Photoacoustic detection of ozone with a red laser diode
The photoacoustic detection of ozone using the Chappuis band is demonstrated. A visible red laser diode emitting at 638 nm was employed as a light source. The photoacoustic cell consisted of a conventional resonance tube with a MEMS (microelectromechanical systems) microphone placed outside an openi...
Saved in:
Published in | Talanta (Oxford) Vol. 223; no. Pt 2; p. 121890 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The photoacoustic detection of ozone using the Chappuis band is demonstrated. A visible red laser diode emitting at 638 nm was employed as a light source. The photoacoustic cell consisted of a conventional resonance tube with a MEMS (microelectromechanical systems) microphone placed outside an opening along the tube. A calibration curve for the range from 33 ppmV to 215 ppmV was found to be highly linear with a coefficient of determination (r2) of 0.9999, when allowing for different measurement frequencies to account for shifts in the speed of sound due to changes in the gas matrix. The limit of detection was found to be 1.6 ppmV for an optical power of the laser diode of about 130 mW.
[Display omitted]
•A visible laser diode is employed for the first time.•The light source is inexpensive.•The detection limit is in the low ppmV range. |
---|---|
AbstractList | The photoacoustic detection of ozone using the Chappuis band is demonstrated. A visible red laser diode emitting at 638 nm was employed as a light source. The photoacoustic cell consisted of a conventional resonance tube with a MEMS (microelectromechanical systems) microphone placed outside an opening along the tube. A calibration curve for the range from 33 ppmV to 215 ppmV was found to be highly linear with a coefficient of determination (r
) of 0.9999, when allowing for different measurement frequencies to account for shifts in the speed of sound due to changes in the gas matrix. The limit of detection was found to be 1.6 ppmV for an optical power of the laser diode of about 130 mW. The photoacoustic detection of ozone using the Chappuis band is demonstrated. A visible red laser diode emitting at 638 nm was employed as a light source. The photoacoustic cell consisted of a conventional resonance tube with a MEMS (microelectromechanical systems) microphone placed outside an opening along the tube. A calibration curve for the range from 33 ppmV to 215 ppmV was found to be highly linear with a coefficient of determination (r2) of 0.9999, when allowing for different measurement frequencies to account for shifts in the speed of sound due to changes in the gas matrix. The limit of detection was found to be 1.6 ppmV for an optical power of the laser diode of about 130 mW. [Display omitted] •A visible laser diode is employed for the first time.•The light source is inexpensive.•The detection limit is in the low ppmV range. The photoacoustic detection of ozone using the Chappuis band is demonstrated. A visible red laser diode emitting at 638 nm was employed as a light source. The photoacoustic cell consisted of a conventional resonance tube with a MEMS (microelectromechanical systems) microphone placed outside an opening along the tube. A calibration curve for the range from 33 ppmV to 215 ppmV was found to be highly linear with a coefficient of determination (r2) of 0.9999, when allowing for different measurement frequencies to account for shifts in the speed of sound due to changes in the gas matrix. The limit of detection was found to be 1.6 ppmV for an optical power of the laser diode of about 130 mW.The photoacoustic detection of ozone using the Chappuis band is demonstrated. A visible red laser diode emitting at 638 nm was employed as a light source. The photoacoustic cell consisted of a conventional resonance tube with a MEMS (microelectromechanical systems) microphone placed outside an opening along the tube. A calibration curve for the range from 33 ppmV to 215 ppmV was found to be highly linear with a coefficient of determination (r2) of 0.9999, when allowing for different measurement frequencies to account for shifts in the speed of sound due to changes in the gas matrix. The limit of detection was found to be 1.6 ppmV for an optical power of the laser diode of about 130 mW. The photoacoustic detection of ozone using the Chappuis band is demonstrated. A visible red laser diode emitting at 638 nm was employed as a light source. The photoacoustic cell consisted of a conventional resonance tube with a MEMS (microelectromechanical systems) microphone placed outside an opening along the tube. A calibration curve for the range from 33 ppmV to 215 ppmV was found to be highly linear with a coefficient of determination (r²) of 0.9999, when allowing for different measurement frequencies to account for shifts in the speed of sound due to changes in the gas matrix. The limit of detection was found to be 1.6 ppmV for an optical power of the laser diode of about 130 mW. |
ArticleNumber | 121890 |
Author | Hauser, Peter C. Keeratirawee, Kanchalar |
Author_xml | – sequence: 1 givenname: Kanchalar surname: Keeratirawee fullname: Keeratirawee, Kanchalar organization: University of Basel, Department of Chemistry, Klingelbergstrasse 80, 4056, Basel, Switzerland – sequence: 2 givenname: Peter C. orcidid: 0000-0002-7506-5971 surname: Hauser fullname: Hauser, Peter C. email: peter.hauser@unibas.ch organization: University of Basel, Department of Chemistry, Klingelbergstrasse 80, 4056, Basel, Switzerland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33298253$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLAzEUhYNU7EN_gjJLN1Pz7ExwIVJ8QUEXug5pcoemTCc1SRX99aa2btyUuwhczrn35nxD1Ot8BwidEzwmmEyuluOkW90lPaaY5h4ltcRHaEDqipVMVKyHBhgzWUrCcR8NY1xijCnD7AT1GaOypoINUPWy8Mlr4zcxOVNYSGCS813hm8J_55XFp0uLQhcBbNHqCKGwzls4RceNbiOc7d8Reru_e50-lrPnh6fp7aw0nItUioaRShPDbQ2VlJZAY-aUSto0oibUMD63hppaiorgibWWQgOc8zmhnFkwbIQud3PXwb9vICa1ctFAm78O-WZFBSGkFrkOS_lEYsnFr_RiL93MV2DVOriVDl_qL5csuN4JTPAxBmiUcUlvg0lBu1YRrLYU1FLtKagtBbWjkN3in_tvwSHfzc4HOdEPB0FF46AzYF3IWJT17sCEH2TLoqk |
CitedBy_id | crossref_primary_10_1016_j_ohx_2022_e00280 crossref_primary_10_1016_j_aca_2024_343544 crossref_primary_10_1109_JSEN_2024_3459898 crossref_primary_10_1364_OE_445623 crossref_primary_10_1016_j_snb_2023_135039 crossref_primary_10_55546_jmm_1422073 crossref_primary_10_1002_mop_33611 crossref_primary_10_1080_10589759_2024_2373318 crossref_primary_10_1098_rsos_201324 crossref_primary_10_1016_j_trac_2022_116552 |
Cites_doi | 10.5194/amt-7-609-2014 10.1016/j.atmosenv.2011.11.063 10.1080/10934520903217740 10.1080/01919519608547327 10.1006/jema.1999.0256 10.5194/essd-5-365-2013 10.1016/j.sna.2017.06.036 10.1081/SL-200058726 10.1111/j.1438-8677.2009.00263.x 10.1029/93GL02311 10.1080/01919510701813376 10.1088/1742-6596/1153/1/012086 10.3389/fimmu.2019.02518 10.1016/j.watres.2008.11.006 10.1016/S1010-6030(03)00061-3 10.1109/JSTQE.2012.2182761 10.1016/j.watres.2013.04.059 10.1103/PhysRev.31.267 |
ContentType | Journal Article |
Copyright | 2020 The Author(s) Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 The Author(s) – notice: Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.talanta.2020.121890 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-3573 |
ExternalDocumentID | 33298253 10_1016_j_talanta_2020_121890 S0039914020311814 |
Genre | Journal Article |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACNCT ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SCH SDF SDG SDP SES SPC SPCBC SSK SSZ T5K TN5 TWZ WH7 XPP YK3 YNT ZMT ~02 ~G- 29Q 3O- AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HMU HVGLF HZ~ R2- RIG SCB SEW SSH WUQ XOL NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c445t-5f317a1c4d8e799d1efcb2292ff5812c34bdc2c8957106ddd2efe444b1243dec3 |
IEDL.DBID | .~1 |
ISSN | 0039-9140 1873-3573 |
IngestDate | Fri Jul 11 12:42:33 EDT 2025 Fri Jul 11 15:15:20 EDT 2025 Wed Feb 19 02:30:16 EST 2025 Thu Apr 24 23:06:52 EDT 2025 Tue Jul 01 03:43:59 EDT 2025 Fri Feb 23 02:44:20 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt 2 |
Keywords | MEMS microphone Ozone Photoacoustic spectroscopy Red laser diode |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c445t-5f317a1c4d8e799d1efcb2292ff5812c34bdc2c8957106ddd2efe444b1243dec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7506-5971 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0039914020311814 |
PMID | 33298253 |
PQID | 2469094558 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2511185858 proquest_miscellaneous_2469094558 pubmed_primary_33298253 crossref_citationtrail_10_1016_j_talanta_2020_121890 crossref_primary_10_1016_j_talanta_2020_121890 elsevier_sciencedirect_doi_10_1016_j_talanta_2020_121890 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 2021-02-00 2021-Feb-01 20210201 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Talanta (Oxford) |
PublicationTitleAlternate | Talanta |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Constapel, Schellenträger, Marzinkowski, Gäb (bib3) 2009; 43 Gorshelev, Serdyuchenko, Weber, Chehade, Burrows (bib12) 2014; 7 Gondal, Dastageer, Yamani (bib15) 2009; 44 CRC Handbook of Chemistry and Physics, 75th ed., CRC Press, Boca Raton. Murphy, Delucchi, McCubbin, Kim (bib7) 1999; 55 Fabian, Dameris (bib1) 2014 Orphal (bib13) 2003; 157 Singh, Tiwari, Agrawal (bib8) 2009; 11 Veres, Sarlós, Varga, Szabó, Bozóki, Motika, Gyapjas (bib14) 2005; 38 Köhring, Willer, Böttger, Pohlkötter, Schade (bib16) 2012; 18 Burkholder, Talukdar (bib17) 1994; 21 Kinsler, Frey, Coppens, Sanders (bib21) 2000 Anderson, Ostensen (bib22) 1928; 31 Wysok, Uradziński, Gomółka-Pawlicka (bib6) 2006; 56 (bib10) 2006 Naitou, Takahara (bib5) 2008; 30 Jaffe, Wigder (bib2) 2012; 51 Zhang, Wei, Fang (bib9) 2019; 10 Rück, Bierl, Matysik (bib18) 2017; 263 Keller-Rudek, Moortgat, Sander, Sörensen (bib24) 2013; 5 Lester, Mamane, Zucker, Avisar (bib4) 2013; 47 Rosencwaig (bib11) 1980 Rakness, Gordon, Langlais, Masschelein, Matsumoto, Richard, Robson, Somiya (bib19) 1996; 18 Chasanah, Yulianto, Zain, Sasmita, Restiwijaya, Kinandana, Arianto, Nur (bib20) 2019; 1153 Gorshelev (10.1016/j.talanta.2020.121890_bib12) 2014; 7 10.1016/j.talanta.2020.121890_bib23 Rakness (10.1016/j.talanta.2020.121890_bib19) 1996; 18 Gondal (10.1016/j.talanta.2020.121890_bib15) 2009; 44 Rück (10.1016/j.talanta.2020.121890_bib18) 2017; 263 Wysok (10.1016/j.talanta.2020.121890_bib6) 2006; 56 Anderson (10.1016/j.talanta.2020.121890_bib22) 1928; 31 Köhring (10.1016/j.talanta.2020.121890_bib16) 2012; 18 Lester (10.1016/j.talanta.2020.121890_bib4) 2013; 47 Kinsler (10.1016/j.talanta.2020.121890_bib21) 2000 Jaffe (10.1016/j.talanta.2020.121890_bib2) 2012; 51 Naitou (10.1016/j.talanta.2020.121890_bib5) 2008; 30 Constapel (10.1016/j.talanta.2020.121890_bib3) 2009; 43 Fabian (10.1016/j.talanta.2020.121890_bib1) 2014 Burkholder (10.1016/j.talanta.2020.121890_bib17) 1994; 21 Keller-Rudek (10.1016/j.talanta.2020.121890_bib24) 2013; 5 Murphy (10.1016/j.talanta.2020.121890_bib7) 1999; 55 Orphal (10.1016/j.talanta.2020.121890_bib13) 2003; 157 Veres (10.1016/j.talanta.2020.121890_bib14) 2005; 38 Rosencwaig (10.1016/j.talanta.2020.121890_bib11) 1980 Chasanah (10.1016/j.talanta.2020.121890_bib20) 2019; 1153 Singh (10.1016/j.talanta.2020.121890_bib8) 2009; 11 (10.1016/j.talanta.2020.121890_bib10) 2006 Zhang (10.1016/j.talanta.2020.121890_bib9) 2019; 10 |
References_xml | – volume: 18 start-page: 209 year: 1996 end-page: 229 ident: bib19 article-title: Guideline for measurement of ozone concentration in the process gas from an ozone generator publication-title: Ozone Sci. Eng. – volume: 51 start-page: 1 year: 2012 end-page: 10 ident: bib2 article-title: Ozone production from wildfires: a critical review publication-title: Atmos. Environ. – reference: CRC Handbook of Chemistry and Physics, 75th ed., CRC Press, Boca Raton. – volume: 18 start-page: 1566 year: 2012 end-page: 1572 ident: bib16 article-title: Fiber-coupled ozone sensor based on tuning fork-enhanced interferometric photoacoustic spectroscopy publication-title: IEEE J. Sel. Top. Quant. – year: 2000 ident: bib21 article-title: Fundamentals of Acoustics – volume: 263 start-page: 501 year: 2017 end-page: 509 ident: bib18 article-title: Low-cost photoacoustic NO2 trace gas monitoring at the pptV-level publication-title: Sensors Actuat. A-Phys. – volume: 47 start-page: 4349 year: 2013 end-page: 4356 ident: bib4 article-title: Treating wastewater from a pharmaceutical formulation facility by biological process and ozone publication-title: Water Res. – year: 2014 ident: bib1 article-title: Ozone in the Atmosphere, Basic Principles, Natural and Human Impacts – volume: 1153 year: 2019 ident: bib20 article-title: Evaluation of titration method on determination of ozone concentration produced by dielectric barrier discharge plasma (DBDP) Technology publication-title: J. Phys. Conf. Ser. – volume: 5 start-page: 365 year: 2013 end-page: 373 ident: bib24 article-title: The MPI-mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest publication-title: Earth Syst. Sci. Data – year: 1980 ident: bib11 article-title: Photoacoustics and Photoacoustic Spectroscopy – volume: 38 start-page: 377 year: 2005 end-page: 388 ident: bib14 article-title: Nd:YAG laser‐based photoacoustic detection of ozone: comparison of pulsed and quasicontinuous wave operation and field tests publication-title: Spectrosc. Lett. – volume: 56 start-page: 3 year: 2006 end-page: 8 ident: bib6 article-title: Ozone as an alternative disinfectant publication-title: Pol. J. Food Nutr. Sci. – volume: 30 start-page: 81 year: 2008 end-page: 87 ident: bib5 article-title: Recent developments in food and agricultural uses of ozone as an antimicrobial agent-food packaging film sterilizing machine using ozone publication-title: Ozone Sci. Eng. – year: 2006 ident: bib10 article-title: Air Quality Guidelines Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide – volume: 31 start-page: 267 year: 1928 end-page: 274 ident: bib22 article-title: Effect of frequency on the end correction of pipes publication-title: Phys. Rev. – volume: 55 start-page: 273 year: 1999 end-page: 289 ident: bib7 article-title: The cost of crop damage caused by ozone air pollution from motor vehicles publication-title: J. Environ. Manag. – volume: 10 start-page: 2518 year: 2019 ident: bib9 article-title: Ozone pollution: a major Health hazard worldwide publication-title: Front. Immunol. – volume: 44 start-page: 1457 year: 2009 end-page: 1464 ident: bib15 article-title: Laser-induced photoacoustic detection of ozone at 266 nm using resonant cells of different configuration publication-title: J. Environ. Sci. Health A. Tox. Hazard Subst. Environ. Eng. – volume: 21 start-page: 581 year: 1994 end-page: 584 ident: bib17 article-title: Temperature dependence of the ozone absorption spectrum over the wavelength range 410 to 760 nm publication-title: Geophys. Res. Lett. – volume: 157 start-page: 185 year: 2003 end-page: 209 ident: bib13 article-title: A critical review of the absorption cross-sections of O3 and NO2 in the ultraviolet and visible publication-title: J. Photochem. Photobiol., A – volume: 43 start-page: 733 year: 2009 end-page: 743 ident: bib3 article-title: Degradation of reactive dyes in wastewater from the textile industry by ozone: analysis of the products by accurate masses publication-title: Water Res. – volume: 11 start-page: 101 year: 2009 end-page: 108 ident: bib8 article-title: Effects of elevated ozone on photosynthesis and stomatal conductance of two soybean varieties: a case study to assess impacts of one component of predicted global climate change publication-title: Plant Biol. – volume: 7 start-page: 609 year: 2014 end-page: 624 ident: bib12 article-title: High spectral resolution ozone absorption cross-sections – Part 1: measurements, data analysis and comparison with previous measurements around 293 K publication-title: Atmos. Meas. Tech. – volume: 7 start-page: 609 year: 2014 ident: 10.1016/j.talanta.2020.121890_bib12 article-title: High spectral resolution ozone absorption cross-sections – Part 1: measurements, data analysis and comparison with previous measurements around 293 K publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-7-609-2014 – volume: 51 start-page: 1 year: 2012 ident: 10.1016/j.talanta.2020.121890_bib2 article-title: Ozone production from wildfires: a critical review publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2011.11.063 – volume: 44 start-page: 1457 year: 2009 ident: 10.1016/j.talanta.2020.121890_bib15 article-title: Laser-induced photoacoustic detection of ozone at 266 nm using resonant cells of different configuration publication-title: J. Environ. Sci. Health A. Tox. Hazard Subst. Environ. Eng. doi: 10.1080/10934520903217740 – volume: 18 start-page: 209 year: 1996 ident: 10.1016/j.talanta.2020.121890_bib19 article-title: Guideline for measurement of ozone concentration in the process gas from an ozone generator publication-title: Ozone Sci. Eng. doi: 10.1080/01919519608547327 – volume: 55 start-page: 273 year: 1999 ident: 10.1016/j.talanta.2020.121890_bib7 article-title: The cost of crop damage caused by ozone air pollution from motor vehicles publication-title: J. Environ. Manag. doi: 10.1006/jema.1999.0256 – volume: 5 start-page: 365 year: 2013 ident: 10.1016/j.talanta.2020.121890_bib24 article-title: The MPI-mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-5-365-2013 – volume: 263 start-page: 501 year: 2017 ident: 10.1016/j.talanta.2020.121890_bib18 article-title: Low-cost photoacoustic NO2 trace gas monitoring at the pptV-level publication-title: Sensors Actuat. A-Phys. doi: 10.1016/j.sna.2017.06.036 – volume: 38 start-page: 377 year: 2005 ident: 10.1016/j.talanta.2020.121890_bib14 article-title: Nd:YAG laser‐based photoacoustic detection of ozone: comparison of pulsed and quasicontinuous wave operation and field tests publication-title: Spectrosc. Lett. doi: 10.1081/SL-200058726 – ident: 10.1016/j.talanta.2020.121890_bib23 – year: 2014 ident: 10.1016/j.talanta.2020.121890_bib1 – volume: 11 start-page: 101 year: 2009 ident: 10.1016/j.talanta.2020.121890_bib8 article-title: Effects of elevated ozone on photosynthesis and stomatal conductance of two soybean varieties: a case study to assess impacts of one component of predicted global climate change publication-title: Plant Biol. doi: 10.1111/j.1438-8677.2009.00263.x – volume: 21 start-page: 581 year: 1994 ident: 10.1016/j.talanta.2020.121890_bib17 article-title: Temperature dependence of the ozone absorption spectrum over the wavelength range 410 to 760 nm publication-title: Geophys. Res. Lett. doi: 10.1029/93GL02311 – volume: 30 start-page: 81 year: 2008 ident: 10.1016/j.talanta.2020.121890_bib5 article-title: Recent developments in food and agricultural uses of ozone as an antimicrobial agent-food packaging film sterilizing machine using ozone publication-title: Ozone Sci. Eng. doi: 10.1080/01919510701813376 – volume: 56 start-page: 3 year: 2006 ident: 10.1016/j.talanta.2020.121890_bib6 article-title: Ozone as an alternative disinfectant publication-title: Pol. J. Food Nutr. Sci. – volume: 1153 year: 2019 ident: 10.1016/j.talanta.2020.121890_bib20 article-title: Evaluation of titration method on determination of ozone concentration produced by dielectric barrier discharge plasma (DBDP) Technology publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1153/1/012086 – volume: 10 start-page: 2518 year: 2019 ident: 10.1016/j.talanta.2020.121890_bib9 article-title: Ozone pollution: a major Health hazard worldwide publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.02518 – year: 1980 ident: 10.1016/j.talanta.2020.121890_bib11 – year: 2006 ident: 10.1016/j.talanta.2020.121890_bib10 – volume: 43 start-page: 733 year: 2009 ident: 10.1016/j.talanta.2020.121890_bib3 article-title: Degradation of reactive dyes in wastewater from the textile industry by ozone: analysis of the products by accurate masses publication-title: Water Res. doi: 10.1016/j.watres.2008.11.006 – volume: 157 start-page: 185 year: 2003 ident: 10.1016/j.talanta.2020.121890_bib13 article-title: A critical review of the absorption cross-sections of O3 and NO2 in the ultraviolet and visible publication-title: J. Photochem. Photobiol., A doi: 10.1016/S1010-6030(03)00061-3 – volume: 18 start-page: 1566 year: 2012 ident: 10.1016/j.talanta.2020.121890_bib16 article-title: Fiber-coupled ozone sensor based on tuning fork-enhanced interferometric photoacoustic spectroscopy publication-title: IEEE J. Sel. Top. Quant. doi: 10.1109/JSTQE.2012.2182761 – volume: 47 start-page: 4349 year: 2013 ident: 10.1016/j.talanta.2020.121890_bib4 article-title: Treating wastewater from a pharmaceutical formulation facility by biological process and ozone publication-title: Water Res. doi: 10.1016/j.watres.2013.04.059 – year: 2000 ident: 10.1016/j.talanta.2020.121890_bib21 – volume: 31 start-page: 267 year: 1928 ident: 10.1016/j.talanta.2020.121890_bib22 article-title: Effect of frequency on the end correction of pipes publication-title: Phys. Rev. doi: 10.1103/PhysRev.31.267 |
SSID | ssj0002303 |
Score | 2.4084914 |
Snippet | The photoacoustic detection of ozone using the Chappuis band is demonstrated. A visible red laser diode emitting at 638 nm was employed as a light source. The... The photoacoustic detection of ozone using the Chappuis band is demonstrated. A visible red laser diode emitting at 638 nm was employed as a light source. The... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 121890 |
SubjectTerms | calibration detection limit diodes light measurement MEMS microphone microphones Ozone Photoacoustic spectroscopy Red laser diode |
Title | Photoacoustic detection of ozone with a red laser diode |
URI | https://dx.doi.org/10.1016/j.talanta.2020.121890 https://www.ncbi.nlm.nih.gov/pubmed/33298253 https://www.proquest.com/docview/2469094558 https://www.proquest.com/docview/2511185858 |
Volume | 223 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB72Ib9cXEbzWtcmkbY6yKKuieFDwFtpmiivSLku9ePC3O9OHIvgAr2VChy_DfJNkHkIcGaJgDSYNfHwC_MxoApuaKChCg8QniQ49Fwpf30Tje7h8MA9zYtTXwnBaZef7W5_eeOvuy7BDczidTLjGl8g15POP5upJ7gkKELOVH799pnlQiN013rUBS39W8QyfuMkg6c_th1TTZyFh1_w9P_0UfzY8dL4ilrsAUp62Oq6KOSzXxOKon9u2LuLbx6quyNE1c7qkx7rJtiplVcjqtSpR8t2rTOUMvaTYGWfSTyqPG-L-_OxuNA668QhBDmDqwBTE_WmYg08wttaHWOSZUlYVhSGYcw2Zz1WeWENRROS9V1ggAGRE6dpjrjfFfEl_3RbSQpHp1CgMScImOoujNEwQgcg-i8EOBPSguLzrHc4jLJ5dnyT25DosHWPpWiwH4vhj2bRtnvHXgqRH3H2xAkcO_q-lh_0OOQKcnz3SEglqp_gGwIIxyS8yFHeG_ERKMlvt9n5orLWydI7WO_9XblcsKc6FabK998R8PXvBfQpm6uygsdYDsXB6cTW-eQdujfFB |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VciiXijctLyPBMV1ijzfxgQMqVFv6EIdW6s0k8URsVSXVNgjBoX-qf5CZxGmFBFRC6jWyk9FnZ76x5wXw2jIFG7RFErK3KG5Gm7jCTpM6tcR8kps0SKLw3v50doifjuzRElyMuTASVhl1_6DTe20dn0wimpPT-VxyfJlcUzn_GMmexBhZuUM_vvO57ezd9gde5Ddab3082JwlsbVAUiHaLrE182aRVhhyypwLKdVVqbXTdW1ZxMpgGSpd5c4yA09DCJpqQsSS6dAEqgy_9xbcRlYX0jZh4_wqroRt-ljp1yUi3lXa0ORYqhoyYFLvSPeFHXLhgj8T4t8M3p74tu7CarRY1fsBlHuwRM19WNkcG8U9gOzz17ZrWbP2jcFUoK4P72pUW6v2Z9uQksteVagFBcXGOi1UmLeBHsLhjYD2CJYb_uoTUA7r0hRWU8ojXG7KbFqkORGydVFm6NYAR1B8FYuVS8-MEz9GpR37iKUXLP2A5RpsXE47Hap1XDchHxH3v207z4xy3dRX4wp5Blz8LEVDDLXXcuXg0Nr8H2PY0E3FJ8tjHg_LeymxMdrxwd2s_79wL2FldrC363e393eewh0tgTh9qPkzWO4W3-g5W1Jd-aLfuQq-3PSv8gvjwy3c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photoacoustic+detection+of+ozone+with+a+red+laser+diode&rft.jtitle=Talanta+%28Oxford%29&rft.au=Keeratirawee%2C+Kanchalar&rft.au=Hauser%2C+Peter+C&rft.date=2021-02-01&rft.eissn=1873-3573&rft.volume=223&rft.issue=Pt+2&rft.spage=121890&rft_id=info:doi/10.1016%2Fj.talanta.2020.121890&rft_id=info%3Apmid%2F33298253&rft.externalDocID=33298253 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-9140&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-9140&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-9140&client=summon |