A review of electrode materials based on core-shell nanostructures for electrochemical supercapacitors

Supercapacitors (SCs) have attracted much attention as energy storage devices due to their high power density, fast charge/discharge capability, and long cycling life. The core/shell structure design of the electrocapacitive material is one of the effective ways to achieve large surface area and hig...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 7; no. 8; pp. 3516 - 353
Main Authors Ho, Kuo-Chuan, Lin, Lu-Yin
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Supercapacitors (SCs) have attracted much attention as energy storage devices due to their high power density, fast charge/discharge capability, and long cycling life. The core/shell structure design of the electrocapacitive material is one of the effective ways to achieve large surface area and high conductivity for providing more faradaic reaction sites and accelerating the charge transfer, respectively, and therefore to enhance the electrocapacitive performance of SCs. To better understand the core/shell structure, this review paper compares the material category, morphology, and synthesis methods for the core/shell structures as well as their electrochemical performances for the corresponding SCs. The electroactive materials applied in the core/shell structure include carbon materials, conducting polymers, metals, metal hydroxides, metal oxides and metal sulfides, while zero-dimensional, one-dimensional, two-dimensional, and three-dimensional structures are considered for the core/shell material. This review article outlines the most commonly used methods for making the core and shell materials over the past decade (2007-2018), and points out the most efficient combination of the material categories and morphologies for the core/shell structure. By understanding the details of the core/shell materials, more efficient design regarding the choices of material category and morphology can be achieved, and therefore better electrocapacitive performance for the resulting SCs can be realized. This review article outlines the most commonly used methods for making the core/shell structures as the active materials for supercapacitors over the past decade (2007-2018), and points out the most efficient combination of the material categories and morphologies for the core/shell structure.
AbstractList Supercapacitors (SCs) have attracted much attention as energy storage devices due to their high power density, fast charge/discharge capability, and long cycling life. The core/shell structure design of the electrocapacitive material is one of the effective ways to achieve large surface area and high conductivity for providing more faradaic reaction sites and accelerating the charge transfer, respectively, and therefore to enhance the electrocapacitive performance of SCs. To better understand the core/shell structure, this review paper compares the material category, morphology, and synthesis methods for the core/shell structures as well as their electrochemical performances for the corresponding SCs. The electroactive materials applied in the core/shell structure include carbon materials, conducting polymers, metals, metal hydroxides, metal oxides and metal sulfides, while zero-dimensional, one-dimensional, two-dimensional, and three-dimensional structures are considered for the core/shell material. This review article outlines the most commonly used methods for making the core and shell materials over the past decade (2007–2018), and points out the most efficient combination of the material categories and morphologies for the core/shell structure. By understanding the details of the core/shell materials, more efficient design regarding the choices of material category and morphology can be achieved, and therefore better electrocapacitive performance for the resulting SCs can be realized.
Supercapacitors (SCs) have attracted much attention as energy storage devices due to their high power density, fast charge/discharge capability, and long cycling life. The core/shell structure design of the electrocapacitive material is one of the effective ways to achieve large surface area and high conductivity for providing more faradaic reaction sites and accelerating the charge transfer, respectively, and therefore to enhance the electrocapacitive performance of SCs. To better understand the core/shell structure, this review paper compares the material category, morphology, and synthesis methods for the core/shell structures as well as their electrochemical performances for the corresponding SCs. The electroactive materials applied in the core/shell structure include carbon materials, conducting polymers, metals, metal hydroxides, metal oxides and metal sulfides, while zero-dimensional, one-dimensional, two-dimensional, and three-dimensional structures are considered for the core/shell material. This review article outlines the most commonly used methods for making the core and shell materials over the past decade (2007-2018), and points out the most efficient combination of the material categories and morphologies for the core/shell structure. By understanding the details of the core/shell materials, more efficient design regarding the choices of material category and morphology can be achieved, and therefore better electrocapacitive performance for the resulting SCs can be realized. This review article outlines the most commonly used methods for making the core/shell structures as the active materials for supercapacitors over the past decade (2007-2018), and points out the most efficient combination of the material categories and morphologies for the core/shell structure.
Author Ho, Kuo-Chuan
Lin, Lu-Yin
AuthorAffiliation Department of Chemical Engineering
National Taiwan University
Department of Chemical Engineering and Biotechnology
National Taipei University of Technology (Taipei Tech)
Advanced Research Center for Green Materials Science and Technology
AuthorAffiliation_xml – name: Department of Chemical Engineering
– name: Advanced Research Center for Green Materials Science and Technology
– name: National Taipei University of Technology (Taipei Tech)
– name: National Taiwan University
– name: Department of Chemical Engineering and Biotechnology
Author_xml – sequence: 1
  givenname: Kuo-Chuan
  surname: Ho
  fullname: Ho, Kuo-Chuan
– sequence: 2
  givenname: Lu-Yin
  surname: Lin
  fullname: Lin, Lu-Yin
BookMark eNp9kUtLxTAQhYMo-Ny4FyJuRKgmfSbLy8UXCm50XabpBKu9TZ2kiv_e6PUBIs5mZvGdw8yZTbY6uAEZ25XiWIpMnxgVQMpC68cVtpGKQiRVrsvV71mpdbbj_YOIpYQotd5gdsYJnzt84c5y7NEEci3yBQSkDnrPG_DYcjdw4wgTf499zwcYnA80mTARem4dfUnNPS46Az3304hkYATTBUd-m63Z6IY7n32L3Z2d3s4vkuub88v57DoxeV6EpJDQqrLJqwxFpXNojBWNKgGqVKscSyt0YbA1bSMUQq6FytKmktaKEloLmG2xw6XvSO5pQh_qRedN3BkGdJOv0zSrClFE74ge_EIf3ERD3K5OpcqyUlbFO3W0pAw57wltPVK3AHqtpajfU6_n6nb2kfpVhMUvOF4PoXNDIOj6vyX7Swl5823988h6bG1k9v5jsjf3lp29
CitedBy_id crossref_primary_10_1016_j_matpr_2023_10_148
crossref_primary_10_1016_j_ijhydene_2019_12_172
crossref_primary_10_1039_C9NR09991C
crossref_primary_10_1002_wene_414
crossref_primary_10_1007_s10570_025_06383_4
crossref_primary_10_1016_j_cej_2023_146515
crossref_primary_10_1016_j_est_2022_106551
crossref_primary_10_1016_j_fuel_2022_127066
crossref_primary_10_1016_j_jcis_2020_06_086
crossref_primary_10_1039_D0SE01665A
crossref_primary_10_1007_s10854_021_07464_3
crossref_primary_10_1016_j_jpowsour_2024_234537
crossref_primary_10_1016_j_molstruc_2020_128835
crossref_primary_10_1016_j_surfcoat_2022_128242
crossref_primary_10_1002_asia_202000324
crossref_primary_10_1039_D3QM00143A
crossref_primary_10_1016_j_jallcom_2023_170290
crossref_primary_10_1016_j_jelechem_2020_114825
crossref_primary_10_1002_pol_20240708
crossref_primary_10_1039_D1MA00504A
crossref_primary_10_1007_s10854_023_10338_5
crossref_primary_10_1016_j_est_2021_102234
crossref_primary_10_1016_j_apcatb_2021_120925
crossref_primary_10_3390_ma14010122
crossref_primary_10_3390_cryst12060757
crossref_primary_10_1002_adfm_202302172
crossref_primary_10_1007_s11581_024_05825_6
crossref_primary_10_1016_j_jpowsour_2024_235857
crossref_primary_10_1007_s13369_020_04337_5
crossref_primary_10_1016_j_est_2023_108288
crossref_primary_10_1088_1361_6528_ac0190
crossref_primary_10_1007_s11581_021_04108_8
crossref_primary_10_1016_j_jpowsour_2021_230103
crossref_primary_10_1016_j_cej_2021_132745
crossref_primary_10_1016_j_jallcom_2019_153364
crossref_primary_10_1016_j_jcis_2020_07_062
crossref_primary_10_3390_nano13192663
crossref_primary_10_1016_j_est_2022_104511
crossref_primary_10_1016_j_jallcom_2020_158064
crossref_primary_10_1039_D2MA00390B
crossref_primary_10_1039_C9PY01623F
crossref_primary_10_1039_D0SE00448K
crossref_primary_10_2174_0122117385277725231120043600
crossref_primary_10_1016_j_carbon_2024_119665
crossref_primary_10_1016_j_jssc_2022_123351
crossref_primary_10_1002_batt_202300393
crossref_primary_10_1016_j_apsusc_2020_145711
crossref_primary_10_1016_j_matdes_2021_109998
crossref_primary_10_1021_acssuschemeng_9b05880
crossref_primary_10_1016_j_ceramint_2023_06_043
crossref_primary_10_1016_j_jcis_2025_01_163
crossref_primary_10_3389_fchem_2020_00390
crossref_primary_10_1007_s10853_021_05810_8
crossref_primary_10_1039_D2TA02930H
crossref_primary_10_1016_j_est_2024_112454
crossref_primary_10_1039_D0SE00909A
crossref_primary_10_1021_acs_energyfuels_1c00346
crossref_primary_10_1016_j_est_2023_107142
crossref_primary_10_1016_j_ccr_2022_214429
crossref_primary_10_1039_D1TC04462A
crossref_primary_10_1039_D2TA01024K
crossref_primary_10_1016_j_jallcom_2024_176851
crossref_primary_10_1016_j_est_2021_103823
crossref_primary_10_1016_j_jallcom_2020_157652
crossref_primary_10_1002_er_5954
crossref_primary_10_1016_j_electacta_2019_06_112
crossref_primary_10_3390_catal11121516
crossref_primary_10_1016_j_jallcom_2022_164711
crossref_primary_10_1021_acs_jpcc_1c06577
crossref_primary_10_1016_j_est_2021_103370
crossref_primary_10_1016_j_jpowsour_2020_229038
crossref_primary_10_1016_j_cej_2022_139970
crossref_primary_10_1002_smtd_202101308
crossref_primary_10_1142_S1793604721500223
crossref_primary_10_1007_s11356_023_30078_7
crossref_primary_10_1016_j_jechem_2020_10_025
crossref_primary_10_1039_D0CE01131B
crossref_primary_10_1016_j_ccr_2023_215497
crossref_primary_10_1016_j_ijhydene_2025_01_014
crossref_primary_10_1016_j_jallcom_2023_170960
crossref_primary_10_4236_anp_2021_102006
crossref_primary_10_1016_j_ijbiomac_2024_136931
crossref_primary_10_1016_j_jcis_2023_04_037
crossref_primary_10_1038_s41598_019_53555_x
crossref_primary_10_1016_j_cej_2020_127046
crossref_primary_10_3389_fmats_2020_00015
crossref_primary_10_1002_smll_202101617
crossref_primary_10_1016_j_est_2022_106117
crossref_primary_10_1016_j_est_2022_104299
crossref_primary_10_1246_bcsj_20220129
crossref_primary_10_1002_celc_202101711
crossref_primary_10_1016_j_est_2024_114418
crossref_primary_10_3389_fchem_2019_00595
crossref_primary_10_1016_j_inoche_2022_109911
crossref_primary_10_1021_acsaem_0c01711
crossref_primary_10_1002_bkcs_12651
crossref_primary_10_1016_j_jallcom_2021_163031
crossref_primary_10_1016_j_molliq_2023_122466
crossref_primary_10_1021_acsanm_3c04465
crossref_primary_10_3390_chemosensors10120516
crossref_primary_10_1149_2162_8777_aba0d0
crossref_primary_10_1021_acsaem_1c01644
crossref_primary_10_1016_j_electacta_2021_138086
crossref_primary_10_1021_acsapm_2c00087
crossref_primary_10_1021_acssuschemeng_9b06999
crossref_primary_10_1039_D0NJ05312K
crossref_primary_10_1364_OL_426817
crossref_primary_10_1016_j_cej_2019_123536
crossref_primary_10_1016_j_diamond_2023_110412
crossref_primary_10_1016_j_est_2023_107327
crossref_primary_10_1039_D1NR08284A
crossref_primary_10_1039_D0TB01559H
crossref_primary_10_1016_j_apsusc_2023_157696
crossref_primary_10_1016_j_ultsonch_2019_104869
crossref_primary_10_1016_j_coco_2020_100610
crossref_primary_10_1016_j_jallcom_2020_157718
crossref_primary_10_1016_j_jcis_2022_08_066
crossref_primary_10_1021_acsami_3c17515
crossref_primary_10_1039_C9TC05811G
crossref_primary_10_1039_D0QI00375A
crossref_primary_10_1002_adsu_202400043
crossref_primary_10_1016_j_surfin_2024_105070
crossref_primary_10_1016_j_ijoes_2023_01_011
crossref_primary_10_1016_j_jssc_2023_124096
crossref_primary_10_1007_s10098_021_02038_7
crossref_primary_10_1016_j_electacta_2024_143836
crossref_primary_10_1016_j_matpr_2023_01_400
crossref_primary_10_1016_j_solener_2021_09_052
crossref_primary_10_1016_j_electacta_2019_135589
crossref_primary_10_1039_D0NR01070G
crossref_primary_10_1016_j_electacta_2021_137789
crossref_primary_10_1016_j_nanoen_2022_108067
crossref_primary_10_1039_C9TA07141E
crossref_primary_10_1016_j_est_2020_101995
crossref_primary_10_1115_1_4051143
crossref_primary_10_1021_acsanm_0c00842
crossref_primary_10_1039_C9QI01180C
crossref_primary_10_1039_D4EE04348K
crossref_primary_10_1080_10406638_2023_2281467
crossref_primary_10_3390_c6040073
crossref_primary_10_1016_j_cej_2020_124028
crossref_primary_10_1016_j_carbon_2019_11_045
crossref_primary_10_1016_j_electacta_2023_142376
crossref_primary_10_1016_j_ceramint_2024_09_210
crossref_primary_10_1016_j_surfcoat_2022_128661
crossref_primary_10_1016_j_fuel_2023_130217
crossref_primary_10_1039_C9NR09083E
crossref_primary_10_1039_D0MA00807A
crossref_primary_10_1016_j_carbon_2019_06_062
crossref_primary_10_1039_D4CE00483C
crossref_primary_10_3390_polym14051053
crossref_primary_10_1021_acs_iecr_9b06010
crossref_primary_10_1007_s11581_021_03986_2
crossref_primary_10_1016_j_est_2021_102379
crossref_primary_10_1016_j_inoche_2022_109493
crossref_primary_10_1016_j_electacta_2019_135459
crossref_primary_10_1016_j_jelechem_2021_115656
crossref_primary_10_1016_j_est_2021_103331
crossref_primary_10_1002_smll_202312179
crossref_primary_10_1007_s10854_021_06733_5
crossref_primary_10_1016_j_jpowsour_2020_228304
crossref_primary_10_1016_j_jallcom_2022_167505
crossref_primary_10_1039_D3NJ01326J
crossref_primary_10_1557_s43578_021_00315_1
crossref_primary_10_3390_ma12101679
crossref_primary_10_1016_j_apsusc_2022_156040
crossref_primary_10_1016_j_jallcom_2023_169024
crossref_primary_10_1007_s11581_024_05828_3
crossref_primary_10_1016_j_electacta_2023_142146
crossref_primary_10_1021_acs_energyfuels_0c02633
crossref_primary_10_1002_celc_202000611
crossref_primary_10_1016_j_nanoms_2020_10_003
crossref_primary_10_1016_j_synthmet_2021_116765
crossref_primary_10_1103_PhysRevE_103_042113
crossref_primary_10_1016_j_cej_2021_128750
crossref_primary_10_2139_ssrn_4143079
crossref_primary_10_1016_j_mtchem_2021_100675
crossref_primary_10_1039_D2TA03436K
crossref_primary_10_1007_s11426_021_1080_6
crossref_primary_10_1080_23746149_2023_2175623
crossref_primary_10_1002_smll_202307308
crossref_primary_10_1021_acsnano_4c16417
crossref_primary_10_1039_D5TA00108K
crossref_primary_10_20964_2020_10_35
crossref_primary_10_1039_D1NJ01157J
Cites_doi 10.1021/acsami.6b14331
10.1021/acssuschemeng.5b01263
10.1016/j.elecom.2007.10.013
10.1039/c0cc05191h
10.1016/j.electacta.2016.03.015
10.1016/j.jallcom.2017.07.316
10.1021/cm101591p
10.1002/celc.201300084
10.1039/C8NR02311E
10.1039/C5TA03455H
10.1016/j.diamond.2017.01.008
10.1016/j.matlet.2017.03.108
10.1016/j.electacta.2017.10.100
10.1016/j.materresbull.2017.05.048
10.1016/j.electacta.2015.12.076
10.1039/C6TA00078A
10.1016/j.apsusc.2018.03.049
10.1021/nl104205s
10.1039/C5TA00492F
10.1039/C7DT04127F
10.1016/j.matlet.2016.07.011
10.1016/j.electacta.2011.09.060
10.1039/C8RA06289G
10.1016/j.electacta.2011.05.050
10.1016/j.surfcoat.2016.04.077
10.1002/anie.201511447
10.1016/j.electacta.2018.07.013
10.1021/nl400378j
10.1021/acs.nanolett.7b03507
10.1016/j.electacta.2016.02.047
10.1039/C6NR02600A
10.1016/j.jpowsour.2016.03.099
10.1039/C3TA15280D
10.1021/acsami.5b07599
10.1016/j.electacta.2017.04.062
10.1016/j.jpowsour.2013.12.030
10.1039/C8TA01931B
10.1021/am402681m
10.1016/j.electacta.2016.07.024
10.1021/nl401086t
10.1021/am500579c
10.1016/j.jallcom.2017.01.071
10.1039/C7TA02627G
10.1021/acsami.7b16271
10.1246/cl.2010.850
10.1002/admi.201700855
10.1002/smll.201800791
10.1088/1361-6528/aad0b5
10.1016/j.electacta.2017.07.009
10.1016/j.ceramint.2016.03.192
10.1016/j.electacta.2016.02.053
10.1039/c3ta14351a
10.1039/C5TA08714G
10.1039/C8TA00835C
10.1016/j.carbon.2011.07.025
10.1038/srep03712
10.1021/acs.langmuir.7b01966
10.1016/j.jpowsour.2016.02.047
10.1016/j.carbon.2017.12.051
10.1016/j.electacta.2015.01.060
10.1021/acsami.6b00207
10.1016/j.electacta.2017.02.037
10.1039/c4nr00771a
10.1016/j.electacta.2016.01.159
10.1021/acsami.7b12997
10.1038/s41598-017-17899-6
10.1016/j.cej.2016.08.131
10.1016/j.apsusc.2018.05.028
10.1016/j.electacta.2018.07.059
10.1039/C2CC37117K
10.1038/srep31465
10.1002/adma.201600054
10.1039/c3ta15430k
10.1016/j.matlet.2016.12.110
10.1016/j.jpowsour.2014.11.015
10.1021/acsami.5b11300
10.1186/s11671-015-0915-2
10.1016/j.jcis.2018.07.049
10.1016/j.matlet.2016.10.098
10.1039/c2cc18079k
10.1021/nn301454q
10.1016/j.jelechem.2016.03.047
10.1016/j.jpowsour.2007.10.070
10.1016/j.matlet.2015.12.053
10.1021/am200564b
10.1039/c3ee40598b
10.1016/j.nanoen.2013.01.004
10.1038/srep21566
10.1016/j.matdes.2017.04.053
10.1039/C5TA00742A
10.1039/C8DT01194J
10.1016/j.electacta.2016.04.068
10.1021/ja403101r
10.1016/j.jallcom.2018.07.188
10.1016/j.ijhydene.2018.08.018
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
DOI 10.1039/c8ta11599k
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 353
ExternalDocumentID 10_1039_C8TA11599K
c8ta11599k
GroupedDBID -JG
0-7
705
AAEMU
ABGFH
ACLDK
ADSRN
AEFDR
AFVBQ
AGSTE
AUDPV
BSQNT
C6K
EE0
EF-
GNO
H~N
J3I
R7C
RCNCU
RPMJG
RRC
RSCEA
SKA
SKF
SLH
0R~
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ADMRA
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
BLAPV
CITATION
EBS
ECGLT
EJD
GGIMP
H13
HZ~
O-G
O9-
RAOCF
RNS
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c445t-51ad86b473e0794abcf0b86aa72984e6f095cedcdb08ea490832b71ff06adfae3
ISSN 2050-7488
2050-7496
IngestDate Fri Jul 11 15:41:31 EDT 2025
Mon Jun 30 11:45:15 EDT 2025
Thu Apr 24 22:58:38 EDT 2025
Tue Jul 01 03:13:59 EDT 2025
Wed Feb 20 06:05:00 EST 2019
Thu May 30 17:43:38 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c445t-51ad86b473e0794abcf0b86aa72984e6f095cedcdb08ea490832b71ff06adfae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7501-1271
0000-0003-2326-292X
PQID 2183361754
PQPubID 2047523
PageCount 15
ParticipantIDs rsc_primary_c8ta11599k
proquest_journals_2183361754
proquest_miscellaneous_2237505794
crossref_citationtrail_10_1039_C8TA11599K
crossref_primary_10_1039_C8TA11599K
ProviderPackageCode J3I
ACLDK
RRC
AEFDR
GNO
RCNCU
SLH
EE0
RSCEA
AFVBQ
C6K
H~N
0-7
RPMJG
SKA
-JG
AGSTE
AUDPV
EF-
BSQNT
SKF
ADSRN
ABGFH
705
AAEMU
R7C
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-00-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019-00-00
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Yuan (C8TA11599K-(cit38)/*[position()=1]) 2010; 39
Chen (C8TA11599K-(cit89)/*[position()=1]) 2018; 10
Ko (C8TA11599K-(cit22)/*[position()=1]) 2016; 166
Gu (C8TA11599K-(cit20)/*[position()=1]) 2015; 3
Mi (C8TA11599K-(cit5)/*[position()=1]) 2008; 176
Wang (C8TA11599K-(cit44)/*[position()=1]) 2016; 194
Yuan (C8TA11599K-(cit43)/*[position()=1]) 2011; 56
Zhang (C8TA11599K-(cit83)/*[position()=1]) 2018; 47
Chu (C8TA11599K-(cit19)/*[position()=1]) 2015; 276
Wang (C8TA11599K-(cit2)/*[position()=1]) 2013; 135
Wang (C8TA11599K-(cit41)/*[position()=1]) 2017; 726
Liu (C8TA11599K-(cit42)/*[position()=1]) 2017; 7
Lin (C8TA11599K-(cit49)/*[position()=1]) 2018; 452
Huang (C8TA11599K-(cit13)/*[position()=1]) 2013; 13
Li (C8TA11599K-(cit23)/*[position()=1]) 2016; 312
Fu (C8TA11599K-(cit46)/*[position()=1]) 2015; 3
Yu (C8TA11599K-(cit15)/*[position()=1]) 2013; 49
Jabeen (C8TA11599K-(cit54)/*[position()=1]) 2016; 8
Zhu (C8TA11599K-(cit66)/*[position()=1]) 2014; 6
Liu (C8TA11599K-(cit14)/*[position()=1]) 2013; 5
Huang (C8TA11599K-(cit60)/*[position()=1]) 2014; 252
Liu (C8TA11599K-(cit6)/*[position()=1]) 2010; 22
Zhang (C8TA11599K-(cit59)/*[position()=1]) 2018; 47
Wang (C8TA11599K-(cit10)/*[position()=1]) 2011; 58
Liu (C8TA11599K-(cit77)/*[position()=1]) 2016; 189
Kim (C8TA11599K-(cit9)/*[position()=1]) 2011; 47
Li (C8TA11599K-(cit95)/*[position()=1]) 2014; 6
Guo (C8TA11599K-(cit70)/*[position()=1]) 2017; 96
Zhang (C8TA11599K-(cit91)/*[position()=1]) 2017; 17
Chen (C8TA11599K-(cit35)/*[position()=1]) 2017; 258
Du (C8TA11599K-(cit36)/*[position()=1]) 2017; 127
Wang (C8TA11599K-(cit87)/*[position()=1]) 2014; 4
Xu (C8TA11599K-(cit61)/*[position()=1]) 2016; 42
Raj (C8TA11599K-(cit93)/*[position()=1]) 2017; 247
Tian (C8TA11599K-(cit73)/*[position()=1]) 2013; 2
Gao (C8TA11599K-(cit84)/*[position()=1]) 2018; 10
Li (C8TA11599K-(cit97)/*[position()=1]) 2016; 4
Huang (C8TA11599K-(cit21)/*[position()=1]) 2016; 6
Yang (C8TA11599K-(cit27)/*[position()=1]) 2016; 193
Nie (C8TA11599K-(cit74)/*[position()=1]) 2017; 231
Patil (C8TA11599K-(cit79)/*[position()=1]) 2018; 6
Zhou (C8TA11599K-(cit17)/*[position()=1]) 2014; 2
Fang (C8TA11599K-(cit37)/*[position()=1]) 2017; 190
Zhang (C8TA11599K-(cit63)/*[position()=1]) 2016; 182
Jinlong (C8TA11599K-(cit65)/*[position()=1]) 2017; 197
Cheng (C8TA11599K-(cit82)/*[position()=1]) 2018; 283
Zhou (C8TA11599K-(cit88)/*[position()=1]) 2018; 444
Lamiel (C8TA11599K-(cit28)/*[position()=1]) 2016; 771
Liu (C8TA11599K-(cit24)/*[position()=1]) 2016; 8
Gu (C8TA11599K-(cit48)/*[position()=1]) 2015; 3
Chen (C8TA11599K-(cit40)/*[position()=1]) 2016; 212
Jiang (C8TA11599K-(cit12)/*[position()=1]) 2012; 48
Zhang (C8TA11599K-(cit62)/*[position()=1]) 2016; 191
Wang (C8TA11599K-(cit26)/*[position()=1]) 2016; 196
Zhou (C8TA11599K-(cit30)/*[position()=1]) 2014; 2
Deng (C8TA11599K-(cit39)/*[position()=1]) 2013; 6
Tao (C8TA11599K-(cit86)/*[position()=1]) 2015; 10
Gao (C8TA11599K-(cit58)/*[position()=1]) 2018; 43
Wu (C8TA11599K-(cit33)/*[position()=1]) 2018; 132
de Oliveira (C8TA11599K-(cit94)/*[position()=1]) 2016; 19
Ma (C8TA11599K-(cit72)/*[position()=1]) 2016; 8
Chai (C8TA11599K-(cit76)/*[position()=1]) 2017; 196
Gao (C8TA11599K-(cit81)/*[position()=1]) 2017; 240
Hu (C8TA11599K-(cit71)/*[position()=1]) 2016; 4
Zhao (C8TA11599K-(cit75)/*[position()=1]) 2016; 299
Chen (C8TA11599K-(cit92)/*[position()=1]) 2018; 8
Xia (C8TA11599K-(cit67)/*[position()=1]) 2012; 6
Iqbal (C8TA11599K-(cit31)/*[position()=1]) 2017; 4
Zhang (C8TA11599K-(cit68)/*[position()=1]) 2016; 207
Chen (C8TA11599K-(cit90)/*[position()=1]) 2018; 14
Cheng (C8TA11599K-(cit18)/*[position()=1]) 2015; 3
Xie (C8TA11599K-(cit29)/*[position()=1]) 2016; 317
Wang (C8TA11599K-(cit56)/*[position()=1]) 2014; 1
Dong (C8TA11599K-(cit8)/*[position()=1]) 2011; 49
Xie (C8TA11599K-(cit57)/*[position()=1]) 2018; 531
Cheng (C8TA11599K-(cit45)/*[position()=1]) 2018; 283
Ai (C8TA11599K-(cit55)/*[position()=1]) 2015; 7
Bao (C8TA11599K-(cit7)/*[position()=1]) 2011; 11
Luo (C8TA11599K-(cit53)/*[position()=1]) 2018; 767
Zhang (C8TA11599K-(cit47)/*[position()=1]) 2017; 307
Mi (C8TA11599K-(cit4)/*[position()=1]) 2007; 9
Zhou (C8TA11599K-(cit69)/*[position()=1]) 2013; 13
Jia (C8TA11599K-(cit32)/*[position()=1]) 2017; 5
Lu (C8TA11599K-(cit98)/*[position()=1]) 2018; 10
Cai (C8TA11599K-(cit16)/*[position()=1]) 2014; 2
Niu (C8TA11599K-(cit25)/*[position()=1]) 2016; 4
Xu (C8TA11599K-(cit64)/*[position()=1]) 2017; 700
Jiang (C8TA11599K-(cit78)/*[position()=1]) 2017; 188
Yu (C8TA11599K-(cit80)/*[position()=1]) 2018; 6
Yin (C8TA11599K-(cit51)/*[position()=1]) 2016; 6
Yuan (C8TA11599K-(cit50)/*[position()=1]) 2017; 33
Bao (C8TA11599K-(cit52)/*[position()=1]) 2015; 157
Zhou (C8TA11599K-(cit11)/*[position()=1]) 2011; 3
Feng (C8TA11599K-(cit1)/*[position()=1]) 2016; 55
Kwon (C8TA11599K-(cit85)/*[position()=1]) 2017; 9
Yuqiao (C8TA11599K-(cit96)/*[position()=1]) 2018; 29
Feng (C8TA11599K-(cit3)/*[position()=1]) 2016; 28
Beka (C8TA11599K-(cit34)/*[position()=1]) 2017; 73
References_xml – volume: 9
  start-page: 7412
  year: 2017
  ident: C8TA11599K-(cit85)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b14331
– volume: 4
  start-page: 1201
  year: 2016
  ident: C8TA11599K-(cit71)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.5b01263
– volume: 9
  start-page: 2859
  year: 2007
  ident: C8TA11599K-(cit4)/*[position()=1]
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2007.10.013
– volume: 47
  start-page: 5214
  year: 2011
  ident: C8TA11599K-(cit9)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc05191h
– volume: 196
  start-page: 611
  year: 2016
  ident: C8TA11599K-(cit26)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.03.015
– volume: 726
  start-page: 139
  year: 2017
  ident: C8TA11599K-(cit41)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.07.316
– volume: 22
  start-page: 5022
  year: 2010
  ident: C8TA11599K-(cit6)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm101591p
– volume: 1
  start-page: 559
  year: 2014
  ident: C8TA11599K-(cit56)/*[position()=1]
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201300084
– volume: 10
  start-page: 10190
  year: 2018
  ident: C8TA11599K-(cit84)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C8NR02311E
– volume: 3
  start-page: 14348
  year: 2015
  ident: C8TA11599K-(cit18)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA03455H
– volume: 73
  start-page: 80
  year: 2017
  ident: C8TA11599K-(cit34)/*[position()=1]
  publication-title: Diamond Relat. Mater.
  doi: 10.1016/j.diamond.2017.01.008
– volume: 196
  start-page: 308
  year: 2017
  ident: C8TA11599K-(cit76)/*[position()=1]
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2017.03.108
– volume: 258
  start-page: 43
  year: 2017
  ident: C8TA11599K-(cit35)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.10.100
– volume: 96
  start-page: 463
  year: 2017
  ident: C8TA11599K-(cit70)/*[position()=1]
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2017.05.048
– volume: 189
  start-page: 83
  year: 2016
  ident: C8TA11599K-(cit77)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.12.076
– volume: 4
  start-page: 5669
  year: 2016
  ident: C8TA11599K-(cit25)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA00078A
– volume: 444
  start-page: 1
  year: 2018
  ident: C8TA11599K-(cit88)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.03.049
– volume: 11
  start-page: 1215
  year: 2011
  ident: C8TA11599K-(cit7)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl104205s
– volume: 3
  start-page: 12069
  year: 2015
  ident: C8TA11599K-(cit20)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA00492F
– volume: 47
  start-page: 2266
  year: 2018
  ident: C8TA11599K-(cit59)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT04127F
– volume: 182
  start-page: 298
  year: 2016
  ident: C8TA11599K-(cit63)/*[position()=1]
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2016.07.011
– volume: 58
  start-page: 193
  year: 2011
  ident: C8TA11599K-(cit10)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.09.060
– volume: 8
  start-page: 31594
  year: 2018
  ident: C8TA11599K-(cit92)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C8RA06289G
– volume: 56
  start-page: 6683
  year: 2011
  ident: C8TA11599K-(cit43)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.05.050
– volume: 299
  start-page: 15
  year: 2016
  ident: C8TA11599K-(cit75)/*[position()=1]
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2016.04.077
– volume: 55
  start-page: 3694
  year: 2016
  ident: C8TA11599K-(cit1)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.201511447
– volume: 283
  start-page: 664
  year: 2018
  ident: C8TA11599K-(cit45)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.07.013
– volume: 13
  start-page: 2078
  year: 2013
  ident: C8TA11599K-(cit69)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl400378j
– volume: 17
  start-page: 7552
  year: 2017
  ident: C8TA11599K-(cit91)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b03507
– volume: 194
  start-page: 377
  year: 2016
  ident: C8TA11599K-(cit44)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.02.047
– volume: 8
  start-page: 10686
  year: 2016
  ident: C8TA11599K-(cit24)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C6NR02600A
– volume: 317
  start-page: 133
  year: 2016
  ident: C8TA11599K-(cit29)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.03.099
– volume: 2
  start-page: 7250
  year: 2014
  ident: C8TA11599K-(cit30)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA15280D
– volume: 7
  start-page: 24204
  year: 2015
  ident: C8TA11599K-(cit55)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b07599
– volume: 240
  start-page: 31
  year: 2017
  ident: C8TA11599K-(cit81)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.04.062
– volume: 252
  start-page: 98
  year: 2014
  ident: C8TA11599K-(cit60)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.12.030
– volume: 6
  start-page: 9592
  year: 2018
  ident: C8TA11599K-(cit79)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA01931B
– volume: 5
  start-page: 8790
  year: 2013
  ident: C8TA11599K-(cit14)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am402681m
– volume: 212
  start-page: 671
  year: 2016
  ident: C8TA11599K-(cit40)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.07.024
– volume: 13
  start-page: 3135
  year: 2013
  ident: C8TA11599K-(cit13)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl401086t
– volume: 6
  start-page: 5228
  year: 2014
  ident: C8TA11599K-(cit95)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am500579c
– volume: 700
  start-page: 247
  year: 2017
  ident: C8TA11599K-(cit64)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.01.071
– volume: 5
  start-page: 10678
  year: 2017
  ident: C8TA11599K-(cit32)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA02627G
– volume: 10
  start-page: 4662
  year: 2018
  ident: C8TA11599K-(cit89)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b16271
– volume: 39
  start-page: 850
  year: 2010
  ident: C8TA11599K-(cit38)/*[position()=1]
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2010.850
– volume: 4
  start-page: 1700855
  year: 2017
  ident: C8TA11599K-(cit31)/*[position()=1]
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201700855
– volume: 14
  start-page: e1800791
  year: 2018
  ident: C8TA11599K-(cit90)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201800791
– volume: 29
  start-page: 385402
  year: 2018
  ident: C8TA11599K-(cit96)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aad0b5
– volume: 247
  start-page: 949
  year: 2017
  ident: C8TA11599K-(cit93)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.07.009
– volume: 42
  start-page: 10719
  year: 2016
  ident: C8TA11599K-(cit61)/*[position()=1]
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.03.192
– volume: 193
  start-page: 116
  year: 2016
  ident: C8TA11599K-(cit27)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.02.053
– volume: 2
  start-page: 4954
  year: 2014
  ident: C8TA11599K-(cit16)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta14351a
– volume: 4
  start-page: 1319
  year: 2016
  ident: C8TA11599K-(cit97)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA08714G
– volume: 6
  start-page: 5856
  year: 2018
  ident: C8TA11599K-(cit80)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA00835C
– volume: 49
  start-page: 5071
  year: 2011
  ident: C8TA11599K-(cit8)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.07.025
– volume: 4
  start-page: 3712
  year: 2014
  ident: C8TA11599K-(cit87)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep03712
– volume: 33
  start-page: 10446
  year: 2017
  ident: C8TA11599K-(cit50)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b01966
– volume: 312
  start-page: 156
  year: 2016
  ident: C8TA11599K-(cit23)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.02.047
– volume: 132
  start-page: 776
  year: 2018
  ident: C8TA11599K-(cit33)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.12.051
– volume: 157
  start-page: 31
  year: 2015
  ident: C8TA11599K-(cit52)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.01.060
– volume: 8
  start-page: 6093
  year: 2016
  ident: C8TA11599K-(cit54)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b00207
– volume: 231
  start-page: 36
  year: 2017
  ident: C8TA11599K-(cit74)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.02.037
– volume: 6
  start-page: 6772
  year: 2014
  ident: C8TA11599K-(cit66)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c4nr00771a
– volume: 191
  start-page: 758
  year: 2016
  ident: C8TA11599K-(cit62)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.01.159
– volume: 10
  start-page: 4041
  year: 2018
  ident: C8TA11599K-(cit98)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b12997
– volume: 7
  start-page: 17709
  year: 2017
  ident: C8TA11599K-(cit42)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-17899-6
– volume: 307
  start-page: 687
  year: 2017
  ident: C8TA11599K-(cit47)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.08.131
– volume: 452
  start-page: 113
  year: 2018
  ident: C8TA11599K-(cit49)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.05.028
– volume: 283
  start-page: 1245
  year: 2018
  ident: C8TA11599K-(cit82)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.07.059
– volume: 49
  start-page: 137
  year: 2013
  ident: C8TA11599K-(cit15)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C2CC37117K
– volume: 6
  start-page: 31465
  year: 2016
  ident: C8TA11599K-(cit21)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep31465
– volume: 28
  start-page: 4698
  year: 2016
  ident: C8TA11599K-(cit3)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600054
– volume: 2
  start-page: 6310
  year: 2014
  ident: C8TA11599K-(cit17)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta15430k
– volume: 190
  start-page: 232
  year: 2017
  ident: C8TA11599K-(cit37)/*[position()=1]
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2016.12.110
– volume: 276
  start-page: 19
  year: 2015
  ident: C8TA11599K-(cit19)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.11.015
– volume: 8
  start-page: 9050
  year: 2016
  ident: C8TA11599K-(cit72)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b11300
– volume: 197
  start-page: 127
  year: 2017
  ident: C8TA11599K-(cit65)/*[position()=1]
  publication-title: J. Alloys Compd.
– volume: 10
  start-page: 208
  year: 2015
  ident: C8TA11599K-(cit86)/*[position()=1]
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-015-0915-2
– volume: 531
  start-page: 64
  year: 2018
  ident: C8TA11599K-(cit57)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.07.049
– volume: 188
  start-page: 69
  year: 2017
  ident: C8TA11599K-(cit78)/*[position()=1]
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2016.10.098
– volume: 19
  start-page: 1080
  year: 2016
  ident: C8TA11599K-(cit94)/*[position()=1]
  publication-title: Antimicrob. Agents Chemother.
– volume: 48
  start-page: 2606
  year: 2012
  ident: C8TA11599K-(cit12)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc18079k
– volume: 6
  start-page: 5531
  year: 2012
  ident: C8TA11599K-(cit67)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn301454q
– volume: 771
  start-page: 106
  year: 2016
  ident: C8TA11599K-(cit28)/*[position()=1]
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2016.03.047
– volume: 176
  start-page: 403
  year: 2008
  ident: C8TA11599K-(cit5)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.10.070
– volume: 166
  start-page: 105
  year: 2016
  ident: C8TA11599K-(cit22)/*[position()=1]
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2015.12.053
– volume: 3
  start-page: 3058
  year: 2011
  ident: C8TA11599K-(cit11)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am200564b
– volume: 6
  start-page: 2178
  year: 2013
  ident: C8TA11599K-(cit39)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee40598b
– volume: 2
  start-page: 754
  year: 2013
  ident: C8TA11599K-(cit73)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.01.004
– volume: 6
  start-page: 21566
  year: 2016
  ident: C8TA11599K-(cit51)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep21566
– volume: 127
  start-page: 76
  year: 2017
  ident: C8TA11599K-(cit36)/*[position()=1]
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.04.053
– volume: 3
  start-page: 10492
  year: 2015
  ident: C8TA11599K-(cit46)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA00742A
– volume: 47
  start-page: 8052
  year: 2018
  ident: C8TA11599K-(cit83)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C8DT01194J
– volume: 207
  start-page: 87
  year: 2016
  ident: C8TA11599K-(cit68)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.04.068
– volume: 135
  start-page: 10703
  year: 2013
  ident: C8TA11599K-(cit2)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja403101r
– volume: 767
  start-page: 1126
  year: 2018
  ident: C8TA11599K-(cit53)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.07.188
– volume: 3
  start-page: 12069
  year: 2015
  ident: C8TA11599K-(cit48)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA00492F
– volume: 43
  start-page: 18349
  year: 2018
  ident: C8TA11599K-(cit58)/*[position()=1]
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2018.08.018
SSID ssj0000800699
Score 2.6120837
SecondaryResourceType review_article
Snippet Supercapacitors (SCs) have attracted much attention as energy storage devices due to their high power density, fast charge/discharge capability, and long...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3516
SubjectTerms carbon
Charge density
Charge transfer
Conducting polymers
Core-shell structure
Electroactive materials
Electrochemistry
Electrode materials
electrodes
energy
Energy storage
Flux density
Hydroxides
Metal sulfides
Metals
Molding materials
Morphology
nanomaterials
Oxides
Polymers
Shells
sulfides
Supercapacitors
surface area
Title A review of electrode materials based on core-shell nanostructures for electrochemical supercapacitors
URI https://www.proquest.com/docview/2183361754
https://www.proquest.com/docview/2237505794
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67gIHxNdEx0BGcEFVRhLH-ThG1VBhE6dOGqfI8YeGQEm1JhdO-wt24T_kL-HZjpOsK9LgElW2a6f9PT-_L7-H0DtdqE57kzxFVeJFGQ88xknkCUp85isgqdJEW3yJl-fR5wt6MZncjKKW2qY85j933iv5H1ShDXDVt2T_Adl-UmiAz4AvPAFheN4L43x086SrZ2MCUhu7-FwfUUK7A3SuShfWQDY69nNesaq2yWNb0Lht5m87BXc5BDbtWl5xOE35N12T5y9y7LAcd8Xjjue5vQfkeszs9pahMdS7W1s6MLe36S-N1fa0rb3FZTsKFbJZDs5a72uXJbwzUnRM0HCx0Ke-Tlhqmawct9lSto4NJyNqS0csldAgHh3PhFo_zh3W7xOdOXWRrnIQcrPsdDjgnFN_69zroxGNH55kxfDdPbQfgtoRTtF-frL6dNZb7bR8HZuipP3vcjlvSfZhmOC2lDOoLntXrq6MkV9Wj9GjDjCcWyp6giayeooejtJRPkOXObb0hGuFe3rCPcDY0BOuK6zp6ff1L0NJ-DYlYcAab1ES3qKk5-j848lqsfS6ShwejyLaeDRgIo3LKCHSBwbOSq78Mo0ZA9UsjWSsQFDnUnBR-qlk2pdMwjIJlPJjJhST5ABNq7qSLxAWjNKYZ1IwBbp9kpUiESXnkgSMxKBMzNB7988VvEtTr6ul_CjuwjRDb_uxa5ucZeeoIwdA0W3eTaE1AwLSO41m6E3fDZtE-8tYJesWxoQk0fp7BmMOALh-DZ42zMz9fYYOd3cUa6EO7_V6L9EDvWOsWe8ITQEv-QoE3aZ83VHfHyiLrkk
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+electrode+materials+based+on+core%E2%80%93shell+nanostructures+for+electrochemical+supercapacitors&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Ho%2C+Kuo-Chuan&rft.au=Lin%2C+Lu-Yin&rft.date=2019&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=7&rft.issue=8&rft.spage=3516&rft.epage=3530&rft_id=info:doi/10.1039%2FC8TA11599K&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C8TA11599K
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon