An improved data augmentation approach and its application in medical named entity recognition
Performing data augmentation in medical named entity recognition (NER) is crucial due to the unique challenges posed by this field. Medical data is characterized by high acquisition costs, specialized terminology, imbalanced distributions, and limited training resources. These factors make achieving...
Saved in:
Published in | BMC medical informatics and decision making Vol. 24; no. 1; pp. 221 - 13 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
05.08.2024
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Performing data augmentation in medical named entity recognition (NER) is crucial due to the unique challenges posed by this field. Medical data is characterized by high acquisition costs, specialized terminology, imbalanced distributions, and limited training resources. These factors make achieving high performance in medical NER particularly difficult. Data augmentation methods help to mitigate these issues by generating additional training samples, thus balancing data distribution, enriching the training dataset, and improving model generalization. This paper proposes two data augmentation methods-Contextual Random Replacement based on Word2Vec Augmentation (CRR) and Targeted Entity Random Replacement Augmentation (TER)-aimed at addressing the scarcity and imbalance of data in the medical domain. When combined with a deep learning-based Chinese NER model, these methods can significantly enhance performance and recognition accuracy under limited resources. Experimental results demonstrate that both augmentation methods effectively improve the recognition capability of medical named entities. Specifically, the BERT-BiLSTM-CRF model achieved the highest F1 score of 83.587%, representing a 1.49% increase over the baseline model. This validates the importance and effectiveness of data augmentation in medical NER. |
---|---|
AbstractList | Performing data augmentation in medical named entity recognition (NER) is crucial due to the unique challenges posed by this field. Medical data is characterized by high acquisition costs, specialized terminology, imbalanced distributions, and limited training resources. These factors make achieving high performance in medical NER particularly difficult. Data augmentation methods help to mitigate these issues by generating additional training samples, thus balancing data distribution, enriching the training dataset, and improving model generalization. This paper proposes two data augmentation methods-Contextual Random Replacement based on Word2Vec Augmentation (CRR) and Targeted Entity Random Replacement Augmentation (TER)-aimed at addressing the scarcity and imbalance of data in the medical domain. When combined with a deep learning-based Chinese NER model, these methods can significantly enhance performance and recognition accuracy under limited resources. Experimental results demonstrate that both augmentation methods effectively improve the recognition capability of medical named entities. Specifically, the BERT-BiLSTM-CRF model achieved the highest F1 score of 83.587%, representing a 1.49% increase over the baseline model. This validates the importance and effectiveness of data augmentation in medical NER.Performing data augmentation in medical named entity recognition (NER) is crucial due to the unique challenges posed by this field. Medical data is characterized by high acquisition costs, specialized terminology, imbalanced distributions, and limited training resources. These factors make achieving high performance in medical NER particularly difficult. Data augmentation methods help to mitigate these issues by generating additional training samples, thus balancing data distribution, enriching the training dataset, and improving model generalization. This paper proposes two data augmentation methods-Contextual Random Replacement based on Word2Vec Augmentation (CRR) and Targeted Entity Random Replacement Augmentation (TER)-aimed at addressing the scarcity and imbalance of data in the medical domain. When combined with a deep learning-based Chinese NER model, these methods can significantly enhance performance and recognition accuracy under limited resources. Experimental results demonstrate that both augmentation methods effectively improve the recognition capability of medical named entities. Specifically, the BERT-BiLSTM-CRF model achieved the highest F1 score of 83.587%, representing a 1.49% increase over the baseline model. This validates the importance and effectiveness of data augmentation in medical NER. Performing data augmentation in medical named entity recognition (NER) is crucial due to the unique challenges posed by this field. Medical data is characterized by high acquisition costs, specialized terminology, imbalanced distributions, and limited training resources. These factors make achieving high performance in medical NER particularly difficult. Data augmentation methods help to mitigate these issues by generating additional training samples, thus balancing data distribution, enriching the training dataset, and improving model generalization. This paper proposes two data augmentation methods—Contextual Random Replacement based on Word2Vec Augmentation (CRR) and Targeted Entity Random Replacement Augmentation (TER)—aimed at addressing the scarcity and imbalance of data in the medical domain. When combined with a deep learning-based Chinese NER model, these methods can significantly enhance performance and recognition accuracy under limited resources. Experimental results demonstrate that both augmentation methods effectively improve the recognition capability of medical named entities. Specifically, the BERT-BiLSTM-CRF model achieved the highest F1 score of 83.587%, representing a 1.49% increase over the baseline model. This validates the importance and effectiveness of data augmentation in medical NER. Abstract Performing data augmentation in medical named entity recognition (NER) is crucial due to the unique challenges posed by this field. Medical data is characterized by high acquisition costs, specialized terminology, imbalanced distributions, and limited training resources. These factors make achieving high performance in medical NER particularly difficult. Data augmentation methods help to mitigate these issues by generating additional training samples, thus balancing data distribution, enriching the training dataset, and improving model generalization. This paper proposes two data augmentation methods—Contextual Random Replacement based on Word2Vec Augmentation (CRR) and Targeted Entity Random Replacement Augmentation (TER)—aimed at addressing the scarcity and imbalance of data in the medical domain. When combined with a deep learning-based Chinese NER model, these methods can significantly enhance performance and recognition accuracy under limited resources. Experimental results demonstrate that both augmentation methods effectively improve the recognition capability of medical named entities. Specifically, the BERT-BiLSTM-CRF model achieved the highest F1 score of 83.587%, representing a 1.49% increase over the baseline model. This validates the importance and effectiveness of data augmentation in medical NER. Performing data augmentation in medical named entity recognition (NER) is crucial due to the unique challenges posed by this field. Medical data is characterized by high acquisition costs, specialized terminology, imbalanced distributions, and limited training resources. These factors make achieving high performance in medical NER particularly difficult. Data augmentation methods help to mitigate these issues by generating additional training samples, thus balancing data distribution, enriching the training dataset, and improving model generalization. This paper proposes two data augmentation methods--Contextual Random Replacement based on Word2Vec Augmentation (CRR) and Targeted Entity Random Replacement Augmentation (TER)--aimed at addressing the scarcity and imbalance of data in the medical domain. When combined with a deep learning-based Chinese NER model, these methods can significantly enhance performance and recognition accuracy under limited resources. Experimental results demonstrate that both augmentation methods effectively improve the recognition capability of medical named entities. Specifically, the BERT-BiLSTM-CRF model achieved the highest F1 score of 83.587%, representing a 1.49% increase over the baseline model. This validates the importance and effectiveness of data augmentation in medical NER. Keywords: Data augmentation, Deep learning, Medical named entity recognition, Text features, Replacement augmentation |
ArticleNumber | 221 |
Audience | Academic |
Author | Dan, Li Zhang, Jinxia Chen, Hongyu Chen, Minghong Lu, Yonghe |
Author_xml | – sequence: 1 givenname: Hongyu surname: Chen fullname: Chen, Hongyu organization: School of Information Management, Sun Yat-Sen University, Guangzhou, 510006, China – sequence: 2 givenname: Li surname: Dan fullname: Dan, Li organization: School of Information Management, Sun Yat-Sen University, Guangzhou, 510006, China – sequence: 3 givenname: Yonghe surname: Lu fullname: Lu, Yonghe email: luyonghe@mail.sysu.edu.cn organization: School of Artificial Intelligence, Sun Yat-Sen University, Zhuhai, 519082, China. luyonghe@mail.sysu.edu.cn – sequence: 4 givenname: Minghong surname: Chen fullname: Chen, Minghong organization: School of Information Management, Sun Yat-Sen University, Guangzhou, 510006, China – sequence: 5 givenname: Jinxia surname: Zhang fullname: Zhang, Jinxia email: zhjinxia@foxmail.com organization: Department of Cardiology, General Hospital of Southern Theatre Command of PLA, Guangzhou, 510010, China. zhjinxia@foxmail.com |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39103849$$D View this record in MEDLINE/PubMed |
BookMark | eNptUl1vFCEUnZga-6F_wAdD4osvW7nAfPBkNo3aJk180VcJw8CUzQysMNO0_753d2rbNYbwde85By6c0-IoxGCL4j3Qc4Cm-pyBSYAVZQJ7hePdq-IERM1WlRT10Yv1cXGa84ZSqBtevimOuQTKGyFPit_rQPy4TfHWdqTTkyZ67kcbJj35GIjeYkqbG6JDR_yUd4HBmyXpAxlth7uBBI0rgjQ_3ZNkTeyD32HeFq-dHrJ99zifFb--ff15cbm6_vH96mJ9vTJClNNKOOpky21VWsZMJSgAs1a7SoiGms65lou6LoXlramhrKrW1k0nuJBN29bS8bPiatHtot6obfKjTvcqaq_2gZh6pdPkzWCVrYwoJTDgkgrGoHWSdRJq1-Hxhreo9WXR2s4tVmWwqqSHA9HDTPA3qo-3CoBTRilHhU-PCin-mW2e1OizscOgg41zVpw2sgQhKobQj_9AN3FOAd8KUXjLRspSPKN6jRX44CIebHaiat1Q_M2G7bXO_4PC1tnRG_SO8xg_ILCFYFLMOVn3VCRQtbOYWiym0GJqbzF1h6QPL5_nifLXU_wBu17Nag |
Cites_doi | 10.1186/1472-6947-13-S1-S1 10.3390/s22165941 10.18653/v1/D15-1064 10.1093/bib/bbae067 10.1371/journal.pone.0194889 10.1177/0165551519860982 10.3390/app14010354 10.1007/s10586-017-1146-3 10.18653/v1/D18-1017 10.3390/app122010655 10.1007/s13042-023-02023-0 10.18653/v1/P18-1144 10.1111/coin.12599 10.1093/bib/bbac384 10.1093/bioinformatics/btad451 10.1016/j.neucom.2021.10.101 10.1007/978-3-319-96893-3_20 10.18653/v1/2021.findings-acl.84 10.1162/tacl_a_00104 10.18653/v1/P17-2090 10.1016/j.cosrev.2018.06.001 10.1109/ACCESS.2019.2942433 10.1109/WISA.2017.8 10.1186/s40537-021-00492-0 10.1016/j.jbi.2020.103395 10.21037/atm-22-3991 10.1016/j.neunet.2021.09.028 10.1016/j.ipm.2022.103041 10.1109/ACCESS.2023.3258179 10.3390/info11050255 10.1109/JBHI.2024.3383591 10.1007/s10489-023-04464-0 10.18653/v1/2020.wnut-1.26 10.3390/app10165711 10.1177/0165551521991037 10.18653/v1/P16-2025 10.1109/TCBB.2018.2868346 10.1145/3065386 |
ContentType | Journal Article |
Copyright | 2024. The Author(s). COPYRIGHT 2024 BioMed Central Ltd. 2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
Copyright_xml | – notice: 2024. The Author(s). – notice: COPYRIGHT 2024 BioMed Central Ltd. – notice: 2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7QO 7SC 7X7 7XB 88C 88E 8AL 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M0T M1P M7P P5Z P62 P64 PIMPY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1186/s12911-024-02624-x |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) ProQuest Healthcare Administration Database PML(ProQuest Medical Library) Biological Science Database ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection Advanced Technologies Database with Aerospace ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Biological Science Collection ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Health Management ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1472-6947 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_e6c4591213904221bf92d917fde65c3b A803918262 10_1186_s12911_024_02624_x 39103849 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: Guangzhou Science and Technology Planning Project grantid: 202002020036 |
GroupedDBID | --- -A0 0R~ 23N 2WC 3V. 53G 5VS 6J9 6PF 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AAWTL ABDBF ABUWG ACGFO ACGFS ACIWK ACPRK ACRMQ ADBBV ADINQ ADUKV AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS AQUVI ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C24 C6C CCPQU CGR CS3 CUY CVF DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS ECM EIF EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR INH INR ITC K6V K7- KQ8 LK8 M0N M0T M1P M48 M7P M~E NPM O5R O5S OK1 P2P P62 PGMZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SMD SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB AAYXX CITATION AFGXO 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D P64 PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c445t-4f0f9b3e65e22c640112eeaf64480cdffb347754e3bc71566be78d43498bb79f3 |
IEDL.DBID | RPM |
ISSN | 1472-6947 |
IngestDate | Tue Oct 22 15:12:41 EDT 2024 Tue Sep 17 21:28:41 EDT 2024 Sat Oct 26 04:25:57 EDT 2024 Thu Oct 10 22:13:59 EDT 2024 Wed Aug 14 18:51:13 EDT 2024 Tue Nov 12 23:36:24 EST 2024 Thu Sep 12 20:44:53 EDT 2024 Sat Nov 02 12:26:07 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Deep learning Data augmentation Text features Replacement augmentation Medical named entity recognition |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c445t-4f0f9b3e65e22c640112eeaf64480cdffb347754e3bc71566be78d43498bb79f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302003/ |
PMID | 39103849 |
PQID | 3091289954 |
PQPubID | 42572 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e6c4591213904221bf92d917fde65c3b pubmedcentral_primary_oai_pubmedcentral_nih_gov_11302003 proquest_miscellaneous_3089514462 proquest_journals_3091289954 gale_infotracmisc_A803918262 gale_infotracacademiconefile_A803918262 crossref_primary_10_1186_s12911_024_02624_x pubmed_primary_39103849 |
PublicationCentury | 2000 |
PublicationDate | 2024-08-05 |
PublicationDateYYYYMMDD | 2024-08-05 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC medical informatics and decision making |
PublicationTitleAlternate | BMC Med Inform Decis Mak |
PublicationYear | 2024 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | S Kobayashi (2624_CR54) 2018 N Peng (2624_CR18) 2015 M Fadaee (2624_CR42) 2017 2624_CR55 2624_CR53 L Li (2624_CR69) 2020; 17 B Zhao (2624_CR71) 2023; 39 C Jia (2624_CR6) 2020 L Hu (2624_CR30) 2024; 25 J Wei (2624_CR50) 2019 A Krizhevsky (2624_CR4) 2017; 60 J Devlin (2624_CR23) 2019 C Mai (2624_CR27) 2022; 59 2624_CR46 2624_CR44 R Zhang (2624_CR60) 2020 HL Chieu (2624_CR1) 2002 Y Wang (2624_CR26) 2024; 15 R Grishman (2624_CR8) 1996 N Peng (2624_CR19) 2016 C Shorten (2624_CR48) 2021; 8 2624_CR43 B Parlak (2624_CR14) 2017 2624_CR40 B Parlak (2624_CR15) 2023; 39 P Cao (2624_CR21) 2018 B Parlak (2624_CR66) 2016 J Du (2624_CR49) 2021 Y Zhang (2624_CR20) 2018 P Liu (2624_CR64) 2022; 473 V Yadav (2624_CR5) 2019 B Shi (2624_CR52) 2022; 12 J Yoo (2624_CR45) 2023; 11 2624_CR35 2624_CR39 R Collobert (2624_CR11) 2011; 12 H Li (2624_CR13) 2014 GG Şahin (2624_CR56) 2018 JPC Chiu (2624_CR68) 2016; 4 2624_CR70 B Ding (2624_CR59) 2020 D Croce (2624_CR38) 2022 S Makridakis (2624_CR3) 2018; 13 A Kumar (2624_CR57) 2019 X Tian (2624_CR28) 2023; 53 Z Liu (2624_CR12) 2010 J He (2624_CR17) 2008 Y Guo (2624_CR29) 2023; 14 Y Li (2624_CR41) 2020; 11 B Parlak (2624_CR10) 2019; 46 B Parlak (2624_CR16) 2021; 49 A Goyal (2624_CR9) 2018; 29 R Chalapathy (2624_CR33) 2016 B Zhao (2624_CR37) 2024; 28 GA Levow (2624_CR2) 2006 2624_CR24 B Tang (2624_CR31) 2013; 13 K Liu (2624_CR36) 2017 BT Atmaja (2624_CR47) 2022; 22 S Song (2624_CR67) 2019; 22 Y Song (2624_CR65) 2018 Y Yang (2624_CR58) 2020 B Ji (2624_CR7) 2020; 104 2624_CR63 2624_CR62 Y Jin (2624_CR22) 2019; 7 Y Wang (2624_CR25) 2020; 10 Y Wu (2624_CR32) 2015; 216 A Wang (2624_CR51) 2022; 10 S Li (2624_CR61) 2022; 145 J Ravikumar (2624_CR34) 2021; 11 B Zhao (2624_CR72) 2022; 23 |
References_xml | – volume: 13 start-page: S1 issue: S1 year: 2013 ident: 2624_CR31 publication-title: BMC Med Inform Decis Making doi: 10.1186/1472-6947-13-S1-S1 contributor: fullname: B Tang – volume: 216 start-page: 624 year: 2015 ident: 2624_CR32 publication-title: PubMed contributor: fullname: Y Wu – ident: 2624_CR46 – volume: 22 start-page: 5941 issue: 16 year: 2022 ident: 2624_CR47 publication-title: Sensors (Basel) doi: 10.3390/s22165941 contributor: fullname: BT Atmaja – start-page: 452 volume-title: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies , Volume 2 (Short Papers) year: 2018 ident: 2624_CR54 contributor: fullname: S Kobayashi – volume-title: Proceedings of the 2019 Conference of the North year: 2019 ident: 2624_CR57 contributor: fullname: A Kumar – start-page: 548 volume-title: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing year: 2015 ident: 2624_CR18 doi: 10.18653/v1/D15-1064 contributor: fullname: N Peng – volume: 25 start-page: bbae067 issue: 2 year: 2024 ident: 2624_CR30 publication-title: Brief Bioinform doi: 10.1093/bib/bbae067 contributor: fullname: L Hu – volume: 13 start-page: e0194889 issue: 3 year: 2018 ident: 2624_CR3 publication-title: PLoS One doi: 10.1371/journal.pone.0194889 contributor: fullname: S Makridakis – volume-title: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing year: 2018 ident: 2624_CR56 contributor: fullname: GG Şahin – volume: 46 start-page: 648 issue: 5 year: 2019 ident: 2624_CR10 publication-title: J Inf Sci doi: 10.1177/0165551519860982 contributor: fullname: B Parlak – volume-title: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies year: 2021 ident: 2624_CR49 contributor: fullname: J Du – volume-title: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers) year: 2018 ident: 2624_CR65 contributor: fullname: Y Song – volume: 14 start-page: 354 issue: 1 year: 2023 ident: 2624_CR29 publication-title: Appl Sci doi: 10.3390/app14010354 contributor: fullname: Y Guo – start-page: 7 volume-title: Proceedings of the Clinical Natural Language Processing Workshop (ClinicalNLP) year: 2016 ident: 2624_CR33 contributor: fullname: R Chalapathy – volume-title: Proceedings of the 16th conference on Computational linguistics year: 1996 ident: 2624_CR8 contributor: fullname: R Grishman – volume: 22 start-page: 5195 issue: S3 year: 2019 ident: 2624_CR67 publication-title: Cluster Comput doi: 10.1007/s10586-017-1146-3 contributor: fullname: S Song – start-page: 182 volume-title: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing year: 2018 ident: 2624_CR21 doi: 10.18653/v1/D18-1017 contributor: fullname: P Cao – volume: 12 start-page: 10655 issue: 20 year: 2022 ident: 2624_CR52 publication-title: Appl Sci (Basel) doi: 10.3390/app122010655 contributor: fullname: B Shi – volume: 15 start-page: 2199 year: 2024 ident: 2624_CR26 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-023-02023-0 contributor: fullname: Y Wang – volume-title: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) year: 2020 ident: 2624_CR6 contributor: fullname: C Jia – start-page: 1554 volume-title: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) year: 2018 ident: 2624_CR20 doi: 10.18653/v1/P18-1144 contributor: fullname: Y Zhang – start-page: 269 volume-title: Studies in computational intelligence year: 2017 ident: 2624_CR14 contributor: fullname: B Parlak – volume: 39 start-page: 900 issue: 5 year: 2023 ident: 2624_CR15 publication-title: Comput Intell doi: 10.1111/coin.12599 contributor: fullname: B Parlak – volume: 23 start-page: bbac384 issue: 6 year: 2022 ident: 2624_CR72 publication-title: Brief Bioinform doi: 10.1093/bib/bbac384 contributor: fullname: B Zhao – volume-title: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) year: 2020 ident: 2624_CR59 contributor: fullname: B Ding – volume: 39 start-page: btad451 issue: 8 year: 2023 ident: 2624_CR71 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btad451 contributor: fullname: B Zhao – volume-title: Proceedings of the 19th international conference on computational linguistics year: 2002 ident: 2624_CR1 contributor: fullname: HL Chieu – volume: 473 start-page: 37 year: 2022 ident: 2624_CR64 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.10.101 contributor: fullname: P Liu – volume-title: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) year: 2020 ident: 2624_CR60 contributor: fullname: R Zhang – ident: 2624_CR53 – ident: 2624_CR70 – ident: 2624_CR35 doi: 10.1007/978-3-319-96893-3_20 – ident: 2624_CR43 doi: 10.18653/v1/2021.findings-acl.84 – volume-title: Proceedings of 2016 11th Iberian Conference on Information Systems and Technologies (CISTI) year: 2016 ident: 2624_CR66 contributor: fullname: B Parlak – volume: 4 start-page: 357 year: 2016 ident: 2624_CR68 publication-title: Trans Assoc Comput Linguist doi: 10.1162/tacl_a_00104 contributor: fullname: JPC Chiu – volume: 11 start-page: 1689 issue: 2 year: 2021 ident: 2624_CR34 publication-title: Int J Power Electron Drive Syst Int J Electric Comput Eng contributor: fullname: J Ravikumar – start-page: 567 volume-title: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) year: 2017 ident: 2624_CR42 doi: 10.18653/v1/P17-2090 contributor: fullname: M Fadaee – volume-title: A survey on recent advances in named entity recognition from deep learning models. arXiv [cs.CL] year: 2019 ident: 2624_CR5 contributor: fullname: V Yadav – volume: 29 start-page: 21 year: 2018 ident: 2624_CR9 publication-title: Comput Sci Rev doi: 10.1016/j.cosrev.2018.06.001 contributor: fullname: A Goyal – ident: 2624_CR44 – volume: 12 start-page: 2493 year: 2011 ident: 2624_CR11 publication-title: J Mach Learn Res contributor: fullname: R Collobert – volume: 7 start-page: 136694 year: 2019 ident: 2624_CR22 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2942433 contributor: fullname: Y Jin – start-page: 105 volume-title: Proceedings of 2017 14th Web Information Systems and Applications Conference (WISA) year: 2017 ident: 2624_CR36 doi: 10.1109/WISA.2017.8 contributor: fullname: K Liu – volume: 8 start-page: 101 issue: 1 year: 2021 ident: 2624_CR48 publication-title: J. Big Data doi: 10.1186/s40537-021-00492-0 contributor: fullname: C Shorten – volume-title: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) year: 2019 ident: 2624_CR50 contributor: fullname: J Wei – start-page: 4587 volume-title: Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies year: 2022 ident: 2624_CR38 contributor: fullname: D Croce – ident: 2624_CR63 – ident: 2624_CR40 – volume: 104 start-page: 103395 year: 2020 ident: 2624_CR7 publication-title: J Biomed Inform doi: 10.1016/j.jbi.2020.103395 contributor: fullname: B Ji – volume: 10 start-page: 1061 issue: 19 year: 2022 ident: 2624_CR51 publication-title: Ann Transl Med doi: 10.21037/atm-22-3991 contributor: fullname: A Wang – volume: 145 start-page: 121 year: 2022 ident: 2624_CR61 publication-title: Neural Netw doi: 10.1016/j.neunet.2021.09.028 contributor: fullname: S Li – ident: 2624_CR24 – volume: 59 start-page: 103041 issue: 5 year: 2022 ident: 2624_CR27 publication-title: Inf Process Manage doi: 10.1016/j.ipm.2022.103041 contributor: fullname: C Mai – volume: 11 start-page: 26393 year: 2023 ident: 2624_CR45 publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3258179 contributor: fullname: J Yoo – start-page: 108 volume-title: Proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing year: 2006 ident: 2624_CR2 contributor: fullname: GA Levow – volume: 11 start-page: 255 issue: 5 year: 2020 ident: 2624_CR41 publication-title: Information doi: 10.3390/info11050255 contributor: fullname: Y Li – volume: 28 start-page: 4281 issue: 7 year: 2024 ident: 2624_CR37 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2024.3383591 contributor: fullname: B Zhao – volume-title: Findings of the Association for Computational Linguistics: EMNLP 2020 year: 2020 ident: 2624_CR58 contributor: fullname: Y Yang – volume-title: Proceedings of the Sixth SIGHAN Workshop on Chinese Language Processing year: 2008 ident: 2624_CR17 contributor: fullname: J He – volume: 53 start-page: 19028 issue: 16 year: 2023 ident: 2624_CR28 publication-title: Appl Intell doi: 10.1007/s10489-023-04464-0 contributor: fullname: X Tian – start-page: 2532 volume-title: Proceedings of International Conference on Language Resources and Evaluation year: 2014 ident: 2624_CR13 contributor: fullname: H Li – start-page: 4171 volume-title: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies year: 2019 ident: 2624_CR23 contributor: fullname: J Devlin – ident: 2624_CR62 – start-page: 634 volume-title: Proceedings of the Advanced intelligent computing theories and applications, and 6th international conference on Intelligent computing year: 2010 ident: 2624_CR12 contributor: fullname: Z Liu – ident: 2624_CR39 doi: 10.18653/v1/2020.wnut-1.26 – volume: 10 start-page: 5711 issue: 16 year: 2020 ident: 2624_CR25 publication-title: Appl Sci doi: 10.3390/app10165711 contributor: fullname: Y Wang – volume: 49 start-page: 59 issue: 1 year: 2021 ident: 2624_CR16 publication-title: J Inf Sci doi: 10.1177/0165551521991037 contributor: fullname: B Parlak – ident: 2624_CR55 – start-page: 149 volume-title: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) year: 2016 ident: 2624_CR19 doi: 10.18653/v1/P16-2025 contributor: fullname: N Peng – volume: 17 start-page: 841 issue: 3 year: 2020 ident: 2624_CR69 publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2018.2868346 contributor: fullname: L Li – volume: 60 start-page: 84 issue: 6 year: 2017 ident: 2624_CR4 publication-title: Commun ACM doi: 10.1145/3065386 contributor: fullname: A Krizhevsky |
SSID | ssj0017835 |
Score | 2.4186292 |
Snippet | Performing data augmentation in medical named entity recognition (NER) is crucial due to the unique challenges posed by this field. Medical data is... Abstract Performing data augmentation in medical named entity recognition (NER) is crucial due to the unique challenges posed by this field. Medical data is... |
SourceID | doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 221 |
SubjectTerms | Algorithms Analysis Annotations Classification Computational linguistics Data augmentation Data mining Deep Learning Electronic health records Evaluation Humans Language Language processing Machine learning Medical named entity recognition Medical records Methods Natural language interfaces Natural Language Processing Neural networks Recognition Replacement augmentation Semantics Text categorization Text features Training |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KDqWX0nedpkGFQg_FxA9ZKx23JSEU0lMDOVVY0qjdQ7Sluwvpv8-MbC9reuilBxtjycKe0WM-zcxngPdKVqjrqMqFkqqUTmJpEF2pSCM-kIEbO04UvvqqLq_ll5vu5uBXXxwTNtADD4I7Q-VlZ5h4zDBdVe2iaQJhjBhQdb51efatzASmRv8B72dMKTJanW1oVeOtwEbSoeh8N1uGMlv_33PywaI0D5g8WIEunsDj0XQUy-GVn8IDTM_g4dXoHH8O35dJrPIeAQbBkZ-i3_24HXOLkpjYw0WfglhtN-LAdy1WSdwOLhuReroSOX33j9jHF63TC7i-OP_2-bIcf59Qeim7bSljFY1rSUzYNJ6UQqYVYh8ZkZEeYnStZP47bJ1fMIxzuNBBttJo5xYmti_hKK0TvgYRpPdVF5xuAuHJQLA5uKrufdToa3RVAR8nadpfA0uGzehCKzvI3pLsbZa9vSvgEwt8X5MZrvMN0rsd9W7_pfcCPrC6LI9D0onvx3QCemFmtLJLzdz3BJ6aAk5mNWn8-HnxpHA7jt-NbcmMYijayQLe7Yv5SY5JS7jecR1N5inBaWri1dA_9p9EbVetlqYAPes5s2-el6TVz8zuXbMrmeba4_8hpTfwqMm9XpdVdwJH2987fEtW1Nad5gFzD147GYM priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7aDZReStOn2zSoUOihmPgha-VT2ZSEEEgopYGcKqxXsofIaXYX0n_fGVt21xRyWLNYsrFmNNI8PwF8EjxzMvcinQsuUq65S2vndCqQI8aigusrKhQ-OxcnF_z0srqMDrdVTKsc1sRuobatIR_5QYkbGxkHFf96-zulU6MouhqP0HgMOwVaCtkMdg6Pzr__GOMI5NcYSmWkOFjh7kYuwYLjT-D1frIddaj9_6_NW5vTNHFyayc6fg7PogrJFj3Pd-GRCy_gyVkMkr-EX4vAlp2vwFlGGaCs2VzdxBqjwAYUcdYEy5brFduKYbNlYDd96IaFBv-xroz3DxvzjNrwCi6Oj35-O0njMQqp4bxap9xnvtalE5UrCoPMQRXLucaTZYb88F6XnHDwXKnNnMw57ebS8pLXUut57cvXMAttcG-BWW5MVlktC4t2pUXz2eosb4yXzuROZwl8Gaipbnu0DNVZGVKonvYKaa862qv7BA6J4GNPQrrubrR3VyoKjnLC8Kom4Lma4Mpy7evCoo3pLQ7IlDqBz8QuRfKIPDFNLCvADyZkK7WQhIGPRlSRwN6kJ8qRmTYPDFdRjlfq36xL4OPYTE9Sblpw7Yb6SFRT0azGV7zp58c4JHx3VkpeJyAnM2cy5mlLWF53KN85hZRxzX338He9h6dFN59lmlV7MFvfbdwH1JPWej8Kw19KmhMR priority: 102 providerName: ProQuest – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA_HCeKL-G31lAiCD1LtttNs-iCyischnE8u3JOhSSbnwl1W9wPu_ntn0nbd4j36sMuySUszM2nml5n5RYjXCgrUk6DyqQKVgwXMG0SbK9KI8-TghpoLhU-_qZM5fD2rzw7EcNxRL8D1jdCOz5Oary7eXf2-_kgT_kOa8Fq9X9OaxRt9JdBH0Tf5lLdKIKTOqXzwN6rAuxxD4cyN140Wp8Th_--bem-pGqdR7q1Lx_fE3d6hlLPOAu6LA4wPxO3TPmT-UPyYRblIOwfoJeeDynZ7ftlXHEU5cIrLNnq52KzlXkRbLqK87AI5Mrb0S6ai3mu5yzpaxkdifvzl--eTvD9UIXcA9SaHUITGVqhqLEtHqiKHC7ENjNNIOyHYCpgVDyvrpgzuLE61hwoabe20CdVjcRiXEZ8K6cG5ovZWl55Qpicw7W0xaV3Q6CZoi0y8HaRpfnXcGSZhDq1MJ3tDsjdJ9uYqE59Y4LuezHud_liuzk0_jQwqB3XDNHQNk5dNbGhKT4gzeBqQq2wm3rC6DNsL6cS1fZEBPTDzXJmZZkZ8glRlJo5GPWlWuXHzoHAzGKWpyLligFpDJl7tmvlKzlSLuNxyH01OK4FsusWTzj52Q6J7F5WGJhN6ZDmjMY9b4uJn4vyecICZ3sDP_oeUnos7ZbJ6nRf1kTjcrLb4gnyrjX2ZJswf4CIhvA priority: 102 providerName: Scholars Portal |
Title | An improved data augmentation approach and its application in medical named entity recognition |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39103849 https://www.proquest.com/docview/3091289954 https://www.proquest.com/docview/3089514462 https://pubmed.ncbi.nlm.nih.gov/PMC11302003 https://doaj.org/article/e6c4591213904221bf92d917fde65c3b |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZtB2MvY_d564IGgz0MN77IsvyYlGZlkFLKCmEPE9atNSxKaRJo__3Oke0Qs7c9RIRIDpbPOdH5zuULIV84S6xIHY9LznjMFLNxZa2KOUhEG3BwXYGNwvMLfn7NfiyKxQHhfS9MKNrXqjnxf5YnvrkNtZV3Sz3u68TGl_PTFLNtGIE7JIegoT1G73IHGMvo22MEH6_hRMMwYMbgxWFE6um8QmJwJNDcO40Caf-_P817Z9OwbnLvIJq9IM87D5JO2jt9SQ6sf0Wezrsc-Wvye-JpE0IF1lAsAKX19mbZtRh52pOI09ob2mzWdC-FTRtPl23mhvoa3tHQxftId2VGK_-GXM_Ofp6ex92_KMSasWITM5e4SuWWFzbLNMgGPCxra4fADMThnMoZ0uDZXOkS0ZyypTAsZ5VQqqxc_pYc-ZW37wk1TOukMEpkBmClAfRsVJLW2gmrU6uSiHzrn6a8a8kyZAAZgstWDBLEIIMY5ENEpvjAdyuR6Dp8sLq_kZ24peWaFRXyzlXIVpYqV2UGIKYzsCGdq4h8RXFJNEeQia67rgK4YSS2khOBFPiAobKIHA9Wghnp4XQvcNmZ8Vrm4E0hIi1YRD7vpvFKLE3zdrXFNQK8VEDV8BXvWv3YbalXs4iIgeYM9jycAZ0PJN-9jn_4_0s_kmdZUHsRJ8UxOdrcb-0ncKE2agR2syhhFLPvI_JkenZxeTUK4QgY50zAeDX9NQp29Rcw2SEa |
link.rule.ids | 230,315,730,783,787,867,888,2109,2228,12068,12777,21400,24330,27936,27937,31731,31732,33385,33386,33756,33757,43322,43612,43817,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLdgSLAL4nsZA4yExAFFy4fjOidUJkqBdadN2gkr_ho9zNnWVtr-e95znNAIiUOjKnai-D3b7_tnQj5wllmRO55OOOMpU8ymtbUq5cARbUDBdRUWCi9O-PyM_TivzqPDbRXTKvs9MWzUptXoIz8sQbChcVCxz1fXKZ4ahdHVeITGffKAlSCrsVJ89m2IIqBXoy-UEfxwBbINHYIFgx-H6-1IGAXM_n935i3RNE6b3JJDsyfkcVQg6bTj-FNyz_pn5OEihsifk19TT5fBU2ANxfxP2mwuLmOFkac9hjhtvKHL9YpuRbDp0tPLLnBDfQP_aCjivaNDllHrX5Cz2dfTo3kaD1FINWPVOmUuc7UqLa9sUWhgDShY1jYO7TLghnOqZIiCZ0ulJ2jMKTsRhpWsFkpNale-JDu-9XaPUMO0ziqjRGHAqjRgPBuV5Y12wurcqiwhn3pqyqsOK0MGG0Nw2dFeAu1loL28TcgXJPjQE3Guw4325kLGZSMt16yqEXauRrCyXLm6MGBhOgMD0qVKyEdkl8TVCDzRTSwqgA9GXCs5FYiADyZUkZCDUU9YRXrc3DNcxlW8kn_nXELeD834JGamedtusI8AJRWManjFq25-DEOCd2elYHVCxGjmjMY8bvHL3wHjO8eAMuy4-___rnfk0fx0cSyPv5_8fE12izC3RZpVB2RnfbOxb0BjWqu3YVn8Acf_FJw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BkSouvB-GAouExAE58WO9WR9DISqPVD1QqRISK--rWG02UeNIwK9nZm1HMdx6iBV511HGM-Odb2fmMyFvOEusSB2PJ5zxmClm49JaFXPQiDYQ4LoCG4Xnx_zolH0-K866qsp1V1bptapH_nIx8vXPUFu5WuhxXyc2Ppkfpphtwx24lXHjm-QWOG3Ce6TeZRBwR6NvkhF8vIZ1DTcDMwYfDkckoM5LpAdHGs2dNSlQ9___gN5ZoYbVkzvL0ewu-d4L0lahXIw2jRrpP_9wPF5P0nvkThel0mk75z65Yf0Dsj_v8vAPyY-pp3XYjrCGYpEprTbni66NydOeqJxW3tC6WdOdNDmtPV202SHqK_hGQ6fwb7otZVr6R-R09vHb4VHcvakh1owVTcxc4kqVW17YLNOgf4jirK0cgj9QuXMqZ0i1Z3OlJ4gYlZ0Iw3JWCqUmpcsfkz2_9PYpoYZpnRRGicwAdDWA0I1K0ko7YXVqVRKRd72u5Kol5JAByAguWyVLULIMSpa_IvIe1bmdiWTa4cTy6lx2N1parllRIrddiYxoqXJlZgDGOgMC6VxF5C0ag0SXB43rqutcgD-M5FlyKpBmH3BaFpGDwUxwVT0c7s1Jdo-KtcwhYkPUW7CIvN4O45VY_ubtcoNzBETCgNzhJ5601rcVqTfiiIiBXQ5kHo6AtQUi8d66nl3_0ldk_-TDTH79dPzlObmdBf8ScVIckL3mamNfQMTWqJfBNf8CpxU_Zg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+data+augmentation+approach+and+its+application+in+medical+named+entity+recognition&rft.jtitle=BMC+medical+informatics+and+decision+making&rft.au=Hongyu+Chen&rft.au=Li+Dan&rft.au=Yonghe+Lu&rft.au=Minghong+Chen&rft.date=2024-08-05&rft.pub=BMC&rft.eissn=1472-6947&rft.volume=24&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1186%2Fs12911-024-02624-x&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e6c4591213904221bf92d917fde65c3b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1472-6947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1472-6947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1472-6947&client=summon |