High-throughput ab initio reaction mechanism exploration in the cloud with automated multi-reference validation
Quantum chemical calculations on atomistic systems have evolved into a standard approach to studying molecular matter. These calculations often involve a significant amount of manual input and expertise, although most of this effort could be automated, which would alleviate the need for expertise in...
Saved in:
Published in | The Journal of chemical physics Vol. 158; no. 8; pp. 084803 - 84815 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics
28.02.2023
American Institute of Physics (AIP) |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9606 1089-7690 1089-7690 |
DOI | 10.1063/5.0136526 |
Cover
Loading…
Abstract | Quantum chemical calculations on atomistic systems have evolved into a standard approach to studying molecular matter. These calculations often involve a significant amount of manual input and expertise, although most of this effort could be automated, which would alleviate the need for expertise in software and hardware accessibility. Here, we present the AutoRXN workflow, an automated workflow for exploratory high-throughput electronic structure calculations of molecular systems, in which (i) density functional theory methods are exploited to deliver minimum and transition-state structures and corresponding energies and properties, (ii) coupled cluster calculations are then launched for optimized structures to provide more accurate energy and property estimates, and (iii) multi-reference diagnostics are evaluated to back check the coupled cluster results and subject them to automated multi-configurational calculations for potential multi-configurational cases. All calculations are carried out in a cloud environment and support massive computational campaigns. Key features of all components of the AutoRXN workflow are autonomy, stability, and minimum operator interference. We highlight the AutoRXN workflow with the example of an autonomous reaction mechanism exploration of the mode of action of a homogeneous catalyst for the asymmetric reduction of ketones. |
---|---|
AbstractList | Quantum chemical calculations on atomistic systems have evolved into a standard approach to studying molecular matter. These calculations often involve a significant amount of manual input and expertise, although most of this effort could be automated, which would alleviate the need for expertise in software and hardware accessibility. Here, we present the AutoRXN workflow, an automated workflow for exploratory high-throughput electronic structure calculations of molecular systems, in which (i) density functional theory methods are exploited to deliver minimum and transition-state structures and corresponding energies and properties, (ii) coupled cluster calculations are then launched for optimized structures to provide more accurate energy and property estimates, and (iii) multi-reference diagnostics are evaluated to back check the coupled cluster results and subject them to automated multi-configurational calculations for potential multi-configurational cases. All calculations are carried out in a cloud environment and support massive computational campaigns. Key features of all components of the AutoRXN workflow are autonomy, stability, and minimum operator interference. We highlight the AutoRXN workflow with the example of an autonomous reaction mechanism exploration of the mode of action of a homogeneous catalyst for the asymmetric reduction of ketones. Quantum chemical calculations on atomistic systems have evolved into a standard approach to studying molecular matter. These calculations often involve a significant amount of manual input and expertise, although most of this effort could be automated, which would alleviate the need for expertise in software and hardware accessibility. Here, we present the AutoRXN workflow, an automated workflow for exploratory high-throughput electronic structure calculations of molecular systems, in which (i) density functional theory methods are exploited to deliver minimum and transition-state structures and corresponding energies and properties, (ii) coupled cluster calculations are then launched for optimized structures to provide more accurate energy and property estimates, and (iii) multi-reference diagnostics are evaluated to back check the coupled cluster results and subject them to automated multi-configurational calculations for potential multi-configurational cases. All calculations are carried out in a cloud environment and support massive computational campaigns. Key features of all components of the AutoRXN workflow are autonomy, stability, and minimum operator interference. We highlight the AutoRXN workflow with the example of an autonomous reaction mechanism exploration of the mode of action of a homogeneous catalyst for the asymmetric reduction of ketones.Quantum chemical calculations on atomistic systems have evolved into a standard approach to studying molecular matter. These calculations often involve a significant amount of manual input and expertise, although most of this effort could be automated, which would alleviate the need for expertise in software and hardware accessibility. Here, we present the AutoRXN workflow, an automated workflow for exploratory high-throughput electronic structure calculations of molecular systems, in which (i) density functional theory methods are exploited to deliver minimum and transition-state structures and corresponding energies and properties, (ii) coupled cluster calculations are then launched for optimized structures to provide more accurate energy and property estimates, and (iii) multi-reference diagnostics are evaluated to back check the coupled cluster results and subject them to automated multi-configurational calculations for potential multi-configurational cases. All calculations are carried out in a cloud environment and support massive computational campaigns. Key features of all components of the AutoRXN workflow are autonomy, stability, and minimum operator interference. We highlight the AutoRXN workflow with the example of an autonomous reaction mechanism exploration of the mode of action of a homogeneous catalyst for the asymmetric reduction of ketones. |
Author | Weymuth, Thomas Peng, Bo Kowalski, Karol Unsleber, Jan P. Talirz, Leopold Mörchen, Maximilian Panyala, Ajay Troyer, Matthias Wecker, Dave Grofe, Adam Stein, Christopher J. Liu, Hongbin Reiher, Markus |
Author_xml | – sequence: 1 givenname: Jan P. surname: Unsleber fullname: Unsleber, Jan P. organization: Laboratory of Physical Chemistry and NCCR Catalysis, ETH Zurich – sequence: 2 givenname: Hongbin surname: Liu fullname: Liu, Hongbin organization: Microsoft Quantum – sequence: 3 givenname: Leopold surname: Talirz fullname: Talirz, Leopold organization: Microsoft Quantum – sequence: 4 givenname: Thomas surname: Weymuth fullname: Weymuth, Thomas organization: Laboratory of Physical Chemistry and NCCR Catalysis, ETH Zurich – sequence: 5 givenname: Maximilian surname: Mörchen fullname: Mörchen, Maximilian organization: Laboratory of Physical Chemistry and NCCR Catalysis, ETH Zurich – sequence: 6 givenname: Adam surname: Grofe fullname: Grofe, Adam organization: Microsoft Quantum – sequence: 7 givenname: Dave surname: Wecker fullname: Wecker, Dave organization: Microsoft Quantum – sequence: 8 givenname: Christopher J. surname: Stein fullname: Stein, Christopher J. organization: Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich – sequence: 9 givenname: Ajay surname: Panyala fullname: Panyala, Ajay organization: Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory – sequence: 10 givenname: Bo surname: Peng fullname: Peng, Bo organization: Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory – sequence: 11 givenname: Karol surname: Kowalski fullname: Kowalski, Karol organization: Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory – sequence: 12 givenname: Matthias surname: Troyer fullname: Troyer, Matthias organization: Microsoft Quantum – sequence: 13 givenname: Markus surname: Reiher fullname: Reiher, Markus organization: Laboratory of Physical Chemistry and NCCR Catalysis, ETH Zurich |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36859110$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1968806$$D View this record in Osti.gov |
BookMark | eNp90c9rFTEQB_AgFfv69OA_IEEvKmybZDfJ7lGKWqHgRc8hTWa7KbvJmh9V_3vT914VinoaGD4zMN85QUc-eEDoOSWnlIj2jJ8S2grOxCO0oaQfGikGcoQ2hDDaDIKIY3SS0g0hhErWPUHHrej5QCnZoHDhrqcmTzGU62ktGesr7LzLLuAI2tTq8QJm0t6lBcOPdQ5R77rO4zwBNnMoFn93ecK65LDoDBYvZc6uiTBCBG8A3-rZ2d3YU_R41HOCZ4e6RV8_vP9yftFcfv746fzdZWO6jueGCuitHA2XneHAmNA91SPtBg4ARPdCG0l62zI7DJqCYBQsNbYdpe6slqzdopf7vSFlp5JxuR5hgvdgsqKD6Psa3Ba93qM1hm8FUlaLSwbmWXsIJSkmeyoYo5JX-uoBvQkl-nrCnSK8GyTtqnpxUOVqAavW6BYdf6r7vCt4swcmhpRqQL8JJerul4qrwy-rPXtg6xW7EHPUbv7rxNv9RLqX_13_T3wb4h-oVju2vwCIRbxL |
CODEN | JCPSA6 |
CitedBy_id | crossref_primary_10_1021_acs_jpca_4c03936 crossref_primary_10_1038_s41467_024_47997_9 crossref_primary_10_1063_5_0185894 crossref_primary_10_1063_5_0226437 crossref_primary_10_1002_ange_202310580 crossref_primary_10_1038_s41467_024_49594_2 crossref_primary_10_1002_anie_202310580 crossref_primary_10_1021_acs_macromol_4c02582 crossref_primary_10_1021_acs_jctc_3c00182 crossref_primary_10_1021_acs_jpcc_4c05568 crossref_primary_10_1073_pnas_2305884120 crossref_primary_10_1021_acs_jctc_4c01401 crossref_primary_10_1021_acscentsci_3c01403 crossref_primary_10_1063_5_0206974 crossref_primary_10_1063_5_0201701 |
Cites_doi | 10.5281/zenodo.5589628 10.1021/acscatal.5b01979 10.1063/1.473634 10.1063/1.462209 10.1002/wcms.1538 10.1002/wcms.1436 10.1021/acs.jctc.6b00156 10.1021/ja809493h 10.1021/acs.jctc.7b00945 10.1063/1.1998907 10.1080/00268976.2017.1288934 10.5281/zenodo.7179860 10.1063/1.5129672 10.1016/j.cpc.2010.04.018 10.1021/acs.jcim.9b01152 10.5281/zenodo.6984579 10.1021/acs.organomet.8b00774 10.1021/acs.accounts.1c00472 10.1021/acs.jctc.2c00630 10.1021/acs.accounts.6b00023 10.1021/acs.jctc.8b01176 10.1103/physrevlett.77.3865 10.1146/annurev-physchem-071119-040123 10.1126/science.1244466 10.1039/b515623h 10.1021/acs.chemrev.0c00998 10.1016/0009-2614(89)85118-8 10.1103/physrevlett.69.2863 10.5281/zenodo.7568996 10.1021/acs.jctc.8b00504 10.1007/bf00527711 10.1103/physrevb.70.205118 10.1002/ijch.202100101 10.1002/jcc.21759 10.1021/acs.jpca.8b10007 10.1002/wcms.1493 10.1021/om500479q 10.1103/physrevlett.78.1396 10.1063/1.4939000 10.1016/s0009-2614(89)87395-6 10.1021/acs.jcim.2c00044 10.1063/1.3382344 10.1021/acs.chemrev.1c00347 10.1002/jcc.25869 10.1016/0301-0104(80)80045-0 10.1039/c6ob02183b 10.1021/jz200866s 10.1007/s11244-021-01543-9 10.1146/annurev-matsci-070214-020823 10.1021/ja304814s 10.1039/c3ee42756k 10.1021/acs.jctc.2c00193 10.1021/om300572v 10.1039/b508541a 10.1063/1.465764 10.1103/physrevb.48.10345 10.2533/chimia.2017.170 10.1016/j.commatsci.2015.09.013 10.1021/acs.jpclett.2c03905 10.1063/1.4812323 |
ContentType | Journal Article |
Copyright | Author(s) 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
Copyright_xml | – notice: Author(s) – notice: 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
CorporateAuthor | Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) |
CorporateAuthor_xml | – sequence: 0 name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) |
DBID | AJDQP AAYXX CITATION NPM 8FD H8D L7M 7X8 OIOZB OTOTI |
DOI | 10.1063/5.0136526 |
DatabaseName | AIP Open Access Journals CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Technology Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: AJDQP name: AIP Open Access Journals url: https://publishing.aip.org/librarians/open-access-policy sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
ExternalDocumentID | 1968806 36859110 10_1063_5_0136526 jcp |
Genre | Journal Article |
GrantInformation_xml | – fundername: Swiss National Science Foundation grantid: 200021_182400; NCCR Catalysis – fundername: ETH Zurich grantid: ETH-43 20-2 – fundername: DOE SPEC grantid: DE-AC06-76RLO-1830 |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 5VS 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJDQP AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D-I DU5 EBS ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 53G AAGWI AAYXX ABJGX ADMLS BDMKI CITATION NPM 8FD H8D L7M 7X8 OIOZB OTOTI |
ID | FETCH-LOGICAL-c445t-16e8d7fc574c5e226a81af1495eee0a86ac708d32d99a1e621ed1cd3f7a4da723 |
IEDL.DBID | AJDQP |
ISSN | 0021-9606 1089-7690 |
IngestDate | Thu Dec 05 06:23:50 EST 2024 Fri Jul 11 00:05:52 EDT 2025 Mon Jun 30 05:36:38 EDT 2025 Wed Feb 19 02:25:20 EST 2025 Thu Apr 24 23:10:04 EDT 2025 Sun Jul 06 05:06:59 EDT 2025 Tue Jul 04 19:18:16 EDT 2023 Fri Jun 21 00:14:05 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c445t-16e8d7fc574c5e226a81af1495eee0a86ac708d32d99a1e621ed1cd3f7a4da723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ETH Zurich AC05-76RL01830 Swiss National Science Foundation (SNSF) PNNL-SA-180160 USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division |
ORCID | 0000-0003-2050-4866 0000-0003-3465-5788 0000-0002-7467-5719 0000-0002-0846-3347 0000-0002-1524-5903 0000-0001-6357-785X 0000-0001-9011-1182 0000-0002-9508-1565 0000-0001-7102-7022 0000-0002-4226-7294 0000-0002-8531-4396 0000-0002-1469-9444 0000000171027022 0000000334655788 0000000285314396 0000000295081565 000000016357785X 0000000215245903 0000000190111182 0000000208463347 0000000274675719 0000000320504866 0000000242267294 0000000214699444 |
OpenAccessLink | http://dx.doi.org/10.1063/5.0136526 |
PMID | 36859110 |
PQID | 2780549714 |
PQPubID | 2050685 |
PageCount | 13 |
ParticipantIDs | osti_scitechconnect_1968806 proquest_miscellaneous_2781622175 pubmed_primary_36859110 scitation_primary_10_1063_5_0136526 crossref_primary_10_1063_5_0136526 crossref_citationtrail_10_1063_5_0136526 proquest_journals_2780549714 |
PublicationCentury | 2000 |
PublicationDate | 20230228 2023-02-28 2023-Feb-28 |
PublicationDateYYYYMMDD | 2023-02-28 |
PublicationDate_xml | – month: 02 year: 2023 text: 20230228 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Melville |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2023 |
Publisher | American Institute of Physics American Institute of Physics (AIP) |
Publisher_xml | – sequence: 0 name: American Institute of Physics (AIP) – name: American Institute of Physics |
References | White (c62) 1993; 48 Dewyer, Zimmerman (c5) 2017; 15 Williams-Young, Petrone, Sun, Stetina, Lestrange, Hoyer, Nascimento, Koulias, Wildman, Kasper, Goings, Ding, DePrince, Valeev, Li (c32) 2020; 10 Simm, Vaucher, Reiher (c6) 2019; 123 Stein, Reiher (c74) 2017; 115 Simm, Reiher (c71) 2017; 13 Mikhailine, Lough, Morris (c34) 2009; 131 White (c61) 1992; 69 Legeza, Sólyom (c73) 2004; 70 Hachmann, Olivares-Amaya, Atahan-Evrenk, Amador-Bedolla, Sánchez-Carrera, Gold-Parker, Vogt, Brockway, Aspuru-Guzik (c10) 2011; 2 Kutzner, Kniep, Cherian, Nordstrom, Grubmüller, de Groot, Gapsys (c17) 2022; 62 Hachmann, Olivares-Amaya, Jinich, Appleton, Blood-Forsythe, Seress, Román-Salgado, Trepte, Atahan-Evrenk, Er, Shrestha, Mondal, Sokolov, Bao, Aspuru-Guzik (c11) 2014; 7 Keller, Dolfi, Troyer, Reiher (c31) 2015; 143 Zuo, Prokopchuk, Lough, Morris (c39) 2016; 6 Simm, Reiher (c53) 2018; 14 Kowalski, Bair, Bauman, Boschen, Bylaska, Daily, de Jong, Dunning, Govind, Harrison (c27) 2021; 121 Stein, Reiher (c64) 2017; 71 Balabanov, Peterson (c57) 2005; 123 Reiher (c76) 2021; 62 Zuo, Lough, Li, Morris (c35) 2013; 342 Nandy, Duan, Taylor, Liu, Steeves, Kulik (c13) 2021; 121 Pizzi, Cepellotti, Sabatini, Marzari, Kozinsky (c24) 2016; 111 Seo, Morris (c36) 2019; 38 King, Hermes, Truhlar, Gagliardi (c59) 2022; 18 Steiner, Reiher (c15) 2022; 65 Bannwarth, Ehlert, Grimme (c70) 2019; 15 Ahlrichs, Bär, Häser, Horn, Kölmel (c42) 1989; 162 Stein, Reiher (c30) 2019; 40 Raghavachari, Trucks, Pople, Head-Gordon (c50) 1989; 157 Helgaker, Gauss, Jørgensen, Olsen (c52) 1997; 106 Thomas, DeLeeuw, Vacek, Crawford, Yamaguchi, Schaefer (c51) 1993; 99 Valiev, Bylaska, Govind, Kowalski, Straatsma, Van Dam, Wang, Nieplocha, Aprà, Windus (c26) 2010; 181 Zuo, Tauer, Prokopchuk, Morris (c40) 2014; 33 Jain, Ong, Hautier, Chen, Richards, Dacek, Cholia, Gunter, Skinner, Ceder, Persson (c9) 2013; 1 Baiardi, Grimmel, Steiner, Türtscher, Unsleber, Weymuth, Reiher (c8) 2022; 55 Unsleber, Reiher (c14) 2020; 71 Maeda, Harabuchi (c7) 2021; 11 Unsleber, Grimmel, Reiher (c22) 2022; 18 Seritan, Thompson, Martínez (c16) 2020; 60 Perdew, Burke, Ernzerhof (c44) 1997; 78 Sameera, Maeda, Morokuma (c4) 2016; 49 Prokopchuk, Morris (c38) 2012; 31 Grimme, Antony, Ehrlich, Krieg (c46) 2010; 132 Weigend (c48) 2006; 8 Baiardi, Reiher (c63) 2020; 152 Mikhailine, Maishan, Lough, Morris (c37) 2012; 134 Perdew, Burke, Ernzerhof (c43) 1996; 77 Andersson, Malmqvist, Roos (c66) 1992; 96 Grimme, Ehrlich, Goerigk (c47) 2011; 32 Bannwarth, Caldeweyher, Ehlert, Hansen, Pracht, Seibert, Spicher, Grimme (c68) 2021; 11 Roos, Taylor, Siegbahn (c65) 1980; 48 Pyzer-Knapp, Suh, Gómez-Bombarelli, Aguilera-Iparraguirre, Aspuru-Guzik (c12) 2015; 45 Lee, Rice, Scuseria, Schaefer (c72) 1989; 75 Stein, Reiher (c29) 2016; 12 Weigend, Ahlrichs (c45) 2005; 7 2023122821182702800_c21 (2023122821182702800_c7) 2021; 11 2023122821182702800_c23 (2023122821182702800_c51) 1993; 99 2023122821182702800_c67 2023122821182702800_c25 2023122821182702800_c69 2023122821182702800_c28 (2023122821182702800_c35) 2013; 342 (2023122821182702800_c53) 2018; 14 (2023122821182702800_c2) 2017 (2023122821182702800_c17) 2022; 62 (2023122821182702800_c44) 1997; 78 2023122821182702800_c60 2023122821182702800_c20 (2023122821182702800_c66) 1992; 96 (2023122821182702800_c32) 2020; 10 (2023122821182702800_c57) 2005; 123 (2023122821182702800_c12) 2015; 45 (2023122821182702800_c74) 2017; 115 (2023122821182702800_c39) 2016; 6 (2023122821182702800_c5) 2017; 15 (2023122821182702800_c50) 1989; 157 2023122821182702800_c54 (2023122821182702800_c61) 1992; 69 (2023122821182702800_c48) 2006; 8 2023122821182702800_c55 2023122821182702800_c56 (2023122821182702800_c27) 2021; 121 2023122821182702800_c58 (2023122821182702800_c52) 1997; 106 (2023122821182702800_c71) 2017; 13 (2023122821182702800_c31) 2015; 143 (2023122821182702800_c36) 2019; 38 (2023122821182702800_c9) 2013; 1 (2023122821182702800_c22) 2022; 18 (2023122821182702800_c62) 1993; 48 (2023122821182702800_c11) 2014; 7 2023122821182702800_c18 2023122821182702800_c19 (2023122821182702800_c68) 2021; 11 (2023122821182702800_c10) 2011; 2 (2023122821182702800_c65) 1980; 48 (2023122821182702800_c72) 1989; 75 (2023122821182702800_c3) 2004 (2023122821182702800_c45) 2005; 7 Dykstra (2023122821182702800_c1) 2005 (2023122821182702800_c6) 2019; 123 (2023122821182702800_c64) 2017; 71 (2023122821182702800_c16) 2020; 60 2023122821182702800_c41 (2023122821182702800_c70) 2019; 15 (2023122821182702800_c15) 2022; 65 (2023122821182702800_c24) 2016; 111 (2023122821182702800_c8) 2022; 55 (2023122821182702800_c37) 2012; 134 (2023122821182702800_c30) 2019; 40 (2023122821182702800_c47) 2011; 32 (2023122821182702800_c73) 2004; 70 (2023122821182702800_c43) 1996; 77 (2023122821182702800_c63) 2020; 152 (2023122821182702800_c76) 2021; 62 (2023122821182702800_c29) 2016; 12 (2023122821182702800_c46) 2010; 132 2023122821182702800_c33 (2023122821182702800_c59) 2022; 18 (2023122821182702800_c4) 2016; 49 (2023122821182702800_c26) 2010; 181 (2023122821182702800_c40) 2014; 33 2023122821182702800_c75 (2023122821182702800_c34) 2009; 131 (2023122821182702800_c38) 2012; 31 (2023122821182702800_c49) 2022 (2023122821182702800_c14) 2020; 71 (2023122821182702800_c42) 1989; 162 (2023122821182702800_c13) 2021; 121 |
References_xml | – volume: 96 start-page: 1218 year: 1992 ident: c66 article-title: Second-order perturbation theory with a complete active space self-consistent field reference function publication-title: J. Chem. Phys. – volume: 132 start-page: 154104 year: 2010 ident: c46 article-title: A consistent and accurate parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu publication-title: J. Chem. Phys. – volume: 75 start-page: 81 year: 1989 ident: c72 article-title: Theoretical investigations of molecules composed only of fluorine, oxygen and nitrogen: Determination of the equilibrium structures of FOOF, (NO) and FNNF and the transition state structure for FNNF isomerization publication-title: Theor. Chem. Acc. – volume: 99 start-page: 403 year: 1993 ident: c51 article-title: The balance between theoretical method and basis set quality: A systematic study of equilibrium geometries, dipole moments, harmonic vibrational frequencies, and infrared intensities publication-title: J. Chem. Phys. – volume: 40 start-page: 2216 year: 2019 ident: c30 article-title: AUTOCASA: Program for fully automated multiconfigurational calculations publication-title: J. Comput. Chem. – volume: 15 start-page: 1652 year: 2019 ident: c70 article-title: GFN2-xTB—an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions publication-title: J. Chem. Theory Comput. – volume: 31 start-page: 7375 year: 2012 ident: c38 article-title: Inner-sphere activation, outer-sphere catalysis: Theoretical study on the mechanism of transfer hydrogenation of ketones using Iron(II) PNNP Eneamido complexes publication-title: Organometallics – volume: 77 start-page: 3865 year: 1996 ident: c43 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 18 start-page: 5393 year: 2022 ident: c22 article-title: 2.0: Autonomous exploration of chemical reaction networks publication-title: J. Chem. Theory Comput. – volume: 6 start-page: 301 year: 2016 ident: c39 article-title: Details of the mechanism of the asymmetric transfer hydrogenation of acetophenone using the amine(imine)diphosphine iron precatalyst: The base effect and the enantiodetermining step publication-title: ACS Catal. – volume: 45 start-page: 195 year: 2015 ident: c12 article-title: What is high-throughput virtual screening? A perspective from organic materials discovery publication-title: Annu. Rev. Mater. Res. – volume: 134 start-page: 12266 year: 2012 ident: c37 article-title: The mechanism of efficient asymmetric transfer hydrogenation of acetophenone using an Iron(II) complex containing an ( )-Ph PCH CH=NCHPhCHPhN=CHCH PPh ligand: Partial ligand reduction is the key publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 763 year: 2016 ident: c4 article-title: Computational catalysis using the artificial force induced reaction method publication-title: Acc. Chem. Res. – volume: 106 start-page: 6430 year: 1997 ident: c52 article-title: The prediction of molecular equilibrium structures by the standard electronic wave functions publication-title: J. Chem. Phys. – volume: 1 start-page: 011002 year: 2013 ident: c9 article-title: Commentary: The materials project: A materials genome approach to accelerating materials innovation publication-title: APL Mater. – volume: 123 start-page: 064107 year: 2005 ident: c57 article-title: Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3 d elements Sc–Zn publication-title: J. Chem. Phys. – volume: 65 start-page: 6 year: 2022 ident: c15 article-title: Autonomous reaction network exploration in homogeneous and heterogeneous catalysis publication-title: Top. Catal. – volume: 13 start-page: 6108 year: 2017 ident: c71 article-title: Context-driven exploration of complex chemical reaction networks publication-title: J. Chem. Theory Comput. – volume: 33 start-page: 5791 year: 2014 ident: c40 article-title: Iron catalysts containing amine(imine)diphosphine P-NH-N-P ligands catalyze both the asymmetric hydrogenation and asymmetric transfer hydrogenation of ketones publication-title: Organometallics – volume: 62 start-page: e202100101 year: 2021 ident: c76 article-title: Molecule-specific uncertainty quantification in quantum chemical studies publication-title: Isr. J. Chem. – volume: 143 start-page: 244118 year: 2015 ident: c31 article-title: An efficient matrix product operator representation of the quantum chemical Hamiltonian publication-title: J. Chem. Phys. – volume: 115 start-page: 2110 year: 2017 ident: c74 article-title: Measuring multi-configurational character by orbital entanglement publication-title: Mol. Phys. – volume: 152 start-page: 040903 year: 2020 ident: c63 article-title: The density matrix renormalization group in chemistry and Mol. Phys.: Recent developments and new challenges publication-title: J. Chem. Phys. – volume: 162 start-page: 165 year: 1989 ident: c42 article-title: Electronic structure calculations on workstation computers: The program system Turbomole publication-title: Chem. Phys. Lett. – volume: 62 start-page: 1691 year: 2022 ident: c17 article-title: GROMACS in the cloud: A global supercomputer to speed up alchemical drug design publication-title: J. Chem. Inf. Model. – volume: 8 start-page: 1057 year: 2006 ident: c48 article-title: Accurate Coulomb-fitting basis sets for H to Rn publication-title: Phys. Chem. Chem. Phys. – volume: 14 start-page: 5238 year: 2018 ident: c53 article-title: Error-controlled exploration of chemical reaction networks with Gaussian processes publication-title: J. Chem. Theory Comput. – volume: 18 start-page: 6065 year: 2022 ident: c59 article-title: Large-scale benchmarking of multireference vertical-excitation calculations via automated active-space selection publication-title: J. Chem. Theory Comput. – volume: 342 start-page: 1080 year: 2013 ident: c35 article-title: Amine(imine)diphosphine iron catalysts for asymmetric transfer hydrogenation of ketones and imines publication-title: Science – volume: 11 start-page: e1493 year: 2021 ident: c68 article-title: Extended tight-binding quantum chemistry methods publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. – volume: 48 start-page: 157 year: 1980 ident: c65 article-title: A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach publication-title: Chem. Phys. – volume: 7 start-page: 698 year: 2014 ident: c11 article-title: Lead candidates for high-performance organic photovoltaics from high-throughput quantum chemistry—The Harvard clean energy project publication-title: Energy Environ. Sci. – volume: 12 start-page: 1760 year: 2016 ident: c29 article-title: Automated selection of active orbital spaces publication-title: J. Chem. Theory Comput. – volume: 71 start-page: 121 year: 2020 ident: c14 article-title: The exploration of chemical reaction networks publication-title: Annu. Rev. Phys. Chem. – volume: 121 start-page: 9927 year: 2021 ident: c13 article-title: Computational discovery of transition-metal complexes: From high-throughput screening to machine learning publication-title: Chem. Rev. – volume: 55 start-page: 35 year: 2022 ident: c8 article-title: Expansive quantum mechanical exploration of chemical reaction paths publication-title: Acc. Chem. Res. – volume: 38 start-page: 47 year: 2019 ident: c36 article-title: Catalytic homogeneous asymmetric hydrogenation: Successes and opportunities publication-title: Organometallics – volume: 10 start-page: e1436 year: 2020 ident: c32 article-title: The Chronus quantum software package publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. – volume: 69 start-page: 2863 year: 1992 ident: c61 article-title: Density matrix formulation for quantum renormalization groups publication-title: Phys. Rev. Lett. – volume: 70 start-page: 205118 year: 2004 ident: c73 article-title: Quantum data compression, quantum information generation, and the density-matrix renormalization-group method publication-title: Phys. Rev. B – volume: 123 start-page: 385 year: 2019 ident: c6 article-title: Exploration of reaction pathways and chemical transformation networks publication-title: J. Phys. Chem. A – volume: 78 start-page: 1396 year: 1997 ident: c44 article-title: Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)] publication-title: Phys. Rev. Lett. – volume: 157 start-page: 479 year: 1989 ident: c50 article-title: A fifth-order perturbation comparison of electron correlation theories publication-title: Chem. Phys. Lett. – volume: 7 start-page: 3297 year: 2005 ident: c45 article-title: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy publication-title: Phys. Chem. Chem. Phys. – volume: 111 start-page: 218 year: 2016 ident: c24 article-title: AiiDA: Automated interactive infrastructure and database for computational science publication-title: Comput. Mater. Sci. – volume: 11 start-page: e1538 year: 2021 ident: c7 article-title: Exploring paths of chemical transformations in molecular and periodic systems: An approach utilizing force publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. – volume: 60 start-page: 2126 year: 2020 ident: c16 article-title: TeraChem cloud: A high-performance computing service for scalable distributed GPU-accelerated electronic structure calculations publication-title: J. Chem. Inf. Model. – volume: 15 start-page: 501 year: 2017 ident: c5 article-title: Finding reaction mechanisms, intuitive or otherwise publication-title: Org. Biomol. Chem. – volume: 131 start-page: 1394 year: 2009 ident: c34 article-title: Efficient asymmetric transfer hydrogenation of ketones catalyzed by an iron complex containing a P–N–N–P tetradentate ligand formed by template synthesis publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 10345 year: 1993 ident: c62 article-title: Density-matrix algorithms for quantum renormalization groups publication-title: Phys. Rev. B – volume: 181 start-page: 1477 year: 2010 ident: c26 article-title: NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations publication-title: Comput. Phys. Commun. – volume: 32 start-page: 1456 year: 2011 ident: c47 article-title: Effect of the damping function in dispersion corrected density functional theory publication-title: J. Comput. Chem. – volume: 121 start-page: 4962 year: 2021 ident: c27 article-title: From NWChem to NWChemEx: Evolving with the computational chemistry landscape publication-title: Chem. Rev. – volume: 2 start-page: 2241 year: 2011 ident: c10 article-title: The Harvard clean energy project: Large-scale computational screening and design of organic photovoltaics on the world community grid publication-title: J. Phys. Chem. Lett. – volume: 71 start-page: 170 year: 2017 ident: c64 article-title: Automated identification of relevant Frontier orbitals for chemical compounds and processes publication-title: Chimia – ident: 2023122821182702800_c23 doi: 10.5281/zenodo.5589628 – volume: 6 start-page: 301 year: 2016 ident: 2023122821182702800_c39 article-title: Details of the mechanism of the asymmetric transfer hydrogenation of acetophenone using the amine(imine)diphosphine iron precatalyst: The base effect and the enantiodetermining step publication-title: ACS Catal. doi: 10.1021/acscatal.5b01979 – volume: 106 start-page: 6430 year: 1997 ident: 2023122821182702800_c52 article-title: The prediction of molecular equilibrium structures by the standard electronic wave functions publication-title: J. Chem. Phys. doi: 10.1063/1.473634 – volume: 96 start-page: 1218 year: 1992 ident: 2023122821182702800_c66 article-title: Second-order perturbation theory with a complete active space self-consistent field reference function publication-title: J. Chem. Phys. doi: 10.1063/1.462209 – ident: 2023122821182702800_c69 – volume: 11 start-page: e1538 year: 2021 ident: 2023122821182702800_c7 article-title: Exploring paths of chemical transformations in molecular and periodic systems: An approach utilizing force publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. doi: 10.1002/wcms.1538 – volume: 10 start-page: e1436 year: 2020 ident: 2023122821182702800_c32 article-title: The Chronus quantum software package publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. doi: 10.1002/wcms.1436 – volume: 12 start-page: 1760 year: 2016 ident: 2023122821182702800_c29 article-title: Automated selection of active orbital spaces publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.6b00156 – ident: 2023122821182702800_c33 – volume: 131 start-page: 1394 year: 2009 ident: 2023122821182702800_c34 article-title: Efficient asymmetric transfer hydrogenation of ketones catalyzed by an iron complex containing a P–N–N–P tetradentate ligand formed by template synthesis publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809493h – ident: 2023122821182702800_c56 – volume: 13 start-page: 6108 year: 2017 ident: 2023122821182702800_c71 article-title: Context-driven exploration of complex chemical reaction networks publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.7b00945 – volume: 123 start-page: 064107 year: 2005 ident: 2023122821182702800_c57 article-title: Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3 d elements Sc–Zn publication-title: J. Chem. Phys. doi: 10.1063/1.1998907 – volume: 115 start-page: 2110 year: 2017 ident: 2023122821182702800_c74 article-title: Measuring multi-configurational character by orbital entanglement publication-title: Mol. Phys. doi: 10.1080/00268976.2017.1288934 – ident: 2023122821182702800_c60 doi: 10.5281/zenodo.7179860 – volume: 152 start-page: 040903 year: 2020 ident: 2023122821182702800_c63 article-title: The density matrix renormalization group in chemistry and Mol. Phys.: Recent developments and new challenges publication-title: J. Chem. Phys. doi: 10.1063/1.5129672 – volume-title: Introduction to Computational Chemistry year: 2017 ident: 2023122821182702800_c2 – volume: 181 start-page: 1477 year: 2010 ident: 2023122821182702800_c26 article-title: NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2010.04.018 – volume: 60 start-page: 2126 year: 2020 ident: 2023122821182702800_c16 article-title: TeraChem cloud: A high-performance computing service for scalable distributed GPU-accelerated electronic structure calculations publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.9b01152 – ident: 2023122821182702800_c21 doi: 10.5281/zenodo.6984579 – volume: 38 start-page: 47 year: 2019 ident: 2023122821182702800_c36 article-title: Catalytic homogeneous asymmetric hydrogenation: Successes and opportunities publication-title: Organometallics doi: 10.1021/acs.organomet.8b00774 – volume-title: Essentials of Computational Chemistry: Theories and Models year: 2004 ident: 2023122821182702800_c3 – volume: 55 start-page: 35 year: 2022 ident: 2023122821182702800_c8 article-title: Expansive quantum mechanical exploration of chemical reaction paths publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.1c00472 – volume: 18 start-page: 6065 year: 2022 ident: 2023122821182702800_c59 article-title: Large-scale benchmarking of multireference vertical-excitation calculations via automated active-space selection publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.2c00630 – volume: 49 start-page: 763 year: 2016 ident: 2023122821182702800_c4 article-title: Computational catalysis using the artificial force induced reaction method publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00023 – volume: 15 start-page: 1652 year: 2019 ident: 2023122821182702800_c70 article-title: GFN2-xTB—an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.8b01176 – volume: 77 start-page: 3865 year: 1996 ident: 2023122821182702800_c43 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.77.3865 – volume: 71 start-page: 121 year: 2020 ident: 2023122821182702800_c14 article-title: The exploration of chemical reaction networks publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-071119-040123 – volume: 342 start-page: 1080 year: 2013 ident: 2023122821182702800_c35 article-title: Amine(imine)diphosphine iron catalysts for asymmetric transfer hydrogenation of ketones and imines publication-title: Science doi: 10.1126/science.1244466 – volume: 8 start-page: 1057 year: 2006 ident: 2023122821182702800_c48 article-title: Accurate Coulomb-fitting basis sets for H to Rn publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b515623h – volume: 121 start-page: 4962 year: 2021 ident: 2023122821182702800_c27 article-title: From NWChem to NWChemEx: Evolving with the computational chemistry landscape publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00998 – volume: 162 start-page: 165 year: 1989 ident: 2023122821182702800_c42 article-title: Electronic structure calculations on workstation computers: The program system Turbomole publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(89)85118-8 – volume: 69 start-page: 2863 year: 1992 ident: 2023122821182702800_c61 article-title: Density matrix formulation for quantum renormalization groups publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.69.2863 – year: 2022 ident: 2023122821182702800_c49 article-title: High-throughput cloud-based reaction mechanism exploration with massive coupled cluster benchmarking driving automated multi-configurational check-back validation doi: 10.5281/zenodo.7568996 – volume: 14 start-page: 5238 year: 2018 ident: 2023122821182702800_c53 article-title: Error-controlled exploration of chemical reaction networks with Gaussian processes publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.8b00504 – volume: 75 start-page: 81 year: 1989 ident: 2023122821182702800_c72 article-title: Theoretical investigations of molecules composed only of fluorine, oxygen and nitrogen: Determination of the equilibrium structures of FOOF, (NO)2 and FNNF and the transition state structure for FNNF cis-trans isomerization publication-title: Theor. Chem. Acc. doi: 10.1007/bf00527711 – volume: 70 start-page: 205118 year: 2004 ident: 2023122821182702800_c73 article-title: Quantum data compression, quantum information generation, and the density-matrix renormalization-group method publication-title: Phys. Rev. B doi: 10.1103/physrevb.70.205118 – volume: 62 start-page: e202100101 year: 2021 ident: 2023122821182702800_c76 article-title: Molecule-specific uncertainty quantification in quantum chemical studies publication-title: Isr. J. Chem. doi: 10.1002/ijch.202100101 – volume: 32 start-page: 1456 year: 2011 ident: 2023122821182702800_c47 article-title: Effect of the damping function in dispersion corrected density functional theory publication-title: J. Comput. Chem. doi: 10.1002/jcc.21759 – ident: 2023122821182702800_c67 – volume: 123 start-page: 385 year: 2019 ident: 2023122821182702800_c6 article-title: Exploration of reaction pathways and chemical transformation networks publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.8b10007 – volume: 11 start-page: e1493 year: 2021 ident: 2023122821182702800_c68 article-title: Extended tight-binding quantum chemistry methods publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. doi: 10.1002/wcms.1493 – ident: 2023122821182702800_c19 – volume: 33 start-page: 5791 year: 2014 ident: 2023122821182702800_c40 article-title: Iron catalysts containing amine(imine)diphosphine P-NH-N-P ligands catalyze both the asymmetric hydrogenation and asymmetric transfer hydrogenation of ketones publication-title: Organometallics doi: 10.1021/om500479q – volume: 78 start-page: 1396 year: 1997 ident: 2023122821182702800_c44 article-title: Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)] publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.78.1396 – volume: 143 start-page: 244118 year: 2015 ident: 2023122821182702800_c31 article-title: An efficient matrix product operator representation of the quantum chemical Hamiltonian publication-title: J. Chem. Phys. doi: 10.1063/1.4939000 – ident: 2023122821182702800_c58 – volume: 157 start-page: 479 year: 1989 ident: 2023122821182702800_c50 article-title: A fifth-order perturbation comparison of electron correlation theories publication-title: Chem. Phys. Lett. doi: 10.1016/s0009-2614(89)87395-6 – ident: 2023122821182702800_c54 – ident: 2023122821182702800_c25 – volume: 62 start-page: 1691 year: 2022 ident: 2023122821182702800_c17 article-title: GROMACS in the cloud: A global supercomputer to speed up alchemical drug design publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.2c00044 – volume: 132 start-page: 154104 year: 2010 ident: 2023122821182702800_c46 article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 121 start-page: 9927 year: 2021 ident: 2023122821182702800_c13 article-title: Computational discovery of transition-metal complexes: From high-throughput screening to machine learning publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00347 – ident: 2023122821182702800_c20 – volume: 40 start-page: 2216 year: 2019 ident: 2023122821182702800_c30 article-title: AUTOCASA: Program for fully automated multiconfigurational calculations publication-title: J. Comput. Chem. doi: 10.1002/jcc.25869 – volume: 48 start-page: 157 year: 1980 ident: 2023122821182702800_c65 article-title: A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach publication-title: Chem. Phys. doi: 10.1016/0301-0104(80)80045-0 – ident: 2023122821182702800_c41 – ident: 2023122821182702800_c18 – volume: 15 start-page: 501 year: 2017 ident: 2023122821182702800_c5 article-title: Finding reaction mechanisms, intuitive or otherwise publication-title: Org. Biomol. Chem. doi: 10.1039/c6ob02183b – volume-title: Theory and Applications of Computational Chemistry: The First Forty Years year: 2005 ident: 2023122821182702800_c1 – volume: 2 start-page: 2241 year: 2011 ident: 2023122821182702800_c10 article-title: The Harvard clean energy project: Large-scale computational screening and design of organic photovoltaics on the world community grid publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz200866s – volume: 65 start-page: 6 year: 2022 ident: 2023122821182702800_c15 article-title: Autonomous reaction network exploration in homogeneous and heterogeneous catalysis publication-title: Top. Catal. doi: 10.1007/s11244-021-01543-9 – volume: 45 start-page: 195 year: 2015 ident: 2023122821182702800_c12 article-title: What is high-throughput virtual screening? A perspective from organic materials discovery publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070214-020823 – volume: 134 start-page: 12266 year: 2012 ident: 2023122821182702800_c37 article-title: The mechanism of efficient asymmetric transfer hydrogenation of acetophenone using an Iron(II) complex containing an (S,S)-Ph2PCH2CH=NCHPhCHPhN=CHCH2PPh2 ligand: Partial ligand reduction is the key publication-title: J. Am. Chem. Soc. doi: 10.1021/ja304814s – volume: 7 start-page: 698 year: 2014 ident: 2023122821182702800_c11 article-title: Lead candidates for high-performance organic photovoltaics from high-throughput quantum chemistry—The Harvard clean energy project publication-title: Energy Environ. Sci. doi: 10.1039/c3ee42756k – volume: 18 start-page: 5393 year: 2022 ident: 2023122821182702800_c22 article-title: Chemoton 2.0: Autonomous exploration of chemical reaction networks publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.2c00193 – volume: 31 start-page: 7375 year: 2012 ident: 2023122821182702800_c38 article-title: Inner-sphere activation, outer-sphere catalysis: Theoretical study on the mechanism of transfer hydrogenation of ketones using Iron(II) PNNP Eneamido complexes publication-title: Organometallics doi: 10.1021/om300572v – volume: 7 start-page: 3297 year: 2005 ident: 2023122821182702800_c45 article-title: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b508541a – ident: 2023122821182702800_c55 – ident: 2023122821182702800_c28 – volume: 99 start-page: 403 year: 1993 ident: 2023122821182702800_c51 article-title: The balance between theoretical method and basis set quality: A systematic study of equilibrium geometries, dipole moments, harmonic vibrational frequencies, and infrared intensities publication-title: J. Chem. Phys. doi: 10.1063/1.465764 – volume: 48 start-page: 10345 year: 1993 ident: 2023122821182702800_c62 article-title: Density-matrix algorithms for quantum renormalization groups publication-title: Phys. Rev. B doi: 10.1103/physrevb.48.10345 – volume: 71 start-page: 170 year: 2017 ident: 2023122821182702800_c64 article-title: Automated identification of relevant Frontier orbitals for chemical compounds and processes publication-title: Chimia doi: 10.2533/chimia.2017.170 – volume: 111 start-page: 218 year: 2016 ident: 2023122821182702800_c24 article-title: AiiDA: Automated interactive infrastructure and database for computational science publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2015.09.013 – ident: 2023122821182702800_c75 doi: 10.1021/acs.jpclett.2c03905 – volume: 1 start-page: 011002 year: 2013 ident: 2023122821182702800_c9 article-title: Commentary: The materials project: A materials genome approach to accelerating materials innovation publication-title: APL Mater. doi: 10.1063/1.4812323 |
SSID | ssj0001724 |
Score | 2.5420444 |
Snippet | Quantum chemical calculations on atomistic systems have evolved into a standard approach to studying molecular matter. These calculations often involve a... |
SourceID | osti proquest pubmed crossref scitation |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 084803 |
SubjectTerms | Automation Autonomy catalysis catalysts Cloud computing Clusters computational chemistry coupled-cluster methods Coupling (molecular) Density functional theory electron correlation Electronic structure electronic structure methods electronic structure theory high performance computing hydrogenation process INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Ketones Mathematical analysis Molecular structure Physics quantum chemical calculations Quantum chemistry Reaction mechanisms transition state Workflow |
Title | High-throughput ab initio reaction mechanism exploration in the cloud with automated multi-reference validation |
URI | http://dx.doi.org/10.1063/5.0136526 https://www.ncbi.nlm.nih.gov/pubmed/36859110 https://www.proquest.com/docview/2780549714 https://www.proquest.com/docview/2781622175 https://www.osti.gov/servlets/purl/1968806 |
Volume | 158 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-QwDLbYQSvggHgsMLwUlj1wiZgkbdoeEQ8hBIjVLhK3KJOHNBJMR0zL78fpC5AGxDlum9pO_LV2_AH8YdqmXuuMOpNxGjpg0SGPBZVeZhivojipqBNubuXlfXT1ED_MweEnGXwpjkNbTSFjLn_APEdwjF9Y8ydXZ3_vug0XY3DTbJnRAMjbBkLvL_4Qdno5Lp9ZkHIJFjDw1Dnwd2HmYgWWG3xITmqDrsKcG6_BwmlLy7YGP6uaTTNdhzzUaNCGaGdSFkQPySjUAuUEkWB1XoE8uXCydzR9Iq4qtqueiVIEcR8xj3lpSfgTS3RZ5IhdnSVVhSHt2EcIeuKo5l36BfcX5_9PL2nDn0ANKr2gTLrUJt6gvk3sEGfplGkfPomccwOdSm2SQWoFt1mmmZOcOcuMFT7RkdUJFxvQG-djtwVEe2dFksVaahwbsNT6KBbei8xiBOSDPhy16lWtAgPHxaOqktxSqFg1lujD7050UnfUmCW0E2ykgjVQUSYU_ZhC4XaB-w2O7ramU82Smyoe2BmiLGFRHw66YTROyIDoscvLSobhdBEy9WGzNnk3h9CJH3d-fJXDzge-muAMqZf8-U1CTazf_ta9dmAxkNjXB-V3oVc8l24PoU4x3EdXP7u5_rffuPwr54f52g |
linkProvider | American Institute of Physics |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7BVmjpAUF5dGkB8zhwcbuOEyc5VoVqKW0FUiv1Znn9kBZtN1E34fczdpy0SCvE2ZNk4nE8nzOPD-ATU6ZwSpXU6jKhvgMWnScZp8KJEv1VmuWBOuH8Qsyu0tPr7Drm5vhaGFRifaAWdQji_9L1YZxAukTM2dZ3DQcEP_QNN7nIEvEQtvA0LvDstXV0-uXnj2ErRu8c2zAz6qF631ro_sV_OaRRhR_WJrC5DWN0SV10_J4DOnkKTyJyJEedps_ggV3twPi4J2zbgUchm1Ovn0PlszdopOCp24aoOVn4LKGKIEYMlQzkxvqa38X6htiQhheeiVIEESHRy6o1xP-jJaptKkS11pCQe0gHXhKCa3TRMTK9gKuTr5fHMxqZFahGczSUCVuY3Gm0hM4sIjBVMOX8YclaO1WFUDqfFoYnpiwVsyJh1jBtuMtValSe8JcwWlUruwtEOWt4XmZKKBybssK4NOPO8dKgb0ymE_jcT6_sJ9CzXyxlCH8LLjMZLTGBD4No3fXa2CS0520kvTVworRPB9KNxI0EdyIc3e9NJ-PHuJaJ521Iy5ylE3g_DKNxfGxErWzVBhmG6iKYmsCrzuSDDr5HP_oEfJWPwxr4l4IbpH5Xt3cSsjbu9X_d6x2MZ5fnZ_Ls28X3PXjsqe67cvp9GDW3rX2DgKiZv43L_g-LxgVW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-throughput+ab+initio+reaction+mechanism+exploration+in+the+cloud+with+automated+multi-reference+validation&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Unsleber%2C+Jan+P.&rft.au=Liu%2C+Hongbin&rft.au=Talirz%2C+Leopold&rft.au=Weymuth%2C+Thomas&rft.date=2023-02-28&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=158&rft.issue=8&rft_id=info:doi/10.1063%2F5.0136526&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0136526 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |