Stacking fault energies of Mn, Co and Nb alloyed austenitic stainless steels

The alloying effects of Mn, Co and Nb on the stacking fault energy (SFE) of austenitic stainless steels, Fe–Cr–Ni with various Ni contents, are investigated via quantum–mechanical first-principles calculations. In the composition range ( c Cr = 20%, 8 ⩽ c Ni ⩽ 20%, 0 ⩽ c Mn, c Co, c Nb ⩽ 8%, balance...

Full description

Saved in:
Bibliographic Details
Published inActa materialia Vol. 59; no. 14; pp. 5728 - 5734
Main Authors Lu, Song, Hu, Qing-Miao, Johansson, Börje, Vitos, Levente
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.08.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The alloying effects of Mn, Co and Nb on the stacking fault energy (SFE) of austenitic stainless steels, Fe–Cr–Ni with various Ni contents, are investigated via quantum–mechanical first-principles calculations. In the composition range ( c Cr = 20%, 8 ⩽ c Ni ⩽ 20%, 0 ⩽ c Mn, c Co, c Nb ⩽ 8%, balance Fe) studied here, it is found that Mn always decreases the SFE at 0 K but increases it at room temperature in high-Ni ( c Ni ≳ 16%) alloys. The SFE always decreases with increasing Co content. Niobium increases the SFE significantly in low-Ni alloys; however, this effect is strongly diminished in high-Ni alloys. The SFE-enhancing effect of Ni usually observed in Fe–Cr–Ni alloys is inverted to an SFE-decreasing effect by Nb for c Nb ≳ 3%. The revealed nonlinear composition dependencies are explained in terms of the peculiar magnetic contributions to the total SFE.
AbstractList The alloying effects of Mn, Co and Nb on the stacking fault energy (SFE) of austenitic stainless steels, Fe–Cr–Ni with various Ni contents, are investigated via quantum–mechanical first-principles calculations. In the composition range ( c Cr = 20%, 8 ⩽ c Ni ⩽ 20%, 0 ⩽ c Mn, c Co, c Nb ⩽ 8%, balance Fe) studied here, it is found that Mn always decreases the SFE at 0 K but increases it at room temperature in high-Ni ( c Ni ≳ 16%) alloys. The SFE always decreases with increasing Co content. Niobium increases the SFE significantly in low-Ni alloys; however, this effect is strongly diminished in high-Ni alloys. The SFE-enhancing effect of Ni usually observed in Fe–Cr–Ni alloys is inverted to an SFE-decreasing effect by Nb for c Nb ≳ 3%. The revealed nonlinear composition dependencies are explained in terms of the peculiar magnetic contributions to the total SFE.
The alloying effects of Mn, Co and Nb on the stacking fault energy (SFE) of austenitic stainless steels, Fe-Cr-Ni with various Ni contents, are investigated via quantum-mechanical first-principles calculations. In the composition range (c(Cr) = 20%, 8 <= c(Ni) <= 20%, 0 <= c(Mn), c(Co), c(Nb) <= 8%, balance Fe) studied here, it is found that Mn always decreases the SFE at 0 K but increases it at room temperature in high-Ni (c(Ni) greater than or similar to 16%) alloys. The SFE always decreases with increasing Co content. Niobium increases the SFE significantly in low-Ni alloys; however, this effect is strongly diminished in high-Ni alloys. The SFE-enhancing effect of Ni usually observed in Fe-Cr-Ni alloys is inverted to an SFE-decreasing effect by Nb for c(Nb) greater than or similar to 3%. The revealed nonlinear composition dependencies are explained in terms of the peculiar magnetic contributions to the total SFE.
The alloying effects of Mn, Co and Nb on the stacking fault energy (SFE) of austenitic stainless steels, FeCrNi with various Ni contents, are investigated via quantummechanical first-principles calculations. In the composition range (cCr = 20%, 8 cNi 20%, 0 cMn, cCo, cNb 8%, balance Fe) studied here, it is found that Mn always decreases the SFE at 0 K but increases it at room temperature in high-Ni (cNi greater than or equal to 16%) alloys. The SFE always decreases with increasing Co content. Niobium increases the SFE significantly in low-Ni alloys; however, this effect is strongly diminished in high-Ni alloys. The SFE-enhancing effect of Ni usually observed in FeCrNi alloys is inverted to an SFE-decreasing effect by Nb for cNb greater than or equal to 3%. The revealed nonlinear composition dependencies are explained in terms of the peculiar magnetic contributions to the total SFE.
Author Vitos, Levente
Lu, Song
Hu, Qing-Miao
Johansson, Börje
Author_xml – sequence: 1
  givenname: Song
  surname: Lu
  fullname: Lu, Song
  email: songlu@mse.kth.se
  organization: Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm SE-100 44, Sweden
– sequence: 2
  givenname: Qing-Miao
  surname: Hu
  fullname: Hu, Qing-Miao
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
– sequence: 3
  givenname: Börje
  surname: Johansson
  fullname: Johansson, Börje
  organization: Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm SE-100 44, Sweden
– sequence: 4
  givenname: Levente
  surname: Vitos
  fullname: Vitos, Levente
  organization: Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm SE-100 44, Sweden
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24384487$$DView record in Pascal Francis
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-39520$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-158598$$DView record from Swedish Publication Index
BookMark eNqNkU1vEzEQhi1UJNrAT0DyBXHpLvba3uyKA6oCtEgBDnxcrVnvbHDq2KntBfXf4yiBA5eiOXgO7_uMpeeCnPngkZDnnNWc8fbVtgaTYQe5bhjnNVM1k_0jcs67pagaqcRZ2YXqq1Yq-YRcpLRljDdLyc7J-ksGc2v9hk4wu0zRY9xYTDRM9KO_pKtAwY_000DBuXCPI4U5ZfQ2W0NTBusdplQ2RJeekscTuITPTu-CfHv_7uvqplp_vv6wulpXRkqVKwEdjL0yshVyHBrOsYxSY2vacQBuVKd64BMiti1TILhkrJkGtuxFI0SvxIJcHrnpF-7nQe-j3UG81wGsfmu_X-kQN3qeNT-Quv-L3-YfurAbVuIvj_F9DHczpqx3Nhl0DjyGOem-fESJtj2AX5ySkAy4KYI3Nv3lN1J0UhYJC_L6mDMxpBRx0sZmyDb4HME6zZk-iNRbfRKpDyI1U7qILG31T_vPgYd6b469YgZ_Wow6GYve4GgjmqzHYB8g_AZCIrxU
CitedBy_id crossref_primary_10_1016_j_msea_2020_140084
crossref_primary_10_3390_met10091123
crossref_primary_10_1016_j_jnucmat_2013_05_077
crossref_primary_10_1016_j_matlet_2020_127348
crossref_primary_10_1016_j_commatsci_2012_05_051
crossref_primary_10_1002_srin_202300885
crossref_primary_10_3390_met9111163
crossref_primary_10_1016_j_actamat_2017_02_004
crossref_primary_10_1016_j_triboint_2020_106847
crossref_primary_10_1007_s12540_015_4320_2
crossref_primary_10_1016_j_matdes_2019_108392
crossref_primary_10_3390_mi16030309
crossref_primary_10_1016_j_ijfatigue_2020_105499
crossref_primary_10_1016_j_matchar_2018_07_028
crossref_primary_10_1016_j_commatsci_2014_11_041
crossref_primary_10_3390_met10020283
crossref_primary_10_1016_j_msea_2019_05_079
crossref_primary_10_1016_j_actamat_2012_04_024
crossref_primary_10_1007_s11665_019_04233_6
crossref_primary_10_1016_j_corsci_2023_111693
crossref_primary_10_1016_j_wear_2025_205877
crossref_primary_10_1007_s11433_012_4951_y
crossref_primary_10_1016_j_msea_2015_06_041
crossref_primary_10_1016_j_surfcoat_2022_128479
crossref_primary_10_1080_14786435_2016_1140912
crossref_primary_10_1016_j_matchar_2023_112996
crossref_primary_10_1016_j_actamat_2018_10_017
crossref_primary_10_1016_j_intermet_2023_107882
crossref_primary_10_1016_j_matchar_2021_111428
crossref_primary_10_1007_s10853_017_1252_x
crossref_primary_10_1016_j_jmst_2023_11_053
crossref_primary_10_1016_j_surfcoat_2020_125435
crossref_primary_10_1016_j_actamat_2012_10_023
crossref_primary_10_1016_j_msea_2023_145758
crossref_primary_10_1103_PhysRevB_93_094101
crossref_primary_10_1016_j_jallcom_2021_163331
crossref_primary_10_1103_PhysRevB_93_094103
crossref_primary_10_1007_s00339_022_05848_8
crossref_primary_10_1080_09603409_2018_1564448
crossref_primary_10_1016_j_scriptamat_2019_12_013
crossref_primary_10_1007_s42243_021_00588_0
crossref_primary_10_1038_s41598_020_58273_3
crossref_primary_10_1016_j_mtla_2018_08_020
crossref_primary_10_1038_s41524_020_00452_x
crossref_primary_10_1016_j_matpr_2015_07_376
crossref_primary_10_3390_ma14237160
crossref_primary_10_1016_j_ijhydene_2019_04_229
crossref_primary_10_1016_j_scriptamat_2022_114625
crossref_primary_10_1103_PhysRevB_91_224203
crossref_primary_10_1007_s12540_020_00821_7
crossref_primary_10_1016_j_actamat_2020_11_012
crossref_primary_10_1002_adem_201800617
crossref_primary_10_1016_j_ijplas_2024_104020
crossref_primary_10_1088_0953_8984_26_26_265005
crossref_primary_10_1134_S0036029521100086
crossref_primary_10_1016_j_physb_2016_10_004
crossref_primary_10_1016_j_matchar_2023_113240
crossref_primary_10_1016_j_msea_2022_143832
crossref_primary_10_1103_PhysRevB_90_054109
crossref_primary_10_1007_s11661_012_1378_z
crossref_primary_10_1155_2015_639519
crossref_primary_10_1016_j_actamat_2016_09_038
crossref_primary_10_1016_j_commatsci_2021_110326
crossref_primary_10_1103_PhysRevB_93_214115
crossref_primary_10_1007_s11661_024_07465_x
crossref_primary_10_3390_met11050715
crossref_primary_10_1016_j_jallcom_2024_177321
crossref_primary_10_1016_j_scriptamat_2021_113891
crossref_primary_10_1016_j_matchar_2022_112384
crossref_primary_10_1016_j_mtcomm_2024_110210
crossref_primary_10_1007_s11661_017_3960_x
crossref_primary_10_1016_j_msea_2019_138079
crossref_primary_10_1134_S0036029517110040
crossref_primary_10_1088_0953_8984_28_39_395001
crossref_primary_10_1016_j_msea_2018_11_131
crossref_primary_10_1016_j_scriptamat_2022_114806
crossref_primary_10_1103_PhysRevB_95_094112
crossref_primary_10_1016_j_matpr_2021_03_397
crossref_primary_10_1016_j_msea_2025_147991
crossref_primary_10_1134_S0036029522040061
crossref_primary_10_1002_srin_202200425
crossref_primary_10_1016_j_jnucmat_2022_153767
crossref_primary_10_1016_j_engfracmech_2019_03_049
crossref_primary_10_1016_j_jallcom_2016_12_289
crossref_primary_10_1134_S0036029519040037
crossref_primary_10_1007_s11661_023_07289_1
crossref_primary_10_1080_14786435_2018_1429690
crossref_primary_10_2139_ssrn_4165263
crossref_primary_10_1115_1_4031398
crossref_primary_10_1016_j_apsusc_2019_02_079
crossref_primary_10_1016_j_jnucmat_2018_11_019
crossref_primary_10_1016_j_matdes_2020_109396
crossref_primary_10_1016_j_scriptamat_2022_115223
crossref_primary_10_3390_met8050369
crossref_primary_10_1016_j_jmrt_2024_09_218
crossref_primary_10_1016_j_matchar_2018_04_035
crossref_primary_10_1007_s00339_017_1297_3
crossref_primary_10_1016_j_actamat_2017_05_049
crossref_primary_10_1016_j_matchar_2016_10_017
crossref_primary_10_1016_j_msea_2025_148074
crossref_primary_10_2355_isijinternational_ISIJINT_2020_689
crossref_primary_10_1016_j_commatsci_2016_04_031
crossref_primary_10_3390_met8100832
crossref_primary_10_1016_j_intermet_2024_108589
crossref_primary_10_1007_s12613_015_1112_0
crossref_primary_10_1016_j_actamat_2016_03_042
crossref_primary_10_1016_j_actamat_2017_11_042
crossref_primary_10_2174_2352094909666191030111523
crossref_primary_10_1016_j_jmrt_2024_02_184
crossref_primary_10_1016_j_msea_2023_145549
crossref_primary_10_1016_j_ijhydene_2021_09_261
crossref_primary_10_1016_j_nme_2018_03_004
crossref_primary_10_1016_j_msea_2024_147591
crossref_primary_10_1007_s11665_016_2363_2
crossref_primary_10_1016_j_ijmecsci_2022_107931
crossref_primary_10_1103_PhysRevB_102_144101
crossref_primary_10_1080_02286203_2017_1331109
crossref_primary_10_1007_s11661_017_4212_9
crossref_primary_10_1016_j_msea_2018_01_029
crossref_primary_10_1016_j_matchar_2015_03_031
crossref_primary_10_1073_pnas_1400786111
crossref_primary_10_1016_j_matdes_2024_113123
crossref_primary_10_1557_s43577_021_00190_5
Cites_doi 10.1088/0305-4608/15/6/018
10.1016/j.actamat.2007.07.015
10.1016/0036-9748(80)90110-6
10.1103/PhysRevLett.87.156401
10.1016/j.actamat.2010.10.037
10.1103/PhysRevLett.77.3865
10.1016/0364-5916(78)90010-X
10.1016/j.mser.2009.03.001
10.1103/PhysRevB.64.014107
10.1016/S0921-5093(98)00994-0
10.1016/0001-6160(79)90074-9
10.1088/0022-3719/21/6/012
10.1007/BF03038370
10.1016/0025-5416(78)90194-5
10.1088/0022-3719/20/32/001
10.1002/pssa.2210360233
10.1103/PhysRev.156.809
10.1088/1009-1963/11/6/315
10.1007/BF02642042
10.1016/j.actamat.2006.04.013
10.1002/pssa.19700020429
10.1103/PhysRevLett.96.117210
10.1007/BF02663341
10.1088/0305-4608/13/1/018
10.1103/PhysRevLett.56.2096
10.1103/PhysRevB.29.4079
10.1016/j.actamat.2010.05.049
10.1016/S1005-0302(10)60030-8
10.1016/j.commatsci.2005.08.006
10.1016/0001-6160(78)90200-6
10.1088/0031-8949/77/06/065703
10.1080/095008396180551
10.1063/1.1663122
10.2355/isijinternational.34.697
10.1007/BF02641927
10.1007/BF02646563
10.1103/PhysRevB.39.12300
10.1002/srin.199200503
ContentType Journal Article
Copyright 2011 Acta Materialia Inc.
2015 INIST-CNRS
Copyright_xml – notice: 2011 Acta Materialia Inc.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SR
8BQ
8FD
JG9
ADTPV
AOWAS
D8V
DF2
DOI 10.1016/j.actamat.2011.05.049
DatabaseName CrossRef
Pascal-Francis
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList


Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1873-2453
EndPage 5734
ExternalDocumentID oai_DiVA_org_uu_158598
oai_DiVA_org_kth_39520
24384487
10_1016_j_actamat_2011_05_049
S1359645411003892
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNEU
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
T9H
TN5
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7SR
8BQ
8FD
JG9
ADTPV
AOWAS
D8V
DF2
ID FETCH-LOGICAL-c445t-3a8ad95c4634db211e1e155d6c6dba1c5859a1feee6605a314002fb0793233953
IEDL.DBID .~1
ISSN 1359-6454
1873-2453
IngestDate Thu Aug 21 07:05:42 EDT 2025
Thu Aug 21 06:30:28 EDT 2025
Mon Jul 21 09:59:50 EDT 2025
Mon Jul 21 09:15:02 EDT 2025
Tue Jul 01 01:20:20 EDT 2025
Thu Apr 24 22:57:07 EDT 2025
Fri Feb 23 02:29:16 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Stacking fault energy
Austenitic stainless steels
First-principles electron theory
Austenitic stainless steel
Austenitic steel
Stainless steel
Stacking fault
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-3a8ad95c4634db211e1e155d6c6dba1c5859a1feee6605a314002fb0793233953
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 907953668
PQPubID 23500
PageCount 7
ParticipantIDs swepub_primary_oai_DiVA_org_uu_158598
swepub_primary_oai_DiVA_org_kth_39520
proquest_miscellaneous_907953668
pascalfrancis_primary_24384487
crossref_citationtrail_10_1016_j_actamat_2011_05_049
crossref_primary_10_1016_j_actamat_2011_05_049
elsevier_sciencedirect_doi_10_1016_j_actamat_2011_05_049
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-08-01
PublicationDateYYYYMMDD 2011-08-01
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Acta materialia
PublicationYear 2011
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Perdew, Burke, Ernzerhof (b0170) 1996; 77
Neff, Mitchell, Troiano (b0205) 1969; 62
Fawley, Quader, Dodd (b0075) 1968; 242
Qi-Xun, An-Dong, Xiao-Nong, Xin-Min (b0105) 2002; 11
Fujita, Kaneko, Nohara, Saka, Zauter, Mughrabi (b0005) 1994; 34
Lecroisey, Thomas (b0040) 1970; 2
Cheng, Needs, Heine (b0120) 1988; 21
Breedis (b0195) 1964; 230
Gyorffy, Pindor, Staunton, Stocks, Winter (b0135) 1985; 15
Olson, Cohen (b0015) 1976; 7
Lo, Shek, Lai (b0110) 2009; 65
Pinski, Staunton, Gyorffy, Johnson, Stocks (b0130) 1986; 56
Ishida (b0230) 1976; 36
Jun, Choi (b0065) 1998; 257
Gallagher (b0085) 1970; 1
Grimvall (b0145) 1989; 39
Soven (b0160) 1967; 156
Müllner, Ferreira (b0180) 1996; 73
Vitos, Korzhavyi, Johansson (b0100) 2006; 96
Martinez, Imakuma, Padilha (b0220) 1992; 63
Ry, Pineau, Thomas (b0060) 1978; 36
Curtze, Kuokkala (b0020) 2010; 58
Vitos, Korzhavyi, Nilsson, Johansson (b0090) 2008; 77
Vitos (b0155) 2007
Rhodes, Thompson (b0035) 1977; 8A
Dulieu, Nutting (b0200) 1964
Curtze, Kuokkala, Oikari, Talonen, Hninen (b0185) 2011; 59
van der Wegen, Bronsveld, de Hosson (b0025) 1980; 14
Schramm, Reed (b0030) 1975; 6
Vitos (b0150) 2001; 64
Denteneer, van Haeringen (b0115) 1987; 20
Vitos, Abrikosov, Johansson (b0165) 2001; 87
Dini, Najafizadeh, Monir-Vaghefi, Ueji (b0070) 2010; 26
Oguchi, Terakura, Hamada (b0140) 1983; 13
Brooks, Loretto, Smallman (b0175) 1979; 27
Latanision, Ruff (b0055) 1971; 2
Talonen, Hännien (b0010) 2007; 55
Miodownik (b0050) 1978; 2
Davis (b0210) 1994
Vitos, Nilsson, Johansson (b0095) 2006; 54
Reed, Schramm (b0225) 1974; 45
Majumdar, Blanckenhagen (b0125) 1984; 29
Bampton, Jones, Loretto (b0080) 1978; 26
Lecroisey, Pineau (b0045) 1972; 3
Kaneko Y. Ph.D. thesis. Nagoya University; 1996.
Vitos, Larsson, Johansson, Hanson, Hogmark (b0215) 2006; 37
Cheng (10.1016/j.actamat.2011.05.049_b0120) 1988; 21
Fujita (10.1016/j.actamat.2011.05.049_b0005) 1994; 34
Denteneer (10.1016/j.actamat.2011.05.049_b0115) 1987; 20
Dini (10.1016/j.actamat.2011.05.049_b0070) 2010; 26
Pinski (10.1016/j.actamat.2011.05.049_b0130) 1986; 56
10.1016/j.actamat.2011.05.049_b0190
van der Wegen (10.1016/j.actamat.2011.05.049_b0025) 1980; 14
Ry (10.1016/j.actamat.2011.05.049_b0060) 1978; 36
Schramm (10.1016/j.actamat.2011.05.049_b0030) 1975; 6
Fawley (10.1016/j.actamat.2011.05.049_b0075) 1968; 242
Latanision (10.1016/j.actamat.2011.05.049_b0055) 1971; 2
Grimvall (10.1016/j.actamat.2011.05.049_b0145) 1989; 39
Breedis (10.1016/j.actamat.2011.05.049_b0195) 1964; 230
Majumdar (10.1016/j.actamat.2011.05.049_b0125) 1984; 29
Soven (10.1016/j.actamat.2011.05.049_b0160) 1967; 156
Vitos (10.1016/j.actamat.2011.05.049_b0215) 2006; 37
Oguchi (10.1016/j.actamat.2011.05.049_b0140) 1983; 13
Curtze (10.1016/j.actamat.2011.05.049_b0020) 2010; 58
Perdew (10.1016/j.actamat.2011.05.049_b0170) 1996; 77
Gyorffy (10.1016/j.actamat.2011.05.049_b0135) 1985; 15
Davis (10.1016/j.actamat.2011.05.049_b0210) 1994
Talonen (10.1016/j.actamat.2011.05.049_b0010) 2007; 55
Vitos (10.1016/j.actamat.2011.05.049_b0095) 2006; 54
Martinez (10.1016/j.actamat.2011.05.049_b0220) 1992; 63
Vitos (10.1016/j.actamat.2011.05.049_b0155) 2007
Olson (10.1016/j.actamat.2011.05.049_b0015) 1976; 7
Bampton (10.1016/j.actamat.2011.05.049_b0080) 1978; 26
Vitos (10.1016/j.actamat.2011.05.049_b0150) 2001; 64
Müllner (10.1016/j.actamat.2011.05.049_b0180) 1996; 73
Curtze (10.1016/j.actamat.2011.05.049_b0185) 2011; 59
Brooks (10.1016/j.actamat.2011.05.049_b0175) 1979; 27
Vitos (10.1016/j.actamat.2011.05.049_b0100) 2006; 96
Lo (10.1016/j.actamat.2011.05.049_b0110) 2009; 65
Ishida (10.1016/j.actamat.2011.05.049_b0230) 1976; 36
Jun (10.1016/j.actamat.2011.05.049_b0065) 1998; 257
Lecroisey (10.1016/j.actamat.2011.05.049_b0040) 1970; 2
Miodownik (10.1016/j.actamat.2011.05.049_b0050) 1978; 2
Vitos (10.1016/j.actamat.2011.05.049_b0165) 2001; 87
Dulieu (10.1016/j.actamat.2011.05.049_b0200) 1964
Vitos (10.1016/j.actamat.2011.05.049_b0090) 2008; 77
Rhodes (10.1016/j.actamat.2011.05.049_b0035) 1977; 8A
Qi-Xun (10.1016/j.actamat.2011.05.049_b0105) 2002; 11
Reed (10.1016/j.actamat.2011.05.049_b0225) 1974; 45
Gallagher (10.1016/j.actamat.2011.05.049_b0085) 1970; 1
Neff (10.1016/j.actamat.2011.05.049_b0205) 1969; 62
Lecroisey (10.1016/j.actamat.2011.05.049_b0045) 1972; 3
References_xml – volume: 45
  start-page: 4705
  year: 1974
  ident: b0225
  publication-title: J Appl Phys
– volume: 8A
  start-page: 1901
  year: 1977
  ident: b0035
  publication-title: Metall Trans A
– year: 1964
  ident: b0200
  article-title: Metallurgical developments in high-alloys steels. Special Report No. 86
– volume: 6
  start-page: 1345
  year: 1975
  ident: b0030
  publication-title: Metall Trans A
– volume: 242
  start-page: 771
  year: 1968
  ident: b0075
  publication-title: Trans TMS-AIME
– volume: 65
  start-page: 39
  year: 2009
  ident: b0110
  publication-title: Mater Sci Eng R
– volume: 58
  start-page: 5129
  year: 2010
  ident: b0020
  publication-title: Acta Mater
– volume: 29
  start-page: 4079
  year: 1984
  ident: b0125
  publication-title: Phys Rev B
– volume: 230
  start-page: 1583
  year: 1964
  ident: b0195
  publication-title: Trans TMS-AIME
– volume: 54
  start-page: 3821
  year: 2006
  ident: b0095
  publication-title: Acta Mater
– volume: 37
  start-page: 193
  year: 2006
  ident: b0215
  publication-title: Comput Mater Sci
– volume: 15
  start-page: 1337
  year: 1985
  ident: b0135
  publication-title: J Phys F: Met Phys
– volume: 2
  start-page: K217
  year: 1970
  ident: b0040
  publication-title: Phys Stat Sol A
– volume: 3
  start-page: 387
  year: 1972
  ident: b0045
  publication-title: Metall Trans
– volume: 1
  start-page: 2429
  year: 1970
  ident: b0085
  publication-title: Metall Trans
– reference: Kaneko Y. Ph.D. thesis. Nagoya University; 1996.
– volume: 27
  start-page: 1839
  year: 1979
  ident: b0175
  publication-title: Acta Metall
– volume: 7
  start-page: 1897
  year: 1976
  ident: b0015
  publication-title: Metall Trans A
– volume: 257
  start-page: 353
  year: 1998
  ident: b0065
  publication-title: Mater Sci Eng A
– volume: 21
  start-page: 1049
  year: 1988
  ident: b0120
  publication-title: J Phys C
– volume: 64
  start-page: 014107
  year: 2001
  ident: b0150
  publication-title: Phys Rev B
– volume: 14
  start-page: 285
  year: 1980
  ident: b0025
  publication-title: Scripta Metall
– volume: 59
  start-page: 1068
  year: 2011
  ident: b0185
  publication-title: Acta Mater
– volume: 2
  start-page: 505
  year: 1971
  ident: b0055
  publication-title: Metall Mater Trans B
– year: 1994
  ident: b0210
  article-title: ASM specialty handbook: stainless steels
– volume: 26
  start-page: 181
  year: 2010
  ident: b0070
  publication-title: J Mater Sci Technol
– volume: 34
  start-page: 697
  year: 1994
  ident: b0005
  publication-title: ISIJ Inter
– volume: 26
  start-page: 39
  year: 1978
  ident: b0080
  publication-title: Acta Metall
– volume: 87
  start-page: 156401
  year: 2001
  ident: b0165
  publication-title: Phys Rev Lett
– volume: 36
  start-page: 47
  year: 1978
  ident: b0060
  publication-title: Mater Sci Eng
– volume: 63
  start-page: 221
  year: 1992
  ident: b0220
  publication-title: Steel Res
– volume: 156
  start-page: 809
  year: 1967
  ident: b0160
  publication-title: Phys Rev
– year: 2007
  ident: b0155
  publication-title: Computational quantum mechanics for materials engineers: the EMTO method and applications
– volume: 39
  start-page: 12300
  year: 1989
  ident: b0145
  publication-title: Phys Rev B
– volume: 2
  start-page: 207
  year: 1978
  ident: b0050
  publication-title: Calphad
– volume: 96
  start-page: 117210
  year: 2006
  ident: b0100
  publication-title: Phys Rev Lett
– volume: 56
  start-page: 2096
  year: 1986
  ident: b0130
  publication-title: Phys Rev Lett
– volume: 77
  start-page: 3865
  year: 1996
  ident: b0170
  publication-title: Phys Rev Lett
– volume: 62
  start-page: 858
  year: 1969
  ident: b0205
  publication-title: Trans ASM
– volume: 55
  start-page: 6108
  year: 2007
  ident: b0010
  publication-title: Acta Mater
– volume: 13
  start-page: 145
  year: 1983
  ident: b0140
  publication-title: J Phys F: Met Phys
– volume: 77
  start-page: 065703
  year: 2008
  ident: b0090
  publication-title: Phys Scripta
– volume: 11
  start-page: 596
  year: 2002
  ident: b0105
  publication-title: Chinese Phys
– volume: 20
  start-page: L883
  year: 1987
  ident: b0115
  publication-title: J Phys C
– volume: 73
  start-page: 289
  year: 1996
  ident: b0180
  publication-title: Philos Mag Lett
– volume: 36
  start-page: 717
  year: 1976
  ident: b0230
  publication-title: Phys Stat Sol A
– volume: 15
  start-page: 1337
  year: 1985
  ident: 10.1016/j.actamat.2011.05.049_b0135
  publication-title: J Phys F: Met Phys
  doi: 10.1088/0305-4608/15/6/018
– volume: 55
  start-page: 6108
  year: 2007
  ident: 10.1016/j.actamat.2011.05.049_b0010
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2007.07.015
– volume: 7
  start-page: 1897
  year: 1976
  ident: 10.1016/j.actamat.2011.05.049_b0015
  publication-title: Metall Trans A
– volume: 14
  start-page: 285
  year: 1980
  ident: 10.1016/j.actamat.2011.05.049_b0025
  publication-title: Scripta Metall
  doi: 10.1016/0036-9748(80)90110-6
– volume: 87
  start-page: 156401
  year: 2001
  ident: 10.1016/j.actamat.2011.05.049_b0165
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.87.156401
– volume: 59
  start-page: 1068
  year: 2011
  ident: 10.1016/j.actamat.2011.05.049_b0185
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2010.10.037
– ident: 10.1016/j.actamat.2011.05.049_b0190
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.actamat.2011.05.049_b0170
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.77.3865
– volume: 2
  start-page: 207
  year: 1978
  ident: 10.1016/j.actamat.2011.05.049_b0050
  publication-title: Calphad
  doi: 10.1016/0364-5916(78)90010-X
– volume: 65
  start-page: 39
  year: 2009
  ident: 10.1016/j.actamat.2011.05.049_b0110
  publication-title: Mater Sci Eng R
  doi: 10.1016/j.mser.2009.03.001
– volume: 64
  start-page: 014107
  year: 2001
  ident: 10.1016/j.actamat.2011.05.049_b0150
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.64.014107
– volume: 257
  start-page: 353
  year: 1998
  ident: 10.1016/j.actamat.2011.05.049_b0065
  publication-title: Mater Sci Eng A
  doi: 10.1016/S0921-5093(98)00994-0
– volume: 27
  start-page: 1839
  year: 1979
  ident: 10.1016/j.actamat.2011.05.049_b0175
  publication-title: Acta Metall
  doi: 10.1016/0001-6160(79)90074-9
– volume: 21
  start-page: 1049
  year: 1988
  ident: 10.1016/j.actamat.2011.05.049_b0120
  publication-title: J Phys C
  doi: 10.1088/0022-3719/21/6/012
– volume: 1
  start-page: 2429
  year: 1970
  ident: 10.1016/j.actamat.2011.05.049_b0085
  publication-title: Metall Trans
  doi: 10.1007/BF03038370
– volume: 36
  start-page: 47
  year: 1978
  ident: 10.1016/j.actamat.2011.05.049_b0060
  publication-title: Mater Sci Eng
  doi: 10.1016/0025-5416(78)90194-5
– volume: 20
  start-page: L883
  year: 1987
  ident: 10.1016/j.actamat.2011.05.049_b0115
  publication-title: J Phys C
  doi: 10.1088/0022-3719/20/32/001
– volume: 36
  start-page: 717
  year: 1976
  ident: 10.1016/j.actamat.2011.05.049_b0230
  publication-title: Phys Stat Sol A
  doi: 10.1002/pssa.2210360233
– volume: 156
  start-page: 809
  year: 1967
  ident: 10.1016/j.actamat.2011.05.049_b0160
  publication-title: Phys Rev
  doi: 10.1103/PhysRev.156.809
– volume: 11
  start-page: 596
  year: 2002
  ident: 10.1016/j.actamat.2011.05.049_b0105
  publication-title: Chinese Phys
  doi: 10.1088/1009-1963/11/6/315
– volume: 230
  start-page: 1583
  year: 1964
  ident: 10.1016/j.actamat.2011.05.049_b0195
  publication-title: Trans TMS-AIME
– volume: 3
  start-page: 387
  year: 1972
  ident: 10.1016/j.actamat.2011.05.049_b0045
  publication-title: Metall Trans
  doi: 10.1007/BF02642042
– year: 2007
  ident: 10.1016/j.actamat.2011.05.049_b0155
– year: 1994
  ident: 10.1016/j.actamat.2011.05.049_b0210
– volume: 54
  start-page: 3821
  year: 2006
  ident: 10.1016/j.actamat.2011.05.049_b0095
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2006.04.013
– volume: 2
  start-page: K217
  year: 1970
  ident: 10.1016/j.actamat.2011.05.049_b0040
  publication-title: Phys Stat Sol A
  doi: 10.1002/pssa.19700020429
– volume: 96
  start-page: 117210
  year: 2006
  ident: 10.1016/j.actamat.2011.05.049_b0100
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.96.117210
– volume: 2
  start-page: 505
  year: 1971
  ident: 10.1016/j.actamat.2011.05.049_b0055
  publication-title: Metall Mater Trans B
  doi: 10.1007/BF02663341
– volume: 13
  start-page: 145
  year: 1983
  ident: 10.1016/j.actamat.2011.05.049_b0140
  publication-title: J Phys F: Met Phys
  doi: 10.1088/0305-4608/13/1/018
– volume: 56
  start-page: 2096
  year: 1986
  ident: 10.1016/j.actamat.2011.05.049_b0130
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.56.2096
– volume: 29
  start-page: 4079
  year: 1984
  ident: 10.1016/j.actamat.2011.05.049_b0125
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.29.4079
– volume: 58
  start-page: 5129
  year: 2010
  ident: 10.1016/j.actamat.2011.05.049_b0020
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2010.05.049
– volume: 242
  start-page: 771
  year: 1968
  ident: 10.1016/j.actamat.2011.05.049_b0075
  publication-title: Trans TMS-AIME
– volume: 26
  start-page: 181
  year: 2010
  ident: 10.1016/j.actamat.2011.05.049_b0070
  publication-title: J Mater Sci Technol
  doi: 10.1016/S1005-0302(10)60030-8
– volume: 37
  start-page: 193
  year: 2006
  ident: 10.1016/j.actamat.2011.05.049_b0215
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2005.08.006
– volume: 26
  start-page: 39
  year: 1978
  ident: 10.1016/j.actamat.2011.05.049_b0080
  publication-title: Acta Metall
  doi: 10.1016/0001-6160(78)90200-6
– volume: 77
  start-page: 065703
  year: 2008
  ident: 10.1016/j.actamat.2011.05.049_b0090
  publication-title: Phys Scripta
  doi: 10.1088/0031-8949/77/06/065703
– volume: 73
  start-page: 289
  year: 1996
  ident: 10.1016/j.actamat.2011.05.049_b0180
  publication-title: Philos Mag Lett
  doi: 10.1080/095008396180551
– year: 1964
  ident: 10.1016/j.actamat.2011.05.049_b0200
– volume: 45
  start-page: 4705
  year: 1974
  ident: 10.1016/j.actamat.2011.05.049_b0225
  publication-title: J Appl Phys
  doi: 10.1063/1.1663122
– volume: 34
  start-page: 697
  year: 1994
  ident: 10.1016/j.actamat.2011.05.049_b0005
  publication-title: ISIJ Inter
  doi: 10.2355/isijinternational.34.697
– volume: 62
  start-page: 858
  year: 1969
  ident: 10.1016/j.actamat.2011.05.049_b0205
  publication-title: Trans ASM
– volume: 6
  start-page: 1345
  year: 1975
  ident: 10.1016/j.actamat.2011.05.049_b0030
  publication-title: Metall Trans A
  doi: 10.1007/BF02641927
– volume: 8A
  start-page: 1901
  year: 1977
  ident: 10.1016/j.actamat.2011.05.049_b0035
  publication-title: Metall Trans A
  doi: 10.1007/BF02646563
– volume: 39
  start-page: 12300
  year: 1989
  ident: 10.1016/j.actamat.2011.05.049_b0145
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.39.12300
– volume: 63
  start-page: 221
  year: 1992
  ident: 10.1016/j.actamat.2011.05.049_b0220
  publication-title: Steel Res
  doi: 10.1002/srin.199200503
SSID ssj0012740
Score 2.4018254
Snippet The alloying effects of Mn, Co and Nb on the stacking fault energy (SFE) of austenitic stainless steels, Fe–Cr–Ni with various Ni contents, are investigated...
The alloying effects of Mn, Co and Nb on the stacking fault energy (SFE) of austenitic stainless steels, FeCrNi with various Ni contents, are investigated via...
The alloying effects of Mn, Co and Nb on the stacking fault energy (SFE) of austenitic stainless steels, Fe-Cr-Ni with various Ni contents, are investigated...
SourceID swepub
proquest
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5728
SubjectTerms Alloy steels
Alloying effects
Applied sciences
Austenitic stainless steels
Exact sciences and technology
First-principles electron theory
Mathematical analysis
Metals. Metallurgy
Nickel
Niobium base alloys
Stacking fault energy
Steels
Title Stacking fault energies of Mn, Co and Nb alloyed austenitic stainless steels
URI https://dx.doi.org/10.1016/j.actamat.2011.05.049
https://www.proquest.com/docview/907953668
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-39520
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-158598
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5V7QWEUHmJAI32ADecrL2P2McopQqP5gJFva32SVMiO2rtQy_97czEdmgkpEjIF8valdffeOexO_MtIe9jHr2YxDTBTCYIUCzMObBCiRNBKektkxELnM8Xan4hvlzKywMy62thMK2y0_2tTt9o6-7JuENzvF4ux99TLgvko0LSMzC7qIeFmOBfPrrfpnmkEHW1lcKySLD13yqe8TUMuTbgGHZMnnLEkFLz3_bpydrcAmqxPe5i1x99yDG6sUtnx-Rp51DSaTvmZ-QglM_J4wc0gy_IN_AoHS6J02iaVU2RaRrZIWgV6Xn5kc4qakpPF5biLvxd8BTJgAKmFTm6qa9agT6EuwADfUkuzj79mM2T7hQFwFvIOuEmN76QTiguvIV4L8AlpVdOeWtSB_FCYdIYAgiHScMh4mJZtEicl3FeSP6KHJZVGV4TWjBlwIOxPJcGJr41MfjMGfAorFPCsAERPXbadRTjeNLFSve5ZNe6g1wj5JpJDZAPyGjbbd1ybOzrkPeC0Ts_iwY7sK_rcEeQ2xdmgucQqk4GhPaS1TDTcPvElKFqbnUBkEiuVD4gH1qJbzsjR_fp8udUVze_9O_6SgNuGdvTrml0iuDnb_7_c96SR_0iN0vfkcP6pgkn4CXVdriZBkNyNP38db74A4oqEvg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5V5QAIofISgVL2ADecrL2P2scqtAqQ5EKLelvts6REdtTaBy789s7EdmgkpEjIF8vyyutvPK_1zLeEfIh59OI4pglWMkGCYkHnwAslTgSlpLdMRmxwns3V5EJ8vZSXe2Tc98JgWWVn-1ubvrbW3ZVRh-ZotViMvqdcFshHhaRn4HbBDj8QoL64jcHwz6bOI4W0q20VlkWCt_9t4xldw5xrA5FhR-Uphww5Nf_toJ6szC3AFtv9LrYD0vsko2vHdHZAnnYRJT1pJ_2M7IXyOXl8j2fwBZlCSOlwTZxG0yxrilTTSA9Bq0hn5Sc6rqgpPZ1bir_hfwdPkQ0oYF2Ro-sGqyUYRDgLMNGX5OLs9Hw8SbptFABwIeuEm9z4QjqhuPAWEr4Ah5ReOeWtSR0kDIVJYwggHSYNh5SLZdEic17GeSH5K7JfVmV4TWjBlIEQxvJcGtB8a2LwmTMQUlinhGEDInrstOs4xnGri6Xui8mudQe5Rsg1kxogH5DhZtiqJdnYNSDvBaO3vhYNjmDX0KMtQW4emAmeQ656PCC0l6wGVcP_J6YMVXOrC4BEcqXyAfnYSnwzGEm6Py9-nOjq5kr_qn9qwC1jO-5rGp0i-Pmb_3-d9-Th5Hw21dMv829vyaN-xZulh2S_vmnCOwiZanu0Vok7qxUUhg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacking+fault+energies+of+Mn%2C+Co+and+Nb+alloyed+austenitic+stainless+steels&rft.jtitle=Acta+materialia&rft.au=Lu%2C+Song&rft.au=Hu%2C+Qing-Miao&rft.au=Johansson%2C+Borje&rft.au=Vitos%2C+Levente&rft.date=2011-08-01&rft.issn=1359-6454&rft.volume=59&rft.issue=14&rft.spage=5728&rft.epage=5734&rft_id=info:doi/10.1016%2Fj.actamat.2011.05.049&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon