The Drude‐Smith Equation and Related Equations for the Frequency‐Dependent Electrical Conductivity of Materials: Insight from a Memory Function Formalism
The Drude‐Smith equation is widely used for treating the frequency‐dependent electrical conductivity of materials in the terahertz region. An attractive feature is its sparsity of adjustable parameters. A significant improvement over Drude theory for these materials, the theory includes backscatteri...
Saved in:
Published in | Chemphyschem Vol. 22; no. 16; pp. 1667 - 1674 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
18.08.2021
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Drude‐Smith equation is widely used for treating the frequency‐dependent electrical conductivity of materials in the terahertz region. An attractive feature is its sparsity of adjustable parameters. A significant improvement over Drude theory for these materials, the theory includes backscattering of the charge carriers. It has nevertheless been criticized, including by Smith himself, because of the arbitrariness of a step in the derivation. We recall a somewhat similar behavior of back scattering in fluids observed in molecular dynamics computations and discussed in terms of memory functions. We show how theories such as Drude‐Smith and Cocker et al. are examples of a broader class of theories by showing how they also arise as particular cases of a memory function formalism that divides the interactions into short and long range.
Insight into the Drude‐Smith equation commonly used to treat terahertz electrical conductivity of solids and the role of backscattering is obtained using extensive computer‐based studies of a related quantity, the velocity autocorrelation function of fluids. The latter has been interpreted using a memory function formalism which is then used here to analyze and extend the Drude‐Smith equation. |
---|---|
AbstractList | The Drude‐Smith equation is widely used for treating the frequency‐dependent electrical conductivity of materials in the terahertz region. An attractive feature is its sparsity of adjustable parameters. A significant improvement over Drude theory for these materials, the theory includes backscattering of the charge carriers. It has nevertheless been criticized, including by Smith himself, because of the arbitrariness of a step in the derivation. We recall a somewhat similar behavior of back scattering in fluids observed in molecular dynamics computations and discussed in terms of memory functions. We show how theories such as Drude‐Smith and Cocker
et al
. are examples of a broader class of theories by showing how they also arise as particular cases of a memory function formalism that divides the interactions into short and long range. The Drude-Smith equation is widely used for treating the frequency-dependent electrical conductivity of materials in the terahertz region. An attractive feature is its sparsity of adjustable parameters. A significant improvement over Drude theory for these materials, the theory includes backscattering of the charge carriers. It has nevertheless been criticized, including by Smith himself, because of the arbitrariness of a step in the derivation. We recall a somewhat similar behavior of back scattering in fluids observed in molecular dynamics computations and discussed in terms of memory functions. We show how theories such as Drude-Smith and Cocker et al. are examples of a broader class of theories by showing how they also arise as particular cases of a memory function formalism that divides the interactions into short and long range.The Drude-Smith equation is widely used for treating the frequency-dependent electrical conductivity of materials in the terahertz region. An attractive feature is its sparsity of adjustable parameters. A significant improvement over Drude theory for these materials, the theory includes backscattering of the charge carriers. It has nevertheless been criticized, including by Smith himself, because of the arbitrariness of a step in the derivation. We recall a somewhat similar behavior of back scattering in fluids observed in molecular dynamics computations and discussed in terms of memory functions. We show how theories such as Drude-Smith and Cocker et al. are examples of a broader class of theories by showing how they also arise as particular cases of a memory function formalism that divides the interactions into short and long range. The Drude‐Smith equation is widely used for treating the frequency‐dependent electrical conductivity of materials in the terahertz region. An attractive feature is its sparsity of adjustable parameters. A significant improvement over Drude theory for these materials, the theory includes backscattering of the charge carriers. It has nevertheless been criticized, including by Smith himself, because of the arbitrariness of a step in the derivation. We recall a somewhat similar behavior of back scattering in fluids observed in molecular dynamics computations and discussed in terms of memory functions. We show how theories such as Drude‐Smith and Cocker et al. are examples of a broader class of theories by showing how they also arise as particular cases of a memory function formalism that divides the interactions into short and long range. Insight into the Drude‐Smith equation commonly used to treat terahertz electrical conductivity of solids and the role of backscattering is obtained using extensive computer‐based studies of a related quantity, the velocity autocorrelation function of fluids. The latter has been interpreted using a memory function formalism which is then used here to analyze and extend the Drude‐Smith equation. The Drude‐Smith equation is widely used for treating the frequency‐dependent electrical conductivity of materials in the terahertz region. An attractive feature is its sparsity of adjustable parameters. A significant improvement over Drude theory for these materials, the theory includes backscattering of the charge carriers. It has nevertheless been criticized, including by Smith himself, because of the arbitrariness of a step in the derivation. We recall a somewhat similar behavior of back scattering in fluids observed in molecular dynamics computations and discussed in terms of memory functions. We show how theories such as Drude‐Smith and Cocker et al . are examples of a broader class of theories by showing how they also arise as particular cases of a memory function formalism that divides the interactions into short and long range. Insight into the Drude‐Smith equation commonly used to treat terahertz electrical conductivity of solids and the role of backscattering is obtained using extensive computer‐based studies of a related quantity, the velocity autocorrelation function of fluids. The latter has been interpreted using a memory function formalism which is then used here to analyze and extend the Drude‐Smith equation. The Drude‐Smith equation is widely used for treating the frequency‐dependent electrical conductivity of materials in the terahertz region. An attractive feature is its sparsity of adjustable parameters. A significant improvement over Drude theory for these materials, the theory includes backscattering of the charge carriers. It has nevertheless been criticized, including by Smith himself, because of the arbitrariness of a step in the derivation. We recall a somewhat similar behavior of back scattering in fluids observed in molecular dynamics computations and discussed in terms of memory functions. We show how theories such as Drude‐Smith and Cocker et al. are examples of a broader class of theories by showing how they also arise as particular cases of a memory function formalism that divides the interactions into short and long range. |
Author | Chen, Wei‐Chen Marcus, Rudolph A. |
AuthorAffiliation | 1 Noyes Laboratory of Chemical Physics California Institute of Technology 1200 E California Blvd. Pasadena California 91125 USA |
AuthorAffiliation_xml | – name: 1 Noyes Laboratory of Chemical Physics California Institute of Technology 1200 E California Blvd. Pasadena California 91125 USA |
Author_xml | – sequence: 1 givenname: Wei‐Chen surname: Chen fullname: Chen, Wei‐Chen organization: California Institute of Technology – sequence: 2 givenname: Rudolph A. orcidid: 0000-0001-6547-1469 surname: Marcus fullname: Marcus, Rudolph A. email: ram@caltech.edu organization: California Institute of Technology |
BookMark | eNqFkc1uEzEUhUeoiP7AlrUlNmwS_DeTMQskNE3aSq1AUNaW47nTceWxU9vTKjsegRfoy_EkOE0oohJiZfve852r63NY7DnvoCheEzwlGNN3etXrKcV08xDiWXFAOBOTWcXJ3u7OKSv3i8MYrzHGNZ6RF8U-45sWYwfF_WUP6DiMLfz8_uPrYFKP5jejSsY7pFyLvoBVCdrHYkSdDyhlaBHgZgSn1xk8hhW4FlxCcws6BaOVRY137aiTuTVpjXyHLrJRMMrG9-jMRXPVJ9QFPyCFLmDwYY0Wo9MPgxc-DMqaOLwsnncZgFe786j4tphfNqeT808nZ83H84nmvBQTzXRbkmWFYVlzpViHRc2E6DSmmtMayLLUHSjaMkVKpmnLc5liolQ1A4IVOyo-bH1X43KAVudNgrJyFcygwlp6ZeTfHWd6eeVvZc3LquazbPB2ZxB8_pWY5GCiBmuVAz9GSUvOeMkYrbL0zRPptR-Dy-tlVUU5EaQUWcW3Kh18jAE6qU16SCDPN1YSLDeRy03-8jH_jE2fYL93-CcgtsCdsbD-j1o2n0-bP-wv-zPJYA |
CitedBy_id | crossref_primary_10_1039_D4SC03144J crossref_primary_10_1063_5_0152726 crossref_primary_10_1080_00150193_2022_2130762 |
Cites_doi | 10.1063/1.1727719 10.1007/BF01351552 10.1021/ja00905a001 10.1007/s10762-012-9905-y 10.1038/nphys1953 10.1088/1361-6528/ab0f02 10.1103/PhysRevB.64.155106 10.1021/jp711827g 10.1143/PTP.33.423 10.1021/jp4043599 10.1021/jp064399a 10.1063/1.1977213 10.1103/PhysRevA.7.1690 10.1063/1.1704269 10.1103/PhysRevLett.108.056603 10.1103/PhysRevA.2.2514 10.1063/1.4993524 10.1364/OL.44.004139 10.1016/0375-9601(68)90513-6 10.1002/adom.201900623 10.1063/1.438659 10.1021/acsenergylett.9b02310 10.1063/1.5086085 10.1039/C5EE02503F 10.1103/PhysRevB.99.041102 10.1021/jp953050c 10.1103/PhysRevE.58.538 10.1103/PhysRevB.80.235206 10.1103/PhysRevB.55.12210 10.1103/PhysRevE.96.042606 10.1039/C6RA26819F 10.1103/PhysRevE.79.011114 10.1143/JPSJ.12.570 10.1103/PhysRevB.99.035407 10.1103/PhysRevB.96.205439 10.1149/1.3700406 10.1007/978-3-030-68667-3 10.1063/1.3518482 10.1103/PhysRevB.79.115309 10.1007/BFb0119322 10.1063/1.3698097 10.1103/PhysRevB.98.165132 10.1103/PhysRev.136.A405 10.1088/1361-6528/aae8ce 10.1021/jacs.9b04338 10.1007/s10854-007-9248-y 10.1063/1.4927383 |
ContentType | Journal Article |
Copyright | 2021 The Authors. ChemPhysChem published by Wiley-VCH GmbH 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 The Authors. ChemPhysChem published by Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 The Authors. ChemPhysChem published by Wiley-VCH GmbH – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 The Authors. ChemPhysChem published by Wiley-VCH GmbH. |
DBID | 24P AAYXX CITATION K9. 7X8 5PM |
DOI | 10.1002/cphc.202100299 |
DatabaseName | Wiley-Blackwell Open Access Titles CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1439-7641 |
EndPage | 1674 |
ExternalDocumentID | PMC8456847 10_1002_cphc_202100299 CPHC202100299 |
Genre | article |
GrantInformation_xml | – fundername: Office of Naval Research Army Research Office |
GroupedDBID | --- -DZ -~X 05W 0R~ 1L6 1OC 24P 29B 33P 3WU 4.4 4ZD 50Y 5GY 5VS 66C 6J9 77Q 8-0 8-1 8UM A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IH2 IX1 JPC KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ NNB O9- OIG P2P P2W P4E PQQKQ QRW R.K RNS ROL RWI RX1 SUPJJ SV3 UPT V2E W99 WBKPD WH7 WJL WOHZO WXSBR WYJ XPP XV2 Y6R YZZ ZZTAW ~S- AAYXX AEYWJ AGHNM AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY K9. 7X8 5PM |
ID | FETCH-LOGICAL-c4459-c3cd51b60eb84aa3f098399fc02c428e1b5cfea2d3a153c2d4c42201aa67e10a3 |
IEDL.DBID | DR2 |
ISSN | 1439-4235 1439-7641 |
IngestDate | Thu Aug 21 14:24:57 EDT 2025 Fri Jul 11 04:49:41 EDT 2025 Fri Jul 25 12:20:52 EDT 2025 Tue Jul 01 01:51:51 EDT 2025 Thu Apr 24 23:00:18 EDT 2025 Wed Jan 22 16:29:13 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | Attribution This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4459-c3cd51b60eb84aa3f098399fc02c428e1b5cfea2d3a153c2d4c42201aa67e10a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6547-1469 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcphc.202100299 |
PMID | 34143933 |
PQID | 2562419159 |
PQPubID | 986334 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8456847 proquest_miscellaneous_2543453326 proquest_journals_2562419159 crossref_citationtrail_10_1002_cphc_202100299 crossref_primary_10_1002_cphc_202100299 wiley_primary_10_1002_cphc_202100299_CPHC202100299 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 18, 2021 |
PublicationDateYYYYMMDD | 2021-08-18 |
PublicationDate_xml | – month: 08 year: 2021 text: August 18, 2021 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Hoboken |
PublicationTitle | Chemphyschem |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2010; 97 2009; 80 2019; 99 1963; 85 1978; 31 1976 1996; 100 2015; 107 2017; 111 1979; 71 1964; 136 1957; 12 1970; 2 2020; 8 2020; 5 1997; 55 1965; 6 2013; 117 1986 2019; 114 1980 2008; 112 1998; 58 2007; 18 1968; 26A 1965; 33 2012; 100 2019; 30 2010 2006; 110 2005; 87 1992 2019; 141 2015; 8 2012; 33 2011; 7 2012; 108 2001; 64 2016; 6 2017; 96 2009; 79 2019; 44 2021 2020 1962 1966; 45 2018; 98 1973; 7 2012; 45 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_33_1 Krewer K. L. (e_1_2_9_12_1) 2020 Kenkre V. M. (e_1_2_9_47_1) 2021 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 Kubo R. (e_1_2_9_52_1) 1992 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 Boon J.-P. (e_1_2_9_19_1) 1980 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 Hansen J.-P. (e_1_2_9_21_1) 1986 e_1_2_9_15_1 Tuckerman M. E. (e_1_2_9_24_1) 2010 e_1_2_9_38_1 e_1_2_9_17_1 Friedman H. L. (e_1_2_9_20_1) 1962 e_1_2_9_36_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 55 start-page: 12210 year: 1997 publication-title: Phys. Rev. B – volume: 5 start-page: 47 year: 2020 end-page: 55 publication-title: ACS Energy Lett. – volume: 58 start-page: 538 year: 1998 publication-title: Phys. Rev. B – volume: 2 start-page: 2514 year: 1970 end-page: 2528 publication-title: Phys. Rev. A – volume: 7 start-page: 576 year: 2011 end-page: 580 publication-title: Nat. Phys. – volume: 33 start-page: 871 year: 2012 end-page: 925 publication-title: J. Infrared Millim. Terahertz. Waves – start-page: 374 year: 2021 – volume: 8 year: 2020 publication-title: Adv. Opt. Mater. – volume: 85 start-page: 3533 year: 1963 end-page: 3539 publication-title: J. Am. Chem. Soc. – start-page: 2008 year: 2020 publication-title: Condensed Matter – start-page: 1 year: 1976 end-page: 27 – volume: 79 year: 2009 publication-title: Phys. Rev. B – volume: 45 start-page: 1086 year: 1966 end-page: 1096 publication-title: J. Chem. Phys. – volume: 108 year: 2012 publication-title: Phys. Rev. Lett. – volume: 111 year: 2017 publication-title: Appl. Phys. Lett. – start-page: 568 year: 2010 end-page: 604 – volume: 30 year: 2019 publication-title: Nanotechnology – volume: 117 start-page: 12379 year: 2013 end-page: 12384 publication-title: J. Phys. Chem. C – volume: 71 start-page: 2507 year: 1979 end-page: 2513 publication-title: J. Chem. Phys. – volume: 136 start-page: A405 year: 1964 publication-title: Phys. Rev. – start-page: 242 year: 1986 – volume: 45 start-page: 21 year: 2012 end-page: 29 publication-title: ECS Trans. – volume: 99 year: 2019 publication-title: Phys. Rev. B – volume: 18 start-page: S447 year: 2007 end-page: S452 publication-title: J. Mater. Sci. Mater. Electron. – volume: 141 start-page: 9793 year: 2019 end-page: 9797 publication-title: J. Am. Chem. Soc. – volume: 107 year: 2015 publication-title: App. Phys. Lett. – volume: 26A start-page: 126 year: 1968 publication-title: Phys. Lett. – volume: 96 year: 2017 publication-title: Phys. Rev. B – volume: 79 year: 2009 publication-title: Phys. Rev. E – volume: 80 year: 2009 publication-title: Phys. Rev. B – volume: 110 start-page: 25229 year: 2006 end-page: 25239 publication-title: J. Phys. Chem. B – volume: 87 year: 2005 publication-title: App. Phys. Lett. – volume: 8 start-page: 3700 year: 2015 end-page: 3707 publication-title: Energy Environ. Sci. – start-page: 114 year: 1992 – volume: 98 year: 2018 publication-title: Phys. Rev. B – volume: 100 year: 2012 publication-title: App. Phys. Lett. – volume: 44 start-page: 4139 year: 2019 end-page: 4142 publication-title: Opt. Lett. – volume: 96 year: 2017 publication-title: Phys. Rev. E – volume: 100 start-page: 1420 year: 1996 end-page: 1425 publication-title: J. Phys. Chem. – volume: 6 start-page: 167 year: 1965 end-page: 181 publication-title: J. Math. Phys. – volume: 97 year: 2010 publication-title: App. Phys. Lett. – volume: 6 year: 2016 publication-title: RSC Adv. – volume: 31 start-page: 407 year: 1978 end-page: 416 publication-title: Z. Physik B – volume: 7 start-page: 1690 year: 1973 end-page: 1700 publication-title: Phys. Rev. A – volume: 112 start-page: 7928 year: 2008 end-page: 7935 publication-title: J. Phys. Chem. C – volume: 12 start-page: 570 year: 1957 publication-title: J. Phys. Soc. Jpn. – volume: 33 start-page: 423 year: 1965 publication-title: Prog. Theor. Phys. – year: 1980 – volume: 114 year: 2019 publication-title: Appl. Phys. Lett. – volume: 64 year: 2001 publication-title: Phys. Rev. B – start-page: 226 year: 1962 – ident: e_1_2_9_51_1 doi: 10.1063/1.1727719 – ident: e_1_2_9_46_1 doi: 10.1007/BF01351552 – ident: e_1_2_9_18_1 doi: 10.1021/ja00905a001 – ident: e_1_2_9_10_1 doi: 10.1007/s10762-012-9905-y – ident: e_1_2_9_27_1 doi: 10.1038/nphys1953 – ident: e_1_2_9_4_1 doi: 10.1088/1361-6528/ab0f02 – ident: e_1_2_9_2_1 doi: 10.1103/PhysRevB.64.155106 – ident: e_1_2_9_42_1 doi: 10.1021/jp711827g – volume-title: Molecular Hydrodynamics year: 1980 ident: e_1_2_9_19_1 – ident: e_1_2_9_23_1 doi: 10.1143/PTP.33.423 – ident: e_1_2_9_41_1 doi: 10.1021/jp4043599 – ident: e_1_2_9_39_1 doi: 10.1021/jp064399a – ident: e_1_2_9_13_1 doi: 10.1063/1.1977213 – ident: e_1_2_9_25_1 doi: 10.1103/PhysRevA.7.1690 – ident: e_1_2_9_49_1 doi: 10.1063/1.1704269 – ident: e_1_2_9_44_1 doi: 10.1103/PhysRevLett.108.056603 – start-page: 2008 year: 2020 ident: e_1_2_9_12_1 publication-title: Condensed Matter – ident: e_1_2_9_26_1 doi: 10.1103/PhysRevA.2.2514 – ident: e_1_2_9_43_1 doi: 10.1063/1.4993524 – ident: e_1_2_9_3_1 doi: 10.1364/OL.44.004139 – ident: e_1_2_9_1_1 doi: 10.1016/0375-9601(68)90513-6 – start-page: 568 volume-title: Statistical Mechanics: Theory and Molecular Simulation, 1st year: 2010 ident: e_1_2_9_24_1 – ident: e_1_2_9_14_1 doi: 10.1002/adom.201900623 – ident: e_1_2_9_15_1 doi: 10.1063/1.438659 – start-page: 242 volume-title: Theory of Simple Liquids, 2nd year: 1986 ident: e_1_2_9_21_1 – ident: e_1_2_9_53_1 doi: 10.1021/acsenergylett.9b02310 – ident: e_1_2_9_6_1 doi: 10.1063/1.5086085 – ident: e_1_2_9_45_1 doi: 10.1039/C5EE02503F – ident: e_1_2_9_8_1 doi: 10.1103/PhysRevB.99.041102 – start-page: 226 volume-title: A Course in Statistical Mechanics year: 1962 ident: e_1_2_9_20_1 – ident: e_1_2_9_29_1 doi: 10.1021/jp953050c – ident: e_1_2_9_17_1 doi: 10.1103/PhysRevE.58.538 – ident: e_1_2_9_34_1 doi: 10.1103/PhysRevB.80.235206 – ident: e_1_2_9_30_1 doi: 10.1103/PhysRevB.55.12210 – ident: e_1_2_9_28_1 doi: 10.1103/PhysRevE.96.042606 – ident: e_1_2_9_31_1 doi: 10.1039/C6RA26819F – ident: e_1_2_9_48_1 doi: 10.1103/PhysRevE.79.011114 – ident: e_1_2_9_22_1 doi: 10.1143/JPSJ.12.570 – start-page: 114 volume-title: Statistical Physics II, Nonequilibrium Statistical Mechanics, 2nd year: 1992 ident: e_1_2_9_52_1 – ident: e_1_2_9_50_1 doi: 10.1103/PhysRevB.99.035407 – ident: e_1_2_9_11_1 doi: 10.1103/PhysRevB.96.205439 – ident: e_1_2_9_33_1 doi: 10.1149/1.3700406 – start-page: 374 volume-title: Memory Functions, Projection Operators, and the Defect Technique year: 2021 ident: e_1_2_9_47_1 doi: 10.1007/978-3-030-68667-3 – ident: e_1_2_9_36_1 doi: 10.1063/1.3518482 – ident: e_1_2_9_40_1 doi: 10.1103/PhysRevB.79.115309 – ident: e_1_2_9_32_1 doi: 10.1007/BFb0119322 – ident: e_1_2_9_38_1 doi: 10.1063/1.3698097 – ident: e_1_2_9_9_1 doi: 10.1103/PhysRevB.98.165132 – ident: e_1_2_9_16_1 doi: 10.1103/PhysRev.136.A405 – ident: e_1_2_9_7_1 doi: 10.1088/1361-6528/aae8ce – ident: e_1_2_9_5_1 doi: 10.1021/jacs.9b04338 – ident: e_1_2_9_35_1 doi: 10.1007/s10854-007-9248-y – ident: e_1_2_9_37_1 doi: 10.1063/1.4927383 |
SSID | ssj0008071 |
Score | 2.366797 |
Snippet | The Drude‐Smith equation is widely used for treating the frequency‐dependent electrical conductivity of materials in the terahertz region. An attractive... The Drude-Smith equation is widely used for treating the frequency-dependent electrical conductivity of materials in the terahertz region. An attractive... |
SourceID | pubmedcentral proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1667 |
SubjectTerms | Backscattering Computational fluid dynamics conductivity Current carriers Drude equation Drude-Smith equation Electrical resistivity Formalism memory function terahertz region Molecular dynamics |
Title | The Drude‐Smith Equation and Related Equations for the Frequency‐Dependent Electrical Conductivity of Materials: Insight from a Memory Function Formalism |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcphc.202100299 https://www.proquest.com/docview/2562419159 https://www.proquest.com/docview/2543453326 https://pubmed.ncbi.nlm.nih.gov/PMC8456847 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagF7jwRgRKZSQkTmm9jvPihtJdLUiLKkSl3qLxI2rVki2b7KGc-An8Af4cv4QZ57HdSggJbnFiy44z4_k8GX_D2Gu0UNq6GEKlXB4ql0CY5VkSJmCFSytAHSOH_uJjMj9WH07ik2un-Dt-iNHhRprh12tScNDNwYY01FyeEgWhpGJOJ_goYItQ0acNf1Qmuh2Xot-dMooH1kYhD7abb1ulDdS8GSh5HcB6CzS7z2AYexd4cr6_bvW--XaD1vF_Xu4Bu9fDU_6uk6eH7JarH7E7xZAV7jH7iXLFD1dr6359_-HdMnz6taML51Bb7oPrnB1vNhxRMUeUyWerLmr7Chse9ql3Wz71aXhIUnixrIl81mez4MuKL6Dt1OMtf1835ETgdBiGA19QePAVn6FN9h3PCHhfnDVfnrDj2fRzMQ_7FA-hUSrOQxMZG090IpzOFEBUiRwRW14ZIQ1ujNxEx6ZyIG0EuDQbaRXeRswCkKRuIiB6ynbqZe2eMe6Ms5VwcaohUZkVuQYjEpulVmNPNg9YOHzi0vT855SG46LsmJtlSZNejpMesDdj_cuO-eOPNXcHiSn7FaApEUoiOMoRLQbs1fgYPxb9kIHaLddUR0UK8bZMApZuSdrYI7F_bz-pz049C3iG0BehRcCkF6S_jLEsjubFWHr-L41esLt0TQ71SbbLdtrV2r1ERNbqPXZbqqM9r3u_Aee8NcA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQLb0SggJGQOKX1Js7D3FC60Ra6FUKtxC3yK2pFyZZ9HMqJn8Af4M_xS5hxHstWQkhwtGPLjj1jfx6PvwF4iTuUti5RoRBOhsKlKsxlnoapstxltUIdI4P-9CidnIi3H5Pem5DewrT8EIPBjTTDr9ek4GSQ3luzhpqLU-IgjCgp5XW4QWG9_anqw5pBKuftmUvQhWcUJz1vI4_2Nutv7ktrsHnVVfJ3COv3oPI26L73revJp93VUu-ar1eIHf_r9-7ArQ6hsjetSN2Fa665B9tFHxjuPvxA0WL785V1P79995YZNv7SMoYz1Vjm_eucHTIXDIExQ6DJynnruH2JFfe76LtLNvaReEhYWDFriH_WB7Rgs5pN1bLVkNfsoFmQHYHRexim2JQ8hC9Ziduyb7gk7H1-tvj8AE7K8XExCbsoD6ERIpGhiY1NRjrlTudCqbjmEkGbrA2PDJ6N3EgnpnYqsrHC1dlEVmA2whal0syNuIofwlYza9wjYM44W3OXZFqlIrdcamV4avPMamzJygDCfo4r01GgUySO86olb44qGvRqGPQAXg3lL1ryjz-W3OlFpuoWgUWFaBLxkUTAGMCL4TNOFt3JqMbNVlRGxAIhd5QGkG2I2tAiEYBvfmnOTj0ReI7oF9FFAJGXpL_0sSreT4oh9fhfKj2H7cnx9LA6PDh69wRuUj7Z10f5Dmwt5yv3FAHaUj_zKvgLxi45BA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagSNAL_1UDBYyExCmtN3GcuDeU3WgLbFUhKvUWObajVpTssps9lFMfoS_Ay_VJmHF-tlsJIcHRji079oz9eTz-hpB3sEMVxkbK59xKn1uh_EQmwhfKMBuXCnQMDfqTQzE-5h9PopMbr_gbfoje4Iaa4dZrVPCZKfdWpKF6dooUhAEmpbxL7nHBEpTr4ZcVgVTCmiMXx_vOIIw62kYW7K3XX9-WVljztqfkTQTrtqDsEVFd5xvPk2-7y7rY1T9v8Tr-z989Jg9bfEo_NAL1hNyx1VPyIO3Cwj0jv0Cw6HC-NPb68srZZejoR8MXTlVlqPOus6bPXFCAxRRgJs3mjdv2BVQctrF3azpycXhQVGg6rZB91oWzoNOSTlTd6Mc-PagWaEWg-BqGKjpB_-ALmsGm7BrOEHmfny2-PyfH2ehrOvbbGA--5jySvg61iQaFYLZIuFJhySRANllqFmg4GdlBEenSqsCECtZmHRgO2QBalBKxHTAVbpGNalrZbUKttqZkNooLJXhimCyUZsIksSmgJSM94ndTnOuWAB3jcJznDXVzkOOg5_2ge-R9X37WUH_8seROJzF5uwQscsCSgI4kwEWPvO0_w2ThjYyq7HSJZXjIAXAHwiPxmqT1LSL99_qX6uzU0YAngH0BW3gkcIL0lz7m6dE47VMv_qXSG3L_aJjlnw8OP70km5iNxvVBskM26vnSvgJ0VhevnQL-BhuSN7w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Drude%E2%80%90Smith+Equation+and+Related+Equations+for+the+Frequency%E2%80%90Dependent+Electrical+Conductivity+of+Materials%3A+Insight+from+a+Memory+Function+Formalism&rft.jtitle=Chemphyschem&rft.au=Wei%E2%80%90Chen+Chen&rft.au=Marcus%2C+Rudolph+A&rft.date=2021-08-18&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1439-4235&rft.eissn=1439-7641&rft.volume=22&rft.issue=16&rft.spage=1667&rft.epage=1674&rft_id=info:doi/10.1002%2Fcphc.202100299&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-4235&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-4235&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-4235&client=summon |