Stacking fault energies of Mn, Co and Nb alloyed austenitic stainless steels
The alloying effects of Mn, Co and Nb on the stacking fault energy (SFE) of austenitic stainless steels, Fe–Cr–Ni with various Ni contents, are investigated via quantum–mechanical first-principles calculations. In the composition range ( c Cr = 20%, 8 ⩽ c Ni ⩽ 20%, 0 ⩽ c Mn, c Co, c Nb ⩽ 8%, balance...
Saved in:
Published in | Acta materialia Vol. 59; no. 14; pp. 5728 - 5734 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.08.2011
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The alloying effects of Mn, Co and Nb on the stacking fault energy (SFE) of austenitic stainless steels, Fe–Cr–Ni with various Ni contents, are investigated via quantum–mechanical first-principles calculations. In the composition range (
c
Cr
=
20%, 8
⩽
c
Ni
⩽
20%, 0
⩽
c
Mn,
c
Co,
c
Nb
⩽
8%, balance Fe) studied here, it is found that Mn always decreases the SFE at 0
K but increases it at room temperature in high-Ni (
c
Ni
≳
16%) alloys. The SFE always decreases with increasing Co content. Niobium increases the SFE significantly in low-Ni alloys; however, this effect is strongly diminished in high-Ni alloys. The SFE-enhancing effect of Ni usually observed in Fe–Cr–Ni alloys is inverted to an SFE-decreasing effect by Nb for
c
Nb
≳
3%. The revealed nonlinear composition dependencies are explained in terms of the peculiar magnetic contributions to the total SFE. |
---|---|
AbstractList | The alloying effects of Mn, Co and Nb on the stacking fault energy (SFE) of austenitic stainless steels, Fe–Cr–Ni with various Ni contents, are investigated via quantum–mechanical first-principles calculations. In the composition range (
c
Cr
=
20%, 8
⩽
c
Ni
⩽
20%, 0
⩽
c
Mn,
c
Co,
c
Nb
⩽
8%, balance Fe) studied here, it is found that Mn always decreases the SFE at 0
K but increases it at room temperature in high-Ni (
c
Ni
≳
16%) alloys. The SFE always decreases with increasing Co content. Niobium increases the SFE significantly in low-Ni alloys; however, this effect is strongly diminished in high-Ni alloys. The SFE-enhancing effect of Ni usually observed in Fe–Cr–Ni alloys is inverted to an SFE-decreasing effect by Nb for
c
Nb
≳
3%. The revealed nonlinear composition dependencies are explained in terms of the peculiar magnetic contributions to the total SFE. The alloying effects of Mn, Co and Nb on the stacking fault energy (SFE) of austenitic stainless steels, Fe-Cr-Ni with various Ni contents, are investigated via quantum-mechanical first-principles calculations. In the composition range (c(Cr) = 20%, 8 <= c(Ni) <= 20%, 0 <= c(Mn), c(Co), c(Nb) <= 8%, balance Fe) studied here, it is found that Mn always decreases the SFE at 0 K but increases it at room temperature in high-Ni (c(Ni) greater than or similar to 16%) alloys. The SFE always decreases with increasing Co content. Niobium increases the SFE significantly in low-Ni alloys; however, this effect is strongly diminished in high-Ni alloys. The SFE-enhancing effect of Ni usually observed in Fe-Cr-Ni alloys is inverted to an SFE-decreasing effect by Nb for c(Nb) greater than or similar to 3%. The revealed nonlinear composition dependencies are explained in terms of the peculiar magnetic contributions to the total SFE. The alloying effects of Mn, Co and Nb on the stacking fault energy (SFE) of austenitic stainless steels, FeCrNi with various Ni contents, are investigated via quantummechanical first-principles calculations. In the composition range (cCr = 20%, 8 cNi 20%, 0 cMn, cCo, cNb 8%, balance Fe) studied here, it is found that Mn always decreases the SFE at 0 K but increases it at room temperature in high-Ni (cNi greater than or equal to 16%) alloys. The SFE always decreases with increasing Co content. Niobium increases the SFE significantly in low-Ni alloys; however, this effect is strongly diminished in high-Ni alloys. The SFE-enhancing effect of Ni usually observed in FeCrNi alloys is inverted to an SFE-decreasing effect by Nb for cNb greater than or equal to 3%. The revealed nonlinear composition dependencies are explained in terms of the peculiar magnetic contributions to the total SFE. |
Author | Vitos, Levente Lu, Song Hu, Qing-Miao Johansson, Börje |
Author_xml | – sequence: 1 givenname: Song surname: Lu fullname: Lu, Song email: songlu@mse.kth.se organization: Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm SE-100 44, Sweden – sequence: 2 givenname: Qing-Miao surname: Hu fullname: Hu, Qing-Miao organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China – sequence: 3 givenname: Börje surname: Johansson fullname: Johansson, Börje organization: Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm SE-100 44, Sweden – sequence: 4 givenname: Levente surname: Vitos fullname: Vitos, Levente organization: Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm SE-100 44, Sweden |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24384487$$DView record in Pascal Francis https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-39520$$DView record from Swedish Publication Index https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-158598$$DView record from Swedish Publication Index |
BookMark | eNqNkU1vEzEQhi1UJNrAT0DyBXHpLvba3uyKA6oCtEgBDnxcrVnvbHDq2KntBfXf4yiBA5eiOXgO7_uMpeeCnPngkZDnnNWc8fbVtgaTYQe5bhjnNVM1k_0jcs67pagaqcRZ2YXqq1Yq-YRcpLRljDdLyc7J-ksGc2v9hk4wu0zRY9xYTDRM9KO_pKtAwY_000DBuXCPI4U5ZfQ2W0NTBusdplQ2RJeekscTuITPTu-CfHv_7uvqplp_vv6wulpXRkqVKwEdjL0yshVyHBrOsYxSY2vacQBuVKd64BMiti1TILhkrJkGtuxFI0SvxIJcHrnpF-7nQe-j3UG81wGsfmu_X-kQN3qeNT-Quv-L3-YfurAbVuIvj_F9DHczpqx3Nhl0DjyGOem-fESJtj2AX5ySkAy4KYI3Nv3lN1J0UhYJC_L6mDMxpBRx0sZmyDb4HME6zZk-iNRbfRKpDyI1U7qILG31T_vPgYd6b469YgZ_Wow6GYve4GgjmqzHYB8g_AZCIrxU |
CitedBy_id | crossref_primary_10_1016_j_msea_2020_140084 crossref_primary_10_3390_met10091123 crossref_primary_10_1016_j_jnucmat_2013_05_077 crossref_primary_10_1016_j_matlet_2020_127348 crossref_primary_10_1016_j_commatsci_2012_05_051 crossref_primary_10_1002_srin_202300885 crossref_primary_10_3390_met9111163 crossref_primary_10_1016_j_actamat_2017_02_004 crossref_primary_10_1016_j_triboint_2020_106847 crossref_primary_10_1007_s12540_015_4320_2 crossref_primary_10_1016_j_matdes_2019_108392 crossref_primary_10_3390_mi16030309 crossref_primary_10_1016_j_ijfatigue_2020_105499 crossref_primary_10_1016_j_matchar_2018_07_028 crossref_primary_10_1016_j_commatsci_2014_11_041 crossref_primary_10_3390_met10020283 crossref_primary_10_1016_j_msea_2019_05_079 crossref_primary_10_1016_j_actamat_2012_04_024 crossref_primary_10_1007_s11665_019_04233_6 crossref_primary_10_1016_j_corsci_2023_111693 crossref_primary_10_1016_j_wear_2025_205877 crossref_primary_10_1007_s11433_012_4951_y crossref_primary_10_1016_j_msea_2015_06_041 crossref_primary_10_1016_j_surfcoat_2022_128479 crossref_primary_10_1080_14786435_2016_1140912 crossref_primary_10_1016_j_matchar_2023_112996 crossref_primary_10_1016_j_actamat_2018_10_017 crossref_primary_10_1016_j_intermet_2023_107882 crossref_primary_10_1016_j_matchar_2021_111428 crossref_primary_10_1007_s10853_017_1252_x crossref_primary_10_1016_j_jmst_2023_11_053 crossref_primary_10_1016_j_surfcoat_2020_125435 crossref_primary_10_1016_j_actamat_2012_10_023 crossref_primary_10_1016_j_msea_2023_145758 crossref_primary_10_1103_PhysRevB_93_094101 crossref_primary_10_1016_j_jallcom_2021_163331 crossref_primary_10_1103_PhysRevB_93_094103 crossref_primary_10_1007_s00339_022_05848_8 crossref_primary_10_1080_09603409_2018_1564448 crossref_primary_10_1016_j_scriptamat_2019_12_013 crossref_primary_10_1007_s42243_021_00588_0 crossref_primary_10_1038_s41598_020_58273_3 crossref_primary_10_1016_j_mtla_2018_08_020 crossref_primary_10_1038_s41524_020_00452_x crossref_primary_10_1016_j_matpr_2015_07_376 crossref_primary_10_3390_ma14237160 crossref_primary_10_1016_j_ijhydene_2019_04_229 crossref_primary_10_1016_j_scriptamat_2022_114625 crossref_primary_10_1103_PhysRevB_91_224203 crossref_primary_10_1007_s12540_020_00821_7 crossref_primary_10_1016_j_actamat_2020_11_012 crossref_primary_10_1002_adem_201800617 crossref_primary_10_1016_j_ijplas_2024_104020 crossref_primary_10_1088_0953_8984_26_26_265005 crossref_primary_10_1134_S0036029521100086 crossref_primary_10_1016_j_physb_2016_10_004 crossref_primary_10_1016_j_matchar_2023_113240 crossref_primary_10_1016_j_msea_2022_143832 crossref_primary_10_1103_PhysRevB_90_054109 crossref_primary_10_1007_s11661_012_1378_z crossref_primary_10_1155_2015_639519 crossref_primary_10_1016_j_actamat_2016_09_038 crossref_primary_10_1016_j_commatsci_2021_110326 crossref_primary_10_1103_PhysRevB_93_214115 crossref_primary_10_1007_s11661_024_07465_x crossref_primary_10_3390_met11050715 crossref_primary_10_1016_j_jallcom_2024_177321 crossref_primary_10_1016_j_scriptamat_2021_113891 crossref_primary_10_1016_j_matchar_2022_112384 crossref_primary_10_1016_j_mtcomm_2024_110210 crossref_primary_10_1007_s11661_017_3960_x crossref_primary_10_1016_j_msea_2019_138079 crossref_primary_10_1134_S0036029517110040 crossref_primary_10_1088_0953_8984_28_39_395001 crossref_primary_10_1016_j_msea_2018_11_131 crossref_primary_10_1016_j_scriptamat_2022_114806 crossref_primary_10_1103_PhysRevB_95_094112 crossref_primary_10_1016_j_matpr_2021_03_397 crossref_primary_10_1016_j_msea_2025_147991 crossref_primary_10_1134_S0036029522040061 crossref_primary_10_1002_srin_202200425 crossref_primary_10_1016_j_jnucmat_2022_153767 crossref_primary_10_1016_j_engfracmech_2019_03_049 crossref_primary_10_1016_j_jallcom_2016_12_289 crossref_primary_10_1134_S0036029519040037 crossref_primary_10_1007_s11661_023_07289_1 crossref_primary_10_1080_14786435_2018_1429690 crossref_primary_10_2139_ssrn_4165263 crossref_primary_10_1115_1_4031398 crossref_primary_10_1016_j_apsusc_2019_02_079 crossref_primary_10_1016_j_jnucmat_2018_11_019 crossref_primary_10_1016_j_matdes_2020_109396 crossref_primary_10_1016_j_scriptamat_2022_115223 crossref_primary_10_3390_met8050369 crossref_primary_10_1016_j_jmrt_2024_09_218 crossref_primary_10_1016_j_matchar_2018_04_035 crossref_primary_10_1007_s00339_017_1297_3 crossref_primary_10_1016_j_actamat_2017_05_049 crossref_primary_10_1016_j_matchar_2016_10_017 crossref_primary_10_1016_j_msea_2025_148074 crossref_primary_10_2355_isijinternational_ISIJINT_2020_689 crossref_primary_10_1016_j_commatsci_2016_04_031 crossref_primary_10_3390_met8100832 crossref_primary_10_1016_j_intermet_2024_108589 crossref_primary_10_1007_s12613_015_1112_0 crossref_primary_10_1016_j_actamat_2016_03_042 crossref_primary_10_1016_j_actamat_2017_11_042 crossref_primary_10_2174_2352094909666191030111523 crossref_primary_10_1016_j_jmrt_2024_02_184 crossref_primary_10_1016_j_msea_2023_145549 crossref_primary_10_1016_j_ijhydene_2021_09_261 crossref_primary_10_1016_j_nme_2018_03_004 crossref_primary_10_1016_j_msea_2024_147591 crossref_primary_10_1007_s11665_016_2363_2 crossref_primary_10_1016_j_ijmecsci_2022_107931 crossref_primary_10_1103_PhysRevB_102_144101 crossref_primary_10_1080_02286203_2017_1331109 crossref_primary_10_1007_s11661_017_4212_9 crossref_primary_10_1016_j_msea_2018_01_029 crossref_primary_10_1016_j_matchar_2015_03_031 crossref_primary_10_1073_pnas_1400786111 crossref_primary_10_1016_j_matdes_2024_113123 crossref_primary_10_1557_s43577_021_00190_5 |
Cites_doi | 10.1088/0305-4608/15/6/018 10.1016/j.actamat.2007.07.015 10.1016/0036-9748(80)90110-6 10.1103/PhysRevLett.87.156401 10.1016/j.actamat.2010.10.037 10.1103/PhysRevLett.77.3865 10.1016/0364-5916(78)90010-X 10.1016/j.mser.2009.03.001 10.1103/PhysRevB.64.014107 10.1016/S0921-5093(98)00994-0 10.1016/0001-6160(79)90074-9 10.1088/0022-3719/21/6/012 10.1007/BF03038370 10.1016/0025-5416(78)90194-5 10.1088/0022-3719/20/32/001 10.1002/pssa.2210360233 10.1103/PhysRev.156.809 10.1088/1009-1963/11/6/315 10.1007/BF02642042 10.1016/j.actamat.2006.04.013 10.1002/pssa.19700020429 10.1103/PhysRevLett.96.117210 10.1007/BF02663341 10.1088/0305-4608/13/1/018 10.1103/PhysRevLett.56.2096 10.1103/PhysRevB.29.4079 10.1016/j.actamat.2010.05.049 10.1016/S1005-0302(10)60030-8 10.1016/j.commatsci.2005.08.006 10.1016/0001-6160(78)90200-6 10.1088/0031-8949/77/06/065703 10.1080/095008396180551 10.1063/1.1663122 10.2355/isijinternational.34.697 10.1007/BF02641927 10.1007/BF02646563 10.1103/PhysRevB.39.12300 10.1002/srin.199200503 |
ContentType | Journal Article |
Copyright | 2011 Acta Materialia Inc. 2015 INIST-CNRS |
Copyright_xml | – notice: 2011 Acta Materialia Inc. – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SR 8BQ 8FD JG9 ADTPV AOWAS D8V DF2 |
DOI | 10.1016/j.actamat.2011.05.049 |
DatabaseName | CrossRef Pascal-Francis Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan SWEPUB Uppsala universitet |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1873-2453 |
EndPage | 5734 |
ExternalDocumentID | oai_DiVA_org_uu_158598 oai_DiVA_org_kth_39520 24384487 10_1016_j_actamat_2011_05_049 S1359645411003892 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNEU ABTAH ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSM SSQ SSZ T5K T9H TN5 XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7SR 8BQ 8FD JG9 ADTPV AOWAS D8V DF2 |
ID | FETCH-LOGICAL-c445t-3a8ad95c4634db211e1e155d6c6dba1c5859a1feee6605a314002fb0793233953 |
IEDL.DBID | .~1 |
ISSN | 1359-6454 1873-2453 |
IngestDate | Thu Aug 21 07:05:42 EDT 2025 Thu Aug 21 06:30:28 EDT 2025 Mon Jul 21 09:59:50 EDT 2025 Mon Jul 21 09:15:02 EDT 2025 Tue Jul 01 01:20:20 EDT 2025 Thu Apr 24 22:57:07 EDT 2025 Fri Feb 23 02:29:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | Stacking fault energy Austenitic stainless steels First-principles electron theory Austenitic stainless steel Austenitic steel Stainless steel Stacking fault |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c445t-3a8ad95c4634db211e1e155d6c6dba1c5859a1feee6605a314002fb0793233953 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 907953668 |
PQPubID | 23500 |
PageCount | 7 |
ParticipantIDs | swepub_primary_oai_DiVA_org_uu_158598 swepub_primary_oai_DiVA_org_kth_39520 proquest_miscellaneous_907953668 pascalfrancis_primary_24384487 crossref_citationtrail_10_1016_j_actamat_2011_05_049 crossref_primary_10_1016_j_actamat_2011_05_049 elsevier_sciencedirect_doi_10_1016_j_actamat_2011_05_049 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-08-01 |
PublicationDateYYYYMMDD | 2011-08-01 |
PublicationDate_xml | – month: 08 year: 2011 text: 2011-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Acta materialia |
PublicationYear | 2011 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Perdew, Burke, Ernzerhof (b0170) 1996; 77 Neff, Mitchell, Troiano (b0205) 1969; 62 Fawley, Quader, Dodd (b0075) 1968; 242 Qi-Xun, An-Dong, Xiao-Nong, Xin-Min (b0105) 2002; 11 Fujita, Kaneko, Nohara, Saka, Zauter, Mughrabi (b0005) 1994; 34 Lecroisey, Thomas (b0040) 1970; 2 Cheng, Needs, Heine (b0120) 1988; 21 Breedis (b0195) 1964; 230 Gyorffy, Pindor, Staunton, Stocks, Winter (b0135) 1985; 15 Olson, Cohen (b0015) 1976; 7 Lo, Shek, Lai (b0110) 2009; 65 Pinski, Staunton, Gyorffy, Johnson, Stocks (b0130) 1986; 56 Ishida (b0230) 1976; 36 Jun, Choi (b0065) 1998; 257 Gallagher (b0085) 1970; 1 Grimvall (b0145) 1989; 39 Soven (b0160) 1967; 156 Müllner, Ferreira (b0180) 1996; 73 Vitos, Korzhavyi, Johansson (b0100) 2006; 96 Martinez, Imakuma, Padilha (b0220) 1992; 63 Ry, Pineau, Thomas (b0060) 1978; 36 Curtze, Kuokkala (b0020) 2010; 58 Vitos, Korzhavyi, Nilsson, Johansson (b0090) 2008; 77 Vitos (b0155) 2007 Rhodes, Thompson (b0035) 1977; 8A Dulieu, Nutting (b0200) 1964 Curtze, Kuokkala, Oikari, Talonen, Hninen (b0185) 2011; 59 van der Wegen, Bronsveld, de Hosson (b0025) 1980; 14 Schramm, Reed (b0030) 1975; 6 Vitos (b0150) 2001; 64 Denteneer, van Haeringen (b0115) 1987; 20 Vitos, Abrikosov, Johansson (b0165) 2001; 87 Dini, Najafizadeh, Monir-Vaghefi, Ueji (b0070) 2010; 26 Oguchi, Terakura, Hamada (b0140) 1983; 13 Brooks, Loretto, Smallman (b0175) 1979; 27 Latanision, Ruff (b0055) 1971; 2 Talonen, Hännien (b0010) 2007; 55 Miodownik (b0050) 1978; 2 Davis (b0210) 1994 Vitos, Nilsson, Johansson (b0095) 2006; 54 Reed, Schramm (b0225) 1974; 45 Majumdar, Blanckenhagen (b0125) 1984; 29 Bampton, Jones, Loretto (b0080) 1978; 26 Lecroisey, Pineau (b0045) 1972; 3 Kaneko Y. Ph.D. thesis. Nagoya University; 1996. Vitos, Larsson, Johansson, Hanson, Hogmark (b0215) 2006; 37 Cheng (10.1016/j.actamat.2011.05.049_b0120) 1988; 21 Fujita (10.1016/j.actamat.2011.05.049_b0005) 1994; 34 Denteneer (10.1016/j.actamat.2011.05.049_b0115) 1987; 20 Dini (10.1016/j.actamat.2011.05.049_b0070) 2010; 26 Pinski (10.1016/j.actamat.2011.05.049_b0130) 1986; 56 10.1016/j.actamat.2011.05.049_b0190 van der Wegen (10.1016/j.actamat.2011.05.049_b0025) 1980; 14 Ry (10.1016/j.actamat.2011.05.049_b0060) 1978; 36 Schramm (10.1016/j.actamat.2011.05.049_b0030) 1975; 6 Fawley (10.1016/j.actamat.2011.05.049_b0075) 1968; 242 Latanision (10.1016/j.actamat.2011.05.049_b0055) 1971; 2 Grimvall (10.1016/j.actamat.2011.05.049_b0145) 1989; 39 Breedis (10.1016/j.actamat.2011.05.049_b0195) 1964; 230 Majumdar (10.1016/j.actamat.2011.05.049_b0125) 1984; 29 Soven (10.1016/j.actamat.2011.05.049_b0160) 1967; 156 Vitos (10.1016/j.actamat.2011.05.049_b0215) 2006; 37 Oguchi (10.1016/j.actamat.2011.05.049_b0140) 1983; 13 Curtze (10.1016/j.actamat.2011.05.049_b0020) 2010; 58 Perdew (10.1016/j.actamat.2011.05.049_b0170) 1996; 77 Gyorffy (10.1016/j.actamat.2011.05.049_b0135) 1985; 15 Davis (10.1016/j.actamat.2011.05.049_b0210) 1994 Talonen (10.1016/j.actamat.2011.05.049_b0010) 2007; 55 Vitos (10.1016/j.actamat.2011.05.049_b0095) 2006; 54 Martinez (10.1016/j.actamat.2011.05.049_b0220) 1992; 63 Vitos (10.1016/j.actamat.2011.05.049_b0155) 2007 Olson (10.1016/j.actamat.2011.05.049_b0015) 1976; 7 Bampton (10.1016/j.actamat.2011.05.049_b0080) 1978; 26 Vitos (10.1016/j.actamat.2011.05.049_b0150) 2001; 64 Müllner (10.1016/j.actamat.2011.05.049_b0180) 1996; 73 Curtze (10.1016/j.actamat.2011.05.049_b0185) 2011; 59 Brooks (10.1016/j.actamat.2011.05.049_b0175) 1979; 27 Vitos (10.1016/j.actamat.2011.05.049_b0100) 2006; 96 Lo (10.1016/j.actamat.2011.05.049_b0110) 2009; 65 Ishida (10.1016/j.actamat.2011.05.049_b0230) 1976; 36 Jun (10.1016/j.actamat.2011.05.049_b0065) 1998; 257 Lecroisey (10.1016/j.actamat.2011.05.049_b0040) 1970; 2 Miodownik (10.1016/j.actamat.2011.05.049_b0050) 1978; 2 Vitos (10.1016/j.actamat.2011.05.049_b0165) 2001; 87 Dulieu (10.1016/j.actamat.2011.05.049_b0200) 1964 Vitos (10.1016/j.actamat.2011.05.049_b0090) 2008; 77 Rhodes (10.1016/j.actamat.2011.05.049_b0035) 1977; 8A Qi-Xun (10.1016/j.actamat.2011.05.049_b0105) 2002; 11 Reed (10.1016/j.actamat.2011.05.049_b0225) 1974; 45 Gallagher (10.1016/j.actamat.2011.05.049_b0085) 1970; 1 Neff (10.1016/j.actamat.2011.05.049_b0205) 1969; 62 Lecroisey (10.1016/j.actamat.2011.05.049_b0045) 1972; 3 |
References_xml | – volume: 45 start-page: 4705 year: 1974 ident: b0225 publication-title: J Appl Phys – volume: 8A start-page: 1901 year: 1977 ident: b0035 publication-title: Metall Trans A – year: 1964 ident: b0200 article-title: Metallurgical developments in high-alloys steels. Special Report No. 86 – volume: 6 start-page: 1345 year: 1975 ident: b0030 publication-title: Metall Trans A – volume: 242 start-page: 771 year: 1968 ident: b0075 publication-title: Trans TMS-AIME – volume: 65 start-page: 39 year: 2009 ident: b0110 publication-title: Mater Sci Eng R – volume: 58 start-page: 5129 year: 2010 ident: b0020 publication-title: Acta Mater – volume: 29 start-page: 4079 year: 1984 ident: b0125 publication-title: Phys Rev B – volume: 230 start-page: 1583 year: 1964 ident: b0195 publication-title: Trans TMS-AIME – volume: 54 start-page: 3821 year: 2006 ident: b0095 publication-title: Acta Mater – volume: 37 start-page: 193 year: 2006 ident: b0215 publication-title: Comput Mater Sci – volume: 15 start-page: 1337 year: 1985 ident: b0135 publication-title: J Phys F: Met Phys – volume: 2 start-page: K217 year: 1970 ident: b0040 publication-title: Phys Stat Sol A – volume: 3 start-page: 387 year: 1972 ident: b0045 publication-title: Metall Trans – volume: 1 start-page: 2429 year: 1970 ident: b0085 publication-title: Metall Trans – reference: Kaneko Y. Ph.D. thesis. Nagoya University; 1996. – volume: 27 start-page: 1839 year: 1979 ident: b0175 publication-title: Acta Metall – volume: 7 start-page: 1897 year: 1976 ident: b0015 publication-title: Metall Trans A – volume: 257 start-page: 353 year: 1998 ident: b0065 publication-title: Mater Sci Eng A – volume: 21 start-page: 1049 year: 1988 ident: b0120 publication-title: J Phys C – volume: 64 start-page: 014107 year: 2001 ident: b0150 publication-title: Phys Rev B – volume: 14 start-page: 285 year: 1980 ident: b0025 publication-title: Scripta Metall – volume: 59 start-page: 1068 year: 2011 ident: b0185 publication-title: Acta Mater – volume: 2 start-page: 505 year: 1971 ident: b0055 publication-title: Metall Mater Trans B – year: 1994 ident: b0210 article-title: ASM specialty handbook: stainless steels – volume: 26 start-page: 181 year: 2010 ident: b0070 publication-title: J Mater Sci Technol – volume: 34 start-page: 697 year: 1994 ident: b0005 publication-title: ISIJ Inter – volume: 26 start-page: 39 year: 1978 ident: b0080 publication-title: Acta Metall – volume: 87 start-page: 156401 year: 2001 ident: b0165 publication-title: Phys Rev Lett – volume: 36 start-page: 47 year: 1978 ident: b0060 publication-title: Mater Sci Eng – volume: 63 start-page: 221 year: 1992 ident: b0220 publication-title: Steel Res – volume: 156 start-page: 809 year: 1967 ident: b0160 publication-title: Phys Rev – year: 2007 ident: b0155 publication-title: Computational quantum mechanics for materials engineers: the EMTO method and applications – volume: 39 start-page: 12300 year: 1989 ident: b0145 publication-title: Phys Rev B – volume: 2 start-page: 207 year: 1978 ident: b0050 publication-title: Calphad – volume: 96 start-page: 117210 year: 2006 ident: b0100 publication-title: Phys Rev Lett – volume: 56 start-page: 2096 year: 1986 ident: b0130 publication-title: Phys Rev Lett – volume: 77 start-page: 3865 year: 1996 ident: b0170 publication-title: Phys Rev Lett – volume: 62 start-page: 858 year: 1969 ident: b0205 publication-title: Trans ASM – volume: 55 start-page: 6108 year: 2007 ident: b0010 publication-title: Acta Mater – volume: 13 start-page: 145 year: 1983 ident: b0140 publication-title: J Phys F: Met Phys – volume: 77 start-page: 065703 year: 2008 ident: b0090 publication-title: Phys Scripta – volume: 11 start-page: 596 year: 2002 ident: b0105 publication-title: Chinese Phys – volume: 20 start-page: L883 year: 1987 ident: b0115 publication-title: J Phys C – volume: 73 start-page: 289 year: 1996 ident: b0180 publication-title: Philos Mag Lett – volume: 36 start-page: 717 year: 1976 ident: b0230 publication-title: Phys Stat Sol A – volume: 15 start-page: 1337 year: 1985 ident: 10.1016/j.actamat.2011.05.049_b0135 publication-title: J Phys F: Met Phys doi: 10.1088/0305-4608/15/6/018 – volume: 55 start-page: 6108 year: 2007 ident: 10.1016/j.actamat.2011.05.049_b0010 publication-title: Acta Mater doi: 10.1016/j.actamat.2007.07.015 – volume: 7 start-page: 1897 year: 1976 ident: 10.1016/j.actamat.2011.05.049_b0015 publication-title: Metall Trans A – volume: 14 start-page: 285 year: 1980 ident: 10.1016/j.actamat.2011.05.049_b0025 publication-title: Scripta Metall doi: 10.1016/0036-9748(80)90110-6 – volume: 87 start-page: 156401 year: 2001 ident: 10.1016/j.actamat.2011.05.049_b0165 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.87.156401 – volume: 59 start-page: 1068 year: 2011 ident: 10.1016/j.actamat.2011.05.049_b0185 publication-title: Acta Mater doi: 10.1016/j.actamat.2010.10.037 – ident: 10.1016/j.actamat.2011.05.049_b0190 – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.actamat.2011.05.049_b0170 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.77.3865 – volume: 2 start-page: 207 year: 1978 ident: 10.1016/j.actamat.2011.05.049_b0050 publication-title: Calphad doi: 10.1016/0364-5916(78)90010-X – volume: 65 start-page: 39 year: 2009 ident: 10.1016/j.actamat.2011.05.049_b0110 publication-title: Mater Sci Eng R doi: 10.1016/j.mser.2009.03.001 – volume: 64 start-page: 014107 year: 2001 ident: 10.1016/j.actamat.2011.05.049_b0150 publication-title: Phys Rev B doi: 10.1103/PhysRevB.64.014107 – volume: 257 start-page: 353 year: 1998 ident: 10.1016/j.actamat.2011.05.049_b0065 publication-title: Mater Sci Eng A doi: 10.1016/S0921-5093(98)00994-0 – volume: 27 start-page: 1839 year: 1979 ident: 10.1016/j.actamat.2011.05.049_b0175 publication-title: Acta Metall doi: 10.1016/0001-6160(79)90074-9 – volume: 21 start-page: 1049 year: 1988 ident: 10.1016/j.actamat.2011.05.049_b0120 publication-title: J Phys C doi: 10.1088/0022-3719/21/6/012 – volume: 1 start-page: 2429 year: 1970 ident: 10.1016/j.actamat.2011.05.049_b0085 publication-title: Metall Trans doi: 10.1007/BF03038370 – volume: 36 start-page: 47 year: 1978 ident: 10.1016/j.actamat.2011.05.049_b0060 publication-title: Mater Sci Eng doi: 10.1016/0025-5416(78)90194-5 – volume: 20 start-page: L883 year: 1987 ident: 10.1016/j.actamat.2011.05.049_b0115 publication-title: J Phys C doi: 10.1088/0022-3719/20/32/001 – volume: 36 start-page: 717 year: 1976 ident: 10.1016/j.actamat.2011.05.049_b0230 publication-title: Phys Stat Sol A doi: 10.1002/pssa.2210360233 – volume: 156 start-page: 809 year: 1967 ident: 10.1016/j.actamat.2011.05.049_b0160 publication-title: Phys Rev doi: 10.1103/PhysRev.156.809 – volume: 11 start-page: 596 year: 2002 ident: 10.1016/j.actamat.2011.05.049_b0105 publication-title: Chinese Phys doi: 10.1088/1009-1963/11/6/315 – volume: 230 start-page: 1583 year: 1964 ident: 10.1016/j.actamat.2011.05.049_b0195 publication-title: Trans TMS-AIME – volume: 3 start-page: 387 year: 1972 ident: 10.1016/j.actamat.2011.05.049_b0045 publication-title: Metall Trans doi: 10.1007/BF02642042 – year: 2007 ident: 10.1016/j.actamat.2011.05.049_b0155 – year: 1994 ident: 10.1016/j.actamat.2011.05.049_b0210 – volume: 54 start-page: 3821 year: 2006 ident: 10.1016/j.actamat.2011.05.049_b0095 publication-title: Acta Mater doi: 10.1016/j.actamat.2006.04.013 – volume: 2 start-page: K217 year: 1970 ident: 10.1016/j.actamat.2011.05.049_b0040 publication-title: Phys Stat Sol A doi: 10.1002/pssa.19700020429 – volume: 96 start-page: 117210 year: 2006 ident: 10.1016/j.actamat.2011.05.049_b0100 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.96.117210 – volume: 2 start-page: 505 year: 1971 ident: 10.1016/j.actamat.2011.05.049_b0055 publication-title: Metall Mater Trans B doi: 10.1007/BF02663341 – volume: 13 start-page: 145 year: 1983 ident: 10.1016/j.actamat.2011.05.049_b0140 publication-title: J Phys F: Met Phys doi: 10.1088/0305-4608/13/1/018 – volume: 56 start-page: 2096 year: 1986 ident: 10.1016/j.actamat.2011.05.049_b0130 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.56.2096 – volume: 29 start-page: 4079 year: 1984 ident: 10.1016/j.actamat.2011.05.049_b0125 publication-title: Phys Rev B doi: 10.1103/PhysRevB.29.4079 – volume: 58 start-page: 5129 year: 2010 ident: 10.1016/j.actamat.2011.05.049_b0020 publication-title: Acta Mater doi: 10.1016/j.actamat.2010.05.049 – volume: 242 start-page: 771 year: 1968 ident: 10.1016/j.actamat.2011.05.049_b0075 publication-title: Trans TMS-AIME – volume: 26 start-page: 181 year: 2010 ident: 10.1016/j.actamat.2011.05.049_b0070 publication-title: J Mater Sci Technol doi: 10.1016/S1005-0302(10)60030-8 – volume: 37 start-page: 193 year: 2006 ident: 10.1016/j.actamat.2011.05.049_b0215 publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2005.08.006 – volume: 26 start-page: 39 year: 1978 ident: 10.1016/j.actamat.2011.05.049_b0080 publication-title: Acta Metall doi: 10.1016/0001-6160(78)90200-6 – volume: 77 start-page: 065703 year: 2008 ident: 10.1016/j.actamat.2011.05.049_b0090 publication-title: Phys Scripta doi: 10.1088/0031-8949/77/06/065703 – volume: 73 start-page: 289 year: 1996 ident: 10.1016/j.actamat.2011.05.049_b0180 publication-title: Philos Mag Lett doi: 10.1080/095008396180551 – year: 1964 ident: 10.1016/j.actamat.2011.05.049_b0200 – volume: 45 start-page: 4705 year: 1974 ident: 10.1016/j.actamat.2011.05.049_b0225 publication-title: J Appl Phys doi: 10.1063/1.1663122 – volume: 34 start-page: 697 year: 1994 ident: 10.1016/j.actamat.2011.05.049_b0005 publication-title: ISIJ Inter doi: 10.2355/isijinternational.34.697 – volume: 62 start-page: 858 year: 1969 ident: 10.1016/j.actamat.2011.05.049_b0205 publication-title: Trans ASM – volume: 6 start-page: 1345 year: 1975 ident: 10.1016/j.actamat.2011.05.049_b0030 publication-title: Metall Trans A doi: 10.1007/BF02641927 – volume: 8A start-page: 1901 year: 1977 ident: 10.1016/j.actamat.2011.05.049_b0035 publication-title: Metall Trans A doi: 10.1007/BF02646563 – volume: 39 start-page: 12300 year: 1989 ident: 10.1016/j.actamat.2011.05.049_b0145 publication-title: Phys Rev B doi: 10.1103/PhysRevB.39.12300 – volume: 63 start-page: 221 year: 1992 ident: 10.1016/j.actamat.2011.05.049_b0220 publication-title: Steel Res doi: 10.1002/srin.199200503 |
SSID | ssj0012740 |
Score | 2.4018254 |
Snippet | The alloying effects of Mn, Co and Nb on the stacking fault energy (SFE) of austenitic stainless steels, Fe–Cr–Ni with various Ni contents, are investigated... The alloying effects of Mn, Co and Nb on the stacking fault energy (SFE) of austenitic stainless steels, FeCrNi with various Ni contents, are investigated via... The alloying effects of Mn, Co and Nb on the stacking fault energy (SFE) of austenitic stainless steels, Fe-Cr-Ni with various Ni contents, are investigated... |
SourceID | swepub proquest pascalfrancis crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5728 |
SubjectTerms | Alloy steels Alloying effects Applied sciences Austenitic stainless steels Exact sciences and technology First-principles electron theory Mathematical analysis Metals. Metallurgy Nickel Niobium base alloys Stacking fault energy Steels |
Title | Stacking fault energies of Mn, Co and Nb alloyed austenitic stainless steels |
URI | https://dx.doi.org/10.1016/j.actamat.2011.05.049 https://www.proquest.com/docview/907953668 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-39520 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-158598 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5V7QWEUHmJAI32ADecrL2P2McopQqP5gJFva32SVMiO2rtQy_97czEdmgkpEjIF8valdffeOexO_MtIe9jHr2YxDTBTCYIUCzMObBCiRNBKektkxELnM8Xan4hvlzKywMy62thMK2y0_2tTt9o6-7JuENzvF4ux99TLgvko0LSMzC7qIeFmOBfPrrfpnmkEHW1lcKySLD13yqe8TUMuTbgGHZMnnLEkFLz3_bpydrcAmqxPe5i1x99yDG6sUtnx-Rp51DSaTvmZ-QglM_J4wc0gy_IN_AoHS6J02iaVU2RaRrZIWgV6Xn5kc4qakpPF5biLvxd8BTJgAKmFTm6qa9agT6EuwADfUkuzj79mM2T7hQFwFvIOuEmN76QTiguvIV4L8AlpVdOeWtSB_FCYdIYAgiHScMh4mJZtEicl3FeSP6KHJZVGV4TWjBlwIOxPJcGJr41MfjMGfAorFPCsAERPXbadRTjeNLFSve5ZNe6g1wj5JpJDZAPyGjbbd1ybOzrkPeC0Ts_iwY7sK_rcEeQ2xdmgucQqk4GhPaS1TDTcPvElKFqbnUBkEiuVD4gH1qJbzsjR_fp8udUVze_9O_6SgNuGdvTrml0iuDnb_7_c96SR_0iN0vfkcP6pgkn4CXVdriZBkNyNP38db74A4oqEvg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5V5QAIofISgVL2ADecrL2P2scqtAqQ5EKLelvts6REdtTaBy789s7EdmgkpEjIF8vyyutvPK_1zLeEfIh59OI4pglWMkGCYkHnwAslTgSlpLdMRmxwns3V5EJ8vZSXe2Tc98JgWWVn-1ubvrbW3ZVRh-ZotViMvqdcFshHhaRn4HbBDj8QoL64jcHwz6bOI4W0q20VlkWCt_9t4xldw5xrA5FhR-Uphww5Nf_toJ6szC3AFtv9LrYD0vsko2vHdHZAnnYRJT1pJ_2M7IXyOXl8j2fwBZlCSOlwTZxG0yxrilTTSA9Bq0hn5Sc6rqgpPZ1bir_hfwdPkQ0oYF2Ro-sGqyUYRDgLMNGX5OLs9Hw8SbptFABwIeuEm9z4QjqhuPAWEr4Ah5ReOeWtSR0kDIVJYwggHSYNh5SLZdEic17GeSH5K7JfVmV4TWjBlIEQxvJcGtB8a2LwmTMQUlinhGEDInrstOs4xnGri6Xui8mudQe5Rsg1kxogH5DhZtiqJdnYNSDvBaO3vhYNjmDX0KMtQW4emAmeQ656PCC0l6wGVcP_J6YMVXOrC4BEcqXyAfnYSnwzGEm6Py9-nOjq5kr_qn9qwC1jO-5rGp0i-Pmb_3-d9-Th5Hw21dMv829vyaN-xZulh2S_vmnCOwiZanu0Vok7qxUUhg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacking+fault+energies+of+Mn%2C+Co+and+Nb+alloyed+austenitic+stainless+steels&rft.jtitle=Acta+materialia&rft.au=Lu%2C+Song&rft.au=Hu%2C+Qing-Miao&rft.au=Johansson%2C+Borje&rft.au=Vitos%2C+Levente&rft.date=2011-08-01&rft.issn=1359-6454&rft.volume=59&rft.issue=14&rft.spage=5728&rft.epage=5734&rft_id=info:doi/10.1016%2Fj.actamat.2011.05.049&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon |