicationYear | 2011 |
Publisher | Springer-Verlag Springer Nature B.V |
Publisher_xml | – name: Springer-Verlag – name: Springer Nature B.V |
References | Hogan (CR20) 1985; 107 Feldman (CR9) 1966; 11 Abend, Bizzi, Morasso (CR1) 1982; 105 Vitiello, Lenzi, De Rossi, Roccella, Carrozza (CR38) 2010; 20 Burdet, Osu, Franklin, Milner, Yoshioka, Milner, Kawato (CR3) 2000; 33 Flash (CR12) 1987; 57 CR16 CR37 CR36 Gomi, Kawato (CR14) 1996; 272 CR32 Polit, Bizzi (CR31) 1979; 42 Filippini, Sen, Bicchi (CR11) 2008; 15 Hogan (CR17) 1984; 4 Mussa-Ivaldi, Flash (CR27) 1990; 82 Caldwell, Medrano-Creda, Goodwin (CR5) 1995; 15 Colgate, Hogan (CR8) 1988; 48 Kistemaker, Van Soest, Bobbert (CR22) 2006; 95 van Ingen Schenau, Bobbert, Rozendal (CR35) 1987; 155 Osu, Gomi (CR29) 1999; 81 Burdet, Osu, Franklin, Milner, Kawato (CR4) 2001; 414 Cannon, Zahalak (CR6) 1982; 15 Hogan (CR18) 1985; 107 McIntyre, Mussa-Ivaldi, Bizzi (CR25) 1996; 110 CR26 Bizzi, Accornero, Chapple, Hogan (CR2) 1984; 4 CR24 CR23 Selden, Cho, Asada (CR33) 2006; 15 Hogan, Bizzi, Mussa-Ivaldi, Flash (CR21) 1987; 15 Polit, Bizzi (CR30) 1978; 201 Cattin, Roccella, Vitiello, Clemens, Sardellitti, Panagiotis, Vacalebri, Vecchi, Carrozza, Kyriakopulos, Dario (CR7) 2008; 22 Mussa-Ivaldi, Hogan, Bizzi (CR28) 1985; 5 Hogan (CR19) 1985; 107 Flash, Hogan (CR13) 1985; 5 Gomi, Kawato (CR15) 1997; 76 Tondu, Ippolito, Guiochet, Daidie (CR34) 2005; 24 Feldman (CR10) 1986; 18 H Gomi (444_CR15) 1997; 76 A Polit (444_CR31) 1979; 42 H Gomi (444_CR14) 1996; 272 AG Feldman (444_CR9) 1966; 11 A Polit (444_CR30) 1978; 201 W Abend (444_CR1) 1982; 105 444_CR26 444_CR24 E Cattin (444_CR7) 2008; 22 JE Colgate (444_CR8) 1988; 48 444_CR23 FA Mussa-Ivaldi (444_CR28) 1985; 5 E Burdet (444_CR4) 2001; 414 N Hogan (444_CR20) 1985; 107 N Hogan (444_CR18) 1985; 107 T Flash (444_CR12) 1987; 57 B Tondu (444_CR34) 2005; 24 AG Feldman (444_CR10) 1986; 18 DG Caldwell (444_CR5) 1995; 15 S Cannon (444_CR6) 1982; 15 N Hogan (444_CR21) 1987; 15 F Mussa-Ivaldi (444_CR27) 1990; 82 N Hogan (444_CR17) 1984; 4 444_CR16 T Flash (444_CR13) 1985; 5 444_CR37 444_CR36 N Vitiello (444_CR38) 2010; 20 R Filippini (444_CR11) 2008; 15 444_CR32 G Ingen Schenau van (444_CR35) 1987; 155 B Selden (444_CR33) 2006; 15 E Burdet (444_CR3) 2000; 33 J McIntyre (444_CR25) 1996; 110 E Bizzi (444_CR2) 1984; 4 R Osu (444_CR29) 1999; 81 DA Kistemaker (444_CR22) 2006; 95 N Hogan (444_CR19) 1985; 107 |
References_xml | – volume: 155 start-page: 1 year: 1987 ident: CR35 article-title: The unique action of bi-articular muscles in complex movements publication-title: J Anat – volume: 48 start-page: 65 year: 1988 end-page: 88 ident: CR8 article-title: Robust control of dynamically interacting systems publication-title: Int J Control doi: 10.1080/00207178808906161 – volume: 272 start-page: 117 year: 1996 end-page: 120 ident: CR14 article-title: Equilibrium-point control hypothesis examined by measured arm stiffness during multijoint movement publication-title: Science doi: 10.1126/science.272.5258.117 – volume: 57 start-page: 257 year: 1987 end-page: 274 ident: CR12 article-title: The control of hand equilibrium trajectories in multi-joint arm movement publication-title: Biol Cybern doi: 10.1007/BF00338819 – ident: CR16 – volume: 81 start-page: 1458 year: 1999 ident: CR29 article-title: Multijoint muscle regulation mechanisms examined by measured human arm stiffness and EMG signals publication-title: J Neurophysiol – ident: CR37 – volume: 414 start-page: 446 year: 2001 end-page: 449 ident: CR4 article-title: The central nervous system stabilizes unstable dynamics by learning optimal impedance publication-title: Nature doi: 10.1038/35106566 – volume: 82 start-page: 315 issue: 2 year: 1990 end-page: 326 ident: CR27 article-title: Human arm stiffness characteristics during the maintenance of posture publication-title: Exp Brain Res – volume: 11 start-page: 565 year: 1966 end-page: 578 ident: CR9 article-title: Functional tuning of the nervous system with control of movement or maintenance of steady posture, II: controllable parameters of the muscles publication-title: Biophysics – volume: 24 start-page: 257 issue: 4 year: 2005 end-page: 274 ident: CR34 article-title: A seven-degree-of-freedom robot-arm driven by pneumatic artificial muscle for humanoid robots publication-title: Int J Robot Res doi: 10.1177/0278364905052437 – volume: 201 start-page: 1235 year: 1978 end-page: 1237 ident: CR30 article-title: Processes controlling arm movements in monkeys publication-title: Science doi: 10.1126/science.99813 – volume: 20 start-page: 355 issue: 3 year: 2010 end-page: 367 ident: CR38 article-title: A sensorless torque control for antagonistic driven compliant joints publication-title: Mechatronics doi: 10.1016/j.mechatronics.2010.02.001 – volume: 15 start-page: 153 year: 1987 end-page: 190 ident: CR21 article-title: Controlling multijoint motor behaviour publication-title: Exerc Sport Sci Rev doi: 10.1249/00003677-198700150-00009 – volume: 4 start-page: 2745 year: 1984 end-page: 2754 ident: CR17 article-title: An organizing principle for a class of voluntary movements publication-title: J Neurosci – volume: 42 start-page: 183 year: 1979 end-page: 194 ident: CR31 article-title: Characteristics of motor programs underlying arm movements in monkeys publication-title: J Neurophysiol – ident: CR23 – volume: 22 start-page: 3 year: 2008 end-page: 37 ident: CR7 article-title: Design and development of a novel robotic platform for neuro-robotics applications: the NEURobotics ARM (NEURARM) publication-title: Adv Robot. Special issue on robotics platforms for neuroscience – volume: 76 start-page: 163 year: 1997 end-page: 171 ident: CR15 article-title: Human arm stiffness and equilibrium-point trajectory during multi-joint movement publication-title: Biol Cybern doi: 10.1007/s004220050329 – volume: 107 start-page: 17 year: 1985 end-page: 24 ident: CR20 article-title: Impedance control: an approach to manipulation. Part III: application publication-title: ASME J Dyn Syst Control doi: 10.1115/1.3140701 – volume: 5 start-page: 1688 issue: 7 year: 1985 end-page: 1703 ident: CR13 article-title: The coordination of arm movements: an experimentally confirmed mathematical model publication-title: J Neurosci – volume: 4 start-page: 2738 year: 1984 end-page: 2744 ident: CR2 article-title: Posture control and trajectory formation during arm movement publication-title: J Neurosci – volume: 33 start-page: 1705 issue: 12 year: 2000 end-page: 1709 ident: CR3 article-title: A method for measuring end-point stiffness during multi-joint arm movement publication-title: J Biomech doi: 10.1016/S0021-9290(00)00142-1 – volume: 107 start-page: 1 year: 1985 end-page: 7 ident: CR18 article-title: Impedance control: an approach to manipulation. Part I: theory publication-title: ASME J Dyn Syst Control doi: 10.1115/1.3140702 – volume: 95 start-page: 2898 year: 2006 end-page: 2912 ident: CR22 article-title: Is equilibrium point feasible for fast goal-directed single-joint movement? publication-title: J Neurophysiol doi: 10.1152/jn.00983.2005 – ident: CR32 – volume: 15 start-page: 31 issue: 3 year: 2008 end-page: 41 ident: CR11 article-title: Toward soft robot you can depend on publication-title: IEEE Robot Autom Mag. doi: 10.1109/MRA.2008.927696 – ident: CR36 – volume: 18 start-page: 17 issue: 1 year: 1986 end-page: 54 ident: CR10 article-title: Once more on the equilibrium-point hypothesis (λ model) for motor control publication-title: J Mot Behav – volume: 15 start-page: 111 year: 1982 end-page: 121 ident: CR6 article-title: The mechanical behavior of active human skeletal muscle in small oscillation publication-title: J Biomech doi: 10.1016/0021-9290(82)90043-4 – volume: 5 start-page: 2732 year: 1985 end-page: 2743 ident: CR28 article-title: Neural, mechanical, and geometric factors subserving arm posture in humans publication-title: J Neurosci – ident: CR26 – volume: 105 start-page: 331 year: 1982 end-page: 348 ident: CR1 article-title: Human arm trajectory formation publication-title: Brain doi: 10.1093/brain/105.2.331 – ident: CR24 – volume: 15 start-page: 642 issue: 2 year: 2006 end-page: 652 ident: CR33 article-title: Segmented shape memory alloy actuators using hysteresis loop control publication-title: J Smart Mater Struct doi: 10.1088/0964-1726/15/2/048 – volume: 15 start-page: 40 issue: 1 year: 1995 end-page: 48 ident: CR5 article-title: Control of pneumatic muscle actuators publication-title: IEEE Control Syst Mag doi: 10.1109/37.341863 – volume: 107 start-page: 8 year: 1985 end-page: 16 ident: CR19 article-title: Impedance control: an approach to manipulation. Part II: implementation publication-title: ASME J Dyn Syst Control doi: 10.1115/1.3140713 – volume: 110 start-page: 248 year: 1996 end-page: 264 ident: CR25 article-title: The control of stable postures in the multijoint arm publication-title: Exp Brain Res doi: 10.1007/BF00228556 – volume: 4 start-page: 2745 year: 1984 ident: 444_CR17 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.04-11-02745.1984 – volume: 107 start-page: 8 year: 1985 ident: 444_CR19 publication-title: ASME J Dyn Syst Control doi: 10.1115/1.3140713 – volume: 414 start-page: 446 year: 2001 ident: 444_CR4 publication-title: Nature doi: 10.1038/35106566 – ident: 444_CR32 doi: 10.1109/IROS.2006.281712 – volume: 5 start-page: 1688 issue: 7 year: 1985 ident: 444_CR13 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.05-07-01688.1985 – volume: 20 start-page: 355 issue: 3 year: 2010 ident: 444_CR38 publication-title: Mechatronics doi: 10.1016/j.mechatronics.2010.02.001 – volume: 57 start-page: 257 year: 1987 ident: 444_CR12 publication-title: Biol Cybern doi: 10.1007/BF00338819 – volume: 18 start-page: 17 issue: 1 year: 1986 ident: 444_CR10 publication-title: J Mot Behav doi: 10.1080/00222895.1986.10735369 – volume: 11 start-page: 565 year: 1966 ident: 444_CR9 publication-title: Biophysics – volume: 95 start-page: 2898 year: 2006 ident: 444_CR22 publication-title: J Neurophysiol doi: 10.1152/jn.00983.2005 – ident: 444_CR16 – ident: 444_CR23 doi: 10.1109/BIOROB.2006.1639223 – volume: 33 start-page: 1705 issue: 12 year: 2000 ident: 444_CR3 publication-title: J Biomech doi: 10.1016/S0021-9290(00)00142-1 – volume: 42 start-page: 183 year: 1979 ident: 444_CR31 publication-title: J Neurophysiol doi: 10.1152/jn.1979.42.1.183 – volume: 15 start-page: 642 issue: 2 year: 2006 ident: 444_CR33 publication-title: J Smart Mater Struct doi: 10.1088/0964-1726/15/2/048 – volume: 105 start-page: 331 year: 1982 ident: 444_CR1 publication-title: Brain doi: 10.1093/brain/105.2.331 – volume: 272 start-page: 117 year: 1996 ident: 444_CR14 publication-title: Science doi: 10.1126/science.272.5258.117 – volume: 107 start-page: 1 year: 1985 ident: 444_CR18 publication-title: ASME J Dyn Syst Control doi: 10.1115/1.3140702 – volume: 5 start-page: 2732 year: 1985 ident: 444_CR28 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.05-10-02732.1985 – volume: 201 start-page: 1235 year: 1978 ident: 444_CR30 publication-title: Science doi: 10.1126/science.99813 – volume: 48 start-page: 65 year: 1988 ident: 444_CR8 publication-title: Int J Control doi: 10.1080/00207178808906161 – volume: 24 start-page: 257 issue: 4 year: 2005 ident: 444_CR34 publication-title: Int J Robot Res doi: 10.1177/0278364905052437 – volume: 110 start-page: 248 year: 1996 ident: 444_CR25 publication-title: Exp Brain Res doi: 10.1007/BF00228556 – ident: 444_CR36 doi: 10.1109/IROS.2007.4399310 – ident: 444_CR37 doi: 10.1109/BIOROB.2008.4762817 – volume: 4 start-page: 2738 year: 1984 ident: 444_CR2 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.04-11-02738.1984 – volume: 107 start-page: 17 year: 1985 ident: 444_CR20 publication-title: ASME J Dyn Syst Control doi: 10.1115/1.3140701 – volume: 15 start-page: 153 year: 1987 ident: 444_CR21 publication-title: Exerc Sport Sci Rev doi: 10.1249/00003677-198700150-00009 – volume: 15 start-page: 31 issue: 3 year: 2008 ident: 444_CR11 publication-title: IEEE Robot Autom Mag. doi: 10.1109/MRA.2008.927696 – volume: 82 start-page: 315 issue: 2 year: 1990 ident: 444_CR27 publication-title: Exp Brain Res – ident: 444_CR26 doi: 10.1109/ROBOT.2005.1570814 – volume: 15 start-page: 40 issue: 1 year: 1995 ident: 444_CR5 publication-title: IEEE Control Syst Mag doi: 10.1109/37.341863 – volume: 155 start-page: 1 year: 1987 ident: 444_CR35 publication-title: J Anat – volume: 76 start-page: 163 year: 1997 ident: 444_CR15 publication-title: Biol Cybern doi: 10.1007/s004220050329 – volume: 81 start-page: 1458 year: 1999 ident: 444_CR29 publication-title: J Neurophysiol doi: 10.1152/jn.1999.81.4.1458 – volume: 15 start-page: 111 year: 1982 ident: 444_CR6 publication-title: J Biomech doi: 10.1016/0021-9290(82)90043-4 – volume: 22 start-page: 3 year: 2008 ident: 444_CR7 publication-title: Adv Robot. Special issue on robotics platforms for neuroscience – ident: 444_CR24 doi: 10.1109/IEMBS.2009.5334957 |
SSID | ssj0009259 |
Score | 2.0130417 |
Snippet | The role of the mechanical properties of the neuromuscular system in motor control has been investigated for a long time in both human and animal subjects,... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Animals Bioinformatics Biomechanical Phenomena Biomedical and Life Sciences Biomedicine Central nervous system Complex Systems Computer Appl. in Life Sciences Control systems Cybernetics Human Humans Joints - anatomy & histology Joints - physiology Mathematical models Mathematics Mechanical properties Models, Biological Motor ability Motors Movement - physiology Muscles Neurobiology Neurology Neurosciences Robotics Robotics - methods Stiffness Upper Extremity - anatomy & histology |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50vXjx_airkoMnJdCm6SPHRVwWQU8u7K3kVRCkld3u_3eSPhZZFTxnmoaZzCuTfANwJyQ6CaEUZYniFP2toTmTimaRkFHmSjnWvXd-eU1nc_68SBbdO-5Vf9u9L0l6Sz08dvNwVdQf6XHOab4Lewmm7k4b52yyQdplvkNaGLuiJe6BvpT50xTfndFWhLlVHfVOZ3oEB120SCateI9hx1YncNh3YiCdYp4Cm5BlrWqkIr61DWlq8j4gaFjiO_HhECbYpLucfgbz6dPb44x23RCo5jxpaMptxiwvtWWxDpUxoS1lyDOTcsG0UVKXktk0EZIntgwVGuE4kjLSMjQYRNn4HEZVXdlLIEoIk1kdqwzTKRYZYVKtMPTJdYn-PxYBhD1bCt1BhbuOFR_FAHLsOVkgJwvHySIP4H745LPFyfiLeNzzuuhUZlWgIYld-pgEQIZR3OuugCErW68diUOMygX_nQTDmxQnysMALlohDsvB5CvF7CkK4KGX6ubvv6716l_UY9hvD53dfd5rGDXLtb3BqKVRt36XfgHw-uEV priority: 102 providerName: Springer Nature |
Title | A robotic model to investigate human motor control |
URI | https://link.springer.com/article/10.1007/s00422-011-0444-8 https://www.ncbi.nlm.nih.gov/pubmed/21769741 https://www.proquest.com/docview/880338195 https://www.proquest.com/docview/881001894 https://www.proquest.com/docview/901680380 |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB4Be-FCacsjpV35wAlk4TjOwye0Xe1DRaxQxUrLKfIrEhLaUFj-f8eJE4QQXBIpniTWzMQz45nMB3AqFRoJqTXlqRYU7a2lBVea5rFUce5TOc7_73y9yOZL8WeVrkJtznMoq-zWxGahtrXxe-QXqGeJjy7Sy8d_1ING-eRqQNDYhkGMhsareTGdvfbc5Q1WGkt8-hK1oUtqsraHKPc1CRhLCyFo8dYsvfM13-VJG_Mz3Ye94DeSUSvor7Dl1t_gS4fJQMIn-h34iDzVukYq0oDckE1N7vteGo40mHw4hKE2CWXqB7CcTm7HcxpwEagRIt3QTLicO1EZxxPDtLXMVYqJ3GZCcmO1MpXiLkulEqmrmMblOImVio1iFt0plxzCzrpeu2MgWkqbO5PoHAMrHltpM6PRCSpMhZ5AIiNgHVtKE5qGe-yKh7Jvd9xwskROlp6TZRHBWX_LY9sx4zPik47XZfh4nste1BGQfhS13qcy1NrVL57E944qpPiYBB2dDB9UsAiOWiH208EwLMM4Ko7gvJPq69s_nOuPT-d6ArvtdrOv5P0JO5unF_cL_ZWNHsJ2vsqHjW4OYTCa3V1N8Px7srj5i1fH2RiPSz76D3cg6is |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V5AAXHoXCUh4-wIXKqtfrffiAUIFESZtEqEqk3Ba_VkJC2dKmqvqj-I-M91WhqLnl7FmvNR7PwzOeD-CDVGgkpNaUx1pQtLeWZlxpmoZShalP5Tj_3nk6S0YLcbqMl3vwt30L48sqW51YKWpbGn9HfoxyFvnoIv5y8Yd60CifXG0RNGqpOHO3NxixXX0ef8ft_cj5cDD_NqINqAA1QsRrmgiXcicK43hkmLaWuUIxkdpESG6sVqZQ3CWxVCJ2BdOoy6JQqdAoZtEXcRHO-wD6wj9o7UH_62D24_yuyy-v0NlY5BOmKH9tGpXVXUu5r4LA6F0IQbP_DeGGd7uRma0M3vApPG48VXJSi9Yz2HOrfXjSokCQRik8B35CLktdIhWpYHXIuiS_uu4djlQogDiEwT1pCuNfwGInTDuA3qpcuVdAtJQ2dSbSKYZyPLTSJkaj25WZAn2PSAbAWrbkpmlT7tEyfuddg-WKkzlyMveczLMAPnWfXNQ9OrYRH7a8zpvjepV3whUA6UbxnPnkiVq58tqT-G5VmRT3k6BrleBEGQvgZb2J3XIw8EswcgsDOGp39e7v96719da1voeHo_l0kk_Gs7NDeFRfdvs64jfQW19eu7foLa31u0ZGCfzc9bH4BwZJJYI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT-UwDLYYkEZzYZkFyprDcGEUkaZp0xwQQsATDAPiANK7dbJVQkKvD3gI8dP4dzjdEEJw4xw3jRzb-Rw7NsBvpfGQUMZQnhpB8bx1NOfaUBkrHcsQyvHhvfPpWXZ0Kf4O0-EUPHVvYUJaZWcTa0PtKhvuyLdRzpLgXaTbZZsVcX4w2B3f0NBAKgRau24ajYSc-McH9N7udo4PcKs3OR8cXuwf0bbBALVCpBOaCS-5F6X1PLHMOMd8qZmQLhOKW2e0LTX3Waq0SH3JDNq1JNY6tpo5xCU-wXm_wIxMEFShKsmhfKn3y-s-bSwJoVOUxC6gypr6pTzkQ6AfL4Sg-esj8Q3OfROjrY--wTzMtpiV7DVCtgBTfvQd5rp-EKQ1Dz-A75HbylRIReoGO2RSkau-jocndT9AHEI3n7Qp8j_h8lNY9gumR9XILwExSjnpbWIkOnU8dspl1iAAy22JKCRREbCOLYVtC5aHvhnXRV9queZkgZwsAieLPIKt_pNxU63jI-KVjtdFq7h3RS9mEZB-FDUuhFH0yFf3gSTUrcqVeJ8EQVaGE-UsgsVmE_vloAuYoQ8XR_Cn29WXv7-71uUP17oBX1EZin_HZycr8K259Q4JxaswPbm992sImyZmvRZQAv8_WyOeAXpQKEk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robotic+model+to+investigate+human+motor+control&rft.jtitle=Biological+cybernetics&rft.au=Lenzi%2C+Tommaso&rft.au=Vitiello%2C+Nicola&rft.au=McIntyre%2C+Joseph&rft.au=Roccella%2C+Stefano&rft.date=2011-07-01&rft.issn=0340-1200&rft.eissn=1432-0770&rft.volume=105&rft.issue=1&rft.spage=1&rft.epage=19&rft_id=info:doi/10.1007%2Fs00422-011-0444-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00422_011_0444_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0340-1200&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0340-1200&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0340-1200&client=summon |