Hot Jupiters from Disruption of Resonant Chains in Postdisk Evolution
The formation of hot Jupiters has been a subject of interest in the field of exoplanet science. According to conventional scenarios, these gas giants are believed to form beyond the snow line and subsequently migrate inward. Although the early formation history of hot Jupiters is not well understood...
Saved in:
Published in | The Astronomical journal Vol. 166; no. 6; pp. 267 - 273 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Madison
The American Astronomical Society
01.12.2023
IOP Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The formation of hot Jupiters has been a subject of interest in the field of exoplanet science. According to conventional scenarios, these gas giants are believed to form beyond the snow line and subsequently migrate inward. Although the early formation history of hot Jupiters is not well understood, they may emerge in resonant chains as a result of disk migration. Here we study the formation of hot Jupiters via the disruption of resonant chains after the gas disk disappears. We perform
N
-body simulations on planetary systems consisting of one gas giant and several super-Earths. The initial configuration involves all neighboring planet pairs being in a 3:2 mean motion resonance. We track the evolution of these resonant chains after the gas disk has vanished. Our results reveal that the resonant chains are prone to instability following the dispersal of the gas disk, with more than 80% of instabilities occurring within 3 million years. Only approximately 4% of resonant chains can survive the dynamical evolution. Notably, we find that resonant chains hosting hot Jupiters are more likely to be unstable compared to those hosting warm Jupiters. Our simulations indicate that 33% ± 4% hot Jupiters and 70% ± 4% warm Jupiters could possess nearby companions. Furthermore, incorporating the effects of general relativity and tidal dissipation increases the isolation of hot Jupiters, resulting in nearby companion occurrence rates of 20% ± 4% for hot Jupiters and 69% ± 6% for warm Jupiters. |
---|---|
AbstractList | The formation of hot Jupiters has been a subject of interest in the field of exoplanet science. According to conventional scenarios, these gas giants are believed to form beyond the snow line and subsequently migrate inward. Although the early formation history of hot Jupiters is not well understood, they may emerge in resonant chains as a result of disk migration. Here we study the formation of hot Jupiters via the disruption of resonant chains after the gas disk disappears. We perform
N
-body simulations on planetary systems consisting of one gas giant and several super-Earths. The initial configuration involves all neighboring planet pairs being in a 3:2 mean motion resonance. We track the evolution of these resonant chains after the gas disk has vanished. Our results reveal that the resonant chains are prone to instability following the dispersal of the gas disk, with more than 80% of instabilities occurring within 3 million years. Only approximately 4% of resonant chains can survive the dynamical evolution. Notably, we find that resonant chains hosting hot Jupiters are more likely to be unstable compared to those hosting warm Jupiters. Our simulations indicate that 33% ± 4% hot Jupiters and 70% ± 4% warm Jupiters could possess nearby companions. Furthermore, incorporating the effects of general relativity and tidal dissipation increases the isolation of hot Jupiters, resulting in nearby companion occurrence rates of 20% ± 4% for hot Jupiters and 69% ± 6% for warm Jupiters. The formation of hot Jupiters has been a subject of interest in the field of exoplanet science. According to conventional scenarios, these gas giants are believed to form beyond the snow line and subsequently migrate inward. Although the early formation history of hot Jupiters is not well understood, they may emerge in resonant chains as a result of disk migration. Here we study the formation of hot Jupiters via the disruption of resonant chains after the gas disk disappears. We perform N-body simulations on planetary systems consisting of one gas giant and several super-Earths. The initial configuration involves all neighboring planet pairs being in a 3:2 mean motion resonance. We track the evolution of these resonant chains after the gas disk has vanished. Our results reveal that the resonant chains are prone to instability following the dispersal of the gas disk, with more than 80% of instabilities occurring within 3 million years. Only approximately 4% of resonant chains can survive the dynamical evolution. Notably, we find that resonant chains hosting hot Jupiters are more likely to be unstable compared to those hosting warm Jupiters. Our simulations indicate that 33% ± 4% hot Jupiters and 70% ± 4% warm Jupiters could possess nearby companions. Furthermore, incorporating the effects of general relativity and tidal dissipation increases the isolation of hot Jupiters, resulting in nearby companion occurrence rates of 20% ± 4% for hot Jupiters and 69% ± 6% for warm Jupiters. |
Author | Wu, Dong-Hong He, Ying |
Author_xml | – sequence: 1 givenname: Dong-Hong orcidid: 0000-0001-9424-3721 surname: Wu fullname: Wu, Dong-Hong organization: Anhui Normal University Department of Physics, Wuhu Anhui, 241000, People's Republic of China – sequence: 2 givenname: Ying surname: He fullname: He, Ying organization: Anhui Normal University Department of Physics, Wuhu Anhui, 241000, People's Republic of China |
BookMark | eNp9kE1rFTEYhUOp0NvqvstAu3RsPt5kkmW5Xm2loIiuQyaTaK63k2mSEfz3zjhWQaSrwMtzDifPKToe0uAROqfkFVfQXlHBVcOVole2J7ojR2jz53SMNoQQaCQT8gSdlrInhFJFYIN2N6nid9MYq88Fh5zu8etY8jTWmAacAv7oSxrsUPH2q41DwXHAH1KpfSzf8O57OkwL-Bw9C_ZQ_Ivf7xn6_Gb3aXvT3L1_e7u9vmscgKiNoFRy56QQMmjNKSMUek98D10vvOhpcEEw6AIE51krmG4FaZlSRDHHvONn6Hbt7ZPdmzHHe5t_mGSj-XVI-YuxuUZ38IZ5KoLXIXS0BceDBq47YMrqzmno_Nx1sXaNOT1MvlSzT1Me5vmGKQ0AChidKblSLqdSsg_GxWqXP9ds48FQYhb9ZnFtFtdm1T8HyT_Bx7lPRF6ukZjGv2OewC__g88aqJRGGiZbM_aB_wTllaL7 |
CitedBy_id | crossref_primary_10_3847_2041_8213_ad65fd crossref_primary_10_1093_mnras_stae1076 |
Cites_doi | 10.1088/0004-637X/751/2/119 10.1086/158356 10.1046/j.1365-8711.2000.03605.x 10.1093/mnras/stx1232 10.3847/1538-3881/aac5ea 10.3847/1538-4357/acc06d 10.1093/mnras/stz1011 10.1086/164653 10.1073/pnas.1120970109 10.3847/2041-8213/aa9714 10.1111/j.1365-2966.2005.09826.x 10.1088/2041-8205/778/1/L9 10.1051/0004-6361/201118085 10.1088/0004-637X/758/2/80 10.1038/378355a0 10.1088/2041-8205/732/2/L24 10.1038/s41550-019-0701-7 10.3847/1538-3881/acbf3f 10.1086/523754 10.1088/0004-637X/726/1/53 10.1146/annurev-astro-081915-023315 10.3847/2041-8213/aafa1e 10.3847/1538-3881/aa9ff6 10.1038/380606a0 10.3847/1538-3881/ac2602 10.1086/590227 10.3847/2041-8205/817/2/L17 10.3847/0004-637X/817/2/90 10.1086/374598 10.1086/519918 10.1126/science.274.5289.954 10.1086/521702 10.1088/0004-637X/805/1/75 10.3847/1538-3881/ac5961 10.1093/mnras/stz769 10.1088/2041-8205/812/2/L18 10.3847/1538-4357/abc1d7 10.3847/2041-8213/ab7302 10.1111/j.1365-2966.2004.07406.x 10.1088/0004-637X/772/1/74 10.1093/mnras/stz054 10.1093/mnras/stac043 10.1093/mnras/stz2870 10.1146/annurev-astro-081817-051853 10.3847/0004-637X/829/2/114 10.3847/0004-637X/825/2/98 10.3847/2515-5172/aa9be5 10.1086/324713 10.1088/0004-637X/807/1/44 |
ContentType | Journal Article |
Copyright | 2023. The Author(s). Published by the American Astronomical Society. 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. The Author(s). Published by the American Astronomical Society. – notice: 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 7TG 8FD H8D KL. L7M DOA |
DOI | 10.3847/1538-3881/ad09b0 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
EISSN | 1538-3881 |
ExternalDocumentID | oai_doaj_org_article_2e15fe9ffb174c3f9439b428a9bc94be 10_3847_1538_3881_ad09b0 ajad09b0 |
GroupedDBID | -DZ -~X 123 1JI 23N 4.4 6J9 85S AAFWJ AAGCD AAJIO ABDNZ ABHWH ABXSS ACBEA ACGFS ACHIP ACNCT ACYRX AEFHF AENEX AFPKN AGNAY AHPAA AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ HF~ IJHAN IOP KOT N5L O3W O43 OK1 P2P PJBAE RIN RNP RNS ROL SY9 T37 TR2 TSCCA UPT WH7 ~02 AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M |
ID | FETCH-LOGICAL-c445t-51163cc6556f99312014de0ed4bd5e5d1fcf524bf4fce275297507288082c2ec3 |
IEDL.DBID | O3W |
ISSN | 0004-6256 |
IngestDate | Wed Aug 27 01:26:07 EDT 2025 Wed Aug 13 06:16:52 EDT 2025 Tue Jul 01 03:26:47 EDT 2025 Thu Apr 24 22:59:38 EDT 2025 Tue Aug 20 22:15:36 EDT 2024 Sun Aug 18 14:50:27 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c445t-51163cc6556f99312014de0ed4bd5e5d1fcf524bf4fce275297507288082c2ec3 |
Notes | AAS48572 The Solar System, Exoplanets, and Astrobiology ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9424-3721 |
OpenAccessLink | https://iopscience.iop.org/article/10.3847/1538-3881/ad09b0 |
PQID | 2894448421 |
PQPubID | 4562438 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_3847_1538_3881_ad09b0 proquest_journals_2894448421 crossref_primary_10_3847_1538_3881_ad09b0 iop_journals_10_3847_1538_3881_ad09b0 doaj_primary_oai_doaj_org_article_2e15fe9ffb174c3f9439b428a9bc94be |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Madison |
PublicationPlace_xml | – name: Madison |
PublicationTitle | The Astronomical journal |
PublicationTitleAbbrev | AJ |
PublicationTitleAlternate | Astron. J |
PublicationYear | 2023 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Lin (ajad09b0bib23) 1986; 309 Naoz (ajad09b0bib29) 2016; 54 Huang (ajad09b0bib15) 2016; 825 Millholland (ajad09b0bib26) 2019; 3 Lu (ajad09b0bib24) 2023; 948 Ketchum (ajad09b0bib19) 2011; 726 Becker (ajad09b0bib4) 2015; 812 Tamayo (ajad09b0bib42) 2020; 491 Huang (ajad09b0bib16) 2020; 892 Zhou (ajad09b0bib52) 2007; 666 Burke (ajad09b0bib6) 2017 Petrovich (ajad09b0bib35) 2015; 805 Lin (ajad09b0bib22) 1996; 380 Wu (ajad09b0bib48) 2019; 484 Ida (ajad09b0bib17) 2008; 673 Boley (ajad09b0bib5) 2016; 817 Rein (ajad09b0bib40) 2019; 485 Cañas (ajad09b0bib7) 2019; 870 Rasio (ajad09b0bib38) 1996; 274 Hord (ajad09b0bib14) 2021; 162 Zhou (ajad09b0bib51) 2008 Hallatt (ajad09b0bib13) 2020; 904 Nelson (ajad09b0bib30) 2004; 350 Papaloizou (ajad09b0bib34) 2021 Goldberg (ajad09b0bib11) 2022; 163 Rein (ajad09b0bib39) 2012; 537 Dawson (ajad09b0bib9) 2018; 56 Ogihara (ajad09b0bib32) 2013; 778 Goldreich (ajad09b0bib12) 1980; 241 Izidoro (ajad09b0bib18) 2017; 470 Latham (ajad09b0bib20) 2011; 732 Pu (ajad09b0bib36) 2015; 807 Ormel (ajad09b0bib33) 2012; 758 Mayor (ajad09b0bib25) 1995; 378 Tanaka (ajad09b0bib43) 2002; 565 Baronett (ajad09b0bib1) 2022; 510 Beaugé (ajad09b0bib3) 2012; 751 Wang (ajad09b0bib45) 2017; 1 Chatterjee (ajad09b0bib8) 2008; 686 Millholland (ajad09b0bib27) 2017; 849 Wu (ajad09b0bib50) 2003; 589 Wu (ajad09b0bib47) 2023; 165 Quillen (ajad09b0bib37) 2006; 365 Weiss (ajad09b0bib46) 2018; 155 Nelson (ajad09b0bib31) 2000; 318 Teyssandier (ajad09b0bib44) 2019; 486 Wu (ajad09b0bib49) 2013; 772 Fabrycky (ajad09b0bib10) 2007; 669 Lee (ajad09b0bib21) 2016; 817 Steffen (ajad09b0bib41) 2012; 109 Batygin (ajad09b0bib2) 2016; 829 Mulders (ajad09b0bib28) 2018; 156 |
References_xml | – volume: 751 start-page: 119 year: 2012 ident: ajad09b0bib3 publication-title: ApJ doi: 10.1088/0004-637X/751/2/119 – volume: 241 start-page: 425 year: 1980 ident: ajad09b0bib12 publication-title: ApJ doi: 10.1086/158356 – volume: 318 start-page: 18 year: 2000 ident: ajad09b0bib31 publication-title: MNRAS doi: 10.1046/j.1365-8711.2000.03605.x – volume: 470 start-page: 1750 year: 2017 ident: ajad09b0bib18 publication-title: MNRAS doi: 10.1093/mnras/stx1232 – volume: 156 start-page: 24 year: 2018 ident: ajad09b0bib28 publication-title: AJ doi: 10.3847/1538-3881/aac5ea – volume: 948 start-page: 41 year: 2023 ident: ajad09b0bib24 publication-title: ApJ doi: 10.3847/1538-4357/acc06d – start-page: 285 year: 2008 ident: ajad09b0bib51 – volume: 486 start-page: 2265 year: 2019 ident: ajad09b0bib44 publication-title: MNRAS doi: 10.1093/mnras/stz1011 – volume: 309 start-page: 846 year: 1986 ident: ajad09b0bib23 publication-title: ApJ doi: 10.1086/164653 – volume: 109 start-page: 7982 year: 2012 ident: ajad09b0bib41 publication-title: PNAS doi: 10.1073/pnas.1120970109 – volume: 849 start-page: L33 year: 2017 ident: ajad09b0bib27 publication-title: ApJL doi: 10.3847/2041-8213/aa9714 – volume: 365 start-page: 1367 year: 2006 ident: ajad09b0bib37 publication-title: MNRAS doi: 10.1111/j.1365-2966.2005.09826.x – volume: 778 start-page: L9 year: 2013 ident: ajad09b0bib32 publication-title: ApJL doi: 10.1088/2041-8205/778/1/L9 – volume: 537 start-page: A128 year: 2012 ident: ajad09b0bib39 publication-title: A&A doi: 10.1051/0004-6361/201118085 – start-page: 13 year: 2021 ident: ajad09b0bib34 – volume: 758 start-page: 80 year: 2012 ident: ajad09b0bib33 publication-title: ApJ doi: 10.1088/0004-637X/758/2/80 – volume: 378 start-page: 355 year: 1995 ident: ajad09b0bib25 publication-title: Natur doi: 10.1038/378355a0 – volume: 732 start-page: L24 year: 2011 ident: ajad09b0bib20 publication-title: ApJL doi: 10.1088/2041-8205/732/2/L24 – volume: 3 start-page: 424 year: 2019 ident: ajad09b0bib26 publication-title: NatAs doi: 10.1038/s41550-019-0701-7 – volume: 165 start-page: 171 year: 2023 ident: ajad09b0bib47 publication-title: AJ doi: 10.3847/1538-3881/acbf3f – volume: 673 start-page: 487 year: 2008 ident: ajad09b0bib17 publication-title: ApJ doi: 10.1086/523754 – volume: 726 start-page: 53 year: 2011 ident: ajad09b0bib19 publication-title: ApJ doi: 10.1088/0004-637X/726/1/53 – volume: 54 start-page: 441 year: 2016 ident: ajad09b0bib29 publication-title: ARA&A doi: 10.1146/annurev-astro-081915-023315 – volume: 870 start-page: L17 year: 2019 ident: ajad09b0bib7 publication-title: ApJL doi: 10.3847/2041-8213/aafa1e – volume: 155 start-page: 48 year: 2018 ident: ajad09b0bib46 publication-title: AJ doi: 10.3847/1538-3881/aa9ff6 – volume: 380 start-page: 606 year: 1996 ident: ajad09b0bib22 publication-title: Natur doi: 10.1038/380606a0 – volume: 162 start-page: 263 year: 2021 ident: ajad09b0bib14 publication-title: AJ doi: 10.3847/1538-3881/ac2602 – volume: 686 start-page: 580 year: 2008 ident: ajad09b0bib8 publication-title: ApJ doi: 10.1086/590227 – volume: 817 start-page: L17 year: 2016 ident: ajad09b0bib5 publication-title: ApJL doi: 10.3847/2041-8205/817/2/L17 – volume: 817 start-page: 90 year: 2016 ident: ajad09b0bib21 publication-title: ApJ doi: 10.3847/0004-637X/817/2/90 – volume: 589 start-page: 605 year: 2003 ident: ajad09b0bib50 publication-title: ApJ doi: 10.1086/374598 – volume: 666 start-page: 423 year: 2007 ident: ajad09b0bib52 publication-title: ApJ doi: 10.1086/519918 – volume: 274 start-page: 954 year: 1996 ident: ajad09b0bib38 publication-title: Sci doi: 10.1126/science.274.5289.954 – volume: 669 start-page: 1298 year: 2007 ident: ajad09b0bib10 publication-title: ApJ doi: 10.1086/521702 – volume: 805 start-page: 75 year: 2015 ident: ajad09b0bib35 publication-title: ApJ doi: 10.1088/0004-637X/805/1/75 – volume: 163 start-page: 201 year: 2022 ident: ajad09b0bib11 publication-title: AJ doi: 10.3847/1538-3881/ac5961 – volume: 485 start-page: 5490 year: 2019 ident: ajad09b0bib40 publication-title: MNRAS doi: 10.1093/mnras/stz769 – volume: 812 start-page: L18 year: 2015 ident: ajad09b0bib4 publication-title: ApJL doi: 10.1088/2041-8205/812/2/L18 – volume: 904 start-page: 134 year: 2020 ident: ajad09b0bib13 publication-title: ApJ doi: 10.3847/1538-4357/abc1d7 – volume: 892 start-page: L7 year: 2020 ident: ajad09b0bib16 publication-title: ApJL doi: 10.3847/2041-8213/ab7302 – volume: 350 start-page: 849 year: 2004 ident: ajad09b0bib30 publication-title: MNRAS doi: 10.1111/j.1365-2966.2004.07406.x – volume: 772 start-page: 74 year: 2013 ident: ajad09b0bib49 publication-title: ApJ doi: 10.1088/0004-637X/772/1/74 – volume: 484 start-page: 1538 year: 2019 ident: ajad09b0bib48 publication-title: MNRAS doi: 10.1093/mnras/stz054 – volume: 510 start-page: 6001 year: 2022 ident: ajad09b0bib1 publication-title: MNRAS doi: 10.1093/mnras/stac043 – volume: 491 start-page: 2885 year: 2020 ident: ajad09b0bib42 publication-title: MNRAS doi: 10.1093/mnras/stz2870 – volume: 56 start-page: 175 year: 2018 ident: ajad09b0bib9 publication-title: ARA&A doi: 10.1146/annurev-astro-081817-051853 – volume: 829 start-page: 114 year: 2016 ident: ajad09b0bib2 publication-title: ApJ doi: 10.3847/0004-637X/829/2/114 – year: 2017 ident: ajad09b0bib6 – volume: 825 start-page: 98 year: 2016 ident: ajad09b0bib15 publication-title: ApJ doi: 10.3847/0004-637X/825/2/98 – volume: 1 start-page: 26 year: 2017 ident: ajad09b0bib45 publication-title: RNAAS doi: 10.3847/2515-5172/aa9be5 – volume: 565 start-page: 1257 year: 2002 ident: ajad09b0bib43 publication-title: ApJ doi: 10.1086/324713 – volume: 807 start-page: 44 year: 2015 ident: ajad09b0bib36 publication-title: ApJ doi: 10.1088/0004-637X/807/1/44 |
SSID | ssj0011804 |
Score | 2.4503708 |
Snippet | The formation of hot Jupiters has been a subject of interest in the field of exoplanet science. According to conventional scenarios, these gas giants are... |
SourceID | doaj proquest crossref iop |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 267 |
SubjectTerms | Disruption Evolution Exoplanet systems Exoplanets Extrasolar planets Gas giant planets Hot Jupiters Jupiter Orbital resonances (celestial mechanics) Planetary systems Relativity Snow line Stellar planets |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-wwEA_iyYuo74nrFzm8J3gom6ZJmh7Vt7IIz5OCt9B8YVHbZbsr-N8703b9QPBd3qWUMiVhMpmZXzIfhPwKuc2Z0ywBAKQSoXlINKBmeBQxeOW95pjg_PdaTW_F1Z28-9DqC2PC-vLAPePGPKQYDxWjBd_ZZbEAC2rBZy4L6wphA2pfsHkrMDXcH6Saif5SMgP1O-62daZ1Oi49Kyz7ZIS6Wv1gWqpm9kUhd1bmcotsDu4hPeuntU3WQr1D9s5aPLBunl7oCe3e-_OI9geZTJsFvVrOMJG4pZgrQv9U7XzZKQLaRIrH8xjrQi_uy6puaVVT7M_rq_aBTp4HuftJbi8nNxfTZOiMkDgh5CIBL0llzikpVQQHIwUrLnxgwQvrZZA-jS5KLmwU0QWeS0yfZTmHvaq548Flu2S9buqwR6hwVgGs0TJqL5wqy4znzJeRRZbawLMRGa9YZdxQNhy7VzwagA_IXIPMNchc0zN3RE7f_pj1JTO-oT1H7r_RYbHr7gOIgBlEwPxLBEbkN6ydGTZf-81gR5_oYJhUKaMMV7mZ-Tgih6vVfycCQCoAwgqe7v-PuR6QDWxY3wfEHJL1xXwZjsCtWdjjToJfAU088vc priority: 102 providerName: Directory of Open Access Journals |
Title | Hot Jupiters from Disruption of Resonant Chains in Postdisk Evolution |
URI | https://iopscience.iop.org/article/10.3847/1538-3881/ad09b0 https://www.proquest.com/docview/2894448421 https://doaj.org/article/2e15fe9ffb174c3f9439b428a9bc94be |
Volume | 166 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYQvfRSlVLElod8oJV6COv4FUc9UVi0RWrpAQQ3K36pq5ZkRXaR-PfMJGErRIV6sazIyUTjmfF8tmeGkINYuIJ5wzIAQDqThsfMAGqGpkwx6BAMxwDn7z_09FKeXavrNfJlFQvTzAfTfwjdPlFwz0LUbwG2dNzpqDAmH1eBlQ7w-ithtEHkdS6uVkcIuWF9CmagDE7-cEb5zy88WZO61P2w0gD5Z_a5W3RO35I3g7dIj_p_2yBrsX5Hto9a3L9ubu7pJ9r1--2JdpNMps2Cni3nGFfcUgwdoSez9nbZ2QXaJIq79Xj1hR7_qmZ1S2c1xXK9Ydb-ppO7QQzfk8vTycXxNBsKJWReSrXIwGnSwnutlE7gb-SwqMsQWQzSBRVVyJNPikuXZPKRFwqjaVnBQXUN9zx6sUXW66aO24RK7zSgHKOSCdLrqhK8YKFKLLHcRS5GZPzIKuuHLOJYzOKPBTSBzLXIXIvMtT1zR-Tz6o15n0HjhbFfkfurcZj7unsAcmAHObA85nhDLiUHaMqLVIJP5QBFVaXzpXRxRD7C3NlBF9sXiO09GQdkcq2ttlwXdh7SiOw-zv7fQYBPJSBayfMP_0lmh7zGEvX9FZhdsr64XcY9cGQWbr_bAID22_nP_U54HwA9E-uS |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbtQw0IIiIS6Ip7rQgg-AxCGs41ecY2l3tRQoHKjozYpf6gpIVs0uEn_PTOIuqkAVl8iKJhlrPE_bM0PIi1i5innDCgiAdCENj4WBqBkedYpBh2A4Jjh_PNGLU3l8ps5yn9MhF6ZbZdX_BoZjoeCRhCjfAnTpdJBRYUw5bQKrHZuuQrpJbimhNfZu-CS-bo8RSsPGMsyAHRz9fE75z79csUtD-X6wNjCFv3T0YHjm98jd7DHSg3F-98mN2D4guwc97mF3P37RV3QYj1sU_UMyW3RrerxZYW5xTzF9hB4t-4vNoBtolyju2OP1F3p43izbni5bii17w7L_Rmc_Mys-Iqfz2ZfDRZGbJRReSrUuwHHSwnutlE7gc5Rg2GWILAbpgooqlMknxaVLMvnIK4UZtaziIL6Gex69eEx22q6Nu4RK7zREOkYlE6TXTSN4xUKTWGKli1xMyPSSVNbnSuLY0OK7hYgCiWuRuBaJa0fiTsjr7RersYrGNbBvkfpbOKx_PbwAXrCZFyyPJd6SS8lBROVFqsGvchBJNbXztXRxQl7C2tksj_01yPavwAGaUmurLdeVBb6akL3L1f8DBDGqhKhW8vLJf6J5Tm5_PprbD-9O3j8ld7Bj_XgjZo_srC82cR_8mrV7NvDub7nq7YM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hot+Jupiters+from+Disruption+of+Resonant+Chains+in+Postdisk+Evolution&rft.jtitle=The+Astronomical+journal&rft.au=Wu%2C+Dong-Hong&rft.au=He%2C+Ying&rft.date=2023-12-01&rft.issn=0004-6256&rft.eissn=1538-3881&rft.volume=166&rft.issue=6&rft.spage=267&rft_id=info:doi/10.3847%2F1538-3881%2Fad09b0&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_3881_ad09b0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6256&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6256&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6256&client=summon |