Nitric oxide inhibits lipopolysaccharide-induced apoptosis in pulmonary artery endothelial cells
3 Department of Pharmacology; 1 Division of Pediatric Critical Care Medicine, Department of Anesthesiology; 2 Department of Surgery; 4 Division of Pulmonary, Allergy, and Critical Care Medicine; and 6 Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsb...
Saved in:
Published in | American journal of physiology. Lung cellular and molecular physiology Vol. 275; no. 4; pp. 717 - L728 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.10.1998
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 3 Department of Pharmacology;
1 Division of Pediatric Critical Care
Medicine, Department of Anesthesiology;
2 Department of Surgery;
4 Division of Pulmonary,
Allergy, and Critical Care Medicine; and
6 Department of Cell Biology and
Physiology, University of Pittsburgh School of Medicine,
Pittsburgh, Pennsylvania 15261; and
5 Department of Anatomy and
Cell Biology, University of Iowa Medical Center, Iowa City, Iowa
52242
Our group recently reported that
cultured sheep pulmonary artery endothelial cells (SPAECs) became
resistant to lipopolysaccharide (LPS)-induced apoptosis several days
after constitutive synthesis of nitric oxide (NO) after adenoviral (Ad)
transfer of inducible NO synthase (iNOS) or exposure to the NO donor
S -nitroso- N -acetylpenicillamine (SNAP) (E. Tzeng, Y.-M. Kim, B. R. Pitt, A. Lizonova, I. Kovesdi, and
T. R. Billiar. Surgery 122:
255-263, 1997). In the present study, we confirmed this
observation by establishing stable transfectants after retroviral gene
transfer [replication-deficient retrovirus (DFG)] of human
iNOS (DFG-iNOS) SPAECs and then used all three approaches (Ad, DFG, and
SNAP) to determine underlying mechanisms of this phenomenon. Continuous
endogenous production of NO in itself did not cause apoptosis as
assessed by phase-contrast microscopy, nuclear morphology, and
internucleosomal DNA fragmentation. Prolonged (72-96 h) synthesis
of NO, however, after DFG- or replication-deficient adenovirus
(Ad.CMV)-iNOS or SNAP (100 µM, 96 h) inhibited LPS-induced apoptosis.
The kinetics of such protection suggested that NO may be inducing other
gene products. Ad-mediated transfer of manganese superoxide dismutase
(MnSOD) decreased the sensitivity of wild-type SPAECs to LPS-induced
apoptosis. MnSOD, however, was not induced in an
N G -monomethyl- L -arginine
( L -NMMA)-sensitive
time-dependent fashion after Ad.CMV-iNOS. Other inducible genes that
may be affected by NO and that may protect against potential
oxidant-mediated LPS-induced apoptosis including 70-kDa heat shock
protein, heme oxygenase-1, metallothionein, and Bcl-2 also were not
elevated in an L -NMMA-sensitive,
time-dependent fashion. Although the candidate gene product underlying
NO-induced protection remains unclear, we did note that prolonged
synthesis of NO inhibited LPS-induced activation of an
interleukin-1 -converting enzyme-like cysteine protease (cysteine
protease protein-32-like) in a dithiothreitol-sensitive fashion,
suggesting that S-nitrosylation of an important downstream target of
convergence of apoptotic signals may contribute to the sensitivity of
SPAECs to LPS.
cysteine protease protein-32-like protease; manganese superoxide
dismutase; mitochondria; heme oxygenase; Bcl-2 |
---|---|
AbstractList | 3 Department of Pharmacology;
1 Division of Pediatric Critical Care
Medicine, Department of Anesthesiology;
2 Department of Surgery;
4 Division of Pulmonary,
Allergy, and Critical Care Medicine; and
6 Department of Cell Biology and
Physiology, University of Pittsburgh School of Medicine,
Pittsburgh, Pennsylvania 15261; and
5 Department of Anatomy and
Cell Biology, University of Iowa Medical Center, Iowa City, Iowa
52242
Our group recently reported that
cultured sheep pulmonary artery endothelial cells (SPAECs) became
resistant to lipopolysaccharide (LPS)-induced apoptosis several days
after constitutive synthesis of nitric oxide (NO) after adenoviral (Ad)
transfer of inducible NO synthase (iNOS) or exposure to the NO donor
S -nitroso- N -acetylpenicillamine (SNAP) (E. Tzeng, Y.-M. Kim, B. R. Pitt, A. Lizonova, I. Kovesdi, and
T. R. Billiar. Surgery 122:
255-263, 1997). In the present study, we confirmed this
observation by establishing stable transfectants after retroviral gene
transfer [replication-deficient retrovirus (DFG)] of human
iNOS (DFG-iNOS) SPAECs and then used all three approaches (Ad, DFG, and
SNAP) to determine underlying mechanisms of this phenomenon. Continuous
endogenous production of NO in itself did not cause apoptosis as
assessed by phase-contrast microscopy, nuclear morphology, and
internucleosomal DNA fragmentation. Prolonged (72-96 h) synthesis
of NO, however, after DFG- or replication-deficient adenovirus
(Ad.CMV)-iNOS or SNAP (100 µM, 96 h) inhibited LPS-induced apoptosis.
The kinetics of such protection suggested that NO may be inducing other
gene products. Ad-mediated transfer of manganese superoxide dismutase
(MnSOD) decreased the sensitivity of wild-type SPAECs to LPS-induced
apoptosis. MnSOD, however, was not induced in an
N G -monomethyl- L -arginine
( L -NMMA)-sensitive
time-dependent fashion after Ad.CMV-iNOS. Other inducible genes that
may be affected by NO and that may protect against potential
oxidant-mediated LPS-induced apoptosis including 70-kDa heat shock
protein, heme oxygenase-1, metallothionein, and Bcl-2 also were not
elevated in an L -NMMA-sensitive,
time-dependent fashion. Although the candidate gene product underlying
NO-induced protection remains unclear, we did note that prolonged
synthesis of NO inhibited LPS-induced activation of an
interleukin-1 -converting enzyme-like cysteine protease (cysteine
protease protein-32-like) in a dithiothreitol-sensitive fashion,
suggesting that S-nitrosylation of an important downstream target of
convergence of apoptotic signals may contribute to the sensitivity of
SPAECs to LPS.
cysteine protease protein-32-like protease; manganese superoxide
dismutase; mitochondria; heme oxygenase; Bcl-2 Our group recently reported that cultured sheep pulmonary artery endothelial cells (SPAECs) became resistant to lipopolysaccharide (LPS)-induced apoptosis several days after constitutive synthesis of nitric oxide (NO) after adenoviral (Ad) transfer of inducible NO synthase (iNOS) or exposure to the NO donor S-nitroso-N-acetylpenicillamine (SNAP) (E. Tzeng, Y.-M. Kim, B. R. Pitt, A. Lizonova, I. Kovesdi, and T. R. Billiar. Surgery 122: 255-263, 1997). In the present study, we confirmed this observation by establishing stable transfectants after retroviral gene transfer [replication-deficient retrovirus (DFG)] of human iNOS (DFG-iNOS) SPAECs and then used all three approaches (Ad, DFG, and SNAP) to determine underlying mechanisms of this phenomenon. Continuous endogenous production of NO in itself did not cause apoptosis as assessed by phase-contrast microscopy, nuclear morphology, and internucleosomal DNA fragmentation. Prolonged (72-96 h) synthesis of NO, however, after DFG- or replication-deficient adenovirus (Ad. CMV)-iNOS or SNAP (100 microM, 96 h) inhibited LPS-induced apoptosis. The kinetics of such protection suggested that NO may be inducing other gene products. Ad-mediated transfer of manganese superoxide dismutase (MnSOD) decreased the sensitivity of wild-type SPAECs to LPS-induced apoptosis. MnSOD, however, was not induced in an NG-monomethyl-L-arginine (L-NMMA)-sensitive time-dependent fashion after Ad.CMV-iNOS. Other inducible genes that may be affected by NO and that may protect against potential oxidant-mediated LPS-induced apoptosis including 70-kDa heat shock protein, heme oxygenase-1, metallothionein, and Bcl-2 also were not elevated in an L-NMMA-sensitive, time-dependent fashion. Although the candidate gene product underlying NO-induced protection remains unclear, we did note that prolonged synthesis of NO inhibited LPS-induced activation of an interleukin-1beta-converting enzyme-like cysteine protease (cysteine protease protein-32-like) in a dithiothreitol-sensitive fashion, suggesting that S-nitrosylation of an important downstream target of convergence of apoptotic signals may contribute to the sensitivity of SPAECs to LPS. Our group recently reported that cultured sheep pulmonary artery endothelial cells (SPAECs) became resistant to lipopolysaccharide (LPS)-induced apoptosis several days after constitutive synthesis of nitric oxide (NO) after adenoviral (Ad) transfer of inducible NO synthase (iNOS) or exposure to the NO donor S-nitroso- N-acetylpenicillamine (SNAP) (E. Tzeng, Y.-M. Kim, B. R. Pitt, A. Lizonova, I. Kovesdi, and T. R. Billiar. Surgery 122: 255–263, 1997). In the present study, we confirmed this observation by establishing stable transfectants after retroviral gene transfer [replication-deficient retrovirus (DFG)] of human iNOS (DFG-iNOS) SPAECs and then used all three approaches (Ad, DFG, and SNAP) to determine underlying mechanisms of this phenomenon. Continuous endogenous production of NO in itself did not cause apoptosis as assessed by phase-contrast microscopy, nuclear morphology, and internucleosomal DNA fragmentation. Prolonged (72–96 h) synthesis of NO, however, after DFG- or replication-deficient adenovirus (Ad.CMV)-iNOS or SNAP (100 μM, 96 h) inhibited LPS-induced apoptosis. The kinetics of such protection suggested that NO may be inducing other gene products. Ad-mediated transfer of manganese superoxide dismutase (MnSOD) decreased the sensitivity of wild-type SPAECs to LPS-induced apoptosis. MnSOD, however, was not induced in an N G -monomethyl-l-arginine (l-NMMA)-sensitive time-dependent fashion after Ad.CMV-iNOS. Other inducible genes that may be affected by NO and that may protect against potential oxidant-mediated LPS-induced apoptosis including 70-kDa heat shock protein, heme oxygenase-1, metallothionein, and Bcl-2 also were not elevated in an l-NMMA-sensitive, time-dependent fashion. Although the candidate gene product underlying NO-induced protection remains unclear, we did note that prolonged synthesis of NO inhibited LPS-induced activation of an interleukin-1β-converting enzyme-like cysteine protease (cysteine protease protein-32-like) in a dithiothreitol-sensitive fashion, suggesting that S-nitrosylation of an important downstream target of convergence of apoptotic signals may contribute to the sensitivity of SPAECs to LPS. |
Author | Kim, Young-Myeong Gallagher, Alicia Watkins, Simon A Ceneviva, Gary D Billiar, Timothy R Hoyt, Dale G Tzeng, Edith Yee, Emily Engelhardt, John F Pitt, Bruce R |
Author_xml | – sequence: 1 fullname: Ceneviva, Gary D – sequence: 2 fullname: Tzeng, Edith – sequence: 3 fullname: Hoyt, Dale G – sequence: 4 fullname: Yee, Emily – sequence: 5 fullname: Gallagher, Alicia – sequence: 6 fullname: Engelhardt, John F – sequence: 7 fullname: Kim, Young-Myeong – sequence: 8 fullname: Billiar, Timothy R – sequence: 9 fullname: Watkins, Simon A – sequence: 10 fullname: Pitt, Bruce R |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/9755104$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kNFOwyAUhomZmdv0EYx9gVZoobSXZnFqsujNvEYKdGVhhZQ2rm8vy6bGCy_IT_Kd_wS-OZi0tlUA3CGYIETSe75zZmi3CSrLIkkpSXCypohegFmgaYwIxJNwhxjGMIfkCsy930EICYT5FExLSkiAM_DxqvtOi8getFSRbhtd6d5HRjvrrBk9F6LhXWCxbuUglIx4IL312ofpyA1mb1vejRHvehVCtdL2jTKam0goY_w1uKy58ermnAvwvnrcLJ_j9dvTy_JhHQuMSR8TmMuyFEVeSCmyAoVEqChFXoUPCiEzicusTlOqoFTh1AqjStaiwAWtCBXZAtDTXtFZ7ztVM9fpfXgZQ5AdlbGzMnZUxoIyhtlRWWjenppuqPZK_vTOjgKPT7zR2-ZTd4q5ZvTaGrsdf5b-2Vf-P78ajNmoQ_9d_O0xJ-vsC01nlII |
CitedBy_id | crossref_primary_10_1152_ajpheart_00164_2004 crossref_primary_10_1038_sj_onc_1204225 crossref_primary_10_1002_jcp_10372 crossref_primary_10_1152_ajplung_00266_2003 crossref_primary_10_1152_ajpgi_2001_281_3_G626 crossref_primary_10_1165_ajrcmb_26_1_f224 crossref_primary_10_1152_japplphysiol_00419_2003 crossref_primary_10_1016_j_biopha_2007_02_014 crossref_primary_10_1152_ajplung_00385_2011 crossref_primary_10_1152_ajplung_2000_279_3_L413 crossref_primary_10_1016_j_cardfail_2005_01_007 crossref_primary_10_4049_jimmunol_169_5_2611 crossref_primary_10_1152_ajpendo_00413_2006 crossref_primary_10_1152_ajplung_2001_281_1_L243 crossref_primary_10_4103_2045_8932_105032 crossref_primary_10_1016_j_vph_2005_10_004 crossref_primary_10_1152_ajplung_00338_2002 crossref_primary_10_1242_jcs_02927 crossref_primary_10_1667_0033_7587_2000_154_0073_AOTNOS_2_0_CO_2 crossref_primary_10_1152_ajpheart_00997_2010 crossref_primary_10_1096_fj_02_0368com crossref_primary_10_1152_ajplung_2000_278_2_L312 crossref_primary_10_1002_1529_0131_200101_44_1_96__AID_ANR13_3_0_CO_2 crossref_primary_10_1152_ajpregu_00432_2007 |
Cites_doi | 10.1084/jem.185.4.601 10.1016/S0021-9258(18)35927-1 10.1074/jbc.271.25.15182 10.1152/ajpcell.1994.267.4.C893 10.1016/S0039-6060(97)90016-7 10.1074/jbc.272.2.1402 10.4049/jimmunol.155.6.2858 10.1002/jcp.1041380122 10.1016/S0014-5793(97)00480-8 10.1074/jbc.272.49.31138 10.1172/JCI117869 10.1016/0014-5793(95)00188-F 10.1210/endo.136.7.7540548 10.1016/0092-8674(89)90944-6 10.1096/fasebj.10.10.8751721 10.1124/mol.52.2.195 10.1172/JCI116578 10.1016/S0021-9258(18)47160-8 10.1074/jbc.270.11.6017 10.1016/0092-8674(94)90005-1 10.1038/41237 10.1164/ajrccm.155.2.9032214 10.1016/S0021-9258(18)63504-5 10.1038/sj.gt.3300349 10.1165/ajrcmb.18.4.2959 10.1073/pnas.93.21.11853 10.1126/science.275.5303.1129 10.1002/(SICI)1097-4652(199611)169:2<333::AID-JCP12>3.0.CO;2-A 10.1165/ajrcmb.15.6.8969269 10.1093/nar/22.23.5016 10.1016/0092-8674(93)80066-N 10.1126/science.275.5303.1132 10.1016/0014-5793(95)01115-U 10.1007/BF03401618 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION |
DOI | 10.1152/ajplung.1998.275.4.L717 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef |
DatabaseTitleList | MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology Medicine |
EISSN | 1522-1504 |
EndPage | L728 |
ExternalDocumentID | 10_1152_ajplung_1998_275_4_L717 9755104 ajplung_275_4_L717 |
Genre | Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM-44100 – fundername: NHLBI NIH HHS grantid: HL-09368 – fundername: NHLBI NIH HHS grantid: HL-32154 – fundername: NHLBI NIH HHS grantid: R29 HL057854 |
GroupedDBID | - 23M 2WC 39C 53G 5GY 5VS ABFLS ABPTK ACPRK ADACO ADBBV AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BKOMP C1A DIK DL E3Z EBS EJD F5P KQ8 O0- OK1 P2P PQEST PQQKQ RAP RHF RHI RPL WH7 WOQ -DZ -~X .55 .GJ 3O- 41~ 79B 85S 8M5 9M8 ABCQX ABJNI ABOCM ABPPZ ABTAH ACGFS ACGUR ACKIV ACNCT AFFDN AFFNX AI. BKKCC CGR CUY CVF D0L ECM EIF F20 G8K H13 IH2 ITBOX J5H L7B LPU MVM NEJ NHB NPM OHT SJN TWZ UHB UKR UQL VH1 X7M XOL YYP YZZ ZGI ZXP ZY4 --- AAYXX BTFSW CITATION EMOBN RPRKH TR2 W8F XSW YSK |
ID | FETCH-LOGICAL-c445t-506d99c868ddc38168d1189c6b998ccd3d493f227e0dee0dfe41bdfc8487b57c3 |
ISSN | 1040-0605 0002-9513 |
IngestDate | Thu Sep 12 16:35:12 EDT 2024 Sat Sep 28 08:36:08 EDT 2024 Tue Jan 05 17:55:43 EST 2021 Mon May 06 11:42:22 EDT 2019 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c445t-506d99c868ddc38168d1189c6b998ccd3d493f227e0dee0dfe41bdfc8487b57c3 |
OpenAccessLink | https://journals.physiology.org/doi/pdf/10.1152/ajplung.1998.275.4.L717 |
PMID | 9755104 |
ParticipantIDs | pubmed_primary_9755104 crossref_primary_10_1152_ajplung_1998_275_4_L717 highwire_physiology_ajplung_275_4_L717 |
PublicationCentury | 1900 |
PublicationDate | 1998-10-01 |
PublicationDateYYYYMMDD | 1998-10-01 |
PublicationDate_xml | – month: 10 year: 1998 text: 1998-10-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | American journal of physiology. Lung cellular and molecular physiology |
PublicationTitleAlternate | Am J Physiol |
PublicationYear | 1998 |
References | B20 B42 B21 B43 B22 B44 B23 B24 B26 B28 B29 Freeman B. A. (B8) 1995; 268 Jackson R. (B15) 1997; 155 Hoyt D. G. (B14) 1995; 269 McCord J. (B25) 1969; 244 Yee E. L. (B45) 1996; 271 B32 B11 Motterlini R. (B30) 1996; 270 B33 B12 Hoyt D. G. (B13) 1996; 270 B36 B37 B16 B38 Chomcynski P. (B3) 1987; 162 B17 Rubbo H. (B35) 1994; 269 B18 Pitt B. R. (B31) 1997; 273 B19 Fehsel K. (B7) 1995; 155 Razzack J. A. (B34) 1997; 155 B1 B2 B4 B5 B6 Meyrick B. (B27) 1995; 268 B9 Watson P. L. (B39) 1996; 153 Wispe J. R. (B41) 1992; 267 B40 |
References_xml | – ident: B6 doi: 10.1084/jem.185.4.601 – volume: 267 start-page: 23937 year: 1992 ident: B41 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)35927-1 contributor: fullname: Wispe J. R. – ident: B16 doi: 10.1074/jbc.271.25.15182 – ident: B40 doi: 10.1152/ajpcell.1994.267.4.C893 – ident: B37 doi: 10.1016/S0039-6060(97)90016-7 – ident: B18 doi: 10.1074/jbc.272.2.1402 – volume: 268 start-page: L239 issue: 12 year: 1995 ident: B27 publication-title: Am. J. Phsyiol. contributor: fullname: Meyrick B. – volume: 155 start-page: 2858 year: 1995 ident: B7 publication-title: J. Immunol. doi: 10.4049/jimmunol.155.6.2858 contributor: fullname: Fehsel K. – ident: B28 doi: 10.1002/jcp.1041380122 – ident: B32 doi: 10.1016/S0014-5793(97)00480-8 – ident: B19 doi: 10.1074/jbc.272.49.31138 – ident: B9 doi: 10.1172/JCI117869 – volume: 270 start-page: H107 issue: 39 year: 1996 ident: B30 publication-title: Am. J. Physiol. contributor: fullname: Motterlini R. – ident: B2 doi: 10.1016/0014-5793(95)00188-F – ident: B4 doi: 10.1210/endo.136.7.7540548 – volume: 273 start-page: L856 issue: 17 year: 1997 ident: B31 publication-title: Am. J. Physiol. contributor: fullname: Pitt B. R. – ident: B42 doi: 10.1016/0092-8674(89)90944-6 – volume: 270 start-page: L689 issue: 14 year: 1996 ident: B13 publication-title: Am. J. Physiol. contributor: fullname: Hoyt D. G. – ident: B21 doi: 10.1096/fasebj.10.10.8751721 – ident: B22 doi: 10.1124/mol.52.2.195 – ident: B33 doi: 10.1172/JCI116578 – volume: 153 start-page: A571 year: 1996 ident: B39 publication-title: Am. J. Respir. Crit. Care Med. contributor: fullname: Watson P. L. – volume: 269 start-page: 26066 year: 1994 ident: B35 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)47160-8 contributor: fullname: Rubbo H. – ident: B36 doi: 10.1074/jbc.270.11.6017 – volume: 268 start-page: L697 issue: 12 year: 1995 ident: B8 publication-title: Am. J. Physiol. contributor: fullname: Freeman B. A. – ident: B24 doi: 10.1016/0092-8674(94)90005-1 – ident: B26 doi: 10.1038/41237 – volume: 155 start-page: A689 year: 1997 ident: B15 publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/ajrccm.155.2.9032214 contributor: fullname: Jackson R. – volume: 244 start-page: 6049 year: 1969 ident: B25 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)63504-5 contributor: fullname: McCord J. – volume: 162 start-page: 156 year: 1987 ident: B3 publication-title: Anal. Biochem. contributor: fullname: Chomcynski P. – volume: 269 start-page: L171 issue: 13 year: 1995 ident: B14 publication-title: Am. J. Physiol. contributor: fullname: Hoyt D. G. – ident: B1 doi: 10.1038/sj.gt.3300349 – volume: 271 start-page: L512 issue: 15 year: 1996 ident: B45 publication-title: Am. J. Physiol. contributor: fullname: Yee E. L. – ident: B11 doi: 10.1165/ajrcmb.18.4.2959 – ident: B23 doi: 10.1073/pnas.93.21.11853 – ident: B44 doi: 10.1126/science.275.5303.1129 – ident: B29 doi: 10.1002/(SICI)1097-4652(199611)169:2<333::AID-JCP12>3.0.CO;2-A – ident: B43 doi: 10.1165/ajrcmb.15.6.8969269 – ident: B5 doi: 10.1093/nar/22.23.5016 – ident: B12 doi: 10.1016/0092-8674(93)80066-N – ident: B20 doi: 10.1126/science.275.5303.1132 – volume: 155 start-page: A192 year: 1997 ident: B34 publication-title: Am. J. Respir. Crit. Care Med. contributor: fullname: Razzack J. A. – ident: B17 doi: 10.1016/0014-5793(95)01115-U – ident: B38 doi: 10.1007/BF03401618 |
SSID | ssj0005006 ssj0001534 |
Score | 1.8922834 |
Snippet | 3 Department of Pharmacology;
1 Division of Pediatric Critical Care
Medicine, Department of Anesthesiology;
2 Department of Surgery;
4 Division of... Our group recently reported that cultured sheep pulmonary artery endothelial cells (SPAECs) became resistant to lipopolysaccharide (LPS)-induced apoptosis... |
SourceID | crossref pubmed highwire |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 717 |
SubjectTerms | Adenoviridae Animals Apoptosis - drug effects Apoptosis - physiology Caspase 3 Caspases - metabolism Cell Nucleus - drug effects Cell Nucleus - physiology Cell Nucleus - ultrastructure Cells, Cultured Endothelium, Vascular - cytology Endothelium, Vascular - drug effects Endothelium, Vascular - physiology Genetic Vectors Humans Lipopolysaccharides - antagonists & inhibitors Lipopolysaccharides - pharmacology Liver - enzymology Mitochondria - drug effects Mitochondria - physiology Mitochondria - ultrastructure Moloney murine leukemia virus Nitric Oxide - physiology Nitric Oxide Synthase - genetics Nitric Oxide Synthase - metabolism Nitric Oxide Synthase Type II Nitrites - metabolism omega-N-Methylarginine - pharmacology Pulmonary Artery Recombinant Proteins - biosynthesis Recombinant Proteins - metabolism Sheep Superoxide Dismutase - metabolism Transfection Vacuoles - ultrastructure |
Title | Nitric oxide inhibits lipopolysaccharide-induced apoptosis in pulmonary artery endothelial cells |
URI | http://ajplung.physiology.org/cgi/content/abstract/275/4/L717 https://www.ncbi.nlm.nih.gov/pubmed/9755104 |
Volume | 275 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELbKEIIXBBsT3QD5Ae2lSkgTp0kexyhM0FVD6qTxFBLb0YK6tmLJRPcb-VHc2bETxiYYD7WixL64vi9n3_nuTMhrmOREkgWRw0FEOkywxMkzljmYfUzEecJygQHOR9PR4Qn7eBqe9no_O15LdZW7_OrGuJL_4SrcA75ilOwdOGuJwg24Bv5CCRyG8p94PC0xv_5g-aMUmPvjrMxxG2BervDkg_VFxjGmCp45oHjXuNGfwZNqiTlI0Hm8nkNP0WtO-XWuB3IhMB5rjkZ0NOhfdFeudmunk2tCmUWUXd4dTGqM3oVWyq8VzfHn5uTdTj275QEi9rK8VCvXD9iFd661IVxJLX_GGC9iYbdcV9oHfw64tpW_aD-iMVppWgOGiugzrnBG5qJTozfy9Oa2bOQw6MiwVmVdQe3rM1YaRLKO2J1EOgC0mcInkQ44_3N6CDHdbPZtNYcxwUDN2AWiLnNbAt2E3NcmSuu-qBSn0E8bQikSSoFQylIkdI_c90Hsobz99LnNXR966qRX-3cbb0Mg9OaWHv2-VjL5q68pQGohNHtCHjcaDN3XcHxKenKxSbb2F1m1PF_TPXpsmb1JHrw1Vw8PzMmCW-Srxi1VuKUGt_R23FKLW6hNLW6pxi3t4JYq3D4jJ-_Hs4NDpznpw-GMhZUTeiORJDwexUJw3MqOBSi-CR_lMCCciwBkSFD4fiQ9IeFXSDYEIcJjULfzMOLBNtlYLBfyOaHCi_mwGBZJHjBWJKBBZFKyEIhEeeZL2SeeGdN0pRO6pH_hZ5_4ZuzT9oNJ0UY0A2CYZm2DdCWKPtm7qZF5RZf6tman7U4SgRrjsZ2793SXPGq_sBdko_pey5ewaK7yVwqLUE6Pj34Bh6_Lhw |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nitric+oxide+inhibits+lipopolysaccharide-induced+apoptosis+in+pulmonary+artery+endothelial+cells&rft.jtitle=American+journal+of+physiology.+Lung+cellular+and+molecular+physiology&rft.au=Ceneviva%2C+Gary+D.&rft.au=Tzeng%2C+Edith&rft.au=Hoyt%2C+Dale+G.&rft.au=Yee%2C+Emily&rft.date=1998-10-01&rft.issn=1040-0605&rft.eissn=1522-1504&rft.volume=275&rft.issue=4&rft.spage=L717&rft.epage=L728&rft_id=info:doi/10.1152%2Fajplung.1998.275.4.L717&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_ajplung_1998_275_4_L717 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-0605&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-0605&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-0605&client=summon |