Fully automatized renal parenchyma volumetry using a support vector machine based recognition system for subject-specific probability map generation in native MR volume data

In epidemiological studies as well as in clinical practice the amount of produced medical image data strongly increased in the last decade. In this context organ segmentation in MR volume data gained increasing attention for medical applications. Especially in large-scale population-based studies or...

Full description

Saved in:
Bibliographic Details
Published inPhysics in medicine & biology Vol. 60; no. 22; pp. 8675 - 8693
Main Authors Gloger, Oliver, Tönnies, Klaus, Mensel, Birger, Völzke, Henry
Format Journal Article
LanguageEnglish
Published England IOP Publishing 21.11.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In epidemiological studies as well as in clinical practice the amount of produced medical image data strongly increased in the last decade. In this context organ segmentation in MR volume data gained increasing attention for medical applications. Especially in large-scale population-based studies organ volumetry is highly relevant requiring exact organ segmentation. Since manual segmentation is time-consuming and prone to reader variability, large-scale studies need automatized methods to perform organ segmentation. Fully automatic organ segmentation in native MR image data has proven to be a very challenging task. Imaging artifacts as well as inter- and intrasubject MR-intensity differences complicate the application of supervised learning strategies. Thus, we propose a modularized framework of a two-stepped probabilistic approach that generates subject-specific probability maps for renal parenchyma tissue, which are refined subsequently by using several, extended segmentation strategies. We present a three class-based support vector machine recognition system that incorporates Fourier descriptors as shape features to recognize and segment characteristic parenchyma parts. Probabilistic methods use the segmented characteristic parenchyma parts to generate high quality subject-specific parenchyma probability maps. Several refinement strategies including a final shape-based 3D level set segmentation technique are used in subsequent processing modules to segment renal parenchyma. Furthermore, our framework recognizes and excludes renal cysts from parenchymal volume, which is important to analyze renal functions. Volume errors and Dice coefficients show that our presented framework outperforms existing approaches.
AbstractList In epidemiological studies as well as in clinical practice the amount of produced medical image data strongly increased in the last decade. In this context organ segmentation in MR volume data gained increasing attention for medical applications. Especially in large-scale population-based studies organ volumetry is highly relevant requiring exact organ segmentation. Since manual segmentation is time-consuming and prone to reader variability, large-scale studies need automatized methods to perform organ segmentation. Fully automatic organ segmentation in native MR image data has proven to be a very challenging task. Imaging artifacts as well as inter- and intrasubject MR-intensity differences complicate the application of supervised learning strategies. Thus, we propose a modularized framework of a two-stepped probabilistic approach that generates subject-specific probability maps for renal parenchyma tissue, which are refined subsequently by using several, extended segmentation strategies. We present a three class-based support vector machine recognition system that incorporates Fourier descriptors as shape features to recognize and segment characteristic parenchyma parts. Probabilistic methods use the segmented characteristic parenchyma parts to generate high quality subject-specific parenchyma probability maps. Several refinement strategies including a final shape-based 3D level set segmentation technique are used in subsequent processing modules to segment renal parenchyma. Furthermore, our framework recognizes and excludes renal cysts from parenchymal volume, which is important to analyze renal functions. Volume errors and Dice coefficients show that our presented framework outperforms existing approaches.
In epidemiological studies as well as in clinical practice the amount of produced medical image data strongly increased in the last decade. In this context organ segmentation in MR volume data gained increasing attention for medical applications. Especially in large-scale population-based studies organ volumetry is highly relevant requiring exact organ segmentation. Since manual segmentation is time-consuming and prone to reader variability, large-scale studies need automatized methods to perform organ segmentation. Fully automatic organ segmentation in native MR image data has proven to be a very challenging task. Imaging artifacts as well as inter- and intrasubject MR-intensity differences complicate the application of supervised learning strategies. Thus, we propose a modularized framework of a two-stepped probabilistic approach that generates subject-specific probability maps for renal parenchyma tissue, which are refined subsequently by using several, extended segmentation strategies. We present a three class-based support vector machine recognition system that incorporates Fourier descriptors as shape features to recognize and segment characteristic parenchyma parts. Probabilistic methods use the segmented characteristic parenchyma parts to generate high quality subject-specific parenchyma probability maps. Several refinement strategies including a final shape-based 3D level set segmentation technique are used in subsequent processing modules to segment renal parenchyma. Furthermore, our framework recognizes and excludes renal cysts from parenchymal volume, which is important to analyze renal functions. Volume errors and Dice coefficients show that our presented framework outperforms existing approaches.In epidemiological studies as well as in clinical practice the amount of produced medical image data strongly increased in the last decade. In this context organ segmentation in MR volume data gained increasing attention for medical applications. Especially in large-scale population-based studies organ volumetry is highly relevant requiring exact organ segmentation. Since manual segmentation is time-consuming and prone to reader variability, large-scale studies need automatized methods to perform organ segmentation. Fully automatic organ segmentation in native MR image data has proven to be a very challenging task. Imaging artifacts as well as inter- and intrasubject MR-intensity differences complicate the application of supervised learning strategies. Thus, we propose a modularized framework of a two-stepped probabilistic approach that generates subject-specific probability maps for renal parenchyma tissue, which are refined subsequently by using several, extended segmentation strategies. We present a three class-based support vector machine recognition system that incorporates Fourier descriptors as shape features to recognize and segment characteristic parenchyma parts. Probabilistic methods use the segmented characteristic parenchyma parts to generate high quality subject-specific parenchyma probability maps. Several refinement strategies including a final shape-based 3D level set segmentation technique are used in subsequent processing modules to segment renal parenchyma. Furthermore, our framework recognizes and excludes renal cysts from parenchymal volume, which is important to analyze renal functions. Volume errors and Dice coefficients show that our presented framework outperforms existing approaches.
Author Mensel, Birger
Gloger, Oliver
Tönnies, Klaus
Völzke, Henry
Author_xml – sequence: 1
  givenname: Oliver
  surname: Gloger
  fullname: Gloger, Oliver
  email: gloger@uni-greifswald.de
  organization: Ernst Moritz Arndt University of Greifswald , Institute for Community Medicine, Walther-Rathenau-Str. 48. 17475 Greifswald, Germany
– sequence: 2
  givenname: Klaus
  surname: Tönnies
  fullname: Tönnies, Klaus
  organization: Otto-von-Guericke University of Magdeburg , Institute for Simulation and Graphics, Universitätsplatz 2, 39106 Magdeburg, Germany
– sequence: 3
  givenname: Birger
  surname: Mensel
  fullname: Mensel, Birger
  organization: Ernst Moritz Arndt University of Greifswald , Institute for Diagnostic Radiology and Neuroradiology, Ferdinand-Sauerbruch-Str.1, 17475 Greifswald, Germany
– sequence: 4
  givenname: Henry
  surname: Völzke
  fullname: Völzke, Henry
  organization: Ernst Moritz Arndt University of Greifswald , Institute for Community Medicine, Walther-Rathenau-Str. 48. 17475 Greifswald, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26509325$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1rFDEUhoNU7Lb6D0RyJd5MN8lMZna9k2K1UBFEr8NJ5sw2y0wyJpmF6X_yP5r9sIgIvTrn4nlOwvtekDPnHRLymrMrzlarJWMlL9ZcymXNlkIsV3Ujn5EFL2te1LJmZ2TxiJyTixi3jHG-EtULci5qydalkAvy62bq-5nClPwAyT5gSwM66OkIeZr7eQC68_00YAoznaJ1Gwo0TuPoQ6I7NMkHOoC5tw6phnjwjd84m6x3NM4x4UC7DMVJbzNexBGN7ayhY_AatO1tmvOFkW7QYYCDZh11edsh_fLt9DxtIcFL8ryDPuKr07wkP24-fr_-XNx9_XR7_eGuMFUlU1GWDQgJ2jRdKZGZBjTqzjSasUp0LeqqFaaV7ZpVvJFdxVCg5GwNEpgpZVteknfHu_mPPyeMSQ02Gux7cOinqHiTw1vXolll9M0JnfSArRqDHSDM6k_EGaiOgAk-xoDdI8KZ2jep9jWpfU2qZkoItW8ya-__0YxNh3RSANs_JbOjbP2otn4KudH4lPL2P8o46L8gNbZd-RvidsNv
CODEN PHMBA7
CitedBy_id crossref_primary_10_1007_s10334_019_00802_x
crossref_primary_10_3238_arztebl_m2024_0040
crossref_primary_10_1109_ACCESS_2018_2861418
crossref_primary_10_1088_1361_6560_aa766e
crossref_primary_10_1111_apha_13701
crossref_primary_10_1109_ACCESS_2021_3078430
crossref_primary_10_1007_s10334_024_01168_5
crossref_primary_10_1016_j_cmpb_2018_01_014
crossref_primary_10_3390_healthcare10010033
Cites_doi 10.1016/j.juro.2011.09.005
10.1080/02841850410001312
10.1109/isbi.2004.1398634
10.1109/icip.2001.958309
10.1109/TMI.2011.2168609
10.1007/11866763_93
10.1016/j.compmedimag.2008.11.004
10.1016/S0272-6386(04)01087-X
10.1109/icip.2001.958071
10.1148/radiol.12112338
10.1148/radiol.2373041639
10.1007/978-3-642-15711-0_12
10.1016/j.compmedimag.2011.06.005
10.1016/j.juro.2010.09.098
10.1093/ije/dyp394
10.1023/A:1026313132218
10.1016/j.ijrobp.2004.11.014
10.1109/isbi.2002.1029202
10.1109/TITB.2005.855561
10.1016/j.compmedimag.2008.10.002
10.1109/TC.1972.5008949
10.2214/AJR.12.8657
10.1007/978-3-540-75757-3_47
10.1109/icpr.2002.1047991
10.7863/jum.2012.31.6.955
10.1109/tip.2014.2315155
10.1186/1471-2490-9-19
10.1177/1077546307077417
10.1007/s11263-006-7533-5
ContentType Journal Article
Copyright 2015 Institute of Physics and Engineering in Medicine
Copyright_xml – notice: 2015 Institute of Physics and Engineering in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/0031-9155/60/22/8675
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Physics
DocumentTitleAlternate Fully automatized renal parenchyma volumetry using a support vector machine based recognition system for subject-specific probability map generation in native MR volume data
EISSN 1361-6560
EndPage 8693
ExternalDocumentID 26509325
10_1088_0031_9155_60_22_8675
pmb520198
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: German Research Foundation
  grantid: GL 785/1-1
GroupedDBID ---
-DZ
-~X
123
1JI
4.4
5B3
5RE
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHWH
ABJNI
ABLJU
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
UCJ
W28
XPP
AAYXX
ADEQX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c445t-337a25abc7f35e0c7abebfc7b0042fdeb4d2cd5d904175f40e2e5109a5a0c35d3
IEDL.DBID IOP
ISSN 0031-9155
1361-6560
IngestDate Thu Jul 10 23:07:04 EDT 2025
Thu Jan 02 22:21:18 EST 2025
Tue Jul 01 00:25:11 EDT 2025
Thu Apr 24 23:11:40 EDT 2025
Thu Jan 07 13:50:39 EST 2021
Wed Aug 21 03:40:42 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-337a25abc7f35e0c7abebfc7b0042fdeb4d2cd5d904175f40e2e5109a5a0c35d3
Notes PMB-102368.R1
Institute of Physics and Engineering in Medicine
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26509325
PQID 1732596278
PQPubID 23479
PageCount 19
ParticipantIDs iop_journals_10_1088_0031_9155_60_22_8675
pubmed_primary_26509325
crossref_primary_10_1088_0031_9155_60_22_8675
crossref_citationtrail_10_1088_0031_9155_60_22_8675
proquest_miscellaneous_1732596278
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-11-21
PublicationDateYYYYMMDD 2015-11-21
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-21
  day: 21
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physics in medicine & biology
PublicationTitleAbbrev PMB
PublicationTitleAlternate Phys. Med. Biol
PublicationYear 2015
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 22
23
24
25
26
27
28
29
Nam K H (14) 2012; 31
Schölkopf B (18) 2002
30
31
10
12
13
15
16
Kohlberger T ed Yang G-Z (11) 2009
17
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – ident: 6
  doi: 10.1016/j.juro.2011.09.005
– ident: 10
  doi: 10.1080/02841850410001312
– ident: 23
  doi: 10.1109/isbi.2004.1398634
– start-page: 34
  year: 2009
  ident: 11
  publication-title: Organ Segmentation with Level Sets Using Local Shape and Appearance Priors
– ident: 24
  doi: 10.1109/icip.2001.958309
– ident: 4
  doi: 10.1109/TMI.2011.2168609
– ident: 20
  doi: 10.1007/11866763_93
– ident: 30
  doi: 10.1016/j.compmedimag.2008.11.004
– ident: 17
  doi: 10.1016/S0272-6386(04)01087-X
– ident: 26
  doi: 10.1109/icip.2001.958071
– ident: 27
  doi: 10.1148/radiol.12112338
– ident: 9
  doi: 10.1148/radiol.2373041639
– ident: 13
  doi: 10.1007/978-3-642-15711-0_12
– ident: 19
  doi: 10.1016/j.compmedimag.2011.06.005
– ident: 8
  doi: 10.1016/j.juro.2010.09.098
– ident: 25
  doi: 10.1093/ije/dyp394
– ident: 15
  doi: 10.1023/A:1026313132218
– ident: 16
  doi: 10.1016/j.ijrobp.2004.11.014
– ident: 22
  doi: 10.1109/isbi.2002.1029202
– ident: 12
  doi: 10.1109/TITB.2005.855561
– ident: 21
  doi: 10.1016/j.compmedimag.2008.10.002
– ident: 29
  doi: 10.1109/TC.1972.5008949
– year: 2002
  ident: 18
  publication-title: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
– ident: 31
  doi: 10.2214/AJR.12.8657
– ident: 1
  doi: 10.1007/978-3-540-75757-3_47
– ident: 3
  doi: 10.1109/icpr.2002.1047991
– volume: 31
  start-page: 955
  year: 2012
  ident: 14
  publication-title: J. Ultrasound Med.
  doi: 10.7863/jum.2012.31.6.955
– ident: 7
  doi: 10.1109/tip.2014.2315155
– ident: 5
  doi: 10.1186/1471-2490-9-19
– ident: 28
  doi: 10.1177/1077546307077417
– ident: 2
  doi: 10.1007/s11263-006-7533-5
SSID ssj0011824
Score 2.2202284
Snippet In epidemiological studies as well as in clinical practice the amount of produced medical image data strongly increased in the last decade. In this context...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8675
SubjectTerms Algorithms
Bayesian learning
Computer Simulation
fourier descriptors
Humans
Image Interpretation, Computer-Assisted - methods
Imaging, Three-Dimensional
Kidney - anatomy & histology
level set segmentation
Magnetic Resonance Imaging - methods
Models, Biological
Pattern Recognition, Automated
Probability
Sensitivity and Specificity
Support Vector Machine
support vector machines
Title Fully automatized renal parenchyma volumetry using a support vector machine based recognition system for subject-specific probability map generation in native MR volume data
URI https://iopscience.iop.org/article/10.1088/0031-9155/60/22/8675
https://www.ncbi.nlm.nih.gov/pubmed/26509325
https://www.proquest.com/docview/1732596278
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoEYgLhfLa8jISFw7eTe08nCOqqArSAkJU6i34lRbBJtFugpT-J_5jZ2zviiJVFeIWJR7biZ3xl8znbwh5DRi0hmVcsnpfCZYWyjLpSsNyJ51MtdVFgbuR5x_zo-P0w0l2EvOc-r0wbRdd_xQOg1BweISRECcx_dg-Q1nzWZ7MOJ9JaG-L3BQyzzGFwftPnzdhBADPQYY5Wqz3zl1Ry6W1aQvavxp2-uXncId8W3c8sE5-TIdeT835X5qO_3Fn98jdCE3p21D8Prnhml1yKySrHHfJ7XkMw8NJzxs1qwfkN37CjlQNfYvQ99xZunRYCxLbG3M2LhQNDrBfjhRJ9qdU0dXQIeynv3zIgC48odNRXFHRPlKa2oYGnWkKwBpsNP4yYrg1FOlNFFPhBJHxEWro6KkX0PZm3xvaeEFzOv8Sm6dIhX1Ijg_ffT04YjEDBDNpmvVMiELxTGlT1CJziSmUdro2hfc1tXU6tdzYzJZJCjCoThPHHTiZUmUqMSKz4hHZbtrGPSFUGCFNInWdlAZBqHIcjqR2XGcl53ZCxHrsKxPl0TFLx8_Kh-ml9CqqFY5OlScV5xWOzoSwjVUX5EGuKf8GBr-KfmJ1TdmXl8p2C_3H1aqz9YS8Wk_PCrwChnpU49oB6i0E93mV5IQ8DvN20z-Ooolwee8f-vKU3AGkmAUW4zOy3S8H9xzQWK9f-DfuAqmkKaM
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLa2ISZeuIxbuc1IvPDgNrVzcR7RoNqAjgkxaW-WbxkImkRtgpT9J_4jPrZbMaRpQrxFiY_jxM7x157vfAehVw6DVm4b56SaSkbSQhrCbalJbrnlqTKqKCAbeX6cH56m78-ysy10sMmFadro-sfuMAgFh1cYCXEcyo9NCciaT_JkQumEu_tNWlNtoxsZyxkI6B99OtmEEhyADlLM0WqdP3dFT5f2p203hquhp9-CZneQWQ8-ME--j_tOjfXFX7qO__l0d9HtCFHxm2ByD23Zeg_dDEUrhz20O4_heHfS80f16j76BT9lByz7rgEIfGENXlroBQjutf46LCQOjrBbDhjI9udY4lXfAvzHP33oAC88sdNi2FnBPlKbmhoHvWnsALazUfDXEYEUUaA5YSiJE8TGB9dDi8-9kLY3-1bj2gub4_nneHsMlNgH6HT27svBIYmVIIhO06wjjBWSZlLpomKZTXQhlVWVLrzPqYxVqaHaZKZMUgeHqjSx1DpnU8pMJpplhj1EO3VT28cIM824TriqklIDGJWWuiOuLFVZSakZIbaef6GjTDpU6_ghfLiec6-mKmCGRJ4ISgXM0AiRjVUbZEKuaf_aLQAR_cXqmrb7l9q2C_XHVeHWxgi9XC9R4bwDhHxkbZve9Vsw6usr8RF6FNbuZnwUxBPd5Sf_MJZ9tHvydiY-Hh1_eIpuOfCYQV4mnT5DO92yt88dQOvUC_8B_gZLIi8K
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fully+automatized+renal+parenchyma+volumetry+using+a+support+vector+machine+based+recognition+system+for+subject-specific+probability+map+generation+in+native+MR+volume+data&rft.jtitle=Physics+in+medicine+%26+biology&rft.au=Gloger%2C+Oliver&rft.au=T%C3%B6nnies%2C+Klaus&rft.au=Mensel%2C+Birger&rft.au=V%C3%B6lzke%2C+Henry&rft.date=2015-11-21&rft.issn=1361-6560&rft.eissn=1361-6560&rft.volume=60&rft.issue=22&rft.spage=8675&rft_id=info:doi/10.1088%2F0031-9155%2F60%2F22%2F8675&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9155&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9155&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9155&client=summon