The Drude‐Smith Equation and Related Equations for the Frequency‐Dependent Electrical Conductivity of Materials: Insight from a Memory Function Formalism

The Drude‐Smith equation is widely used for treating the frequency‐dependent electrical conductivity of materials in the terahertz region. An attractive feature is its sparsity of adjustable parameters. A significant improvement over Drude theory for these materials, the theory includes backscatteri...

Full description

Saved in:
Bibliographic Details
Published inChemphyschem Vol. 22; no. 16; pp. 1667 - 1674
Main Authors Chen, Wei‐Chen, Marcus, Rudolph A.
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 18.08.2021
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Drude‐Smith equation is widely used for treating the frequency‐dependent electrical conductivity of materials in the terahertz region. An attractive feature is its sparsity of adjustable parameters. A significant improvement over Drude theory for these materials, the theory includes backscattering of the charge carriers. It has nevertheless been criticized, including by Smith himself, because of the arbitrariness of a step in the derivation. We recall a somewhat similar behavior of back scattering in fluids observed in molecular dynamics computations and discussed in terms of memory functions. We show how theories such as Drude‐Smith and Cocker et al. are examples of a broader class of theories by showing how they also arise as particular cases of a memory function formalism that divides the interactions into short and long range. Insight into the Drude‐Smith equation commonly used to treat terahertz electrical conductivity of solids and the role of backscattering is obtained using extensive computer‐based studies of a related quantity, the velocity autocorrelation function of fluids. The latter has been interpreted using a memory function formalism which is then used here to analyze and extend the Drude‐Smith equation.
AbstractList The Drude‐Smith equation is widely used for treating the frequency‐dependent electrical conductivity of materials in the terahertz region. An attractive feature is its sparsity of adjustable parameters. A significant improvement over Drude theory for these materials, the theory includes backscattering of the charge carriers. It has nevertheless been criticized, including by Smith himself, because of the arbitrariness of a step in the derivation. We recall a somewhat similar behavior of back scattering in fluids observed in molecular dynamics computations and discussed in terms of memory functions. We show how theories such as Drude‐Smith and Cocker et al . are examples of a broader class of theories by showing how they also arise as particular cases of a memory function formalism that divides the interactions into short and long range.
The Drude-Smith equation is widely used for treating the frequency-dependent electrical conductivity of materials in the terahertz region. An attractive feature is its sparsity of adjustable parameters. A significant improvement over Drude theory for these materials, the theory includes backscattering of the charge carriers. It has nevertheless been criticized, including by Smith himself, because of the arbitrariness of a step in the derivation. We recall a somewhat similar behavior of back scattering in fluids observed in molecular dynamics computations and discussed in terms of memory functions. We show how theories such as Drude-Smith and Cocker et al. are examples of a broader class of theories by showing how they also arise as particular cases of a memory function formalism that divides the interactions into short and long range.The Drude-Smith equation is widely used for treating the frequency-dependent electrical conductivity of materials in the terahertz region. An attractive feature is its sparsity of adjustable parameters. A significant improvement over Drude theory for these materials, the theory includes backscattering of the charge carriers. It has nevertheless been criticized, including by Smith himself, because of the arbitrariness of a step in the derivation. We recall a somewhat similar behavior of back scattering in fluids observed in molecular dynamics computations and discussed in terms of memory functions. We show how theories such as Drude-Smith and Cocker et al. are examples of a broader class of theories by showing how they also arise as particular cases of a memory function formalism that divides the interactions into short and long range.
The Drude‐Smith equation is widely used for treating the frequency‐dependent electrical conductivity of materials in the terahertz region. An attractive feature is its sparsity of adjustable parameters. A significant improvement over Drude theory for these materials, the theory includes backscattering of the charge carriers. It has nevertheless been criticized, including by Smith himself, because of the arbitrariness of a step in the derivation. We recall a somewhat similar behavior of back scattering in fluids observed in molecular dynamics computations and discussed in terms of memory functions. We show how theories such as Drude‐Smith and Cocker et al. are examples of a broader class of theories by showing how they also arise as particular cases of a memory function formalism that divides the interactions into short and long range. Insight into the Drude‐Smith equation commonly used to treat terahertz electrical conductivity of solids and the role of backscattering is obtained using extensive computer‐based studies of a related quantity, the velocity autocorrelation function of fluids. The latter has been interpreted using a memory function formalism which is then used here to analyze and extend the Drude‐Smith equation.
The Drude‐Smith equation is widely used for treating the frequency‐dependent electrical conductivity of materials in the terahertz region. An attractive feature is its sparsity of adjustable parameters. A significant improvement over Drude theory for these materials, the theory includes backscattering of the charge carriers. It has nevertheless been criticized, including by Smith himself, because of the arbitrariness of a step in the derivation. We recall a somewhat similar behavior of back scattering in fluids observed in molecular dynamics computations and discussed in terms of memory functions. We show how theories such as Drude‐Smith and Cocker et al . are examples of a broader class of theories by showing how they also arise as particular cases of a memory function formalism that divides the interactions into short and long range. Insight into the Drude‐Smith equation commonly used to treat terahertz electrical conductivity of solids and the role of backscattering is obtained using extensive computer‐based studies of a related quantity, the velocity autocorrelation function of fluids. The latter has been interpreted using a memory function formalism which is then used here to analyze and extend the Drude‐Smith equation.
The Drude‐Smith equation is widely used for treating the frequency‐dependent electrical conductivity of materials in the terahertz region. An attractive feature is its sparsity of adjustable parameters. A significant improvement over Drude theory for these materials, the theory includes backscattering of the charge carriers. It has nevertheless been criticized, including by Smith himself, because of the arbitrariness of a step in the derivation. We recall a somewhat similar behavior of back scattering in fluids observed in molecular dynamics computations and discussed in terms of memory functions. We show how theories such as Drude‐Smith and Cocker et al. are examples of a broader class of theories by showing how they also arise as particular cases of a memory function formalism that divides the interactions into short and long range.
Author Chen, Wei‐Chen
Marcus, Rudolph A.
AuthorAffiliation 1 Noyes Laboratory of Chemical Physics California Institute of Technology 1200 E California Blvd. Pasadena California 91125 USA
AuthorAffiliation_xml – name: 1 Noyes Laboratory of Chemical Physics California Institute of Technology 1200 E California Blvd. Pasadena California 91125 USA
Author_xml – sequence: 1
  givenname: Wei‐Chen
  surname: Chen
  fullname: Chen, Wei‐Chen
  organization: California Institute of Technology
– sequence: 2
  givenname: Rudolph A.
  orcidid: 0000-0001-6547-1469
  surname: Marcus
  fullname: Marcus, Rudolph A.
  email: ram@caltech.edu
  organization: California Institute of Technology
BookMark eNqFkc1uEzEUhUeoiP7AlrUlNmwS_DeTMQskNE3aSq1AUNaW47nTceWxU9vTKjsegRfoy_EkOE0oohJiZfve852r63NY7DnvoCheEzwlGNN3etXrKcV08xDiWXFAOBOTWcXJ3u7OKSv3i8MYrzHGNZ6RF8U-45sWYwfF_WUP6DiMLfz8_uPrYFKP5jejSsY7pFyLvoBVCdrHYkSdDyhlaBHgZgSn1xk8hhW4FlxCcws6BaOVRY137aiTuTVpjXyHLrJRMMrG9-jMRXPVJ9QFPyCFLmDwYY0Wo9MPgxc-DMqaOLwsnncZgFe786j4tphfNqeT808nZ83H84nmvBQTzXRbkmWFYVlzpViHRc2E6DSmmtMayLLUHSjaMkVKpmnLc5liolQ1A4IVOyo-bH1X43KAVudNgrJyFcygwlp6ZeTfHWd6eeVvZc3LquazbPB2ZxB8_pWY5GCiBmuVAz9GSUvOeMkYrbL0zRPptR-Dy-tlVUU5EaQUWcW3Kh18jAE6qU16SCDPN1YSLDeRy03-8jH_jE2fYL93-CcgtsCdsbD-j1o2n0-bP-wv-zPJYA
CitedBy_id crossref_primary_10_1039_D4SC03144J
crossref_primary_10_1063_5_0152726
crossref_primary_10_1080_00150193_2022_2130762
Cites_doi 10.1063/1.1727719
10.1007/BF01351552
10.1021/ja00905a001
10.1007/s10762-012-9905-y
10.1038/nphys1953
10.1088/1361-6528/ab0f02
10.1103/PhysRevB.64.155106
10.1021/jp711827g
10.1143/PTP.33.423
10.1021/jp4043599
10.1021/jp064399a
10.1063/1.1977213
10.1103/PhysRevA.7.1690
10.1063/1.1704269
10.1103/PhysRevLett.108.056603
10.1103/PhysRevA.2.2514
10.1063/1.4993524
10.1364/OL.44.004139
10.1016/0375-9601(68)90513-6
10.1002/adom.201900623
10.1063/1.438659
10.1021/acsenergylett.9b02310
10.1063/1.5086085
10.1039/C5EE02503F
10.1103/PhysRevB.99.041102
10.1021/jp953050c
10.1103/PhysRevE.58.538
10.1103/PhysRevB.80.235206
10.1103/PhysRevB.55.12210
10.1103/PhysRevE.96.042606
10.1039/C6RA26819F
10.1103/PhysRevE.79.011114
10.1143/JPSJ.12.570
10.1103/PhysRevB.99.035407
10.1103/PhysRevB.96.205439
10.1149/1.3700406
10.1007/978-3-030-68667-3
10.1063/1.3518482
10.1103/PhysRevB.79.115309
10.1007/BFb0119322
10.1063/1.3698097
10.1103/PhysRevB.98.165132
10.1103/PhysRev.136.A405
10.1088/1361-6528/aae8ce
10.1021/jacs.9b04338
10.1007/s10854-007-9248-y
10.1063/1.4927383
ContentType Journal Article
Copyright 2021 The Authors. ChemPhysChem published by Wiley-VCH GmbH
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 The Authors. ChemPhysChem published by Wiley-VCH GmbH.
Copyright_xml – notice: 2021 The Authors. ChemPhysChem published by Wiley-VCH GmbH
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 The Authors. ChemPhysChem published by Wiley-VCH GmbH.
DBID 24P
AAYXX
CITATION
K9.
7X8
5PM
DOI 10.1002/cphc.202100299
DatabaseName Wiley-Blackwell Open Access Titles
CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic


ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1439-7641
EndPage 1674
ExternalDocumentID PMC8456847
10_1002_cphc_202100299
CPHC202100299
Genre article
GrantInformation_xml – fundername: Office of Naval Research Army Research Office
GroupedDBID ---
-DZ
-~X
05W
0R~
1L6
1OC
24P
29B
33P
3WU
4.4
4ZD
50Y
5GY
5VS
66C
6J9
77Q
8-0
8-1
8UM
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IH2
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
NNB
O9-
OIG
P2P
P2W
P4E
PQQKQ
QRW
R.K
RNS
ROL
RWI
RX1
SUPJJ
SV3
UPT
V2E
W99
WBKPD
WH7
WJL
WOHZO
WXSBR
WYJ
XPP
XV2
Y6R
YZZ
ZZTAW
~S-
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
7X8
5PM
ID FETCH-LOGICAL-c4459-c3cd51b60eb84aa3f098399fc02c428e1b5cfea2d3a153c2d4c42201aa67e10a3
IEDL.DBID DR2
ISSN 1439-4235
1439-7641
IngestDate Thu Aug 21 14:24:57 EDT 2025
Fri Jul 11 04:49:41 EDT 2025
Fri Jul 25 12:20:52 EDT 2025
Tue Jul 01 01:51:51 EDT 2025
Thu Apr 24 23:00:18 EDT 2025
Wed Jan 22 16:29:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License Attribution
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4459-c3cd51b60eb84aa3f098399fc02c428e1b5cfea2d3a153c2d4c42201aa67e10a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6547-1469
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcphc.202100299
PMID 34143933
PQID 2562419159
PQPubID 986334
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8456847
proquest_miscellaneous_2543453326
proquest_journals_2562419159
crossref_citationtrail_10_1002_cphc_202100299
crossref_primary_10_1002_cphc_202100299
wiley_primary_10_1002_cphc_202100299_CPHC202100299
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 18, 2021
PublicationDateYYYYMMDD 2021-08-18
PublicationDate_xml – month: 08
  year: 2021
  text: August 18, 2021
  day: 18
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Hoboken
PublicationTitle Chemphyschem
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2010; 97
2009; 80
2019; 99
1963; 85
1978; 31
1976
1996; 100
2015; 107
2017; 111
1979; 71
1964; 136
1957; 12
1970; 2
2020; 8
2020; 5
1997; 55
1965; 6
2013; 117
1986
2019; 114
1980
2008; 112
1998; 58
2007; 18
1968; 26A
1965; 33
2012; 100
2019; 30
2010
2006; 110
2005; 87
1992
2019; 141
2015; 8
2012; 33
2011; 7
2012; 108
2001; 64
2016; 6
2017; 96
2009; 79
2019; 44
2021
2020
1962
1966; 45
2018; 98
1973; 7
2012; 45
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_33_1
Krewer K. L. (e_1_2_9_12_1) 2020
Kenkre V. M. (e_1_2_9_47_1) 2021
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
Kubo R. (e_1_2_9_52_1) 1992
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
Boon J.-P. (e_1_2_9_19_1) 1980
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
Hansen J.-P. (e_1_2_9_21_1) 1986
e_1_2_9_15_1
Tuckerman M. E. (e_1_2_9_24_1) 2010
e_1_2_9_38_1
e_1_2_9_17_1
Friedman H. L. (e_1_2_9_20_1) 1962
e_1_2_9_36_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 55
  start-page: 12210
  year: 1997
  publication-title: Phys. Rev. B
– volume: 5
  start-page: 47
  year: 2020
  end-page: 55
  publication-title: ACS Energy Lett.
– volume: 58
  start-page: 538
  year: 1998
  publication-title: Phys. Rev. B
– volume: 2
  start-page: 2514
  year: 1970
  end-page: 2528
  publication-title: Phys. Rev. A
– volume: 7
  start-page: 576
  year: 2011
  end-page: 580
  publication-title: Nat. Phys.
– volume: 33
  start-page: 871
  year: 2012
  end-page: 925
  publication-title: J. Infrared Millim. Terahertz. Waves
– start-page: 374
  year: 2021
– volume: 8
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 85
  start-page: 3533
  year: 1963
  end-page: 3539
  publication-title: J. Am. Chem. Soc.
– start-page: 2008
  year: 2020
  publication-title: Condensed Matter
– start-page: 1
  year: 1976
  end-page: 27
– volume: 79
  year: 2009
  publication-title: Phys. Rev. B
– volume: 45
  start-page: 1086
  year: 1966
  end-page: 1096
  publication-title: J. Chem. Phys.
– volume: 108
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 111
  year: 2017
  publication-title: Appl. Phys. Lett.
– start-page: 568
  year: 2010
  end-page: 604
– volume: 30
  year: 2019
  publication-title: Nanotechnology
– volume: 117
  start-page: 12379
  year: 2013
  end-page: 12384
  publication-title: J. Phys. Chem. C
– volume: 71
  start-page: 2507
  year: 1979
  end-page: 2513
  publication-title: J. Chem. Phys.
– volume: 136
  start-page: A405
  year: 1964
  publication-title: Phys. Rev.
– start-page: 242
  year: 1986
– volume: 45
  start-page: 21
  year: 2012
  end-page: 29
  publication-title: ECS Trans.
– volume: 99
  year: 2019
  publication-title: Phys. Rev. B
– volume: 18
  start-page: S447
  year: 2007
  end-page: S452
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 141
  start-page: 9793
  year: 2019
  end-page: 9797
  publication-title: J. Am. Chem. Soc.
– volume: 107
  year: 2015
  publication-title: App. Phys. Lett.
– volume: 26A
  start-page: 126
  year: 1968
  publication-title: Phys. Lett.
– volume: 96
  year: 2017
  publication-title: Phys. Rev. B
– volume: 79
  year: 2009
  publication-title: Phys. Rev. E
– volume: 80
  year: 2009
  publication-title: Phys. Rev. B
– volume: 110
  start-page: 25229
  year: 2006
  end-page: 25239
  publication-title: J. Phys. Chem. B
– volume: 87
  year: 2005
  publication-title: App. Phys. Lett.
– volume: 8
  start-page: 3700
  year: 2015
  end-page: 3707
  publication-title: Energy Environ. Sci.
– start-page: 114
  year: 1992
– volume: 98
  year: 2018
  publication-title: Phys. Rev. B
– volume: 100
  year: 2012
  publication-title: App. Phys. Lett.
– volume: 44
  start-page: 4139
  year: 2019
  end-page: 4142
  publication-title: Opt. Lett.
– volume: 96
  year: 2017
  publication-title: Phys. Rev. E
– volume: 100
  start-page: 1420
  year: 1996
  end-page: 1425
  publication-title: J. Phys. Chem.
– volume: 6
  start-page: 167
  year: 1965
  end-page: 181
  publication-title: J. Math. Phys.
– volume: 97
  year: 2010
  publication-title: App. Phys. Lett.
– volume: 6
  year: 2016
  publication-title: RSC Adv.
– volume: 31
  start-page: 407
  year: 1978
  end-page: 416
  publication-title: Z. Physik B
– volume: 7
  start-page: 1690
  year: 1973
  end-page: 1700
  publication-title: Phys. Rev. A
– volume: 112
  start-page: 7928
  year: 2008
  end-page: 7935
  publication-title: J. Phys. Chem. C
– volume: 12
  start-page: 570
  year: 1957
  publication-title: J. Phys. Soc. Jpn.
– volume: 33
  start-page: 423
  year: 1965
  publication-title: Prog. Theor. Phys.
– year: 1980
– volume: 114
  year: 2019
  publication-title: Appl. Phys. Lett.
– volume: 64
  year: 2001
  publication-title: Phys. Rev. B
– start-page: 226
  year: 1962
– ident: e_1_2_9_51_1
  doi: 10.1063/1.1727719
– ident: e_1_2_9_46_1
  doi: 10.1007/BF01351552
– ident: e_1_2_9_18_1
  doi: 10.1021/ja00905a001
– ident: e_1_2_9_10_1
  doi: 10.1007/s10762-012-9905-y
– ident: e_1_2_9_27_1
  doi: 10.1038/nphys1953
– ident: e_1_2_9_4_1
  doi: 10.1088/1361-6528/ab0f02
– ident: e_1_2_9_2_1
  doi: 10.1103/PhysRevB.64.155106
– ident: e_1_2_9_42_1
  doi: 10.1021/jp711827g
– volume-title: Molecular Hydrodynamics
  year: 1980
  ident: e_1_2_9_19_1
– ident: e_1_2_9_23_1
  doi: 10.1143/PTP.33.423
– ident: e_1_2_9_41_1
  doi: 10.1021/jp4043599
– ident: e_1_2_9_39_1
  doi: 10.1021/jp064399a
– ident: e_1_2_9_13_1
  doi: 10.1063/1.1977213
– ident: e_1_2_9_25_1
  doi: 10.1103/PhysRevA.7.1690
– ident: e_1_2_9_49_1
  doi: 10.1063/1.1704269
– ident: e_1_2_9_44_1
  doi: 10.1103/PhysRevLett.108.056603
– start-page: 2008
  year: 2020
  ident: e_1_2_9_12_1
  publication-title: Condensed Matter
– ident: e_1_2_9_26_1
  doi: 10.1103/PhysRevA.2.2514
– ident: e_1_2_9_43_1
  doi: 10.1063/1.4993524
– ident: e_1_2_9_3_1
  doi: 10.1364/OL.44.004139
– ident: e_1_2_9_1_1
  doi: 10.1016/0375-9601(68)90513-6
– start-page: 568
  volume-title: Statistical Mechanics: Theory and Molecular Simulation, 1st
  year: 2010
  ident: e_1_2_9_24_1
– ident: e_1_2_9_14_1
  doi: 10.1002/adom.201900623
– ident: e_1_2_9_15_1
  doi: 10.1063/1.438659
– start-page: 242
  volume-title: Theory of Simple Liquids, 2nd
  year: 1986
  ident: e_1_2_9_21_1
– ident: e_1_2_9_53_1
  doi: 10.1021/acsenergylett.9b02310
– ident: e_1_2_9_6_1
  doi: 10.1063/1.5086085
– ident: e_1_2_9_45_1
  doi: 10.1039/C5EE02503F
– ident: e_1_2_9_8_1
  doi: 10.1103/PhysRevB.99.041102
– start-page: 226
  volume-title: A Course in Statistical Mechanics
  year: 1962
  ident: e_1_2_9_20_1
– ident: e_1_2_9_29_1
  doi: 10.1021/jp953050c
– ident: e_1_2_9_17_1
  doi: 10.1103/PhysRevE.58.538
– ident: e_1_2_9_34_1
  doi: 10.1103/PhysRevB.80.235206
– ident: e_1_2_9_30_1
  doi: 10.1103/PhysRevB.55.12210
– ident: e_1_2_9_28_1
  doi: 10.1103/PhysRevE.96.042606
– ident: e_1_2_9_31_1
  doi: 10.1039/C6RA26819F
– ident: e_1_2_9_48_1
  doi: 10.1103/PhysRevE.79.011114
– ident: e_1_2_9_22_1
  doi: 10.1143/JPSJ.12.570
– start-page: 114
  volume-title: Statistical Physics II, Nonequilibrium Statistical Mechanics, 2nd
  year: 1992
  ident: e_1_2_9_52_1
– ident: e_1_2_9_50_1
  doi: 10.1103/PhysRevB.99.035407
– ident: e_1_2_9_11_1
  doi: 10.1103/PhysRevB.96.205439
– ident: e_1_2_9_33_1
  doi: 10.1149/1.3700406
– start-page: 374
  volume-title: Memory Functions, Projection Operators, and the Defect Technique
  year: 2021
  ident: e_1_2_9_47_1
  doi: 10.1007/978-3-030-68667-3
– ident: e_1_2_9_36_1
  doi: 10.1063/1.3518482
– ident: e_1_2_9_40_1
  doi: 10.1103/PhysRevB.79.115309
– ident: e_1_2_9_32_1
  doi: 10.1007/BFb0119322
– ident: e_1_2_9_38_1
  doi: 10.1063/1.3698097
– ident: e_1_2_9_9_1
  doi: 10.1103/PhysRevB.98.165132
– ident: e_1_2_9_16_1
  doi: 10.1103/PhysRev.136.A405
– ident: e_1_2_9_7_1
  doi: 10.1088/1361-6528/aae8ce
– ident: e_1_2_9_5_1
  doi: 10.1021/jacs.9b04338
– ident: e_1_2_9_35_1
  doi: 10.1007/s10854-007-9248-y
– ident: e_1_2_9_37_1
  doi: 10.1063/1.4927383
SSID ssj0008071
Score 2.366797
Snippet The Drude‐Smith equation is widely used for treating the frequency‐dependent electrical conductivity of materials in the terahertz region. An attractive...
The Drude-Smith equation is widely used for treating the frequency-dependent electrical conductivity of materials in the terahertz region. An attractive...
SourceID pubmedcentral
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1667
SubjectTerms Backscattering
Computational fluid dynamics
conductivity
Current carriers
Drude equation
Drude-Smith equation
Electrical resistivity
Formalism
memory function terahertz region
Molecular dynamics
Title The Drude‐Smith Equation and Related Equations for the Frequency‐Dependent Electrical Conductivity of Materials: Insight from a Memory Function Formalism
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcphc.202100299
https://www.proquest.com/docview/2562419159
https://www.proquest.com/docview/2543453326
https://pubmed.ncbi.nlm.nih.gov/PMC8456847
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagF7jwRgRKZSQkTmm9jvPihtJdLUiLKkSl3qLxI2rVki2b7KGc-An8Af4cv4QZ57HdSggJbnFiy44z4_k8GX_D2Gu0UNq6GEKlXB4ql0CY5VkSJmCFSytAHSOH_uJjMj9WH07ik2un-Dt-iNHhRprh12tScNDNwYY01FyeEgWhpGJOJ_goYItQ0acNf1Qmuh2Xot-dMooH1kYhD7abb1ulDdS8GSh5HcB6CzS7z2AYexd4cr6_bvW--XaD1vF_Xu4Bu9fDU_6uk6eH7JarH7E7xZAV7jH7iXLFD1dr6359_-HdMnz6taML51Bb7oPrnB1vNhxRMUeUyWerLmr7Chse9ql3Wz71aXhIUnixrIl81mez4MuKL6Dt1OMtf1835ETgdBiGA19QePAVn6FN9h3PCHhfnDVfnrDj2fRzMQ_7FA-hUSrOQxMZG090IpzOFEBUiRwRW14ZIQ1ujNxEx6ZyIG0EuDQbaRXeRswCkKRuIiB6ynbqZe2eMe6Ms5VwcaohUZkVuQYjEpulVmNPNg9YOHzi0vT855SG46LsmJtlSZNejpMesDdj_cuO-eOPNXcHiSn7FaApEUoiOMoRLQbs1fgYPxb9kIHaLddUR0UK8bZMApZuSdrYI7F_bz-pz049C3iG0BehRcCkF6S_jLEsjubFWHr-L41esLt0TQ71SbbLdtrV2r1ERNbqPXZbqqM9r3u_Aee8NcA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQLb0SggJGQOKX1Js7D3FC60Ra6FUKtxC3yK2pFyZZ9HMqJn8Af4M_xS5hxHstWQkhwtGPLjj1jfx6PvwF4iTuUti5RoRBOhsKlKsxlnoapstxltUIdI4P-9CidnIi3H5Pem5DewrT8EIPBjTTDr9ek4GSQ3luzhpqLU-IgjCgp5XW4QWG9_anqw5pBKuftmUvQhWcUJz1vI4_2Nutv7ktrsHnVVfJ3COv3oPI26L73revJp93VUu-ar1eIHf_r9-7ArQ6hsjetSN2Fa665B9tFHxjuPvxA0WL785V1P79995YZNv7SMoYz1Vjm_eucHTIXDIExQ6DJynnruH2JFfe76LtLNvaReEhYWDFriH_WB7Rgs5pN1bLVkNfsoFmQHYHRexim2JQ8hC9Ziduyb7gk7H1-tvj8AE7K8XExCbsoD6ERIpGhiY1NRjrlTudCqbjmEkGbrA2PDJ6N3EgnpnYqsrHC1dlEVmA2whal0syNuIofwlYza9wjYM44W3OXZFqlIrdcamV4avPMamzJygDCfo4r01GgUySO86olb44qGvRqGPQAXg3lL1ryjz-W3OlFpuoWgUWFaBLxkUTAGMCL4TNOFt3JqMbNVlRGxAIhd5QGkG2I2tAiEYBvfmnOTj0ReI7oF9FFAJGXpL_0sSreT4oh9fhfKj2H7cnx9LA6PDh69wRuUj7Z10f5Dmwt5yv3FAHaUj_zKvgLxi45BA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagSNAL_1UDBYyExCmtN3GcuDeU3WgLbFUhKvUWObajVpTssps9lFMfoS_Ay_VJmHF-tlsJIcHRji079oz9eTz-hpB3sEMVxkbK59xKn1uh_EQmwhfKMBuXCnQMDfqTQzE-5h9PopMbr_gbfoje4Iaa4dZrVPCZKfdWpKF6dooUhAEmpbxL7nHBEpTr4ZcVgVTCmiMXx_vOIIw62kYW7K3XX9-WVljztqfkTQTrtqDsEVFd5xvPk2-7y7rY1T9v8Tr-z989Jg9bfEo_NAL1hNyx1VPyIO3Cwj0jv0Cw6HC-NPb68srZZejoR8MXTlVlqPOus6bPXFCAxRRgJs3mjdv2BVQctrF3azpycXhQVGg6rZB91oWzoNOSTlTd6Mc-PagWaEWg-BqGKjpB_-ALmsGm7BrOEHmfny2-PyfH2ehrOvbbGA--5jySvg61iQaFYLZIuFJhySRANllqFmg4GdlBEenSqsCECtZmHRgO2QBalBKxHTAVbpGNalrZbUKttqZkNooLJXhimCyUZsIksSmgJSM94ndTnOuWAB3jcJznDXVzkOOg5_2ge-R9X37WUH_8seROJzF5uwQscsCSgI4kwEWPvO0_w2ThjYyq7HSJZXjIAXAHwiPxmqT1LSL99_qX6uzU0YAngH0BW3gkcIL0lz7m6dE47VMv_qXSG3L_aJjlnw8OP70km5iNxvVBskM26vnSvgJ0VhevnQL-BhuSN7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Drude%E2%80%90Smith+Equation+and+Related+Equations+for+the+Frequency%E2%80%90Dependent+Electrical+Conductivity+of+Materials%3A+Insight+from+a+Memory+Function+Formalism&rft.jtitle=Chemphyschem&rft.au=Wei%E2%80%90Chen+Chen&rft.au=Marcus%2C+Rudolph+A&rft.date=2021-08-18&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1439-4235&rft.eissn=1439-7641&rft.volume=22&rft.issue=16&rft.spage=1667&rft.epage=1674&rft_id=info:doi/10.1002%2Fcphc.202100299&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-4235&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-4235&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-4235&client=summon