T-cell deficiency and hyperinflammatory monocyte responses associate with Mycobacterium avium complex lung disease
Immunological mechanisms of susceptibility to nontuberculous mycobacterial (NTM) disease are poorly understood. To understand NTM pathogenesis, we evaluated innate and antigen-specific adaptive immune responses to Mycobacterium avium complex (MAC) in asymptomatic individuals with a previous history...
Saved in:
Published in | Frontiers in immunology Vol. 13; p. 1016038 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
03.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1664-3224 1664-3224 |
DOI | 10.3389/fimmu.2022.1016038 |
Cover
Loading…
Abstract | Immunological mechanisms of susceptibility to nontuberculous mycobacterial (NTM) disease are poorly understood. To understand NTM pathogenesis, we evaluated innate and antigen-specific adaptive immune responses to
Mycobacterium avium
complex (MAC) in asymptomatic individuals with a previous history of MAC lung disease (MACDZ). We hypothesized that Mav-specific immune responses are associated with susceptibility to MAC lung disease. We measured MAC-, NTM-, or MAC/Mtb-specific T-cell responses by cytokine production, expression of surface markers, and analysis of global gene expression in 27 MACDZ individuals and 32 healthy controls. We also analyzed global gene expression in
Mycobacterium avium
-infected and uninfected peripheral blood monocytes from 17 MACDZ and 17 healthy controls. We were unable to detect increased T-cell responses against MAC-specific reagents in MACDZ compared to controls, while the responses to non-mycobacteria derived antigens were preserved. MACDZ individuals had a lower frequency of Th1 and Th1* T-cell populations. In addition, MACDZ subjects had lower transcriptional responses in PBMCs stimulated with a mycobacterial peptide pool (MTB300). By contrast, global gene expression analysis demonstrated upregulation of proinflammatory pathways in uninfected and
M. avium
-infected monocytes, i.e. a hyperinflammatory
in vitro
response, derived from MACDZ subjects compared to controls. Together, these data suggest a novel immunologic defect which underlies MAC pathogenesis and includes concurrent innate and adaptive dysregulation which persists years after completion of treatment. |
---|---|
AbstractList | Immunological mechanisms of susceptibility to nontuberculous mycobacterial (NTM) disease are poorly understood. To understand NTM pathogenesis, we evaluated innate and antigen-specific adaptive immune responses to Mycobacterium avium complex (MAC) in asymptomatic individuals with a previous history of MAC lung disease (MACDZ). We hypothesized that Mav-specific immune responses are associated with susceptibility to MAC lung disease. We measured MAC-, NTM-, or MAC/Mtb-specific T-cell responses by cytokine production, expression of surface markers, and analysis of global gene expression in 27 MACDZ individuals and 32 healthy controls. We also analyzed global gene expression in Mycobacterium avium-infected and uninfected peripheral blood monocytes from 17 MACDZ and 17 healthy controls. We were unable to detect increased T-cell responses against MAC-specific reagents in MACDZ compared to controls, while the responses to non-mycobacteria derived antigens were preserved. MACDZ individuals had a lower frequency of Th1 and Th1* T-cell populations. In addition, MACDZ subjects had lower transcriptional responses in PBMCs stimulated with a mycobacterial peptide pool (MTB300). By contrast, global gene expression analysis demonstrated upregulation of proinflammatory pathways in uninfected and M. avium-infected monocytes, i.e. a hyperinflammatory in vitro response, derived from MACDZ subjects compared to controls. Together, these data suggest a novel immunologic defect which underlies MAC pathogenesis and includes concurrent innate and adaptive dysregulation which persists years after completion of treatment.Immunological mechanisms of susceptibility to nontuberculous mycobacterial (NTM) disease are poorly understood. To understand NTM pathogenesis, we evaluated innate and antigen-specific adaptive immune responses to Mycobacterium avium complex (MAC) in asymptomatic individuals with a previous history of MAC lung disease (MACDZ). We hypothesized that Mav-specific immune responses are associated with susceptibility to MAC lung disease. We measured MAC-, NTM-, or MAC/Mtb-specific T-cell responses by cytokine production, expression of surface markers, and analysis of global gene expression in 27 MACDZ individuals and 32 healthy controls. We also analyzed global gene expression in Mycobacterium avium-infected and uninfected peripheral blood monocytes from 17 MACDZ and 17 healthy controls. We were unable to detect increased T-cell responses against MAC-specific reagents in MACDZ compared to controls, while the responses to non-mycobacteria derived antigens were preserved. MACDZ individuals had a lower frequency of Th1 and Th1* T-cell populations. In addition, MACDZ subjects had lower transcriptional responses in PBMCs stimulated with a mycobacterial peptide pool (MTB300). By contrast, global gene expression analysis demonstrated upregulation of proinflammatory pathways in uninfected and M. avium-infected monocytes, i.e. a hyperinflammatory in vitro response, derived from MACDZ subjects compared to controls. Together, these data suggest a novel immunologic defect which underlies MAC pathogenesis and includes concurrent innate and adaptive dysregulation which persists years after completion of treatment. Immunological mechanisms of susceptibility to nontuberculous mycobacterial (NTM) disease are poorly understood. To understand NTM pathogenesis, we evaluated innate and antigen-specific adaptive immune responses to Mycobacterium avium complex (MAC) in asymptomatic individuals with a previous history of MAC lung disease (MACDZ). We hypothesized that Mav-specific immune responses are associated with susceptibility to MAC lung disease. We measured MAC-, NTM-, or MAC/Mtb-specific T-cell responses by cytokine production, expression of surface markers, and analysis of global gene expression in 27 MACDZ individuals and 32 healthy controls. We also analyzed global gene expression in Mycobacterium avium-infected and uninfected peripheral blood monocytes from 17 MACDZ and 17 healthy controls. We were unable to detect increased T-cell responses against MAC-specific reagents in MACDZ compared to controls, while the responses to non-mycobacteria derived antigens were preserved. MACDZ individuals had a lower frequency of Th1 and Th1* T-cell populations. In addition, MACDZ subjects had lower transcriptional responses in PBMCs stimulated with a mycobacterial peptide pool (MTB300). By contrast, global gene expression analysis demonstrated upregulation of proinflammatory pathways in uninfected and M. avium-infected monocytes, i.e. a hyperinflammatory in vitro response, derived from MACDZ subjects compared to controls. Together, these data suggest a novel immunologic defect which underlies MAC pathogenesis and includes concurrent innate and adaptive dysregulation which persists years after completion of treatment. Immunological mechanisms of susceptibility to nontuberculous mycobacterial (NTM) disease are poorly understood. To understand NTM pathogenesis, we evaluated innate and antigen-specific adaptive immune responses to Mycobacterium avium complex (MAC) in asymptomatic individuals with a previous history of MAC lung disease (MACDZ). We hypothesized that Mav-specific immune responses are associated with susceptibility to MAC lung disease. We measured MAC-, NTM-, or MAC/Mtb-specific T-cell responses by cytokine production, expression of surface markers, and analysis of global gene expression in 27 MACDZ individuals and 32 healthy controls. We also analyzed global gene expression in Mycobacterium avium -infected and uninfected peripheral blood monocytes from 17 MACDZ and 17 healthy controls. We were unable to detect increased T-cell responses against MAC-specific reagents in MACDZ compared to controls, while the responses to non-mycobacteria derived antigens were preserved. MACDZ individuals had a lower frequency of Th1 and Th1* T-cell populations. In addition, MACDZ subjects had lower transcriptional responses in PBMCs stimulated with a mycobacterial peptide pool (MTB300). By contrast, global gene expression analysis demonstrated upregulation of proinflammatory pathways in uninfected and M. avium -infected monocytes, i.e. a hyperinflammatory in vitro response, derived from MACDZ subjects compared to controls. Together, these data suggest a novel immunologic defect which underlies MAC pathogenesis and includes concurrent innate and adaptive dysregulation which persists years after completion of treatment. |
Author | Peterson, Glenna J. Nguyen, Felicia K. Shah, Javeed A. Saito, Mayuko Aitken, Moira L. Goss, Christopher H. Dill-McFarland, Kimberly A. Sette, Alessandro Gilman, Robert H. Paul, Sinu Hawn, Thomas R. Benson, Basilin Taplitz, Randy Horne, David J. Arentz, Matthew Lindestam Arlehamn, Cecilia S. Kuan, Rebecca |
AuthorAffiliation | 7 Department of Global Health, University of Washington , Seattle, WA , United States 3 Johns Hopkins University, Bloomberg School of Public Health , Baltimore, MD , United States 9 VA Puget Sound Healthcare System , Seattle, WA , United States 10 Department of Medicine, University of California San Diego , La Jolla, CA , United States 1 Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology , La Jolla, CA , United States 2 Department of Medicine, University of Washington , Seattle, WA , United States 4 Department of Microbiology, Universidad Peruana Cayetano Heredia , Lima , Peru 8 FIND, the global alliance for diagnostics , Geneva , Switzerland 5 Department of Virology, Tohoku University Graduate School of Medicine , Sendai , Japan 6 Department of Medicine, City of Hope National Medical Center , Duarte, CA , United States |
AuthorAffiliation_xml | – name: 1 Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology , La Jolla, CA , United States – name: 5 Department of Virology, Tohoku University Graduate School of Medicine , Sendai , Japan – name: 6 Department of Medicine, City of Hope National Medical Center , Duarte, CA , United States – name: 8 FIND, the global alliance for diagnostics , Geneva , Switzerland – name: 7 Department of Global Health, University of Washington , Seattle, WA , United States – name: 9 VA Puget Sound Healthcare System , Seattle, WA , United States – name: 10 Department of Medicine, University of California San Diego , La Jolla, CA , United States – name: 3 Johns Hopkins University, Bloomberg School of Public Health , Baltimore, MD , United States – name: 4 Department of Microbiology, Universidad Peruana Cayetano Heredia , Lima , Peru – name: 2 Department of Medicine, University of Washington , Seattle, WA , United States |
Author_xml | – sequence: 1 givenname: Cecilia S. surname: Lindestam Arlehamn fullname: Lindestam Arlehamn, Cecilia S. – sequence: 2 givenname: Basilin surname: Benson fullname: Benson, Basilin – sequence: 3 givenname: Rebecca surname: Kuan fullname: Kuan, Rebecca – sequence: 4 givenname: Kimberly A. surname: Dill-McFarland fullname: Dill-McFarland, Kimberly A. – sequence: 5 givenname: Glenna J. surname: Peterson fullname: Peterson, Glenna J. – sequence: 6 givenname: Sinu surname: Paul fullname: Paul, Sinu – sequence: 7 givenname: Felicia K. surname: Nguyen fullname: Nguyen, Felicia K. – sequence: 8 givenname: Robert H. surname: Gilman fullname: Gilman, Robert H. – sequence: 9 givenname: Mayuko surname: Saito fullname: Saito, Mayuko – sequence: 10 givenname: Randy surname: Taplitz fullname: Taplitz, Randy – sequence: 11 givenname: Matthew surname: Arentz fullname: Arentz, Matthew – sequence: 12 givenname: Christopher H. surname: Goss fullname: Goss, Christopher H. – sequence: 13 givenname: Moira L. surname: Aitken fullname: Aitken, Moira L. – sequence: 14 givenname: David J. surname: Horne fullname: Horne, David J. – sequence: 15 givenname: Javeed A. surname: Shah fullname: Shah, Javeed A. – sequence: 16 givenname: Alessandro surname: Sette fullname: Sette, Alessandro – sequence: 17 givenname: Thomas R. surname: Hawn fullname: Hawn, Thomas R. |
BookMark | eNp9kU9v3CAQxa0qlZqm-QI9cezFW2MwhkulKuqfSIl6Sc9oDONdIgMu2Gn97WNnt1LTQzgMaOa9n9C8t8VZiAGL4j2tdoxJ9bF33s-7uqrrHa2oqJh8VZxTIXjJ6pqf_fN-U1zmfF-thyvGWHNepLvS4DAQi70zDoNZCARLDsuIyYV-AO9himkhPoZolglJwjzGkDETyDkaB2vvt5sO5HYxsQMzrcbZE3jYqol-HPAPGeawJ9ZlhIzvitc9DBkvT_dF8fPrl7ur7-XNj2_XV59vSsN5M5VUKpBYdxal4YZXVUdlg9J20qiuV8KoXlDVyQ5WDUfVN8ZyTpmsRCsNGHZRXB-5NsK9HpPzkBYdwemnRkx7DWlyZkAthG2xZRwtAFfKqrUyQTmHrkXZypX16cga586jNRimBMMz6PNJcAe9jw9aNS3nbAN8OAFS_DVjnrR3eds8BIxz1nVbC1Vz2tJVKo9Sk2LOCXtt3ASTixvZDZpWeotdP8Wut9j1KfbVWv9n_fvDF0yPRI24mA |
CitedBy_id | crossref_primary_10_1093_jleuko_qiae019 crossref_primary_10_3390_pathogens13100903 crossref_primary_10_1016_j_tube_2024_102514 crossref_primary_10_3389_fimmu_2025_1554544 crossref_primary_10_1128_mbio_00829_24 crossref_primary_10_2147_IDR_S473762 crossref_primary_10_1371_journal_pone_0301659 crossref_primary_10_1038_s41598_024_68242_9 crossref_primary_10_3389_fimmu_2023_1127470 crossref_primary_10_1002_cpz1_934 crossref_primary_10_1016_j_intimp_2023_111064 |
Cites_doi | 10.3389/fmed.2017.00027 10.1093/clinids/19.1.15 10.1086/318087 10.1371/journal.ppat.1003130 10.1186/1471-2105-14-128 10.1371/journal.pone.0169086 10.1164/rccm.201711-2340OC 10.1371/journal.ppat.1005760 10.1093/clinids/19.1.24. 10.4049/jimmunol.1401151 10.18637/jss.v067.i01 10.3389/fmicb.2019.01441 10.1093/infdis/jiaa354 10.1016/S2213-2600(16)00048-5 10.1073/pnas.0506580102 10.1016/S1473-3099(15)00089-4 10.1007/s00408-007-9040-z 10.1164/rccm.201612-2479OC 10.1016/S0140-6736(95)92348-9 10.1513/AnnalsATS.201605-353OC 10.1186/gb-2014-15-2-r29 10.1084/jem.163.1.203 10.1016/j.cell.2017.12.031 10.1183/13993003.00374-2017 10.1183/13993003.00250-2019 10.1073/pnas.1416537112 10.1016/j.cell.2018.10.022 10.1126/science.1251086 10.1093/infdis/jiz285 10.1016/S0140-6736(02)08353-8 10.1165/rcmb.2017-0230OC 10.1186/s13059-014-0550-8 10.1164/rccm.200805-686OC 10.1093/bioinformatics/btt656 10.1016/j.ebiom.2021.103746 10.1183/09031936.00098212 10.1093/nar/gky1131 10.1513/AnnalsATS.201605-387WS 10.1038/s41598-020-65043-8 10.1016/j.jctube.2020.100189 10.1016/j.tube.2017.08.004 10.1038/mi.2011.10 10.1101/cshperspect.a021113 10.1183/13993003.02269-2019 10.1164/rccm.200604-571ST 10.1164/rccm.201206-1035OC 10.1038/nprot.2014.006 10.1093/bioinformatics/btr026 10.1016/j.cels.2015.12.004 10.1016/j.smim.2014.09.008 10.1016/j.jim.2015.03.022 10.4049/jimmunol.1600318 10.2739/kurumemedj.51.133 10.1186/s13104-016-1900-2 10.2139/ssrn.3750013 10.1371/journal.pone.0026434 10.4049/jimmunol.1800118 10.4049/jimmunol.1601750 10.1164/rccm.201502-0387OC 10.1093/cid/ciy016 10.1164/rccm.201003-0503OC 10.1093/bioinformatics/btp352 10.1111/j.2517-6161.1995.tb02031.x 10.1183/09031936.00149212 10.1093/cid/ciaa241 10.1086/600888 10.1084/jem.20141518 10.1093/bioinformatics/bts635 10.1164/arrd.1966.94.4.553 10.1093/ofid/ofz484 10.1016/S0140-6736(15)01316-1 10.1101/060012 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Lindestam Arlehamn, Benson, Kuan, Dill-McFarland, Peterson, Paul, Nguyen, Gilman, Saito, Taplitz, Arentz, Goss, Aitken, Horne, Shah, Sette and Hawn. Copyright © 2022 Lindestam Arlehamn, Benson, Kuan, Dill-McFarland, Peterson, Paul, Nguyen, Gilman, Saito, Taplitz, Arentz, Goss, Aitken, Horne, Shah, Sette and Hawn 2022 Lindestam Arlehamn, Benson, Kuan, Dill-McFarland, Peterson, Paul, Nguyen, Gilman, Saito, Taplitz, Arentz, Goss, Aitken, Horne, Shah, Sette and Hawn |
Copyright_xml | – notice: Copyright © 2022 Lindestam Arlehamn, Benson, Kuan, Dill-McFarland, Peterson, Paul, Nguyen, Gilman, Saito, Taplitz, Arentz, Goss, Aitken, Horne, Shah, Sette and Hawn. – notice: Copyright © 2022 Lindestam Arlehamn, Benson, Kuan, Dill-McFarland, Peterson, Paul, Nguyen, Gilman, Saito, Taplitz, Arentz, Goss, Aitken, Horne, Shah, Sette and Hawn 2022 Lindestam Arlehamn, Benson, Kuan, Dill-McFarland, Peterson, Paul, Nguyen, Gilman, Saito, Taplitz, Arentz, Goss, Aitken, Horne, Shah, Sette and Hawn |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/fimmu.2022.1016038 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-3224 |
ExternalDocumentID | oai_doaj_org_article_66d7e734edaa499d9a4936144ab7e878 PMC9574438 10_3389_fimmu_2022_1016038 |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: R21 AI125777, K24 AI137310, P30 DK089507, UL1TR000423, S10 RR027366, S10 OD016262 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM 7X8 5PM |
ID | FETCH-LOGICAL-c445t-189a8e2bde8c4c400b185e8db8c9bf96c9f619b8ba2bd4e9f5cd441380678cac3 |
IEDL.DBID | M48 |
ISSN | 1664-3224 |
IngestDate | Wed Aug 27 01:31:59 EDT 2025 Thu Aug 21 18:39:59 EDT 2025 Thu Jul 10 22:41:34 EDT 2025 Tue Jul 01 02:11:30 EDT 2025 Thu Apr 24 22:58:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c445t-189a8e2bde8c4c400b185e8db8c9bf96c9f619b8ba2bd4e9f5cd441380678cac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reviewed by: Rajendranath Ramasawmy, Universidade Nilton Lins, Brazil; Anders Lindén, Karolinska Institutet (KI), Sweden This article was submitted to Microbial Immunology, a section of the journal Frontiers in Immunology Edited by: Susanna Brighenti, Karolinska Institutet (KI), Sweden |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fimmu.2022.1016038 |
PQID | 2726924171 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_66d7e734edaa499d9a4936144ab7e878 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9574438 proquest_miscellaneous_2726924171 crossref_citationtrail_10_3389_fimmu_2022_1016038 crossref_primary_10_3389_fimmu_2022_1016038 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-03 |
PublicationDateYYYYMMDD | 2022-10-03 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-03 day: 03 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in immunology |
PublicationYear | 2022 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Cowman (B68) 2018; 58 Vankayalapati (B9) 2001; 183 Liao (B34) 2014; 30 Kitada (B24) 2013; 42 Emori (B7) 2004; 51 Zak (B75) 2016; 387 Penn-Nicholson (B73) 2020; 10 Urdahl (B60) 2011; 4 Daley (B66) 2020; 222 Palmer (B14) 1966; 94 Henkle (B67) 2016; 13 Kim (B5) 2008; 178 Lindestam Arlehamn (B26) 2016; 12 Bustamante (B6) 2014; 26 Nishimura (B23) 2009; 49 Prevots (B16) 2017; 49 Namkoong (B64) 2021; 58 Cowman (B4) 2019; 54 Griffith (B19) 2007; 175 Suliman (B74) 2018; 197 B38 Szklarczyk (B44) 2019; 47 Schmiedel (B37) 2018; 175 Li (B33) 2009; 25 Black (B13) 2002; 359 Law (B42) 2014; 15 Orme (B15) 1986; 163 Szymanski (B65) 2015; 192 Lindestam Arlehamn (B51) 2013; 9 Alderwick (B10) 2015; 5 Shah (B11) 2019; 220 Benjamini (B36) 1995; 57 Chen (B45) 2013; 14 Thompson (B70) 2017; 107 B40 Paul (B25) 2015; 422 Love (B35) 2014; 15 B41 Kaufmann (B62) 2018; 172 Sweeney (B69) 2016; 4 Burel (B29) 2017; 198 Mendelsohn (B72) 2021; 9 Tam (B22) 2020; 21 Hsu (B53) 2018; 67 Dobin (B31) 2013; 29 von Reyn (B20) 1994; 19 Wu (B59) 2015; 15 Darboe (B71) 2019; 10 Daley (B1) 2020; 71 Singhania (B57) 2021; 74 Chen (B63) 2017; 196 Hoefsloot (B2) 2013; 42 Subramanian (B50) 2005; 102 Picelli (B30) 2014; 9 Checkley (B56) 2011; 6 Winthrop (B3) 2010; 182 Kwon (B54) 2007; 185 Burel (B48) 2018; 200 Dan (B27) 2016; 197 Donohue (B17) 2016; 13 Fine (B12) 1995; 346 Korotkevich (B47) 2021 Moguche (B58) 2015; 212 Nishiuchi (B18) 2017; 4 Schubert (B39) 2016; 9 Chaparas (B21) 1994; 19 Arlehamn (B49) 2014; 193 da Silva Antunes (B28) 2017; 12 Wu (B55) 2019; 6 Schmieder (B32) 2011; 27 Liberzon (B46) 2015; 1 Lindestam Arlehamn (B52) 2015; 112 Saeed (B61) 2014; 345 Kartalija (B8) 2013; 187 Bates (B43) 2015; 67 |
References_xml | – volume: 4 year: 2017 ident: B18 article-title: Infection sources of a common non-tuberculous mycobacterial pathogen, mycobacterium avium complex publication-title: Front Med doi: 10.3389/fmed.2017.00027 – volume: 19 start-page: 15 year: 1994 ident: B20 article-title: Dual skin testing with mycobacterium avium sensitin and purified protein derivative: an open study of patients with m. avium complex infection or tuberculosis publication-title: Clin Infect Dis doi: 10.1093/clinids/19.1.15 – volume: 183 year: 2001 ident: B9 article-title: Cytokine profiles in immunocompetent persons infected with mycobacterium avium complex publication-title: J Infect Dis doi: 10.1086/318087 – volume: 9 start-page: e1003130 year: 2013 ident: B51 article-title: Memory T cells in latent mycobacterium tuberculosis infection are directed against three antigenic islands and largely contained in a CXCR3+CCR6+ Th1 subset publication-title: PloS Pathogens doi: 10.1371/journal.ppat.1003130 – volume: 14 start-page: 128 year: 2013 ident: B45 article-title: Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool publication-title: BMC Bioinf doi: 10.1186/1471-2105-14-128 – ident: B41 – volume: 12 start-page: e0169086 year: 2017 ident: B28 article-title: Definition of human epitopes recognized in tetanus toxoid and development of an assay strategy to detect ex vivo tetanus CD4+ T cell responses publication-title: PloS One doi: 10.1371/journal.pone.0169086 – volume: 197 year: 2018 ident: B74 article-title: Four-gene pan-African blood signature predicts progression to tuberculosis publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201711-2340OC – volume: 12 start-page: e1005760 year: 2016 ident: B26 article-title: A quantitative analysis of complexity of human pathogen-specific CD4 T cell responses in healthy m. tuberculosis infected south africans publication-title: PloS Pathog doi: 10.1371/journal.ppat.1005760 – volume: 19 year: 1994 ident: B21 article-title: Dual skin testing with mycobacterium avium sensitin and purified protein derivative in patients with m. avium complex infection or tuberculosis publication-title: Clin Infect Dis doi: 10.1093/clinids/19.1.24. – volume: 193 year: 2014 ident: B49 article-title: Transcriptional profile of tuberculosis antigen-specific T cells reveals novel multifunctional features publication-title: J Immunol doi: 10.4049/jimmunol.1401151 – volume: 67 year: 2015 ident: B43 article-title: Fitting linear mixed-effects models using lme4 publication-title: J Stat Software doi: 10.18637/jss.v067.i01 – volume: 10 year: 2019 ident: B71 article-title: Detection of tuberculosis recurrence, diagnosis and treatment response by a blood transcriptomic risk signature in HIV-infected persons on antiretroviral therapy publication-title: Front Microbiol doi: 10.3389/fmicb.2019.01441 – volume: 222 year: 2020 ident: B66 article-title: Mycobacterium avium complex: Addressing gaps in diagnosis and management publication-title: J Infect Dis doi: 10.1093/infdis/jiaa354 – volume: 4 year: 2016 ident: B69 article-title: Genome-wide expression for diagnosis of pulmonary tuberculosis: a multicohort analysis publication-title: Lancet Respir Med doi: 10.1016/S2213-2600(16)00048-5 – volume: 102 year: 2005 ident: B50 article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0506580102 – volume: 15 year: 2015 ident: B59 article-title: Host susceptibility to non-tuberculous mycobacterial infections publication-title: Lancet Infect diseases doi: 10.1016/S1473-3099(15)00089-4 – volume: 185 year: 2007 ident: B54 article-title: Decreased cytokine production in patients with nontuberculous mycobacterial lung disease publication-title: Lung doi: 10.1007/s00408-007-9040-z – volume: 196 year: 2017 ident: B63 article-title: Whole-exome sequencing identifies the 6q12-q16 linkage region and a candidate gene, TTK, for pulmonary nontuberculous mycobacterial disease publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201612-2479OC – volume: 346 year: 1995 ident: B12 article-title: Variation in protection by BCG: implications of and for heterologous immunity publication-title: Lancet doi: 10.1016/S0140-6736(95)92348-9 – volume: 13 year: 2016 ident: B17 article-title: Increasing prevalence rate of nontuberculous mycobacteria infections in five states, 2008-2013 publication-title: Ann Am Thorac Society doi: 10.1513/AnnalsATS.201605-353OC – volume: 15 start-page: R29 year: 2014 ident: B42 article-title: Voom: Precision weights unlock linear model analysis tools for RNA-seq read counts publication-title: Genome Biol doi: 10.1186/gb-2014-15-2-r29 – volume: 163 year: 1986 ident: B15 article-title: Crossprotection against nontuberculous mycobacterial infections by mycobacterium tuberculosis memory immune T lymphocytes publication-title: J Exp Med doi: 10.1084/jem.163.1.203 – volume: 172 start-page: 176 year: 2018 ident: B62 article-title: BCG Educates hematopoietic stem cells to generate protective innate immunity against tuberculosis publication-title: Cell doi: 10.1016/j.cell.2017.12.031 – volume: 49 year: 2017 ident: B16 article-title: Nontuberculous mycobacterial pulmonary disease: an increasing burden with substantial costs publication-title: Eur Respir J doi: 10.1183/13993003.00374-2017 – volume: 54 year: 2019 ident: B4 article-title: Non-tuberculous mycobacterial pulmonary disease publication-title: Eur Respir J doi: 10.1183/13993003.00250-2019 – volume: 112 year: 2015 ident: B52 article-title: Immunological consequences of intragenus conservation of mycobacterium tuberculosis T-cell epitopes publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1416537112 – volume: 175 start-page: 1701 year: 2018 ident: B37 article-title: Impact of genetic polymorphisms on human immune cell gene expression publication-title: Cell doi: 10.1016/j.cell.2018.10.022 – volume: 345 start-page: 1251086 year: 2014 ident: B61 article-title: Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity publication-title: Science doi: 10.1126/science.1251086 – volume: 220 year: 2019 ident: B11 article-title: Nontuberculous mycobacteria and heterologous immunity to tuberculosis publication-title: J Infect Dis doi: 10.1093/infdis/jiz285 – ident: B40 – volume: 359 year: 2002 ident: B13 article-title: BCG-Induced increase in interferon-gamma response to mycobacterial antigens and efficacy of BCG vaccination in Malawi and the UK: two randomised controlled studies publication-title: Lancet doi: 10.1016/S0140-6736(02)08353-8 – volume: 58 year: 2018 ident: B68 article-title: Whole-blood gene expression in pulmonary nontuberculous mycobacterial infection publication-title: Am J Respir Cell Mol Biol doi: 10.1165/rcmb.2017-0230OC – volume: 15 start-page: 550 year: 2014 ident: B35 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol doi: 10.1186/s13059-014-0550-8 – volume: 178 year: 2008 ident: B5 article-title: Pulmonary nontuberculous mycobacterial disease: prospective study of a distinct preexisting syndrome publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.200805-686OC – volume: 30 year: 2014 ident: B34 article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt656 – volume: 74 start-page: 103746 year: 2021 ident: B57 article-title: CD4+CCR6+ T cells dominate the BCG-induced transcriptional signature publication-title: EBioMedicine doi: 10.1016/j.ebiom.2021.103746 – volume: 42 year: 2013 ident: B24 article-title: Serodiagnosis of mycobacterium avium complex pulmonary disease in the USA publication-title: Eur Respir J doi: 10.1183/09031936.00098212 – volume: 47 year: 2019 ident: B44 article-title: STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1131 – volume: 13 year: 2016 ident: B67 article-title: Patient-centered research priorities for pulmonary nontuberculous mycobacteria (NTM) infection. an NTM research consortium workshop report publication-title: Ann Am Thorac Society doi: 10.1513/AnnalsATS.201605-387WS – volume: 10 start-page: 8629 year: 2020 ident: B73 article-title: RISK6, a 6-gene transcriptomic signature of TB disease risk, diagnosis and treatment response publication-title: Sci Rep doi: 10.1038/s41598-020-65043-8 – ident: B38 – volume: 21 start-page: 100189 year: 2020 ident: B22 article-title: Serological diagnosis of mycobacterium avium complex lung diseases by enzyme immunoassay of IgA antibodies against MAC-specific glycopeptidolipid core antigen publication-title: J Clin Tuberc Other Mycobact Dis doi: 10.1016/j.jctube.2020.100189 – volume: 107 start-page: 48 year: 2017 ident: B70 article-title: Host blood RNA signatures predict the outcome of tuberculosis treatment publication-title: Tuberculosis (Edinb) doi: 10.1016/j.tube.2017.08.004 – volume: 4 year: 2011 ident: B60 article-title: Initiation and regulation of T-cell responses in tuberculosis publication-title: Mucosal Immunol doi: 10.1038/mi.2011.10 – volume: 5 start-page: a021113 year: 2015 ident: B10 article-title: The mycobacterial cell wall–peptidoglycan and arabinogalactan publication-title: Cold Spring Harb Perspect Med doi: 10.1101/cshperspect.a021113 – volume: 58 year: 2021 ident: B64 article-title: Genome-wide association study in patients with pulmonary mycobacterium avium complex disease publication-title: Eur Respir J doi: 10.1183/13993003.02269-2019 – volume: 175 start-page: 367 year: 2007 ident: B19 article-title: An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.200604-571ST – volume: 187 start-page: 197 year: 2013 ident: B8 article-title: Patients with nontuberculous mycobacterial lung disease exhibit unique body and immune phenotypes publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201206-1035OC – volume: 9 year: 2014 ident: B30 article-title: Full-length RNA-seq from single cells using smart-seq2 publication-title: Nat Protoc doi: 10.1038/nprot.2014.006 – volume: 27 year: 2011 ident: B32 article-title: Quality control and preprocessing of metagenomic datasets publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr026 – volume: 1 year: 2015 ident: B46 article-title: The molecular signatures database (MSigDB) hallmark gene set collection publication-title: Cell Syst doi: 10.1016/j.cels.2015.12.004 – volume: 26 year: 2014 ident: B6 article-title: Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-gamma immunity publication-title: Semin Immunol doi: 10.1016/j.smim.2014.09.008 – volume: 422 start-page: 28 year: 2015 ident: B25 article-title: Development and validation of a broad scheme for prediction of HLA class II restricted T cell epitopes publication-title: J Immunol Methods doi: 10.1016/j.jim.2015.03.022 – volume: 197 year: 2016 ident: B27 article-title: A cytokine-independent approach to identify antigen-specific human germinal center T follicular helper cells and rare antigen-specific CD4+ T cells in blood publication-title: J Immunol doi: 10.4049/jimmunol.1600318 – volume: 51 year: 2004 ident: B7 article-title: Production of cytokines in patients with primary pulmonary mycobacterium avium-intracellulare complex disease publication-title: Kurume Med J doi: 10.2739/kurumemedj.51.133 – volume: 9 start-page: 88 year: 2016 ident: B39 article-title: AdapterRemoval v2: rapid adapter trimming, identification, and read merging publication-title: BMC Res Notes doi: 10.1186/s13104-016-1900-2 – volume: 9 year: 2021 ident: B72 article-title: Validation of a host blood transcriptomic biomarker for pulmonary tuberculosis in people living with HIV: a prospective diagnostic and prognostic accuracy study publication-title: Lancet Glob Health doi: 10.2139/ssrn.3750013 – volume: 6 start-page: e26434 year: 2011 ident: B56 article-title: Identification of antigens specific to non-tuberculous mycobacteria: The mce family of proteins as a target of T cell immune responses publication-title: PloS One doi: 10.1371/journal.pone.0026434 – volume: 200 year: 2018 ident: B48 article-title: Transcriptomic analysis of CD4(+) T cells reveals novel immune signatures of latent tuberculosis publication-title: J Immunol doi: 10.4049/jimmunol.1800118 – volume: 198 year: 2017 ident: B29 article-title: An integrated workflow to assess technical and biological variability of cell population frequencies in human peripheral blood by flow cytometry publication-title: J Immunol doi: 10.4049/jimmunol.1601750 – volume: 192 year: 2015 ident: B65 article-title: Pulmonary nontuberculous mycobacterial infection. a multisystem, multigenic disease publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201502-0387OC – volume: 67 year: 2018 ident: B53 article-title: Emergence of polyfunctional cytotoxic CD4+ T cells in mycobacterium avium immune reconstitution inflammatory syndrome in human immunodeficiency virus-infected patients publication-title: Clin Infect Dis: an Off Publ Infect Dis Soc America doi: 10.1093/cid/ciy016 – volume: 182 year: 2010 ident: B3 article-title: Pulmonary nontuberculous mycobacterial disease prevalence and clinical features: an emerging public health disease publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201003-0503OC – volume: 25 year: 2009 ident: B33 article-title: The sequence Alignment/Map format and SAMtools publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 57 start-page: 289 year: 1995 ident: B36 article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing publication-title: J R Stat Soc Ser B (Methodological) doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 42 year: 2013 ident: B2 article-title: The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: an NTM-NET collaborative study publication-title: Eur Respir J doi: 10.1183/09031936.00149212 – volume: 71 start-page: e1 year: 2020 ident: B1 article-title: Treatment of nontuberculous mycobacterial pulmonary disease: An official ATS/ERS/ESCMID/IDSA clinical practice guideline publication-title: Clin Infect Dis doi: 10.1093/cid/ciaa241 – volume: 49 year: 2009 ident: B23 article-title: Serodiagnostic contributions of antibody titers against mycobacterial lipid antigens in mycobacterium avium complex pulmonary disease publication-title: Clin Infect Dis doi: 10.1086/600888 – volume: 212 year: 2015 ident: B58 article-title: ICOS and Bcl6-dependent pathways maintain a CD4 T cell population with memory-like properties during tuberculosis publication-title: J Exp Med doi: 10.1084/jem.20141518 – volume: 29 start-page: 15 year: 2013 ident: B31 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – volume: 94 year: 1966 ident: B14 article-title: Effects of infection with atypical mycobacteria on BCG vaccination and tuberculosis publication-title: Am Rev Respir Dis doi: 10.1164/arrd.1966.94.4.553 – volume: 6 start-page: ofz484 year: 2019 ident: B55 article-title: Patients with idiopathic pulmonary nontuberculous mycobacterial disease have normal Th1/Th2 cytokine responses but diminished Th17 cytokine and enhanced granulocyte-macrophage colony-stimulating factor production publication-title: Open Forum Infect Dis doi: 10.1093/ofid/ofz484 – volume: 387 year: 2016 ident: B75 article-title: A blood RNA signature for tuberculosis disease risk: a prospective cohort study publication-title: Lancet doi: 10.1016/S0140-6736(15)01316-1 – start-page: 060012 year: 2021 ident: B47 article-title: Fast gene set enrichment analysis publication-title: bioRxiv doi: 10.1101/060012 |
SSID | ssj0000493335 |
Score | 2.3865256 |
Snippet | Immunological mechanisms of susceptibility to nontuberculous mycobacterial (NTM) disease are poorly understood. To understand NTM pathogenesis, we evaluated... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 1016038 |
SubjectTerms | immune response Immunology MAC pathogenesis mycobacterium avium complex (MAC) NTM = nontuberculous mycobacteria T cells |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUhUMil9Ctkm7ao0FsxiS3Zko5taQiF9JRAbkIajUhC1hs2uyH77zsjO2F9aS-96GDLWNYbeeZJoychvqTUAnahrlhMvNIG6ypqZyuKHFrIKVtTkmjOfnenF_rXZXu5ddQX54QN8sBDxx11XTJolMYUAkXnyVGpmMWEaNCass2XfN4WmboZ4l6lVDvskiEW5o7y9Xy-Jj7YNIWwHvOGlC1PVAT7J1HmNEdyy-mcvBIvx2hRfhta-VrsYP9GvBjOj9y8FcvziifeZULWgeBNlDL0SV5tWL64zwT2vCyiS7K1BWxWKJdDSizeyzDigpKnYuXZBmhkF-Xm9VyGBy5Lujk-ylv6IchxJeeduDj5ef7jtBoPUahA63ZV1dYFi01MaEEDjdhIHhptihZczK4Dl4lDRRsD1dHocguJQiRl2Y1BALUvdvtFjwdCIkSXLTT5GK12DUSW6jEtUJRmA_GWmaifOtTDqDDOB13cemIaDIIvIHgGwY8gzMTX52fuBn2Nv9b-zjg912Rt7HKBLMaPFuP_ZTEz8fkJZU9jiXEKPS7W974xTUd8tDb1TJgJ_JM3Tu_011dFldu1Rmtl3_-PJh6KPf7skjSoPojd1XKNHyn4WcVPxc7_AFF9Bvw priority: 102 providerName: Directory of Open Access Journals |
Title | T-cell deficiency and hyperinflammatory monocyte responses associate with Mycobacterium avium complex lung disease |
URI | https://www.proquest.com/docview/2726924171 https://pubmed.ncbi.nlm.nih.gov/PMC9574438 https://doaj.org/article/66d7e734edaa499d9a4936144ab7e878 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKERIXRHmI5VEZiRsKNLET2wdUFdRSIS2nrrS3yI8JbbWbhewuav49M463IhJw4OJDYidKPk9mPnvyDWNvQig9VDbPSEw8kwryzEmjM4wcSt-ERquYRDP9Wp3P5Jd5Od9ju3JH6QWu_0jtqJ7UrFu8u_nRH6PBfyDGif72fXO1XG6R6hVF5KJHQt9hd9EzKTLUaQr3r4doWAhRDv_O_GXoyD9FGf9R7DnOnPzNFZ09ZA9SDMlPBtAP2B60j9i9oapk_5h1Fxktx_MApA5Bv1Zy2wZ-2ZOocdvgFFjGrXWOM3Dl-w3wbkiUhTW3CS3gtEDLp71He496ztsltz-pjUnocMMX-JngaX_nCZudnV58Os9SaYXMS1luslwbq6FwAbSXHu3Yod8GHZz2xjWm8qZBZuW0s9hHgmlKHzBwEpqcm7dePGX77aqFZ4yDd6bRvmiOQEtTeEcCPqr0GLtpi2xmwvLdC6190h2n8heLGvkHgVBHEGoCoU4gTNjb2zHfB9WNf_b-SDjd9iTF7Hhg1X2rkwHWVRUUKCEhWIssLxhsBbFh6xRohRd5vUO5RgsjnGwLq-26LlRRmTidJkyN4B_dcXymvbqMWt2mVFIK_fy_R75g9-lZY_6geMn2N90WXmEctHGHcf0A28_z_DBO9F_bRxAn |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=T-cell+deficiency+and+hyperinflammatory+monocyte+responses+associate+with+Mycobacterium+avium+complex+lung+disease&rft.jtitle=Frontiers+in+immunology&rft.au=Lindestam+Arlehamn%2C+Cecilia+S.&rft.au=Benson%2C+Basilin&rft.au=Kuan%2C+Rebecca&rft.au=Dill-McFarland%2C+Kimberly+A.&rft.date=2022-10-03&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-3224&rft.volume=13&rft_id=info:doi/10.3389%2Ffimmu.2022.1016038&rft.externalDocID=PMC9574438 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon |