Photoacoustic detection of ozone with a red laser diode

The photoacoustic detection of ozone using the Chappuis band is demonstrated. A visible red laser diode emitting at 638 nm was employed as a light source. The photoacoustic cell consisted of a conventional resonance tube with a MEMS (microelectromechanical systems) microphone placed outside an openi...

Full description

Saved in:
Bibliographic Details
Published inTalanta (Oxford) Vol. 223; no. Pt 2; p. 121890
Main Authors Keeratirawee, Kanchalar, Hauser, Peter C.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The photoacoustic detection of ozone using the Chappuis band is demonstrated. A visible red laser diode emitting at 638 nm was employed as a light source. The photoacoustic cell consisted of a conventional resonance tube with a MEMS (microelectromechanical systems) microphone placed outside an opening along the tube. A calibration curve for the range from 33 ppmV to 215 ppmV was found to be highly linear with a coefficient of determination (r2) of 0.9999, when allowing for different measurement frequencies to account for shifts in the speed of sound due to changes in the gas matrix. The limit of detection was found to be 1.6 ppmV for an optical power of the laser diode of about 130 mW. [Display omitted] •A visible laser diode is employed for the first time.•The light source is inexpensive.•The detection limit is in the low ppmV range.
AbstractList The photoacoustic detection of ozone using the Chappuis band is demonstrated. A visible red laser diode emitting at 638 nm was employed as a light source. The photoacoustic cell consisted of a conventional resonance tube with a MEMS (microelectromechanical systems) microphone placed outside an opening along the tube. A calibration curve for the range from 33 ppmV to 215 ppmV was found to be highly linear with a coefficient of determination (r ) of 0.9999, when allowing for different measurement frequencies to account for shifts in the speed of sound due to changes in the gas matrix. The limit of detection was found to be 1.6 ppmV for an optical power of the laser diode of about 130 mW.
The photoacoustic detection of ozone using the Chappuis band is demonstrated. A visible red laser diode emitting at 638 nm was employed as a light source. The photoacoustic cell consisted of a conventional resonance tube with a MEMS (microelectromechanical systems) microphone placed outside an opening along the tube. A calibration curve for the range from 33 ppmV to 215 ppmV was found to be highly linear with a coefficient of determination (r2) of 0.9999, when allowing for different measurement frequencies to account for shifts in the speed of sound due to changes in the gas matrix. The limit of detection was found to be 1.6 ppmV for an optical power of the laser diode of about 130 mW. [Display omitted] •A visible laser diode is employed for the first time.•The light source is inexpensive.•The detection limit is in the low ppmV range.
The photoacoustic detection of ozone using the Chappuis band is demonstrated. A visible red laser diode emitting at 638 nm was employed as a light source. The photoacoustic cell consisted of a conventional resonance tube with a MEMS (microelectromechanical systems) microphone placed outside an opening along the tube. A calibration curve for the range from 33 ppmV to 215 ppmV was found to be highly linear with a coefficient of determination (r2) of 0.9999, when allowing for different measurement frequencies to account for shifts in the speed of sound due to changes in the gas matrix. The limit of detection was found to be 1.6 ppmV for an optical power of the laser diode of about 130 mW.The photoacoustic detection of ozone using the Chappuis band is demonstrated. A visible red laser diode emitting at 638 nm was employed as a light source. The photoacoustic cell consisted of a conventional resonance tube with a MEMS (microelectromechanical systems) microphone placed outside an opening along the tube. A calibration curve for the range from 33 ppmV to 215 ppmV was found to be highly linear with a coefficient of determination (r2) of 0.9999, when allowing for different measurement frequencies to account for shifts in the speed of sound due to changes in the gas matrix. The limit of detection was found to be 1.6 ppmV for an optical power of the laser diode of about 130 mW.
The photoacoustic detection of ozone using the Chappuis band is demonstrated. A visible red laser diode emitting at 638 nm was employed as a light source. The photoacoustic cell consisted of a conventional resonance tube with a MEMS (microelectromechanical systems) microphone placed outside an opening along the tube. A calibration curve for the range from 33 ppmV to 215 ppmV was found to be highly linear with a coefficient of determination (r²) of 0.9999, when allowing for different measurement frequencies to account for shifts in the speed of sound due to changes in the gas matrix. The limit of detection was found to be 1.6 ppmV for an optical power of the laser diode of about 130 mW.
ArticleNumber 121890
Author Hauser, Peter C.
Keeratirawee, Kanchalar
Author_xml – sequence: 1
  givenname: Kanchalar
  surname: Keeratirawee
  fullname: Keeratirawee, Kanchalar
  organization: University of Basel, Department of Chemistry, Klingelbergstrasse 80, 4056, Basel, Switzerland
– sequence: 2
  givenname: Peter C.
  orcidid: 0000-0002-7506-5971
  surname: Hauser
  fullname: Hauser, Peter C.
  email: peter.hauser@unibas.ch
  organization: University of Basel, Department of Chemistry, Klingelbergstrasse 80, 4056, Basel, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33298253$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLAzEUhYNU7EN_gjJLN1Pz7ExwIVJ8QUEXug5pcoemTCc1SRX99aa2btyUuwhczrn35nxD1Ot8BwidEzwmmEyuluOkW90lPaaY5h4ltcRHaEDqipVMVKyHBhgzWUrCcR8NY1xijCnD7AT1GaOypoINUPWy8Mlr4zcxOVNYSGCS813hm8J_55XFp0uLQhcBbNHqCKGwzls4RceNbiOc7d8Reru_e50-lrPnh6fp7aw0nItUioaRShPDbQ2VlJZAY-aUSto0oibUMD63hppaiorgibWWQgOc8zmhnFkwbIQud3PXwb9vICa1ctFAm78O-WZFBSGkFrkOS_lEYsnFr_RiL93MV2DVOriVDl_qL5csuN4JTPAxBmiUcUlvg0lBu1YRrLYU1FLtKagtBbWjkN3in_tvwSHfzc4HOdEPB0FF46AzYF3IWJT17sCEH2TLoqk
CitedBy_id crossref_primary_10_1016_j_ohx_2022_e00280
crossref_primary_10_1016_j_aca_2024_343544
crossref_primary_10_1109_JSEN_2024_3459898
crossref_primary_10_1364_OE_445623
crossref_primary_10_1016_j_snb_2023_135039
crossref_primary_10_55546_jmm_1422073
crossref_primary_10_1002_mop_33611
crossref_primary_10_1080_10589759_2024_2373318
crossref_primary_10_1098_rsos_201324
crossref_primary_10_1016_j_trac_2022_116552
Cites_doi 10.5194/amt-7-609-2014
10.1016/j.atmosenv.2011.11.063
10.1080/10934520903217740
10.1080/01919519608547327
10.1006/jema.1999.0256
10.5194/essd-5-365-2013
10.1016/j.sna.2017.06.036
10.1081/SL-200058726
10.1111/j.1438-8677.2009.00263.x
10.1029/93GL02311
10.1080/01919510701813376
10.1088/1742-6596/1153/1/012086
10.3389/fimmu.2019.02518
10.1016/j.watres.2008.11.006
10.1016/S1010-6030(03)00061-3
10.1109/JSTQE.2012.2182761
10.1016/j.watres.2013.04.059
10.1103/PhysRev.31.267
ContentType Journal Article
Copyright 2020 The Author(s)
Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 The Author(s)
– notice: Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.talanta.2020.121890
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3573
ExternalDocumentID 33298253
10_1016_j_talanta_2020_121890
S0039914020311814
Genre Journal Article
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SCH
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSZ
T5K
TN5
TWZ
WH7
XPP
YK3
YNT
ZMT
~02
~G-
29Q
3O-
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
RIG
SCB
SEW
SSH
WUQ
XOL
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c445t-5f317a1c4d8e799d1efcb2292ff5812c34bdc2c8957106ddd2efe444b1243dec3
IEDL.DBID .~1
ISSN 0039-9140
1873-3573
IngestDate Fri Jul 11 12:42:33 EDT 2025
Fri Jul 11 15:15:20 EDT 2025
Wed Feb 19 02:30:16 EST 2025
Thu Apr 24 23:06:52 EDT 2025
Tue Jul 01 03:43:59 EDT 2025
Fri Feb 23 02:44:20 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Pt 2
Keywords MEMS microphone
Ozone
Photoacoustic spectroscopy
Red laser diode
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-5f317a1c4d8e799d1efcb2292ff5812c34bdc2c8957106ddd2efe444b1243dec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7506-5971
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0039914020311814
PMID 33298253
PQID 2469094558
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2511185858
proquest_miscellaneous_2469094558
pubmed_primary_33298253
crossref_citationtrail_10_1016_j_talanta_2020_121890
crossref_primary_10_1016_j_talanta_2020_121890
elsevier_sciencedirect_doi_10_1016_j_talanta_2020_121890
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
2021-02-00
2021-Feb-01
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Talanta (Oxford)
PublicationTitleAlternate Talanta
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Constapel, Schellenträger, Marzinkowski, Gäb (bib3) 2009; 43
Gorshelev, Serdyuchenko, Weber, Chehade, Burrows (bib12) 2014; 7
Gondal, Dastageer, Yamani (bib15) 2009; 44
CRC Handbook of Chemistry and Physics, 75th ed., CRC Press, Boca Raton.
Murphy, Delucchi, McCubbin, Kim (bib7) 1999; 55
Fabian, Dameris (bib1) 2014
Orphal (bib13) 2003; 157
Singh, Tiwari, Agrawal (bib8) 2009; 11
Veres, Sarlós, Varga, Szabó, Bozóki, Motika, Gyapjas (bib14) 2005; 38
Köhring, Willer, Böttger, Pohlkötter, Schade (bib16) 2012; 18
Burkholder, Talukdar (bib17) 1994; 21
Kinsler, Frey, Coppens, Sanders (bib21) 2000
Anderson, Ostensen (bib22) 1928; 31
Wysok, Uradziński, Gomółka-Pawlicka (bib6) 2006; 56
(bib10) 2006
Naitou, Takahara (bib5) 2008; 30
Jaffe, Wigder (bib2) 2012; 51
Zhang, Wei, Fang (bib9) 2019; 10
Rück, Bierl, Matysik (bib18) 2017; 263
Keller-Rudek, Moortgat, Sander, Sörensen (bib24) 2013; 5
Lester, Mamane, Zucker, Avisar (bib4) 2013; 47
Rosencwaig (bib11) 1980
Rakness, Gordon, Langlais, Masschelein, Matsumoto, Richard, Robson, Somiya (bib19) 1996; 18
Chasanah, Yulianto, Zain, Sasmita, Restiwijaya, Kinandana, Arianto, Nur (bib20) 2019; 1153
Gorshelev (10.1016/j.talanta.2020.121890_bib12) 2014; 7
10.1016/j.talanta.2020.121890_bib23
Rakness (10.1016/j.talanta.2020.121890_bib19) 1996; 18
Gondal (10.1016/j.talanta.2020.121890_bib15) 2009; 44
Rück (10.1016/j.talanta.2020.121890_bib18) 2017; 263
Wysok (10.1016/j.talanta.2020.121890_bib6) 2006; 56
Anderson (10.1016/j.talanta.2020.121890_bib22) 1928; 31
Köhring (10.1016/j.talanta.2020.121890_bib16) 2012; 18
Lester (10.1016/j.talanta.2020.121890_bib4) 2013; 47
Kinsler (10.1016/j.talanta.2020.121890_bib21) 2000
Jaffe (10.1016/j.talanta.2020.121890_bib2) 2012; 51
Naitou (10.1016/j.talanta.2020.121890_bib5) 2008; 30
Constapel (10.1016/j.talanta.2020.121890_bib3) 2009; 43
Fabian (10.1016/j.talanta.2020.121890_bib1) 2014
Burkholder (10.1016/j.talanta.2020.121890_bib17) 1994; 21
Keller-Rudek (10.1016/j.talanta.2020.121890_bib24) 2013; 5
Murphy (10.1016/j.talanta.2020.121890_bib7) 1999; 55
Orphal (10.1016/j.talanta.2020.121890_bib13) 2003; 157
Veres (10.1016/j.talanta.2020.121890_bib14) 2005; 38
Rosencwaig (10.1016/j.talanta.2020.121890_bib11) 1980
Chasanah (10.1016/j.talanta.2020.121890_bib20) 2019; 1153
Singh (10.1016/j.talanta.2020.121890_bib8) 2009; 11
(10.1016/j.talanta.2020.121890_bib10) 2006
Zhang (10.1016/j.talanta.2020.121890_bib9) 2019; 10
References_xml – volume: 18
  start-page: 209
  year: 1996
  end-page: 229
  ident: bib19
  article-title: Guideline for measurement of ozone concentration in the process gas from an ozone generator
  publication-title: Ozone Sci. Eng.
– volume: 51
  start-page: 1
  year: 2012
  end-page: 10
  ident: bib2
  article-title: Ozone production from wildfires: a critical review
  publication-title: Atmos. Environ.
– reference: CRC Handbook of Chemistry and Physics, 75th ed., CRC Press, Boca Raton.
– volume: 18
  start-page: 1566
  year: 2012
  end-page: 1572
  ident: bib16
  article-title: Fiber-coupled ozone sensor based on tuning fork-enhanced interferometric photoacoustic spectroscopy
  publication-title: IEEE J. Sel. Top. Quant.
– year: 2000
  ident: bib21
  article-title: Fundamentals of Acoustics
– volume: 263
  start-page: 501
  year: 2017
  end-page: 509
  ident: bib18
  article-title: Low-cost photoacoustic NO2 trace gas monitoring at the pptV-level
  publication-title: Sensors Actuat. A-Phys.
– volume: 47
  start-page: 4349
  year: 2013
  end-page: 4356
  ident: bib4
  article-title: Treating wastewater from a pharmaceutical formulation facility by biological process and ozone
  publication-title: Water Res.
– year: 2014
  ident: bib1
  article-title: Ozone in the Atmosphere, Basic Principles, Natural and Human Impacts
– volume: 1153
  year: 2019
  ident: bib20
  article-title: Evaluation of titration method on determination of ozone concentration produced by dielectric barrier discharge plasma (DBDP) Technology
  publication-title: J. Phys. Conf. Ser.
– volume: 5
  start-page: 365
  year: 2013
  end-page: 373
  ident: bib24
  article-title: The MPI-mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest
  publication-title: Earth Syst. Sci. Data
– year: 1980
  ident: bib11
  article-title: Photoacoustics and Photoacoustic Spectroscopy
– volume: 38
  start-page: 377
  year: 2005
  end-page: 388
  ident: bib14
  article-title: Nd:YAG laser‐based photoacoustic detection of ozone: comparison of pulsed and quasicontinuous wave operation and field tests
  publication-title: Spectrosc. Lett.
– volume: 56
  start-page: 3
  year: 2006
  end-page: 8
  ident: bib6
  article-title: Ozone as an alternative disinfectant
  publication-title: Pol. J. Food Nutr. Sci.
– volume: 30
  start-page: 81
  year: 2008
  end-page: 87
  ident: bib5
  article-title: Recent developments in food and agricultural uses of ozone as an antimicrobial agent-food packaging film sterilizing machine using ozone
  publication-title: Ozone Sci. Eng.
– year: 2006
  ident: bib10
  article-title: Air Quality Guidelines Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide
– volume: 31
  start-page: 267
  year: 1928
  end-page: 274
  ident: bib22
  article-title: Effect of frequency on the end correction of pipes
  publication-title: Phys. Rev.
– volume: 55
  start-page: 273
  year: 1999
  end-page: 289
  ident: bib7
  article-title: The cost of crop damage caused by ozone air pollution from motor vehicles
  publication-title: J. Environ. Manag.
– volume: 10
  start-page: 2518
  year: 2019
  ident: bib9
  article-title: Ozone pollution: a major Health hazard worldwide
  publication-title: Front. Immunol.
– volume: 44
  start-page: 1457
  year: 2009
  end-page: 1464
  ident: bib15
  article-title: Laser-induced photoacoustic detection of ozone at 266 nm using resonant cells of different configuration
  publication-title: J. Environ. Sci. Health A. Tox. Hazard Subst. Environ. Eng.
– volume: 21
  start-page: 581
  year: 1994
  end-page: 584
  ident: bib17
  article-title: Temperature dependence of the ozone absorption spectrum over the wavelength range 410 to 760 nm
  publication-title: Geophys. Res. Lett.
– volume: 157
  start-page: 185
  year: 2003
  end-page: 209
  ident: bib13
  article-title: A critical review of the absorption cross-sections of O3 and NO2 in the ultraviolet and visible
  publication-title: J. Photochem. Photobiol., A
– volume: 43
  start-page: 733
  year: 2009
  end-page: 743
  ident: bib3
  article-title: Degradation of reactive dyes in wastewater from the textile industry by ozone: analysis of the products by accurate masses
  publication-title: Water Res.
– volume: 11
  start-page: 101
  year: 2009
  end-page: 108
  ident: bib8
  article-title: Effects of elevated ozone on photosynthesis and stomatal conductance of two soybean varieties: a case study to assess impacts of one component of predicted global climate change
  publication-title: Plant Biol.
– volume: 7
  start-page: 609
  year: 2014
  end-page: 624
  ident: bib12
  article-title: High spectral resolution ozone absorption cross-sections – Part 1: measurements, data analysis and comparison with previous measurements around 293 K
  publication-title: Atmos. Meas. Tech.
– volume: 7
  start-page: 609
  year: 2014
  ident: 10.1016/j.talanta.2020.121890_bib12
  article-title: High spectral resolution ozone absorption cross-sections – Part 1: measurements, data analysis and comparison with previous measurements around 293 K
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-7-609-2014
– volume: 51
  start-page: 1
  year: 2012
  ident: 10.1016/j.talanta.2020.121890_bib2
  article-title: Ozone production from wildfires: a critical review
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2011.11.063
– volume: 44
  start-page: 1457
  year: 2009
  ident: 10.1016/j.talanta.2020.121890_bib15
  article-title: Laser-induced photoacoustic detection of ozone at 266 nm using resonant cells of different configuration
  publication-title: J. Environ. Sci. Health A. Tox. Hazard Subst. Environ. Eng.
  doi: 10.1080/10934520903217740
– volume: 18
  start-page: 209
  year: 1996
  ident: 10.1016/j.talanta.2020.121890_bib19
  article-title: Guideline for measurement of ozone concentration in the process gas from an ozone generator
  publication-title: Ozone Sci. Eng.
  doi: 10.1080/01919519608547327
– volume: 55
  start-page: 273
  year: 1999
  ident: 10.1016/j.talanta.2020.121890_bib7
  article-title: The cost of crop damage caused by ozone air pollution from motor vehicles
  publication-title: J. Environ. Manag.
  doi: 10.1006/jema.1999.0256
– volume: 5
  start-page: 365
  year: 2013
  ident: 10.1016/j.talanta.2020.121890_bib24
  article-title: The MPI-mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-5-365-2013
– volume: 263
  start-page: 501
  year: 2017
  ident: 10.1016/j.talanta.2020.121890_bib18
  article-title: Low-cost photoacoustic NO2 trace gas monitoring at the pptV-level
  publication-title: Sensors Actuat. A-Phys.
  doi: 10.1016/j.sna.2017.06.036
– volume: 38
  start-page: 377
  year: 2005
  ident: 10.1016/j.talanta.2020.121890_bib14
  article-title: Nd:YAG laser‐based photoacoustic detection of ozone: comparison of pulsed and quasicontinuous wave operation and field tests
  publication-title: Spectrosc. Lett.
  doi: 10.1081/SL-200058726
– ident: 10.1016/j.talanta.2020.121890_bib23
– year: 2014
  ident: 10.1016/j.talanta.2020.121890_bib1
– volume: 11
  start-page: 101
  year: 2009
  ident: 10.1016/j.talanta.2020.121890_bib8
  article-title: Effects of elevated ozone on photosynthesis and stomatal conductance of two soybean varieties: a case study to assess impacts of one component of predicted global climate change
  publication-title: Plant Biol.
  doi: 10.1111/j.1438-8677.2009.00263.x
– volume: 21
  start-page: 581
  year: 1994
  ident: 10.1016/j.talanta.2020.121890_bib17
  article-title: Temperature dependence of the ozone absorption spectrum over the wavelength range 410 to 760 nm
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/93GL02311
– volume: 30
  start-page: 81
  year: 2008
  ident: 10.1016/j.talanta.2020.121890_bib5
  article-title: Recent developments in food and agricultural uses of ozone as an antimicrobial agent-food packaging film sterilizing machine using ozone
  publication-title: Ozone Sci. Eng.
  doi: 10.1080/01919510701813376
– volume: 56
  start-page: 3
  year: 2006
  ident: 10.1016/j.talanta.2020.121890_bib6
  article-title: Ozone as an alternative disinfectant
  publication-title: Pol. J. Food Nutr. Sci.
– volume: 1153
  year: 2019
  ident: 10.1016/j.talanta.2020.121890_bib20
  article-title: Evaluation of titration method on determination of ozone concentration produced by dielectric barrier discharge plasma (DBDP) Technology
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1153/1/012086
– volume: 10
  start-page: 2518
  year: 2019
  ident: 10.1016/j.talanta.2020.121890_bib9
  article-title: Ozone pollution: a major Health hazard worldwide
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.02518
– year: 1980
  ident: 10.1016/j.talanta.2020.121890_bib11
– year: 2006
  ident: 10.1016/j.talanta.2020.121890_bib10
– volume: 43
  start-page: 733
  year: 2009
  ident: 10.1016/j.talanta.2020.121890_bib3
  article-title: Degradation of reactive dyes in wastewater from the textile industry by ozone: analysis of the products by accurate masses
  publication-title: Water Res.
  doi: 10.1016/j.watres.2008.11.006
– volume: 157
  start-page: 185
  year: 2003
  ident: 10.1016/j.talanta.2020.121890_bib13
  article-title: A critical review of the absorption cross-sections of O3 and NO2 in the ultraviolet and visible
  publication-title: J. Photochem. Photobiol., A
  doi: 10.1016/S1010-6030(03)00061-3
– volume: 18
  start-page: 1566
  year: 2012
  ident: 10.1016/j.talanta.2020.121890_bib16
  article-title: Fiber-coupled ozone sensor based on tuning fork-enhanced interferometric photoacoustic spectroscopy
  publication-title: IEEE J. Sel. Top. Quant.
  doi: 10.1109/JSTQE.2012.2182761
– volume: 47
  start-page: 4349
  year: 2013
  ident: 10.1016/j.talanta.2020.121890_bib4
  article-title: Treating wastewater from a pharmaceutical formulation facility by biological process and ozone
  publication-title: Water Res.
  doi: 10.1016/j.watres.2013.04.059
– year: 2000
  ident: 10.1016/j.talanta.2020.121890_bib21
– volume: 31
  start-page: 267
  year: 1928
  ident: 10.1016/j.talanta.2020.121890_bib22
  article-title: Effect of frequency on the end correction of pipes
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.31.267
SSID ssj0002303
Score 2.4084914
Snippet The photoacoustic detection of ozone using the Chappuis band is demonstrated. A visible red laser diode emitting at 638 nm was employed as a light source. The...
The photoacoustic detection of ozone using the Chappuis band is demonstrated. A visible red laser diode emitting at 638 nm was employed as a light source. The...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 121890
SubjectTerms calibration
detection limit
diodes
light
measurement
MEMS microphone
microphones
Ozone
Photoacoustic spectroscopy
Red laser diode
Title Photoacoustic detection of ozone with a red laser diode
URI https://dx.doi.org/10.1016/j.talanta.2020.121890
https://www.ncbi.nlm.nih.gov/pubmed/33298253
https://www.proquest.com/docview/2469094558
https://www.proquest.com/docview/2511185858
Volume 223
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB72Ib9cXEbzWtcmkbY6yKKuieFDwFtpmiivSLku9ePC3O9OHIvgAr2VChy_DfJNkHkIcGaJgDSYNfHwC_MxoApuaKChCg8QniQ49Fwpf30Tje7h8MA9zYtTXwnBaZef7W5_eeOvuy7BDczidTLjGl8g15POP5upJ7gkKELOVH799pnlQiN013rUBS39W8QyfuMkg6c_th1TTZyFh1_w9P_0UfzY8dL4ilrsAUp62Oq6KOSzXxOKon9u2LuLbx6quyNE1c7qkx7rJtiplVcjqtSpR8t2rTOUMvaTYGWfSTyqPG-L-_OxuNA668QhBDmDqwBTE_WmYg08wttaHWOSZUlYVhSGYcw2Zz1WeWENRROS9V1ggAGRE6dpjrjfFfEl_3RbSQpHp1CgMScImOoujNEwQgcg-i8EOBPSguLzrHc4jLJ5dnyT25DosHWPpWiwH4vhj2bRtnvHXgqRH3H2xAkcO_q-lh_0OOQKcnz3SEglqp_gGwIIxyS8yFHeG_ERKMlvt9n5orLWydI7WO_9XblcsKc6FabK998R8PXvBfQpm6uygsdYDsXB6cTW-eQdujfFB
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VciiXijctLyPBMV1ijzfxgQMqVFv6EIdW6s0k8URsVSXVNgjBoX-qf5CZxGmFBFRC6jWyk9FnZ76x5wXw2jIFG7RFErK3KG5Gm7jCTpM6tcR8kps0SKLw3v50doifjuzRElyMuTASVhl1_6DTe20dn0wimpPT-VxyfJlcUzn_GMmexBhZuUM_vvO57ezd9gde5Ddab3082JwlsbVAUiHaLrE182aRVhhyypwLKdVVqbXTdW1ZxMpgGSpd5c4yA09DCJpqQsSS6dAEqgy_9xbcRlYX0jZh4_wqroRt-ljp1yUi3lXa0ORYqhoyYFLvSPeFHXLhgj8T4t8M3p74tu7CarRY1fsBlHuwRM19WNkcG8U9gOzz17ZrWbP2jcFUoK4P72pUW6v2Z9uQksteVagFBcXGOi1UmLeBHsLhjYD2CJYb_uoTUA7r0hRWU8ojXG7KbFqkORGydVFm6NYAR1B8FYuVS8-MEz9GpR37iKUXLP2A5RpsXE47Hap1XDchHxH3v207z4xy3dRX4wp5Blz8LEVDDLXXcuXg0Nr8H2PY0E3FJ8tjHg_LeymxMdrxwd2s_79wL2FldrC363e393eewh0tgTh9qPkzWO4W3-g5W1Jd-aLfuQq-3PSv8gvjwy3c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photoacoustic+detection+of+ozone+with+a+red+laser+diode&rft.jtitle=Talanta+%28Oxford%29&rft.au=Keeratirawee%2C+Kanchalar&rft.au=Hauser%2C+Peter+C&rft.date=2021-02-01&rft.eissn=1873-3573&rft.volume=223&rft.issue=Pt+2&rft.spage=121890&rft_id=info:doi/10.1016%2Fj.talanta.2020.121890&rft_id=info%3Apmid%2F33298253&rft.externalDocID=33298253
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-9140&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-9140&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-9140&client=summon