High-throughput ab initio reaction mechanism exploration in the cloud with automated multi-reference validation

Quantum chemical calculations on atomistic systems have evolved into a standard approach to studying molecular matter. These calculations often involve a significant amount of manual input and expertise, although most of this effort could be automated, which would alleviate the need for expertise in...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 158; no. 8; pp. 084803 - 84815
Main Authors Unsleber, Jan P., Liu, Hongbin, Talirz, Leopold, Weymuth, Thomas, Mörchen, Maximilian, Grofe, Adam, Wecker, Dave, Stein, Christopher J., Panyala, Ajay, Peng, Bo, Kowalski, Karol, Troyer, Matthias, Reiher, Markus
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 28.02.2023
American Institute of Physics (AIP)
Subjects
Online AccessGet full text
ISSN0021-9606
1089-7690
1089-7690
DOI10.1063/5.0136526

Cover

Loading…
Abstract Quantum chemical calculations on atomistic systems have evolved into a standard approach to studying molecular matter. These calculations often involve a significant amount of manual input and expertise, although most of this effort could be automated, which would alleviate the need for expertise in software and hardware accessibility. Here, we present the AutoRXN workflow, an automated workflow for exploratory high-throughput electronic structure calculations of molecular systems, in which (i) density functional theory methods are exploited to deliver minimum and transition-state structures and corresponding energies and properties, (ii) coupled cluster calculations are then launched for optimized structures to provide more accurate energy and property estimates, and (iii) multi-reference diagnostics are evaluated to back check the coupled cluster results and subject them to automated multi-configurational calculations for potential multi-configurational cases. All calculations are carried out in a cloud environment and support massive computational campaigns. Key features of all components of the AutoRXN workflow are autonomy, stability, and minimum operator interference. We highlight the AutoRXN workflow with the example of an autonomous reaction mechanism exploration of the mode of action of a homogeneous catalyst for the asymmetric reduction of ketones.
AbstractList Quantum chemical calculations on atomistic systems have evolved into a standard approach to studying molecular matter. These calculations often involve a significant amount of manual input and expertise, although most of this effort could be automated, which would alleviate the need for expertise in software and hardware accessibility. Here, we present the AutoRXN workflow, an automated workflow for exploratory high-throughput electronic structure calculations of molecular systems, in which (i) density functional theory methods are exploited to deliver minimum and transition-state structures and corresponding energies and properties, (ii) coupled cluster calculations are then launched for optimized structures to provide more accurate energy and property estimates, and (iii) multi-reference diagnostics are evaluated to back check the coupled cluster results and subject them to automated multi-configurational calculations for potential multi-configurational cases. All calculations are carried out in a cloud environment and support massive computational campaigns. Key features of all components of the AutoRXN workflow are autonomy, stability, and minimum operator interference. We highlight the AutoRXN workflow with the example of an autonomous reaction mechanism exploration of the mode of action of a homogeneous catalyst for the asymmetric reduction of ketones.
Quantum chemical calculations on atomistic systems have evolved into a standard approach to studying molecular matter. These calculations often involve a significant amount of manual input and expertise, although most of this effort could be automated, which would alleviate the need for expertise in software and hardware accessibility. Here, we present the AutoRXN workflow, an automated workflow for exploratory high-throughput electronic structure calculations of molecular systems, in which (i) density functional theory methods are exploited to deliver minimum and transition-state structures and corresponding energies and properties, (ii) coupled cluster calculations are then launched for optimized structures to provide more accurate energy and property estimates, and (iii) multi-reference diagnostics are evaluated to back check the coupled cluster results and subject them to automated multi-configurational calculations for potential multi-configurational cases. All calculations are carried out in a cloud environment and support massive computational campaigns. Key features of all components of the AutoRXN workflow are autonomy, stability, and minimum operator interference. We highlight the AutoRXN workflow with the example of an autonomous reaction mechanism exploration of the mode of action of a homogeneous catalyst for the asymmetric reduction of ketones.Quantum chemical calculations on atomistic systems have evolved into a standard approach to studying molecular matter. These calculations often involve a significant amount of manual input and expertise, although most of this effort could be automated, which would alleviate the need for expertise in software and hardware accessibility. Here, we present the AutoRXN workflow, an automated workflow for exploratory high-throughput electronic structure calculations of molecular systems, in which (i) density functional theory methods are exploited to deliver minimum and transition-state structures and corresponding energies and properties, (ii) coupled cluster calculations are then launched for optimized structures to provide more accurate energy and property estimates, and (iii) multi-reference diagnostics are evaluated to back check the coupled cluster results and subject them to automated multi-configurational calculations for potential multi-configurational cases. All calculations are carried out in a cloud environment and support massive computational campaigns. Key features of all components of the AutoRXN workflow are autonomy, stability, and minimum operator interference. We highlight the AutoRXN workflow with the example of an autonomous reaction mechanism exploration of the mode of action of a homogeneous catalyst for the asymmetric reduction of ketones.
Author Weymuth, Thomas
Peng, Bo
Kowalski, Karol
Unsleber, Jan P.
Talirz, Leopold
Mörchen, Maximilian
Panyala, Ajay
Troyer, Matthias
Wecker, Dave
Grofe, Adam
Stein, Christopher J.
Liu, Hongbin
Reiher, Markus
Author_xml – sequence: 1
  givenname: Jan P.
  surname: Unsleber
  fullname: Unsleber, Jan P.
  organization: Laboratory of Physical Chemistry and NCCR Catalysis, ETH Zurich
– sequence: 2
  givenname: Hongbin
  surname: Liu
  fullname: Liu, Hongbin
  organization: Microsoft Quantum
– sequence: 3
  givenname: Leopold
  surname: Talirz
  fullname: Talirz, Leopold
  organization: Microsoft Quantum
– sequence: 4
  givenname: Thomas
  surname: Weymuth
  fullname: Weymuth, Thomas
  organization: Laboratory of Physical Chemistry and NCCR Catalysis, ETH Zurich
– sequence: 5
  givenname: Maximilian
  surname: Mörchen
  fullname: Mörchen, Maximilian
  organization: Laboratory of Physical Chemistry and NCCR Catalysis, ETH Zurich
– sequence: 6
  givenname: Adam
  surname: Grofe
  fullname: Grofe, Adam
  organization: Microsoft Quantum
– sequence: 7
  givenname: Dave
  surname: Wecker
  fullname: Wecker, Dave
  organization: Microsoft Quantum
– sequence: 8
  givenname: Christopher J.
  surname: Stein
  fullname: Stein, Christopher J.
  organization: Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich
– sequence: 9
  givenname: Ajay
  surname: Panyala
  fullname: Panyala, Ajay
  organization: Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory
– sequence: 10
  givenname: Bo
  surname: Peng
  fullname: Peng, Bo
  organization: Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory
– sequence: 11
  givenname: Karol
  surname: Kowalski
  fullname: Kowalski, Karol
  organization: Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory
– sequence: 12
  givenname: Matthias
  surname: Troyer
  fullname: Troyer, Matthias
  organization: Microsoft Quantum
– sequence: 13
  givenname: Markus
  surname: Reiher
  fullname: Reiher, Markus
  organization: Laboratory of Physical Chemistry and NCCR Catalysis, ETH Zurich
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36859110$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1968806$$D View this record in Osti.gov
BookMark eNp90c9rFTEQB_AgFfv69OA_IEEvKmybZDfJ7lGKWqHgRc8hTWa7KbvJmh9V_3vT914VinoaGD4zMN85QUc-eEDoOSWnlIj2jJ8S2grOxCO0oaQfGikGcoQ2hDDaDIKIY3SS0g0hhErWPUHHrej5QCnZoHDhrqcmTzGU62ktGesr7LzLLuAI2tTq8QJm0t6lBcOPdQ5R77rO4zwBNnMoFn93ecK65LDoDBYvZc6uiTBCBG8A3-rZ2d3YU_R41HOCZ4e6RV8_vP9yftFcfv746fzdZWO6jueGCuitHA2XneHAmNA91SPtBg4ARPdCG0l62zI7DJqCYBQsNbYdpe6slqzdopf7vSFlp5JxuR5hgvdgsqKD6Psa3Ba93qM1hm8FUlaLSwbmWXsIJSkmeyoYo5JX-uoBvQkl-nrCnSK8GyTtqnpxUOVqAavW6BYdf6r7vCt4swcmhpRqQL8JJerul4qrwy-rPXtg6xW7EHPUbv7rxNv9RLqX_13_T3wb4h-oVju2vwCIRbxL
CODEN JCPSA6
CitedBy_id crossref_primary_10_1021_acs_jpca_4c03936
crossref_primary_10_1038_s41467_024_47997_9
crossref_primary_10_1063_5_0185894
crossref_primary_10_1063_5_0226437
crossref_primary_10_1002_ange_202310580
crossref_primary_10_1038_s41467_024_49594_2
crossref_primary_10_1002_anie_202310580
crossref_primary_10_1021_acs_macromol_4c02582
crossref_primary_10_1021_acs_jctc_3c00182
crossref_primary_10_1021_acs_jpcc_4c05568
crossref_primary_10_1073_pnas_2305884120
crossref_primary_10_1021_acs_jctc_4c01401
crossref_primary_10_1021_acscentsci_3c01403
crossref_primary_10_1063_5_0206974
crossref_primary_10_1063_5_0201701
Cites_doi 10.5281/zenodo.5589628
10.1021/acscatal.5b01979
10.1063/1.473634
10.1063/1.462209
10.1002/wcms.1538
10.1002/wcms.1436
10.1021/acs.jctc.6b00156
10.1021/ja809493h
10.1021/acs.jctc.7b00945
10.1063/1.1998907
10.1080/00268976.2017.1288934
10.5281/zenodo.7179860
10.1063/1.5129672
10.1016/j.cpc.2010.04.018
10.1021/acs.jcim.9b01152
10.5281/zenodo.6984579
10.1021/acs.organomet.8b00774
10.1021/acs.accounts.1c00472
10.1021/acs.jctc.2c00630
10.1021/acs.accounts.6b00023
10.1021/acs.jctc.8b01176
10.1103/physrevlett.77.3865
10.1146/annurev-physchem-071119-040123
10.1126/science.1244466
10.1039/b515623h
10.1021/acs.chemrev.0c00998
10.1016/0009-2614(89)85118-8
10.1103/physrevlett.69.2863
10.5281/zenodo.7568996
10.1021/acs.jctc.8b00504
10.1007/bf00527711
10.1103/physrevb.70.205118
10.1002/ijch.202100101
10.1002/jcc.21759
10.1021/acs.jpca.8b10007
10.1002/wcms.1493
10.1021/om500479q
10.1103/physrevlett.78.1396
10.1063/1.4939000
10.1016/s0009-2614(89)87395-6
10.1021/acs.jcim.2c00044
10.1063/1.3382344
10.1021/acs.chemrev.1c00347
10.1002/jcc.25869
10.1016/0301-0104(80)80045-0
10.1039/c6ob02183b
10.1021/jz200866s
10.1007/s11244-021-01543-9
10.1146/annurev-matsci-070214-020823
10.1021/ja304814s
10.1039/c3ee42756k
10.1021/acs.jctc.2c00193
10.1021/om300572v
10.1039/b508541a
10.1063/1.465764
10.1103/physrevb.48.10345
10.2533/chimia.2017.170
10.1016/j.commatsci.2015.09.013
10.1021/acs.jpclett.2c03905
10.1063/1.4812323
ContentType Journal Article
Copyright Author(s)
2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Copyright_xml – notice: Author(s)
– notice: 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
CorporateAuthor Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
CorporateAuthor_xml – sequence: 0
  name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
DBID AJDQP
AAYXX
CITATION
NPM
8FD
H8D
L7M
7X8
OIOZB
OTOTI
DOI 10.1063/5.0136526
DatabaseName AIP Open Access Journals
CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList

CrossRef
PubMed
Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: AJDQP
  name: AIP Open Access Journals
  url: https://publishing.aip.org/librarians/open-access-policy
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 1968806
36859110
10_1063_5_0136526
jcp
Genre Journal Article
GrantInformation_xml – fundername: Swiss National Science Foundation
  grantid: 200021_182400; NCCR Catalysis
– fundername: ETH Zurich
  grantid: ETH-43 20-2
– fundername: DOE SPEC
  grantid: DE-AC06-76RLO-1830
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
5VS
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABPPZ
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJDQP
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D-I
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
53G
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
NPM
8FD
H8D
L7M
7X8
OIOZB
OTOTI
ID FETCH-LOGICAL-c445t-16e8d7fc574c5e226a81af1495eee0a86ac708d32d99a1e621ed1cd3f7a4da723
IEDL.DBID AJDQP
ISSN 0021-9606
1089-7690
IngestDate Thu Dec 05 06:23:50 EST 2024
Fri Jul 11 00:05:52 EDT 2025
Mon Jun 30 05:36:38 EDT 2025
Wed Feb 19 02:25:20 EST 2025
Thu Apr 24 23:10:04 EDT 2025
Sun Jul 06 05:06:59 EDT 2025
Tue Jul 04 19:18:16 EDT 2023
Fri Jun 21 00:14:05 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-16e8d7fc574c5e226a81af1495eee0a86ac708d32d99a1e621ed1cd3f7a4da723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ETH Zurich
AC05-76RL01830
Swiss National Science Foundation (SNSF)
PNNL-SA-180160
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division
ORCID 0000-0003-2050-4866
0000-0003-3465-5788
0000-0002-7467-5719
0000-0002-0846-3347
0000-0002-1524-5903
0000-0001-6357-785X
0000-0001-9011-1182
0000-0002-9508-1565
0000-0001-7102-7022
0000-0002-4226-7294
0000-0002-8531-4396
0000-0002-1469-9444
0000000171027022
0000000334655788
0000000285314396
0000000295081565
000000016357785X
0000000215245903
0000000190111182
0000000208463347
0000000274675719
0000000320504866
0000000242267294
0000000214699444
OpenAccessLink http://dx.doi.org/10.1063/5.0136526
PMID 36859110
PQID 2780549714
PQPubID 2050685
PageCount 13
ParticipantIDs osti_scitechconnect_1968806
proquest_miscellaneous_2781622175
pubmed_primary_36859110
scitation_primary_10_1063_5_0136526
crossref_primary_10_1063_5_0136526
crossref_citationtrail_10_1063_5_0136526
proquest_journals_2780549714
PublicationCentury 2000
PublicationDate 20230228
2023-02-28
2023-Feb-28
PublicationDateYYYYMMDD 2023-02-28
PublicationDate_xml – month: 02
  year: 2023
  text: 20230228
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Melville
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2023
Publisher American Institute of Physics
American Institute of Physics (AIP)
Publisher_xml – sequence: 0
  name: American Institute of Physics (AIP)
– name: American Institute of Physics
References White (c62) 1993; 48
Dewyer, Zimmerman (c5) 2017; 15
Williams-Young, Petrone, Sun, Stetina, Lestrange, Hoyer, Nascimento, Koulias, Wildman, Kasper, Goings, Ding, DePrince, Valeev, Li (c32) 2020; 10
Simm, Vaucher, Reiher (c6) 2019; 123
Stein, Reiher (c74) 2017; 115
Simm, Reiher (c71) 2017; 13
Mikhailine, Lough, Morris (c34) 2009; 131
White (c61) 1992; 69
Legeza, Sólyom (c73) 2004; 70
Hachmann, Olivares-Amaya, Atahan-Evrenk, Amador-Bedolla, Sánchez-Carrera, Gold-Parker, Vogt, Brockway, Aspuru-Guzik (c10) 2011; 2
Kutzner, Kniep, Cherian, Nordstrom, Grubmüller, de Groot, Gapsys (c17) 2022; 62
Hachmann, Olivares-Amaya, Jinich, Appleton, Blood-Forsythe, Seress, Román-Salgado, Trepte, Atahan-Evrenk, Er, Shrestha, Mondal, Sokolov, Bao, Aspuru-Guzik (c11) 2014; 7
Keller, Dolfi, Troyer, Reiher (c31) 2015; 143
Zuo, Prokopchuk, Lough, Morris (c39) 2016; 6
Simm, Reiher (c53) 2018; 14
Kowalski, Bair, Bauman, Boschen, Bylaska, Daily, de Jong, Dunning, Govind, Harrison (c27) 2021; 121
Stein, Reiher (c64) 2017; 71
Balabanov, Peterson (c57) 2005; 123
Reiher (c76) 2021; 62
Zuo, Lough, Li, Morris (c35) 2013; 342
Nandy, Duan, Taylor, Liu, Steeves, Kulik (c13) 2021; 121
Pizzi, Cepellotti, Sabatini, Marzari, Kozinsky (c24) 2016; 111
Seo, Morris (c36) 2019; 38
King, Hermes, Truhlar, Gagliardi (c59) 2022; 18
Steiner, Reiher (c15) 2022; 65
Bannwarth, Ehlert, Grimme (c70) 2019; 15
Ahlrichs, Bär, Häser, Horn, Kölmel (c42) 1989; 162
Stein, Reiher (c30) 2019; 40
Raghavachari, Trucks, Pople, Head-Gordon (c50) 1989; 157
Helgaker, Gauss, Jørgensen, Olsen (c52) 1997; 106
Thomas, DeLeeuw, Vacek, Crawford, Yamaguchi, Schaefer (c51) 1993; 99
Valiev, Bylaska, Govind, Kowalski, Straatsma, Van Dam, Wang, Nieplocha, Aprà, Windus (c26) 2010; 181
Zuo, Tauer, Prokopchuk, Morris (c40) 2014; 33
Jain, Ong, Hautier, Chen, Richards, Dacek, Cholia, Gunter, Skinner, Ceder, Persson (c9) 2013; 1
Baiardi, Grimmel, Steiner, Türtscher, Unsleber, Weymuth, Reiher (c8) 2022; 55
Unsleber, Reiher (c14) 2020; 71
Maeda, Harabuchi (c7) 2021; 11
Unsleber, Grimmel, Reiher (c22) 2022; 18
Seritan, Thompson, Martínez (c16) 2020; 60
Perdew, Burke, Ernzerhof (c44) 1997; 78
Sameera, Maeda, Morokuma (c4) 2016; 49
Prokopchuk, Morris (c38) 2012; 31
Grimme, Antony, Ehrlich, Krieg (c46) 2010; 132
Weigend (c48) 2006; 8
Baiardi, Reiher (c63) 2020; 152
Mikhailine, Maishan, Lough, Morris (c37) 2012; 134
Perdew, Burke, Ernzerhof (c43) 1996; 77
Andersson, Malmqvist, Roos (c66) 1992; 96
Grimme, Ehrlich, Goerigk (c47) 2011; 32
Bannwarth, Caldeweyher, Ehlert, Hansen, Pracht, Seibert, Spicher, Grimme (c68) 2021; 11
Roos, Taylor, Siegbahn (c65) 1980; 48
Pyzer-Knapp, Suh, Gómez-Bombarelli, Aguilera-Iparraguirre, Aspuru-Guzik (c12) 2015; 45
Lee, Rice, Scuseria, Schaefer (c72) 1989; 75
Stein, Reiher (c29) 2016; 12
Weigend, Ahlrichs (c45) 2005; 7
2023122821182702800_c21
(2023122821182702800_c7) 2021; 11
2023122821182702800_c23
(2023122821182702800_c51) 1993; 99
2023122821182702800_c67
2023122821182702800_c25
2023122821182702800_c69
2023122821182702800_c28
(2023122821182702800_c35) 2013; 342
(2023122821182702800_c53) 2018; 14
(2023122821182702800_c2) 2017
(2023122821182702800_c17) 2022; 62
(2023122821182702800_c44) 1997; 78
2023122821182702800_c60
2023122821182702800_c20
(2023122821182702800_c66) 1992; 96
(2023122821182702800_c32) 2020; 10
(2023122821182702800_c57) 2005; 123
(2023122821182702800_c12) 2015; 45
(2023122821182702800_c74) 2017; 115
(2023122821182702800_c39) 2016; 6
(2023122821182702800_c5) 2017; 15
(2023122821182702800_c50) 1989; 157
2023122821182702800_c54
(2023122821182702800_c61) 1992; 69
(2023122821182702800_c48) 2006; 8
2023122821182702800_c55
2023122821182702800_c56
(2023122821182702800_c27) 2021; 121
2023122821182702800_c58
(2023122821182702800_c52) 1997; 106
(2023122821182702800_c71) 2017; 13
(2023122821182702800_c31) 2015; 143
(2023122821182702800_c36) 2019; 38
(2023122821182702800_c9) 2013; 1
(2023122821182702800_c22) 2022; 18
(2023122821182702800_c62) 1993; 48
(2023122821182702800_c11) 2014; 7
2023122821182702800_c18
2023122821182702800_c19
(2023122821182702800_c68) 2021; 11
(2023122821182702800_c10) 2011; 2
(2023122821182702800_c65) 1980; 48
(2023122821182702800_c72) 1989; 75
(2023122821182702800_c3) 2004
(2023122821182702800_c45) 2005; 7
Dykstra (2023122821182702800_c1) 2005
(2023122821182702800_c6) 2019; 123
(2023122821182702800_c64) 2017; 71
(2023122821182702800_c16) 2020; 60
2023122821182702800_c41
(2023122821182702800_c70) 2019; 15
(2023122821182702800_c15) 2022; 65
(2023122821182702800_c24) 2016; 111
(2023122821182702800_c8) 2022; 55
(2023122821182702800_c37) 2012; 134
(2023122821182702800_c30) 2019; 40
(2023122821182702800_c47) 2011; 32
(2023122821182702800_c73) 2004; 70
(2023122821182702800_c43) 1996; 77
(2023122821182702800_c63) 2020; 152
(2023122821182702800_c76) 2021; 62
(2023122821182702800_c29) 2016; 12
(2023122821182702800_c46) 2010; 132
2023122821182702800_c33
(2023122821182702800_c59) 2022; 18
(2023122821182702800_c4) 2016; 49
(2023122821182702800_c26) 2010; 181
(2023122821182702800_c40) 2014; 33
2023122821182702800_c75
(2023122821182702800_c34) 2009; 131
(2023122821182702800_c38) 2012; 31
(2023122821182702800_c49) 2022
(2023122821182702800_c14) 2020; 71
(2023122821182702800_c42) 1989; 162
(2023122821182702800_c13) 2021; 121
References_xml – volume: 96
  start-page: 1218
  year: 1992
  ident: c66
  article-title: Second-order perturbation theory with a complete active space self-consistent field reference function
  publication-title: J. Chem. Phys.
– volume: 132
  start-page: 154104
  year: 2010
  ident: c46
  article-title: A consistent and accurate parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
  publication-title: J. Chem. Phys.
– volume: 75
  start-page: 81
  year: 1989
  ident: c72
  article-title: Theoretical investigations of molecules composed only of fluorine, oxygen and nitrogen: Determination of the equilibrium structures of FOOF, (NO) and FNNF and the transition state structure for FNNF isomerization
  publication-title: Theor. Chem. Acc.
– volume: 99
  start-page: 403
  year: 1993
  ident: c51
  article-title: The balance between theoretical method and basis set quality: A systematic study of equilibrium geometries, dipole moments, harmonic vibrational frequencies, and infrared intensities
  publication-title: J. Chem. Phys.
– volume: 40
  start-page: 2216
  year: 2019
  ident: c30
  article-title: AUTOCASA: Program for fully automated multiconfigurational calculations
  publication-title: J. Comput. Chem.
– volume: 15
  start-page: 1652
  year: 2019
  ident: c70
  article-title: GFN2-xTB—an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions
  publication-title: J. Chem. Theory Comput.
– volume: 31
  start-page: 7375
  year: 2012
  ident: c38
  article-title: Inner-sphere activation, outer-sphere catalysis: Theoretical study on the mechanism of transfer hydrogenation of ketones using Iron(II) PNNP Eneamido complexes
  publication-title: Organometallics
– volume: 77
  start-page: 3865
  year: 1996
  ident: c43
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– volume: 18
  start-page: 5393
  year: 2022
  ident: c22
  article-title: 2.0: Autonomous exploration of chemical reaction networks
  publication-title: J. Chem. Theory Comput.
– volume: 6
  start-page: 301
  year: 2016
  ident: c39
  article-title: Details of the mechanism of the asymmetric transfer hydrogenation of acetophenone using the amine(imine)diphosphine iron precatalyst: The base effect and the enantiodetermining step
  publication-title: ACS Catal.
– volume: 45
  start-page: 195
  year: 2015
  ident: c12
  article-title: What is high-throughput virtual screening? A perspective from organic materials discovery
  publication-title: Annu. Rev. Mater. Res.
– volume: 134
  start-page: 12266
  year: 2012
  ident: c37
  article-title: The mechanism of efficient asymmetric transfer hydrogenation of acetophenone using an Iron(II) complex containing an ( )-Ph PCH CH=NCHPhCHPhN=CHCH PPh ligand: Partial ligand reduction is the key
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 763
  year: 2016
  ident: c4
  article-title: Computational catalysis using the artificial force induced reaction method
  publication-title: Acc. Chem. Res.
– volume: 106
  start-page: 6430
  year: 1997
  ident: c52
  article-title: The prediction of molecular equilibrium structures by the standard electronic wave functions
  publication-title: J. Chem. Phys.
– volume: 1
  start-page: 011002
  year: 2013
  ident: c9
  article-title: Commentary: The materials project: A materials genome approach to accelerating materials innovation
  publication-title: APL Mater.
– volume: 123
  start-page: 064107
  year: 2005
  ident: c57
  article-title: Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3 d elements Sc–Zn
  publication-title: J. Chem. Phys.
– volume: 65
  start-page: 6
  year: 2022
  ident: c15
  article-title: Autonomous reaction network exploration in homogeneous and heterogeneous catalysis
  publication-title: Top. Catal.
– volume: 13
  start-page: 6108
  year: 2017
  ident: c71
  article-title: Context-driven exploration of complex chemical reaction networks
  publication-title: J. Chem. Theory Comput.
– volume: 33
  start-page: 5791
  year: 2014
  ident: c40
  article-title: Iron catalysts containing amine(imine)diphosphine P-NH-N-P ligands catalyze both the asymmetric hydrogenation and asymmetric transfer hydrogenation of ketones
  publication-title: Organometallics
– volume: 62
  start-page: e202100101
  year: 2021
  ident: c76
  article-title: Molecule-specific uncertainty quantification in quantum chemical studies
  publication-title: Isr. J. Chem.
– volume: 143
  start-page: 244118
  year: 2015
  ident: c31
  article-title: An efficient matrix product operator representation of the quantum chemical Hamiltonian
  publication-title: J. Chem. Phys.
– volume: 115
  start-page: 2110
  year: 2017
  ident: c74
  article-title: Measuring multi-configurational character by orbital entanglement
  publication-title: Mol. Phys.
– volume: 152
  start-page: 040903
  year: 2020
  ident: c63
  article-title: The density matrix renormalization group in chemistry and Mol. Phys.: Recent developments and new challenges
  publication-title: J. Chem. Phys.
– volume: 162
  start-page: 165
  year: 1989
  ident: c42
  article-title: Electronic structure calculations on workstation computers: The program system Turbomole
  publication-title: Chem. Phys. Lett.
– volume: 62
  start-page: 1691
  year: 2022
  ident: c17
  article-title: GROMACS in the cloud: A global supercomputer to speed up alchemical drug design
  publication-title: J. Chem. Inf. Model.
– volume: 8
  start-page: 1057
  year: 2006
  ident: c48
  article-title: Accurate Coulomb-fitting basis sets for H to Rn
  publication-title: Phys. Chem. Chem. Phys.
– volume: 14
  start-page: 5238
  year: 2018
  ident: c53
  article-title: Error-controlled exploration of chemical reaction networks with Gaussian processes
  publication-title: J. Chem. Theory Comput.
– volume: 18
  start-page: 6065
  year: 2022
  ident: c59
  article-title: Large-scale benchmarking of multireference vertical-excitation calculations via automated active-space selection
  publication-title: J. Chem. Theory Comput.
– volume: 342
  start-page: 1080
  year: 2013
  ident: c35
  article-title: Amine(imine)diphosphine iron catalysts for asymmetric transfer hydrogenation of ketones and imines
  publication-title: Science
– volume: 11
  start-page: e1493
  year: 2021
  ident: c68
  article-title: Extended tight-binding quantum chemistry methods
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– volume: 48
  start-page: 157
  year: 1980
  ident: c65
  article-title: A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach
  publication-title: Chem. Phys.
– volume: 7
  start-page: 698
  year: 2014
  ident: c11
  article-title: Lead candidates for high-performance organic photovoltaics from high-throughput quantum chemistry—The Harvard clean energy project
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 1760
  year: 2016
  ident: c29
  article-title: Automated selection of active orbital spaces
  publication-title: J. Chem. Theory Comput.
– volume: 71
  start-page: 121
  year: 2020
  ident: c14
  article-title: The exploration of chemical reaction networks
  publication-title: Annu. Rev. Phys. Chem.
– volume: 121
  start-page: 9927
  year: 2021
  ident: c13
  article-title: Computational discovery of transition-metal complexes: From high-throughput screening to machine learning
  publication-title: Chem. Rev.
– volume: 55
  start-page: 35
  year: 2022
  ident: c8
  article-title: Expansive quantum mechanical exploration of chemical reaction paths
  publication-title: Acc. Chem. Res.
– volume: 38
  start-page: 47
  year: 2019
  ident: c36
  article-title: Catalytic homogeneous asymmetric hydrogenation: Successes and opportunities
  publication-title: Organometallics
– volume: 10
  start-page: e1436
  year: 2020
  ident: c32
  article-title: The Chronus quantum software package
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– volume: 69
  start-page: 2863
  year: 1992
  ident: c61
  article-title: Density matrix formulation for quantum renormalization groups
  publication-title: Phys. Rev. Lett.
– volume: 70
  start-page: 205118
  year: 2004
  ident: c73
  article-title: Quantum data compression, quantum information generation, and the density-matrix renormalization-group method
  publication-title: Phys. Rev. B
– volume: 123
  start-page: 385
  year: 2019
  ident: c6
  article-title: Exploration of reaction pathways and chemical transformation networks
  publication-title: J. Phys. Chem. A
– volume: 78
  start-page: 1396
  year: 1997
  ident: c44
  article-title: Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]
  publication-title: Phys. Rev. Lett.
– volume: 157
  start-page: 479
  year: 1989
  ident: c50
  article-title: A fifth-order perturbation comparison of electron correlation theories
  publication-title: Chem. Phys. Lett.
– volume: 7
  start-page: 3297
  year: 2005
  ident: c45
  article-title: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
  publication-title: Phys. Chem. Chem. Phys.
– volume: 111
  start-page: 218
  year: 2016
  ident: c24
  article-title: AiiDA: Automated interactive infrastructure and database for computational science
  publication-title: Comput. Mater. Sci.
– volume: 11
  start-page: e1538
  year: 2021
  ident: c7
  article-title: Exploring paths of chemical transformations in molecular and periodic systems: An approach utilizing force
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– volume: 60
  start-page: 2126
  year: 2020
  ident: c16
  article-title: TeraChem cloud: A high-performance computing service for scalable distributed GPU-accelerated electronic structure calculations
  publication-title: J. Chem. Inf. Model.
– volume: 15
  start-page: 501
  year: 2017
  ident: c5
  article-title: Finding reaction mechanisms, intuitive or otherwise
  publication-title: Org. Biomol. Chem.
– volume: 131
  start-page: 1394
  year: 2009
  ident: c34
  article-title: Efficient asymmetric transfer hydrogenation of ketones catalyzed by an iron complex containing a P–N–N–P tetradentate ligand formed by template synthesis
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 10345
  year: 1993
  ident: c62
  article-title: Density-matrix algorithms for quantum renormalization groups
  publication-title: Phys. Rev. B
– volume: 181
  start-page: 1477
  year: 2010
  ident: c26
  article-title: NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations
  publication-title: Comput. Phys. Commun.
– volume: 32
  start-page: 1456
  year: 2011
  ident: c47
  article-title: Effect of the damping function in dispersion corrected density functional theory
  publication-title: J. Comput. Chem.
– volume: 121
  start-page: 4962
  year: 2021
  ident: c27
  article-title: From NWChem to NWChemEx: Evolving with the computational chemistry landscape
  publication-title: Chem. Rev.
– volume: 2
  start-page: 2241
  year: 2011
  ident: c10
  article-title: The Harvard clean energy project: Large-scale computational screening and design of organic photovoltaics on the world community grid
  publication-title: J. Phys. Chem. Lett.
– volume: 71
  start-page: 170
  year: 2017
  ident: c64
  article-title: Automated identification of relevant Frontier orbitals for chemical compounds and processes
  publication-title: Chimia
– ident: 2023122821182702800_c23
  doi: 10.5281/zenodo.5589628
– volume: 6
  start-page: 301
  year: 2016
  ident: 2023122821182702800_c39
  article-title: Details of the mechanism of the asymmetric transfer hydrogenation of acetophenone using the amine(imine)diphosphine iron precatalyst: The base effect and the enantiodetermining step
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01979
– volume: 106
  start-page: 6430
  year: 1997
  ident: 2023122821182702800_c52
  article-title: The prediction of molecular equilibrium structures by the standard electronic wave functions
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.473634
– volume: 96
  start-page: 1218
  year: 1992
  ident: 2023122821182702800_c66
  article-title: Second-order perturbation theory with a complete active space self-consistent field reference function
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.462209
– ident: 2023122821182702800_c69
– volume: 11
  start-page: e1538
  year: 2021
  ident: 2023122821182702800_c7
  article-title: Exploring paths of chemical transformations in molecular and periodic systems: An approach utilizing force
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
  doi: 10.1002/wcms.1538
– volume: 10
  start-page: e1436
  year: 2020
  ident: 2023122821182702800_c32
  article-title: The Chronus quantum software package
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
  doi: 10.1002/wcms.1436
– volume: 12
  start-page: 1760
  year: 2016
  ident: 2023122821182702800_c29
  article-title: Automated selection of active orbital spaces
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.6b00156
– ident: 2023122821182702800_c33
– volume: 131
  start-page: 1394
  year: 2009
  ident: 2023122821182702800_c34
  article-title: Efficient asymmetric transfer hydrogenation of ketones catalyzed by an iron complex containing a P–N–N–P tetradentate ligand formed by template synthesis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809493h
– ident: 2023122821182702800_c56
– volume: 13
  start-page: 6108
  year: 2017
  ident: 2023122821182702800_c71
  article-title: Context-driven exploration of complex chemical reaction networks
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.7b00945
– volume: 123
  start-page: 064107
  year: 2005
  ident: 2023122821182702800_c57
  article-title: Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3 d elements Sc–Zn
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1998907
– volume: 115
  start-page: 2110
  year: 2017
  ident: 2023122821182702800_c74
  article-title: Measuring multi-configurational character by orbital entanglement
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2017.1288934
– ident: 2023122821182702800_c60
  doi: 10.5281/zenodo.7179860
– volume: 152
  start-page: 040903
  year: 2020
  ident: 2023122821182702800_c63
  article-title: The density matrix renormalization group in chemistry and Mol. Phys.: Recent developments and new challenges
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5129672
– volume-title: Introduction to Computational Chemistry
  year: 2017
  ident: 2023122821182702800_c2
– volume: 181
  start-page: 1477
  year: 2010
  ident: 2023122821182702800_c26
  article-title: NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2010.04.018
– volume: 60
  start-page: 2126
  year: 2020
  ident: 2023122821182702800_c16
  article-title: TeraChem cloud: A high-performance computing service for scalable distributed GPU-accelerated electronic structure calculations
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.9b01152
– ident: 2023122821182702800_c21
  doi: 10.5281/zenodo.6984579
– volume: 38
  start-page: 47
  year: 2019
  ident: 2023122821182702800_c36
  article-title: Catalytic homogeneous asymmetric hydrogenation: Successes and opportunities
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.8b00774
– volume-title: Essentials of Computational Chemistry: Theories and Models
  year: 2004
  ident: 2023122821182702800_c3
– volume: 55
  start-page: 35
  year: 2022
  ident: 2023122821182702800_c8
  article-title: Expansive quantum mechanical exploration of chemical reaction paths
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.1c00472
– volume: 18
  start-page: 6065
  year: 2022
  ident: 2023122821182702800_c59
  article-title: Large-scale benchmarking of multireference vertical-excitation calculations via automated active-space selection
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.2c00630
– volume: 49
  start-page: 763
  year: 2016
  ident: 2023122821182702800_c4
  article-title: Computational catalysis using the artificial force induced reaction method
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00023
– volume: 15
  start-page: 1652
  year: 2019
  ident: 2023122821182702800_c70
  article-title: GFN2-xTB—an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.8b01176
– volume: 77
  start-page: 3865
  year: 1996
  ident: 2023122821182702800_c43
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.77.3865
– volume: 71
  start-page: 121
  year: 2020
  ident: 2023122821182702800_c14
  article-title: The exploration of chemical reaction networks
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev-physchem-071119-040123
– volume: 342
  start-page: 1080
  year: 2013
  ident: 2023122821182702800_c35
  article-title: Amine(imine)diphosphine iron catalysts for asymmetric transfer hydrogenation of ketones and imines
  publication-title: Science
  doi: 10.1126/science.1244466
– volume: 8
  start-page: 1057
  year: 2006
  ident: 2023122821182702800_c48
  article-title: Accurate Coulomb-fitting basis sets for H to Rn
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b515623h
– volume: 121
  start-page: 4962
  year: 2021
  ident: 2023122821182702800_c27
  article-title: From NWChem to NWChemEx: Evolving with the computational chemistry landscape
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00998
– volume: 162
  start-page: 165
  year: 1989
  ident: 2023122821182702800_c42
  article-title: Electronic structure calculations on workstation computers: The program system Turbomole
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(89)85118-8
– volume: 69
  start-page: 2863
  year: 1992
  ident: 2023122821182702800_c61
  article-title: Density matrix formulation for quantum renormalization groups
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.69.2863
– year: 2022
  ident: 2023122821182702800_c49
  article-title: High-throughput cloud-based reaction mechanism exploration with massive coupled cluster benchmarking driving automated multi-configurational check-back validation
  doi: 10.5281/zenodo.7568996
– volume: 14
  start-page: 5238
  year: 2018
  ident: 2023122821182702800_c53
  article-title: Error-controlled exploration of chemical reaction networks with Gaussian processes
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.8b00504
– volume: 75
  start-page: 81
  year: 1989
  ident: 2023122821182702800_c72
  article-title: Theoretical investigations of molecules composed only of fluorine, oxygen and nitrogen: Determination of the equilibrium structures of FOOF, (NO)2 and FNNF and the transition state structure for FNNF cis-trans isomerization
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/bf00527711
– volume: 70
  start-page: 205118
  year: 2004
  ident: 2023122821182702800_c73
  article-title: Quantum data compression, quantum information generation, and the density-matrix renormalization-group method
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.70.205118
– volume: 62
  start-page: e202100101
  year: 2021
  ident: 2023122821182702800_c76
  article-title: Molecule-specific uncertainty quantification in quantum chemical studies
  publication-title: Isr. J. Chem.
  doi: 10.1002/ijch.202100101
– volume: 32
  start-page: 1456
  year: 2011
  ident: 2023122821182702800_c47
  article-title: Effect of the damping function in dispersion corrected density functional theory
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21759
– ident: 2023122821182702800_c67
– volume: 123
  start-page: 385
  year: 2019
  ident: 2023122821182702800_c6
  article-title: Exploration of reaction pathways and chemical transformation networks
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.8b10007
– volume: 11
  start-page: e1493
  year: 2021
  ident: 2023122821182702800_c68
  article-title: Extended tight-binding quantum chemistry methods
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
  doi: 10.1002/wcms.1493
– ident: 2023122821182702800_c19
– volume: 33
  start-page: 5791
  year: 2014
  ident: 2023122821182702800_c40
  article-title: Iron catalysts containing amine(imine)diphosphine P-NH-N-P ligands catalyze both the asymmetric hydrogenation and asymmetric transfer hydrogenation of ketones
  publication-title: Organometallics
  doi: 10.1021/om500479q
– volume: 78
  start-page: 1396
  year: 1997
  ident: 2023122821182702800_c44
  article-title: Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.78.1396
– volume: 143
  start-page: 244118
  year: 2015
  ident: 2023122821182702800_c31
  article-title: An efficient matrix product operator representation of the quantum chemical Hamiltonian
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4939000
– ident: 2023122821182702800_c58
– volume: 157
  start-page: 479
  year: 1989
  ident: 2023122821182702800_c50
  article-title: A fifth-order perturbation comparison of electron correlation theories
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/s0009-2614(89)87395-6
– ident: 2023122821182702800_c54
– ident: 2023122821182702800_c25
– volume: 62
  start-page: 1691
  year: 2022
  ident: 2023122821182702800_c17
  article-title: GROMACS in the cloud: A global supercomputer to speed up alchemical drug design
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.2c00044
– volume: 132
  start-page: 154104
  year: 2010
  ident: 2023122821182702800_c46
  article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 121
  start-page: 9927
  year: 2021
  ident: 2023122821182702800_c13
  article-title: Computational discovery of transition-metal complexes: From high-throughput screening to machine learning
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00347
– ident: 2023122821182702800_c20
– volume: 40
  start-page: 2216
  year: 2019
  ident: 2023122821182702800_c30
  article-title: AUTOCASA: Program for fully automated multiconfigurational calculations
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.25869
– volume: 48
  start-page: 157
  year: 1980
  ident: 2023122821182702800_c65
  article-title: A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach
  publication-title: Chem. Phys.
  doi: 10.1016/0301-0104(80)80045-0
– ident: 2023122821182702800_c41
– ident: 2023122821182702800_c18
– volume: 15
  start-page: 501
  year: 2017
  ident: 2023122821182702800_c5
  article-title: Finding reaction mechanisms, intuitive or otherwise
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/c6ob02183b
– volume-title: Theory and Applications of Computational Chemistry: The First Forty Years
  year: 2005
  ident: 2023122821182702800_c1
– volume: 2
  start-page: 2241
  year: 2011
  ident: 2023122821182702800_c10
  article-title: The Harvard clean energy project: Large-scale computational screening and design of organic photovoltaics on the world community grid
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz200866s
– volume: 65
  start-page: 6
  year: 2022
  ident: 2023122821182702800_c15
  article-title: Autonomous reaction network exploration in homogeneous and heterogeneous catalysis
  publication-title: Top. Catal.
  doi: 10.1007/s11244-021-01543-9
– volume: 45
  start-page: 195
  year: 2015
  ident: 2023122821182702800_c12
  article-title: What is high-throughput virtual screening? A perspective from organic materials discovery
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070214-020823
– volume: 134
  start-page: 12266
  year: 2012
  ident: 2023122821182702800_c37
  article-title: The mechanism of efficient asymmetric transfer hydrogenation of acetophenone using an Iron(II) complex containing an (S,S)-Ph2PCH2CH=NCHPhCHPhN=CHCH2PPh2 ligand: Partial ligand reduction is the key
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja304814s
– volume: 7
  start-page: 698
  year: 2014
  ident: 2023122821182702800_c11
  article-title: Lead candidates for high-performance organic photovoltaics from high-throughput quantum chemistry—The Harvard clean energy project
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee42756k
– volume: 18
  start-page: 5393
  year: 2022
  ident: 2023122821182702800_c22
  article-title: Chemoton 2.0: Autonomous exploration of chemical reaction networks
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.2c00193
– volume: 31
  start-page: 7375
  year: 2012
  ident: 2023122821182702800_c38
  article-title: Inner-sphere activation, outer-sphere catalysis: Theoretical study on the mechanism of transfer hydrogenation of ketones using Iron(II) PNNP Eneamido complexes
  publication-title: Organometallics
  doi: 10.1021/om300572v
– volume: 7
  start-page: 3297
  year: 2005
  ident: 2023122821182702800_c45
  article-title: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b508541a
– ident: 2023122821182702800_c55
– ident: 2023122821182702800_c28
– volume: 99
  start-page: 403
  year: 1993
  ident: 2023122821182702800_c51
  article-title: The balance between theoretical method and basis set quality: A systematic study of equilibrium geometries, dipole moments, harmonic vibrational frequencies, and infrared intensities
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.465764
– volume: 48
  start-page: 10345
  year: 1993
  ident: 2023122821182702800_c62
  article-title: Density-matrix algorithms for quantum renormalization groups
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.48.10345
– volume: 71
  start-page: 170
  year: 2017
  ident: 2023122821182702800_c64
  article-title: Automated identification of relevant Frontier orbitals for chemical compounds and processes
  publication-title: Chimia
  doi: 10.2533/chimia.2017.170
– volume: 111
  start-page: 218
  year: 2016
  ident: 2023122821182702800_c24
  article-title: AiiDA: Automated interactive infrastructure and database for computational science
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2015.09.013
– ident: 2023122821182702800_c75
  doi: 10.1021/acs.jpclett.2c03905
– volume: 1
  start-page: 011002
  year: 2013
  ident: 2023122821182702800_c9
  article-title: Commentary: The materials project: A materials genome approach to accelerating materials innovation
  publication-title: APL Mater.
  doi: 10.1063/1.4812323
SSID ssj0001724
Score 2.5420444
Snippet Quantum chemical calculations on atomistic systems have evolved into a standard approach to studying molecular matter. These calculations often involve a...
SourceID osti
proquest
pubmed
crossref
scitation
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 084803
SubjectTerms Automation
Autonomy
catalysis
catalysts
Cloud computing
Clusters
computational chemistry
coupled-cluster methods
Coupling (molecular)
Density functional theory
electron correlation
Electronic structure
electronic structure methods
electronic structure theory
high performance computing
hydrogenation process
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Ketones
Mathematical analysis
Molecular structure
Physics
quantum chemical calculations
Quantum chemistry
Reaction mechanisms
transition state
Workflow
Title High-throughput ab initio reaction mechanism exploration in the cloud with automated multi-reference validation
URI http://dx.doi.org/10.1063/5.0136526
https://www.ncbi.nlm.nih.gov/pubmed/36859110
https://www.proquest.com/docview/2780549714
https://www.proquest.com/docview/2781622175
https://www.osti.gov/servlets/purl/1968806
Volume 158
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-QwDLbYQSvggHgsMLwUlj1wiZgkbdoeEQ8hBIjVLhK3KJOHNBJMR0zL78fpC5AGxDlum9pO_LV2_AH8YdqmXuuMOpNxGjpg0SGPBZVeZhivojipqBNubuXlfXT1ED_MweEnGXwpjkNbTSFjLn_APEdwjF9Y8ydXZ3_vug0XY3DTbJnRAMjbBkLvL_4Qdno5Lp9ZkHIJFjDw1Dnwd2HmYgWWG3xITmqDrsKcG6_BwmlLy7YGP6uaTTNdhzzUaNCGaGdSFkQPySjUAuUEkWB1XoE8uXCydzR9Iq4qtqueiVIEcR8xj3lpSfgTS3RZ5IhdnSVVhSHt2EcIeuKo5l36BfcX5_9PL2nDn0ANKr2gTLrUJt6gvk3sEGfplGkfPomccwOdSm2SQWoFt1mmmZOcOcuMFT7RkdUJFxvQG-djtwVEe2dFksVaahwbsNT6KBbei8xiBOSDPhy16lWtAgPHxaOqktxSqFg1lujD7050UnfUmCW0E2ykgjVQUSYU_ZhC4XaB-w2O7ramU82Smyoe2BmiLGFRHw66YTROyIDoscvLSobhdBEy9WGzNnk3h9CJH3d-fJXDzge-muAMqZf8-U1CTazf_ta9dmAxkNjXB-V3oVc8l24PoU4x3EdXP7u5_rffuPwr54f52g
linkProvider American Institute of Physics
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7BVmjpAUF5dGkB8zhwcbuOEyc5VoVqKW0FUiv1Znn9kBZtN1E34fczdpy0SCvE2ZNk4nE8nzOPD-ATU6ZwSpXU6jKhvgMWnScZp8KJEv1VmuWBOuH8Qsyu0tPr7Drm5vhaGFRifaAWdQji_9L1YZxAukTM2dZ3DQcEP_QNN7nIEvEQtvA0LvDstXV0-uXnj2ErRu8c2zAz6qF631ro_sV_OaRRhR_WJrC5DWN0SV10_J4DOnkKTyJyJEedps_ggV3twPi4J2zbgUchm1Ovn0PlszdopOCp24aoOVn4LKGKIEYMlQzkxvqa38X6htiQhheeiVIEESHRy6o1xP-jJaptKkS11pCQe0gHXhKCa3TRMTK9gKuTr5fHMxqZFahGczSUCVuY3Gm0hM4sIjBVMOX8YclaO1WFUDqfFoYnpiwVsyJh1jBtuMtValSe8JcwWlUruwtEOWt4XmZKKBybssK4NOPO8dKgb0ymE_jcT6_sJ9CzXyxlCH8LLjMZLTGBD4No3fXa2CS0520kvTVworRPB9KNxI0EdyIc3e9NJ-PHuJaJ521Iy5ylE3g_DKNxfGxErWzVBhmG6iKYmsCrzuSDDr5HP_oEfJWPwxr4l4IbpH5Xt3cSsjbu9X_d6x2MZ5fnZ_Ls28X3PXjsqe67cvp9GDW3rX2DgKiZv43L_g-LxgVW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-throughput+ab+initio+reaction+mechanism+exploration+in+the+cloud+with+automated+multi-reference+validation&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Unsleber%2C+Jan+P.&rft.au=Liu%2C+Hongbin&rft.au=Talirz%2C+Leopold&rft.au=Weymuth%2C+Thomas&rft.date=2023-02-28&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=158&rft.issue=8&rft_id=info:doi/10.1063%2F5.0136526&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0136526
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon