Hot Jupiters from Disruption of Resonant Chains in Postdisk Evolution

The formation of hot Jupiters has been a subject of interest in the field of exoplanet science. According to conventional scenarios, these gas giants are believed to form beyond the snow line and subsequently migrate inward. Although the early formation history of hot Jupiters is not well understood...

Full description

Saved in:
Bibliographic Details
Published inThe Astronomical journal Vol. 166; no. 6; pp. 267 - 273
Main Authors Wu, Dong-Hong, He, Ying
Format Journal Article
LanguageEnglish
Published Madison The American Astronomical Society 01.12.2023
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The formation of hot Jupiters has been a subject of interest in the field of exoplanet science. According to conventional scenarios, these gas giants are believed to form beyond the snow line and subsequently migrate inward. Although the early formation history of hot Jupiters is not well understood, they may emerge in resonant chains as a result of disk migration. Here we study the formation of hot Jupiters via the disruption of resonant chains after the gas disk disappears. We perform N -body simulations on planetary systems consisting of one gas giant and several super-Earths. The initial configuration involves all neighboring planet pairs being in a 3:2 mean motion resonance. We track the evolution of these resonant chains after the gas disk has vanished. Our results reveal that the resonant chains are prone to instability following the dispersal of the gas disk, with more than 80% of instabilities occurring within 3 million years. Only approximately 4% of resonant chains can survive the dynamical evolution. Notably, we find that resonant chains hosting hot Jupiters are more likely to be unstable compared to those hosting warm Jupiters. Our simulations indicate that 33% ± 4% hot Jupiters and 70% ± 4% warm Jupiters could possess nearby companions. Furthermore, incorporating the effects of general relativity and tidal dissipation increases the isolation of hot Jupiters, resulting in nearby companion occurrence rates of 20% ± 4% for hot Jupiters and 69% ± 6% for warm Jupiters.
AbstractList The formation of hot Jupiters has been a subject of interest in the field of exoplanet science. According to conventional scenarios, these gas giants are believed to form beyond the snow line and subsequently migrate inward. Although the early formation history of hot Jupiters is not well understood, they may emerge in resonant chains as a result of disk migration. Here we study the formation of hot Jupiters via the disruption of resonant chains after the gas disk disappears. We perform N -body simulations on planetary systems consisting of one gas giant and several super-Earths. The initial configuration involves all neighboring planet pairs being in a 3:2 mean motion resonance. We track the evolution of these resonant chains after the gas disk has vanished. Our results reveal that the resonant chains are prone to instability following the dispersal of the gas disk, with more than 80% of instabilities occurring within 3 million years. Only approximately 4% of resonant chains can survive the dynamical evolution. Notably, we find that resonant chains hosting hot Jupiters are more likely to be unstable compared to those hosting warm Jupiters. Our simulations indicate that 33% ± 4% hot Jupiters and 70% ± 4% warm Jupiters could possess nearby companions. Furthermore, incorporating the effects of general relativity and tidal dissipation increases the isolation of hot Jupiters, resulting in nearby companion occurrence rates of 20% ± 4% for hot Jupiters and 69% ± 6% for warm Jupiters.
The formation of hot Jupiters has been a subject of interest in the field of exoplanet science. According to conventional scenarios, these gas giants are believed to form beyond the snow line and subsequently migrate inward. Although the early formation history of hot Jupiters is not well understood, they may emerge in resonant chains as a result of disk migration. Here we study the formation of hot Jupiters via the disruption of resonant chains after the gas disk disappears. We perform N-body simulations on planetary systems consisting of one gas giant and several super-Earths. The initial configuration involves all neighboring planet pairs being in a 3:2 mean motion resonance. We track the evolution of these resonant chains after the gas disk has vanished. Our results reveal that the resonant chains are prone to instability following the dispersal of the gas disk, with more than 80% of instabilities occurring within 3 million years. Only approximately 4% of resonant chains can survive the dynamical evolution. Notably, we find that resonant chains hosting hot Jupiters are more likely to be unstable compared to those hosting warm Jupiters. Our simulations indicate that 33% ± 4% hot Jupiters and 70% ± 4% warm Jupiters could possess nearby companions. Furthermore, incorporating the effects of general relativity and tidal dissipation increases the isolation of hot Jupiters, resulting in nearby companion occurrence rates of 20% ± 4% for hot Jupiters and 69% ± 6% for warm Jupiters.
Author Wu, Dong-Hong
He, Ying
Author_xml – sequence: 1
  givenname: Dong-Hong
  orcidid: 0000-0001-9424-3721
  surname: Wu
  fullname: Wu, Dong-Hong
  organization: Anhui Normal University Department of Physics, Wuhu Anhui, 241000, People's Republic of China
– sequence: 2
  givenname: Ying
  surname: He
  fullname: He, Ying
  organization: Anhui Normal University Department of Physics, Wuhu Anhui, 241000, People's Republic of China
BookMark eNp9kE1rFTEYhUOp0NvqvstAu3RsPt5kkmW5Xm2loIiuQyaTaK63k2mSEfz3zjhWQaSrwMtzDifPKToe0uAROqfkFVfQXlHBVcOVole2J7ojR2jz53SMNoQQaCQT8gSdlrInhFJFYIN2N6nid9MYq88Fh5zu8etY8jTWmAacAv7oSxrsUPH2q41DwXHAH1KpfSzf8O57OkwL-Bw9C_ZQ_Ivf7xn6_Gb3aXvT3L1_e7u9vmscgKiNoFRy56QQMmjNKSMUek98D10vvOhpcEEw6AIE51krmG4FaZlSRDHHvONn6Hbt7ZPdmzHHe5t_mGSj-XVI-YuxuUZ38IZ5KoLXIXS0BceDBq47YMrqzmno_Nx1sXaNOT1MvlSzT1Me5vmGKQ0AChidKblSLqdSsg_GxWqXP9ds48FQYhb9ZnFtFtdm1T8HyT_Bx7lPRF6ukZjGv2OewC__g88aqJRGGiZbM_aB_wTllaL7
CitedBy_id crossref_primary_10_3847_2041_8213_ad65fd
crossref_primary_10_1093_mnras_stae1076
Cites_doi 10.1088/0004-637X/751/2/119
10.1086/158356
10.1046/j.1365-8711.2000.03605.x
10.1093/mnras/stx1232
10.3847/1538-3881/aac5ea
10.3847/1538-4357/acc06d
10.1093/mnras/stz1011
10.1086/164653
10.1073/pnas.1120970109
10.3847/2041-8213/aa9714
10.1111/j.1365-2966.2005.09826.x
10.1088/2041-8205/778/1/L9
10.1051/0004-6361/201118085
10.1088/0004-637X/758/2/80
10.1038/378355a0
10.1088/2041-8205/732/2/L24
10.1038/s41550-019-0701-7
10.3847/1538-3881/acbf3f
10.1086/523754
10.1088/0004-637X/726/1/53
10.1146/annurev-astro-081915-023315
10.3847/2041-8213/aafa1e
10.3847/1538-3881/aa9ff6
10.1038/380606a0
10.3847/1538-3881/ac2602
10.1086/590227
10.3847/2041-8205/817/2/L17
10.3847/0004-637X/817/2/90
10.1086/374598
10.1086/519918
10.1126/science.274.5289.954
10.1086/521702
10.1088/0004-637X/805/1/75
10.3847/1538-3881/ac5961
10.1093/mnras/stz769
10.1088/2041-8205/812/2/L18
10.3847/1538-4357/abc1d7
10.3847/2041-8213/ab7302
10.1111/j.1365-2966.2004.07406.x
10.1088/0004-637X/772/1/74
10.1093/mnras/stz054
10.1093/mnras/stac043
10.1093/mnras/stz2870
10.1146/annurev-astro-081817-051853
10.3847/0004-637X/829/2/114
10.3847/0004-637X/825/2/98
10.3847/2515-5172/aa9be5
10.1086/324713
10.1088/0004-637X/807/1/44
ContentType Journal Article
Copyright 2023. The Author(s). Published by the American Astronomical Society.
2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. The Author(s). Published by the American Astronomical Society.
– notice: 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOA
DOI 10.3847/1538-3881/ad09b0
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef
Aerospace Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 1538-3881
ExternalDocumentID oai_doaj_org_article_2e15fe9ffb174c3f9439b428a9bc94be
10_3847_1538_3881_ad09b0
ajad09b0
GroupedDBID -DZ
-~X
123
1JI
23N
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABDNZ
ABHWH
ABXSS
ACBEA
ACGFS
ACHIP
ACNCT
ACYRX
AEFHF
AENEX
AFPKN
AGNAY
AHPAA
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
HF~
IJHAN
IOP
KOT
N5L
O3W
O43
OK1
P2P
PJBAE
RIN
RNP
RNS
ROL
SY9
T37
TR2
TSCCA
UPT
WH7
~02
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
ID FETCH-LOGICAL-c445t-51163cc6556f99312014de0ed4bd5e5d1fcf524bf4fce275297507288082c2ec3
IEDL.DBID O3W
ISSN 0004-6256
IngestDate Wed Aug 27 01:26:07 EDT 2025
Wed Aug 13 06:16:52 EDT 2025
Tue Jul 01 03:26:47 EDT 2025
Thu Apr 24 22:59:38 EDT 2025
Tue Aug 20 22:15:36 EDT 2024
Sun Aug 18 14:50:27 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-51163cc6556f99312014de0ed4bd5e5d1fcf524bf4fce275297507288082c2ec3
Notes AAS48572
The Solar System, Exoplanets, and Astrobiology
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9424-3721
OpenAccessLink https://iopscience.iop.org/article/10.3847/1538-3881/ad09b0
PQID 2894448421
PQPubID 4562438
PageCount 7
ParticipantIDs crossref_citationtrail_10_3847_1538_3881_ad09b0
proquest_journals_2894448421
crossref_primary_10_3847_1538_3881_ad09b0
iop_journals_10_3847_1538_3881_ad09b0
doaj_primary_oai_doaj_org_article_2e15fe9ffb174c3f9439b428a9bc94be
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Madison
PublicationPlace_xml – name: Madison
PublicationTitle The Astronomical journal
PublicationTitleAbbrev AJ
PublicationTitleAlternate Astron. J
PublicationYear 2023
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Lin (ajad09b0bib23) 1986; 309
Naoz (ajad09b0bib29) 2016; 54
Huang (ajad09b0bib15) 2016; 825
Millholland (ajad09b0bib26) 2019; 3
Lu (ajad09b0bib24) 2023; 948
Ketchum (ajad09b0bib19) 2011; 726
Becker (ajad09b0bib4) 2015; 812
Tamayo (ajad09b0bib42) 2020; 491
Huang (ajad09b0bib16) 2020; 892
Zhou (ajad09b0bib52) 2007; 666
Burke (ajad09b0bib6) 2017
Petrovich (ajad09b0bib35) 2015; 805
Lin (ajad09b0bib22) 1996; 380
Wu (ajad09b0bib48) 2019; 484
Ida (ajad09b0bib17) 2008; 673
Boley (ajad09b0bib5) 2016; 817
Rein (ajad09b0bib40) 2019; 485
Cañas (ajad09b0bib7) 2019; 870
Rasio (ajad09b0bib38) 1996; 274
Hord (ajad09b0bib14) 2021; 162
Zhou (ajad09b0bib51) 2008
Hallatt (ajad09b0bib13) 2020; 904
Nelson (ajad09b0bib30) 2004; 350
Papaloizou (ajad09b0bib34) 2021
Goldberg (ajad09b0bib11) 2022; 163
Rein (ajad09b0bib39) 2012; 537
Dawson (ajad09b0bib9) 2018; 56
Ogihara (ajad09b0bib32) 2013; 778
Goldreich (ajad09b0bib12) 1980; 241
Izidoro (ajad09b0bib18) 2017; 470
Latham (ajad09b0bib20) 2011; 732
Pu (ajad09b0bib36) 2015; 807
Ormel (ajad09b0bib33) 2012; 758
Mayor (ajad09b0bib25) 1995; 378
Tanaka (ajad09b0bib43) 2002; 565
Baronett (ajad09b0bib1) 2022; 510
Beaugé (ajad09b0bib3) 2012; 751
Wang (ajad09b0bib45) 2017; 1
Chatterjee (ajad09b0bib8) 2008; 686
Millholland (ajad09b0bib27) 2017; 849
Wu (ajad09b0bib50) 2003; 589
Wu (ajad09b0bib47) 2023; 165
Quillen (ajad09b0bib37) 2006; 365
Weiss (ajad09b0bib46) 2018; 155
Nelson (ajad09b0bib31) 2000; 318
Teyssandier (ajad09b0bib44) 2019; 486
Wu (ajad09b0bib49) 2013; 772
Fabrycky (ajad09b0bib10) 2007; 669
Lee (ajad09b0bib21) 2016; 817
Steffen (ajad09b0bib41) 2012; 109
Batygin (ajad09b0bib2) 2016; 829
Mulders (ajad09b0bib28) 2018; 156
References_xml – volume: 751
  start-page: 119
  year: 2012
  ident: ajad09b0bib3
  publication-title: ApJ
  doi: 10.1088/0004-637X/751/2/119
– volume: 241
  start-page: 425
  year: 1980
  ident: ajad09b0bib12
  publication-title: ApJ
  doi: 10.1086/158356
– volume: 318
  start-page: 18
  year: 2000
  ident: ajad09b0bib31
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2000.03605.x
– volume: 470
  start-page: 1750
  year: 2017
  ident: ajad09b0bib18
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1232
– volume: 156
  start-page: 24
  year: 2018
  ident: ajad09b0bib28
  publication-title: AJ
  doi: 10.3847/1538-3881/aac5ea
– volume: 948
  start-page: 41
  year: 2023
  ident: ajad09b0bib24
  publication-title: ApJ
  doi: 10.3847/1538-4357/acc06d
– start-page: 285
  year: 2008
  ident: ajad09b0bib51
– volume: 486
  start-page: 2265
  year: 2019
  ident: ajad09b0bib44
  publication-title: MNRAS
  doi: 10.1093/mnras/stz1011
– volume: 309
  start-page: 846
  year: 1986
  ident: ajad09b0bib23
  publication-title: ApJ
  doi: 10.1086/164653
– volume: 109
  start-page: 7982
  year: 2012
  ident: ajad09b0bib41
  publication-title: PNAS
  doi: 10.1073/pnas.1120970109
– volume: 849
  start-page: L33
  year: 2017
  ident: ajad09b0bib27
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa9714
– volume: 365
  start-page: 1367
  year: 2006
  ident: ajad09b0bib37
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.09826.x
– volume: 778
  start-page: L9
  year: 2013
  ident: ajad09b0bib32
  publication-title: ApJL
  doi: 10.1088/2041-8205/778/1/L9
– volume: 537
  start-page: A128
  year: 2012
  ident: ajad09b0bib39
  publication-title: A&A
  doi: 10.1051/0004-6361/201118085
– start-page: 13
  year: 2021
  ident: ajad09b0bib34
– volume: 758
  start-page: 80
  year: 2012
  ident: ajad09b0bib33
  publication-title: ApJ
  doi: 10.1088/0004-637X/758/2/80
– volume: 378
  start-page: 355
  year: 1995
  ident: ajad09b0bib25
  publication-title: Natur
  doi: 10.1038/378355a0
– volume: 732
  start-page: L24
  year: 2011
  ident: ajad09b0bib20
  publication-title: ApJL
  doi: 10.1088/2041-8205/732/2/L24
– volume: 3
  start-page: 424
  year: 2019
  ident: ajad09b0bib26
  publication-title: NatAs
  doi: 10.1038/s41550-019-0701-7
– volume: 165
  start-page: 171
  year: 2023
  ident: ajad09b0bib47
  publication-title: AJ
  doi: 10.3847/1538-3881/acbf3f
– volume: 673
  start-page: 487
  year: 2008
  ident: ajad09b0bib17
  publication-title: ApJ
  doi: 10.1086/523754
– volume: 726
  start-page: 53
  year: 2011
  ident: ajad09b0bib19
  publication-title: ApJ
  doi: 10.1088/0004-637X/726/1/53
– volume: 54
  start-page: 441
  year: 2016
  ident: ajad09b0bib29
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-081915-023315
– volume: 870
  start-page: L17
  year: 2019
  ident: ajad09b0bib7
  publication-title: ApJL
  doi: 10.3847/2041-8213/aafa1e
– volume: 155
  start-page: 48
  year: 2018
  ident: ajad09b0bib46
  publication-title: AJ
  doi: 10.3847/1538-3881/aa9ff6
– volume: 380
  start-page: 606
  year: 1996
  ident: ajad09b0bib22
  publication-title: Natur
  doi: 10.1038/380606a0
– volume: 162
  start-page: 263
  year: 2021
  ident: ajad09b0bib14
  publication-title: AJ
  doi: 10.3847/1538-3881/ac2602
– volume: 686
  start-page: 580
  year: 2008
  ident: ajad09b0bib8
  publication-title: ApJ
  doi: 10.1086/590227
– volume: 817
  start-page: L17
  year: 2016
  ident: ajad09b0bib5
  publication-title: ApJL
  doi: 10.3847/2041-8205/817/2/L17
– volume: 817
  start-page: 90
  year: 2016
  ident: ajad09b0bib21
  publication-title: ApJ
  doi: 10.3847/0004-637X/817/2/90
– volume: 589
  start-page: 605
  year: 2003
  ident: ajad09b0bib50
  publication-title: ApJ
  doi: 10.1086/374598
– volume: 666
  start-page: 423
  year: 2007
  ident: ajad09b0bib52
  publication-title: ApJ
  doi: 10.1086/519918
– volume: 274
  start-page: 954
  year: 1996
  ident: ajad09b0bib38
  publication-title: Sci
  doi: 10.1126/science.274.5289.954
– volume: 669
  start-page: 1298
  year: 2007
  ident: ajad09b0bib10
  publication-title: ApJ
  doi: 10.1086/521702
– volume: 805
  start-page: 75
  year: 2015
  ident: ajad09b0bib35
  publication-title: ApJ
  doi: 10.1088/0004-637X/805/1/75
– volume: 163
  start-page: 201
  year: 2022
  ident: ajad09b0bib11
  publication-title: AJ
  doi: 10.3847/1538-3881/ac5961
– volume: 485
  start-page: 5490
  year: 2019
  ident: ajad09b0bib40
  publication-title: MNRAS
  doi: 10.1093/mnras/stz769
– volume: 812
  start-page: L18
  year: 2015
  ident: ajad09b0bib4
  publication-title: ApJL
  doi: 10.1088/2041-8205/812/2/L18
– volume: 904
  start-page: 134
  year: 2020
  ident: ajad09b0bib13
  publication-title: ApJ
  doi: 10.3847/1538-4357/abc1d7
– volume: 892
  start-page: L7
  year: 2020
  ident: ajad09b0bib16
  publication-title: ApJL
  doi: 10.3847/2041-8213/ab7302
– volume: 350
  start-page: 849
  year: 2004
  ident: ajad09b0bib30
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.07406.x
– volume: 772
  start-page: 74
  year: 2013
  ident: ajad09b0bib49
  publication-title: ApJ
  doi: 10.1088/0004-637X/772/1/74
– volume: 484
  start-page: 1538
  year: 2019
  ident: ajad09b0bib48
  publication-title: MNRAS
  doi: 10.1093/mnras/stz054
– volume: 510
  start-page: 6001
  year: 2022
  ident: ajad09b0bib1
  publication-title: MNRAS
  doi: 10.1093/mnras/stac043
– volume: 491
  start-page: 2885
  year: 2020
  ident: ajad09b0bib42
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2870
– volume: 56
  start-page: 175
  year: 2018
  ident: ajad09b0bib9
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-081817-051853
– volume: 829
  start-page: 114
  year: 2016
  ident: ajad09b0bib2
  publication-title: ApJ
  doi: 10.3847/0004-637X/829/2/114
– year: 2017
  ident: ajad09b0bib6
– volume: 825
  start-page: 98
  year: 2016
  ident: ajad09b0bib15
  publication-title: ApJ
  doi: 10.3847/0004-637X/825/2/98
– volume: 1
  start-page: 26
  year: 2017
  ident: ajad09b0bib45
  publication-title: RNAAS
  doi: 10.3847/2515-5172/aa9be5
– volume: 565
  start-page: 1257
  year: 2002
  ident: ajad09b0bib43
  publication-title: ApJ
  doi: 10.1086/324713
– volume: 807
  start-page: 44
  year: 2015
  ident: ajad09b0bib36
  publication-title: ApJ
  doi: 10.1088/0004-637X/807/1/44
SSID ssj0011804
Score 2.4503708
Snippet The formation of hot Jupiters has been a subject of interest in the field of exoplanet science. According to conventional scenarios, these gas giants are...
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 267
SubjectTerms Disruption
Evolution
Exoplanet systems
Exoplanets
Extrasolar planets
Gas giant planets
Hot Jupiters
Jupiter
Orbital resonances (celestial mechanics)
Planetary systems
Relativity
Snow line
Stellar planets
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-wwEA_iyYuo74nrFzm8J3gom6ZJmh7Vt7IIz5OCt9B8YVHbZbsr-N8703b9QPBd3qWUMiVhMpmZXzIfhPwKuc2Z0ywBAKQSoXlINKBmeBQxeOW95pjg_PdaTW_F1Z28-9DqC2PC-vLAPePGPKQYDxWjBd_ZZbEAC2rBZy4L6wphA2pfsHkrMDXcH6Saif5SMgP1O-62daZ1Oi49Kyz7ZIS6Wv1gWqpm9kUhd1bmcotsDu4hPeuntU3WQr1D9s5aPLBunl7oCe3e-_OI9geZTJsFvVrOMJG4pZgrQv9U7XzZKQLaRIrH8xjrQi_uy6puaVVT7M_rq_aBTp4HuftJbi8nNxfTZOiMkDgh5CIBL0llzikpVQQHIwUrLnxgwQvrZZA-jS5KLmwU0QWeS0yfZTmHvaq548Flu2S9buqwR6hwVgGs0TJqL5wqy4znzJeRRZbawLMRGa9YZdxQNhy7VzwagA_IXIPMNchc0zN3RE7f_pj1JTO-oT1H7r_RYbHr7gOIgBlEwPxLBEbkN6ydGTZf-81gR5_oYJhUKaMMV7mZ-Tgih6vVfycCQCoAwgqe7v-PuR6QDWxY3wfEHJL1xXwZjsCtWdjjToJfAU088vc
  priority: 102
  providerName: Directory of Open Access Journals
Title Hot Jupiters from Disruption of Resonant Chains in Postdisk Evolution
URI https://iopscience.iop.org/article/10.3847/1538-3881/ad09b0
https://www.proquest.com/docview/2894448421
https://doaj.org/article/2e15fe9ffb174c3f9439b428a9bc94be
Volume 166
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYQvfRSlVLElod8oJV6COv4FUc9UVi0RWrpAQQ3K36pq5ZkRXaR-PfMJGErRIV6sazIyUTjmfF8tmeGkINYuIJ5wzIAQDqThsfMAGqGpkwx6BAMxwDn7z_09FKeXavrNfJlFQvTzAfTfwjdPlFwz0LUbwG2dNzpqDAmH1eBlQ7w-ithtEHkdS6uVkcIuWF9CmagDE7-cEb5zy88WZO61P2w0gD5Z_a5W3RO35I3g7dIj_p_2yBrsX5Hto9a3L9ubu7pJ9r1--2JdpNMps2Cni3nGFfcUgwdoSez9nbZ2QXaJIq79Xj1hR7_qmZ1S2c1xXK9Ydb-ppO7QQzfk8vTycXxNBsKJWReSrXIwGnSwnutlE7gb-SwqMsQWQzSBRVVyJNPikuXZPKRFwqjaVnBQXUN9zx6sUXW66aO24RK7zSgHKOSCdLrqhK8YKFKLLHcRS5GZPzIKuuHLOJYzOKPBTSBzLXIXIvMtT1zR-Tz6o15n0HjhbFfkfurcZj7unsAcmAHObA85nhDLiUHaMqLVIJP5QBFVaXzpXRxRD7C3NlBF9sXiO09GQdkcq2ttlwXdh7SiOw-zv7fQYBPJSBayfMP_0lmh7zGEvX9FZhdsr64XcY9cGQWbr_bAID22_nP_U54HwA9E-uS
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbtQw0IIiIS6Ip7rQgg-AxCGs41ecY2l3tRQoHKjozYpf6gpIVs0uEn_PTOIuqkAVl8iKJhlrPE_bM0PIi1i5innDCgiAdCENj4WBqBkedYpBh2A4Jjh_PNGLU3l8ps5yn9MhF6ZbZdX_BoZjoeCRhCjfAnTpdJBRYUw5bQKrHZuuQrpJbimhNfZu-CS-bo8RSsPGMsyAHRz9fE75z79csUtD-X6wNjCFv3T0YHjm98jd7DHSg3F-98mN2D4guwc97mF3P37RV3QYj1sU_UMyW3RrerxZYW5xTzF9hB4t-4vNoBtolyju2OP1F3p43izbni5bii17w7L_Rmc_Mys-Iqfz2ZfDRZGbJRReSrUuwHHSwnutlE7gc5Rg2GWILAbpgooqlMknxaVLMvnIK4UZtaziIL6Gex69eEx22q6Nu4RK7zREOkYlE6TXTSN4xUKTWGKli1xMyPSSVNbnSuLY0OK7hYgCiWuRuBaJa0fiTsjr7RersYrGNbBvkfpbOKx_PbwAXrCZFyyPJd6SS8lBROVFqsGvchBJNbXztXRxQl7C2tksj_01yPavwAGaUmurLdeVBb6akL3L1f8DBDGqhKhW8vLJf6J5Tm5_PprbD-9O3j8ld7Bj_XgjZo_srC82cR_8mrV7NvDub7nq7YM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hot+Jupiters+from+Disruption+of+Resonant+Chains+in+Postdisk+Evolution&rft.jtitle=The+Astronomical+journal&rft.au=Wu%2C+Dong-Hong&rft.au=He%2C+Ying&rft.date=2023-12-01&rft.issn=0004-6256&rft.eissn=1538-3881&rft.volume=166&rft.issue=6&rft.spage=267&rft_id=info:doi/10.3847%2F1538-3881%2Fad09b0&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_3881_ad09b0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6256&client=summon