Glacier as a source of novel polyethylene terephthalate hydrolases
Polyethylene terephthalate (PET) is a major component of microplastic contamination globally, which is now detected in pristine environments including Polar and mountain glaciers. As a carbon‐rich molecule, PET could be a carbon source for microorganisms dwelling in glacier habitats. Thus, glacial m...
Saved in:
Published in | Environmental microbiology Vol. 25; no. 12; pp. 2822 - 2833 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.12.2023
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polyethylene terephthalate (PET) is a major component of microplastic contamination globally, which is now detected in pristine environments including Polar and mountain glaciers. As a carbon‐rich molecule, PET could be a carbon source for microorganisms dwelling in glacier habitats. Thus, glacial microorganisms may be potential PET degraders with novel PET hydrolases. Here, we obtained 414 putative PET hydrolase sequences by searching a global glacier metagenome dataset. Metagenomes from the Alps and Tibetan glaciers exhibited a higher relative abundance of putative PET hydrolases than those from the Arctic and Antarctic. Twelve putative PET hydrolase sequences were cloned and expressed, with one sequence (designated as GlacPETase) proven to degrade amorphous PET film with a similar performance as IsPETase, but with a higher thermostability. GlacPETase exhibited only 30% sequence identity to known active PET hydrolases with a novel disulphide bridge location and, therefore may represent a novel PET hydrolases class. The present work suggests that extreme carbon‐poor environments may harbour a diverse range of known and novel PET hydrolases for carbon acquisition as an environmental adaptation mechanism.
Qi et al. identified 414 genes of potential Polyethylene terephthalate (PET) hydrolases from metagenomes of global glaciers. By cloning and expression in E. coli, one enzyme demonstrated evident activity against PET. This enzyme, designated as GlacPETase is mesophilic and harbours a single disulphide bridge at the N‐terminus. This work revealed the potential of obtaining novel PET degradation enzymes from glacier environment. |
---|---|
AbstractList | Polyethylene terephthalate (PET) is a major component of microplastic contamination globally, which is now detected in pristine environments including Polar and mountain glaciers. As a carbon‐rich molecule, PET could be a carbon source for microorganisms dwelling in glacier habitats. Thus, glacial microorganisms may be potential PET degraders with novel PET hydrolases. Here, we obtained 414 putative PET hydrolase sequences by searching a global glacier metagenome dataset. Metagenomes from the Alps and Tibetan glaciers exhibited a higher relative abundance of putative PET hydrolases than those from the Arctic and Antarctic. Twelve putative PET hydrolase sequences were cloned and expressed, with one sequence (designated as GlacPETase) proven to degrade amorphous PET film with a similar performance as
Is
PETase, but with a higher thermostability. GlacPETase exhibited only 30% sequence identity to known active PET hydrolases with a novel disulphide bridge location and, therefore may represent a novel PET hydrolases class. The present work suggests that extreme carbon‐poor environments may harbour a diverse range of known and novel PET hydrolases for carbon acquisition as an environmental adaptation mechanism. Polyethylene terephthalate (PET) is a major component of microplastic contamination globally, which is now detected in pristine environments including Polar and mountain glaciers. As a carbon‐rich molecule, PET could be a carbon source for microorganisms dwelling in glacier habitats. Thus, glacial microorganisms may be potential PET degraders with novel PET hydrolases. Here, we obtained 414 putative PET hydrolase sequences by searching a global glacier metagenome dataset. Metagenomes from the Alps and Tibetan glaciers exhibited a higher relative abundance of putative PET hydrolases than those from the Arctic and Antarctic. Twelve putative PET hydrolase sequences were cloned and expressed, with one sequence (designated as GlacPETase) proven to degrade amorphous PET film with a similar performance as IsPETase, but with a higher thermostability. GlacPETase exhibited only 30% sequence identity to known active PET hydrolases with a novel disulphide bridge location and, therefore may represent a novel PET hydrolases class. The present work suggests that extreme carbon‐poor environments may harbour a diverse range of known and novel PET hydrolases for carbon acquisition as an environmental adaptation mechanism. Qi et al. identified 414 genes of potential Polyethylene terephthalate (PET) hydrolases from metagenomes of global glaciers. By cloning and expression in E. coli, one enzyme demonstrated evident activity against PET. This enzyme, designated as GlacPETase is mesophilic and harbours a single disulphide bridge at the N‐terminus. This work revealed the potential of obtaining novel PET degradation enzymes from glacier environment. Polyethylene terephthalate (PET) is a major component of microplastic contamination globally, which is now detected in pristine environments including Polar and mountain glaciers. As a carbon-rich molecule, PET could be a carbon source for microorganisms dwelling in glacier habitats. Thus, glacial microorganisms may be potential PET degraders with novel PET hydrolases. Here, we obtained 414 putative PET hydrolase sequences by searching a global glacier metagenome dataset. Metagenomes from the Alps and Tibetan glaciers exhibited a higher relative abundance of putative PET hydrolases than those from the Arctic and Antarctic. Twelve putative PET hydrolase sequences were cloned and expressed, with one sequence (designated as GlacPETase) proven to degrade amorphous PET film with a similar performance as IsPETase, but with a higher thermostability. GlacPETase exhibited only 30% sequence identity to known active PET hydrolases with a novel disulphide bridge location and, therefore may represent a novel PET hydrolases class. The present work suggests that extreme carbon-poor environments may harbour a diverse range of known and novel PET hydrolases for carbon acquisition as an environmental adaptation mechanism.Polyethylene terephthalate (PET) is a major component of microplastic contamination globally, which is now detected in pristine environments including Polar and mountain glaciers. As a carbon-rich molecule, PET could be a carbon source for microorganisms dwelling in glacier habitats. Thus, glacial microorganisms may be potential PET degraders with novel PET hydrolases. Here, we obtained 414 putative PET hydrolase sequences by searching a global glacier metagenome dataset. Metagenomes from the Alps and Tibetan glaciers exhibited a higher relative abundance of putative PET hydrolases than those from the Arctic and Antarctic. Twelve putative PET hydrolase sequences were cloned and expressed, with one sequence (designated as GlacPETase) proven to degrade amorphous PET film with a similar performance as IsPETase, but with a higher thermostability. GlacPETase exhibited only 30% sequence identity to known active PET hydrolases with a novel disulphide bridge location and, therefore may represent a novel PET hydrolases class. The present work suggests that extreme carbon-poor environments may harbour a diverse range of known and novel PET hydrolases for carbon acquisition as an environmental adaptation mechanism. Polyethylene terephthalate (PET) is a major component of microplastic contamination globally, which is now detected in pristine environments including Polar and mountain glaciers. As a carbon‐rich molecule, PET could be a carbon source for microorganisms dwelling in glacier habitats. Thus, glacial microorganisms may be potential PET degraders with novel PET hydrolases. Here, we obtained 414 putative PET hydrolase sequences by searching a global glacier metagenome dataset. Metagenomes from the Alps and Tibetan glaciers exhibited a higher relative abundance of putative PET hydrolases than those from the Arctic and Antarctic. Twelve putative PET hydrolase sequences were cloned and expressed, with one sequence (designated as GlacPETase) proven to degrade amorphous PET film with a similar performance as IsPETase, but with a higher thermostability. GlacPETase exhibited only 30% sequence identity to known active PET hydrolases with a novel disulphide bridge location and, therefore may represent a novel PET hydrolases class. The present work suggests that extreme carbon‐poor environments may harbour a diverse range of known and novel PET hydrolases for carbon acquisition as an environmental adaptation mechanism. |
Author | Yin, Chao‐Fan Ji, Mukan Zhou, Ning‐Yi Qi, Xiaoyan Liu, Yongqin |
Author_xml | – sequence: 1 givenname: Xiaoyan orcidid: 0000-0001-8599-139X surname: Qi fullname: Qi, Xiaoyan organization: Shanghai Jiao Tong University – sequence: 2 givenname: Mukan orcidid: 0000-0001-8139-2875 surname: Ji fullname: Ji, Mukan organization: Lanzhou University – sequence: 3 givenname: Chao‐Fan orcidid: 0000-0002-6905-0909 surname: Yin fullname: Yin, Chao‐Fan organization: Shanghai Jiao Tong University – sequence: 4 givenname: Ning‐Yi orcidid: 0000-0002-0917-5750 surname: Zhou fullname: Zhou, Ning‐Yi email: ningyi.zhou@sjtu.edu.cn organization: Shanghai Jiao Tong University – sequence: 5 givenname: Yongqin orcidid: 0000-0003-2876-7484 surname: Liu fullname: Liu, Yongqin email: yql@lzu.edu.cn organization: University of Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37775503$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkT1PwzAQhi1UBKUws6FILCyl_oybESooSEUsMFtX56IGuXGxU1D-PS4tDJUQt_hsPe_d-d4T0mt8g4ScM3rNUoyYzPmQFzxdc8XyA9L_fen95owfk5MY3yhlWmh6RI6F1lopKvrkdurA1hgyiBlk0a-DxcxXWeM_0GUr7zpsF53DBrMWA64W7QIctJgtujJ4BxHjKTmswEU8250D8np_9zJ5GM6ep4-Tm9nQSqnyoeWqKnM1l3MmdM6RoZQMgaEWXKbBlFVKzTmUWCCtYFxYUFCl6UVR2gqsGJCrbd1V8O9rjK1Z1tGic9CgX0cjqKRCS8b1vygfa1oUuuAsoZd76FtaQpM-YnhBhaCC6w11saPW8yWWZhXqJYTO_CwyAWoL2OBjDFgZW7fQ1r5pA9TOMGo2hpmNJWZjj_k2LOlGe7qf0n8rdp0-a4fdf7i5e3rc6r4AvD-jpw |
CitedBy_id | crossref_primary_10_1128_aem_02242_23 crossref_primary_10_1016_j_jhazmat_2024_134395 crossref_primary_10_1021_acs_est_4c02845 crossref_primary_10_1016_j_greenca_2025_02_003 crossref_primary_10_1016_j_ijbiomac_2024_134202 crossref_primary_10_1016_j_watbs_2025_100366 crossref_primary_10_1128_aem_00346_25 crossref_primary_10_1021_acs_est_4c01495 crossref_primary_10_1039_D4GC00528G crossref_primary_10_1016_j_jhazmat_2024_136642 crossref_primary_10_1139_er_2023_0107 crossref_primary_10_1016_j_tibtech_2024_08_013 crossref_primary_10_1016_j_envres_2024_120140 |
Cites_doi | 10.1038/s41598-019-52379-z 10.1111/j.1365-313X.2006.02842.x 10.1007/s00253-014-6272-8 10.1126/science.aaf2853 10.1007/978-1-0716-2795-2_12 10.1016/j.scitotenv.2020.143634 10.1128/AEM.02773-17 10.3389/fmicb.2020.00114 10.1093/nar/gkf436 10.1016/j.envadv.2021.100084 10.1093/nar/gkz239 10.1038/ismej.2016.72 10.1038/s41467-017-02255-z 10.1093/bioinformatics/btv033 10.1002/prot.26034 10.1002/prot.21123 10.1128/mSystems.00504-20 10.1126/sciadv.1700782 10.1073/pnas.1718804115 10.1002/cbic.202000793 10.1002/anie.202203061 10.3389/fmicb.2021.765531 10.1016/j.scitotenv.2019.135226 10.1007/s00253-014-5672-0 10.1186/1471-2105-11-119 10.1371/journal.pone.0009490 10.1126/science.aad6359 10.1093/nar/gku316 10.1128/AEM.06725-11 10.1021/bi401561p 10.1128/AEM.01842-21 10.1016/j.bbapap.2015.04.015 10.1007/s10924-018-1245-0 10.1016/j.scitotenv.2019.135504 10.1016/j.scitotenv.2020.143170 10.1038/s41587-019-0036-z 10.1128/MMBR.00015-10 10.1139/anc-2018-0030 10.1088/1748-9326/aa7445 10.1038/s41564-019-0370-4 10.1038/s41467-018-02881-1 10.1038/msb.2011.75 10.1038/s41467-020-18236-8 10.1002/cssc.202100740 10.1002/prot.26325 10.1002/prot.26245 10.1128/mSystems.01112-20 10.1371/journal.pcbi.1009578 10.1101/gr.1239303 10.1099/ijsem.0.001058 10.1038/s41587-022-01367-2 10.1021/acssuschemeng.0c01638 10.5194/essd-14-2303-2022 10.1016/j.envpol.2019.07.121 10.1038/s41467-022-35237-x 10.1038/s41586-021-03819-2 |
ContentType | Journal Article |
Copyright | 2023 Applied Microbiology International and John Wiley Sons & Ltd. 2023 Applied Microbiology International and John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2023 Applied Microbiology International and John Wiley Sons & Ltd. – notice: 2023 Applied Microbiology International and John Wiley & Sons Ltd. |
DBID | AAYXX CITATION NPM 7QH 7QL 7ST 7T7 7TN 7U9 7UA 8FD C1K F1W FR3 H94 H95 H97 L.G M7N P64 SOI 7X8 7S9 L.6 |
DOI | 10.1111/1462-2920.16516 |
DatabaseName | CrossRef PubMed Aqualine Bacteriology Abstracts (Microbiology B) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Oceanic Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Oceanic Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic AGRICOLA PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1462-2920 |
EndPage | 2833 |
ExternalDocumentID | 37775503 10_1111_1462_2920_16516 EMI16516 |
Genre | shortCommunication Journal Article |
GeographicLocations | Arctic region Antarctic region |
GeographicLocations_xml | – name: Arctic region – name: Antarctic region |
GrantInformation_xml | – fundername: The Seed Industry Revitalization Project of Guangdong Province funderid: 23050202 – fundername: Second Tibetan Plateau Scientific Expedition and Research Program (STEP) funderid: 2019QZKK0503 – fundername: National Natural Science Foundation of China funderid: 42171138; 918512 – fundername: Major Research plan of the National Natural Science Foundation of China funderid: 91851207 – fundername: the National Key Research and Development Plans funderid: 2021YFC2300904 – fundername: Major Research plan of the National Natural Science Foundation of China grantid: 91851207 – fundername: National Natural Science Foundation of China grantid: 42171138 – fundername: The Seed Industry Revitalization Project of Guangdong Province grantid: 23050202 – fundername: Second Tibetan Plateau Scientific Expedition and Research Program (STEP) grantid: 2019QZKK0503 – fundername: the National Key Research and Development Plans grantid: 2021YFC2300904 – fundername: National Natural Science Foundation of China grantid: 918512 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBS OIG OVD P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 XIH YUY ZZTAW ~02 ~IA ~KM ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION NPM 7QH 7QL 7ST 7T7 7TN 7U9 7UA 8FD C1K F1W FR3 H94 H95 H97 L.G M7N P64 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4456-c25fd65b4b13762e1e441ea1e73241735c555b2ade9e0fa89ca5af29139dcfac3 |
IEDL.DBID | DR2 |
ISSN | 1462-2912 1462-2920 |
IngestDate | Fri Jul 11 18:39:44 EDT 2025 Fri Jul 11 01:24:16 EDT 2025 Fri Jul 25 12:11:24 EDT 2025 Mon Jul 21 06:06:34 EDT 2025 Thu Apr 24 23:08:20 EDT 2025 Tue Jul 01 04:00:52 EDT 2025 Wed Aug 20 07:27:16 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | 2023 Applied Microbiology International and John Wiley Sons & Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4456-c25fd65b4b13762e1e441ea1e73241735c555b2ade9e0fa89ca5af29139dcfac3 |
Notes | Xiaoyan Qi and Mukan Ji contributed equally to this study. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6905-0909 0000-0002-0917-5750 0000-0001-8139-2875 0000-0003-2876-7484 0000-0001-8599-139X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1462-2920.16516 |
PMID | 37775503 |
PQID | 2903303271 |
PQPubID | 1066360 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_3040374127 proquest_miscellaneous_2870997921 proquest_journals_2903303271 pubmed_primary_37775503 crossref_citationtrail_10_1111_1462_2920_16516 crossref_primary_10_1111_1462_2920_16516 wiley_primary_10_1111_1462_2920_16516_EMI16516 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2023 2023-12-00 2023-Dec 20231201 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: December 2023 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: England – name: Oxford |
PublicationTitle | Environmental microbiology |
PublicationTitleAlternate | Environ Microbiol |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2010; 11 2017; 8 2017; 3 2021; 22 2015; 31 2003; 13 2018; 84 2020; 11 2022a; 14 2004; 32 2020; 8 2021; 758 2018; 9 2020; 5 2020; 3 2021; 596 2023; 2555 2006; 65 2021; 755 2010; 5 2016; 351 2014; 98 2014; 53 2019; 9 2021; 6 2019; 4 2021; 5 2022b; 40 2021; 89 2002; 30 2023; 16 2019; 37 2022; 90 2015; 99 2016; 10 2011; 75 2015; 1854 2022; 88 2012; 78 2020; 708 2020; 703 2018; 26 2011; 7 2014; 42 2021; 14 2021; 12 2022; 61 2020 2018; 115 2017; 12 2019; 47 2022; 13 2019; 254 2022; 18 2016; 66 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 Luisana Avilan B.R.L. (e_1_2_10_39_1) 2023; 16 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 Alam I. (e_1_2_10_2_1) 2020 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – volume: 84 year: 2018 article-title: New insights into the function and global distribution of polyethylene terephthalate (PET)‐degrading bacteria and enzymes in marine and terrestrial metagenomes publication-title: Applied and Environmental Microbiology – volume: 30 start-page: 3059 year: 2002 end-page: 3066 article-title: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform publication-title: Nucleic Acids Research – volume: 14 start-page: 4115 year: 2021 end-page: 4122 article-title: Emerging strategies in polyethylene terephthalate hydrolase research for biorecycling publication-title: ChemSusChem – volume: 90 start-page: 1443 year: 2022 end-page: 1456 article-title: Plastics degradation by hydrolytic enzymes: the plastics‐active enzymes database—PAZy publication-title: Proteins: structure, Function, and Bioinformatics – volume: 7 start-page: 539 year: 2011 article-title: Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal omega publication-title: Molecular Systems Biology – volume: 3 start-page: 6 year: 2020 end-page: 13 article-title: A review of possible pathways of marine microplastics transport in the ocean publication-title: Anthropocene Coasts – volume: 22 start-page: 1627 year: 2021 end-page: 1637 article-title: Comparative biochemistry of four polyester (PET) hydrolases** publication-title: Chembiochem – volume: 12 year: 2017 article-title: Contamination of the Arctic reflected in microbial metagenomes from the Greenland ice sheet publication-title: Environmental Research Letters – volume: 65 start-page: 712 year: 2006 end-page: 725 article-title: Comparison of multiple Amber force fields and development of improved protein backbone parameters publication-title: Proteins – volume: 11 start-page: 119 year: 2010 article-title: Prodigal: prokaryotic gene recognition and translation initiation site identification publication-title: BMC Bioinformatics – volume: 351 start-page: 1196 year: 2016 end-page: 1199 article-title: A bacterium that degrades and assimilates poly(ethylene terephthalate) publication-title: Science – volume: 708 year: 2020 article-title: Microbial mercury methylation profile in terminus of a high‐elevation glacier on the northern boundary of the Tibetan plateau publication-title: Science of the Total Environment – volume: 4 start-page: 925 year: 2019 end-page: 932 article-title: Airborne microbial transport limitation to isolated Antarctic soil habitats publication-title: Nature Microbiology – volume: 12 year: 2021 article-title: Actinobacteria from desert: diversity and biotechnological applications publication-title: Frontiers in Microbiology – volume: 13 start-page: 7850 year: 2022 article-title: Sourcing thermotolerant poly(ethylene terephthalate) hydrolase scaffolds from natural diversity publication-title: Nature Communications – volume: 3 year: 2017 article-title: Production, use, and fate of all plastics ever made publication-title: Science Advances – volume: 26 start-page: 3613 year: 2018 end-page: 3625 article-title: Microbial degradation of UV‐pretreated low‐density polyethylene films by novel polyethylene‐degrading bacteria isolated from plastic‐dump soil publication-title: Journal of Polymers and the Environment – volume: 16 year: 2023 article-title: Concentration‐dependent inhibition of mesophilic PETases on poly(ethylene terephthalate) can be eliminated by enzyme engineering publication-title: ChemSusChem – volume: 1854 start-page: 1019 year: 2015 end-page: 1037 article-title: Enzyme function initiative‐enzyme similarity tool (EFI‐EST): a web tool for generating protein sequence similarity networks publication-title: Biochimica et Biophysica Acta – volume: 11 year: 2020 article-title: A novel polyester hydrolase from the marine bacterium –structural and functional insights publication-title: Frontiers in Microbiology – volume: 40 start-page: 1341 year: 2022b end-page: 1348 article-title: A genome and gene catalog of glacier microbiomes publication-title: Nature Biotechnology – volume: 98 start-page: 7815 year: 2014 end-page: 7823 article-title: Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca publication-title: Applied Microbiology and Biotechnology – volume: 13 start-page: 2498 year: 2003 end-page: 2504 article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks publication-title: Genome Research – volume: 6 start-page: e01112 year: 2021 end-page: e01120 article-title: Phylogenetic distribution of plastic‐degrading microorganisms publication-title: mSystems – volume: 115 start-page: E4350 year: 2018 end-page: E4357 article-title: Characterization and engineering of a plastic‐degrading aromatic polyesterase publication-title: Proceedings of the National Academy of Sciences – volume: 5 year: 2010 article-title: FastTree 2–approximately maximum‐likelihood trees for large alignments publication-title: PLoS One – volume: 758 year: 2021 article-title: Microplastics in glaciers of the Tibetan plateau: evidence for the long‐range transport of microplastics publication-title: Science of the Total Environment – volume: 351 start-page: 1154 year: 2016 end-page: 1155 article-title: Feeding on plastic publication-title: Science – volume: 5 year: 2020 article-title: Microbial metabolic redundancy is a key mechanism in a sulfur‐rich glacial ecosystem publication-title: Msystems – volume: 88 year: 2022 article-title: Antarctic polyester hydrolases degrade aliphatic and aromatic polyesters at moderate temperatures publication-title: Applied and Environmental Microbiology – volume: 2555 start-page: 167 year: 2023 end-page: 179 article-title: Metagenomic screening of a novel PET esterase via In vitro expression system publication-title: Methods in Molecular Biology – volume: 42 start-page: W320 year: 2014 end-page: W324 article-title: Deciphering key features in protein structures with the new ENDscript server publication-title: Nucleic Acids Research – volume: 18 year: 2022 article-title: Implementation of residue‐level coarse‐grained models in GENESIS for large‐scale molecular dynamics simulations publication-title: PLoS Computational Biology – volume: 66 start-page: 2813 year: 2016 end-page: 2818 article-title: sp. nov., isolated from a microbial consortium that degrades poly(ethylene terephthalate) publication-title: International Journal of Systematic and Evolutionary Microbiology – volume: 32 start-page: 1792 year: 2004 end-page: 1797 article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput publication-title: Nucleic Acids Research – volume: 254 year: 2019 article-title: Importance of atmospheric transport for microplastics deposited in remote areas publication-title: Environmental Pollution – year: 2020 article-title: Rapid evolution of plastic‐degrading enzymes prevalent in the global ocean publication-title: bioRxiv – volume: 596 start-page: 583 year: 2021 end-page: 589 article-title: Highly accurate protein structure prediction with AlphaFold publication-title: Nature – volume: 47 start-page: W256 year: 2019 end-page: W259 article-title: Interactive tree of life (iTOL) v4: recent updates and new developments publication-title: Nucleic Acids Research – volume: 90 start-page: 504 year: 2022 end-page: 511 article-title: Novel putative polyethylene terephthalate (PET) plastic degrading enzymes from the environmental metagenome publication-title: Proteins – volume: 5 year: 2021 article-title: Macroplastics contamination on glaciers from Italian Central‐Western Alps publication-title: Environmental Advances – volume: 14 start-page: 2303 year: 2022a end-page: 2314 article-title: A comprehensive dataset of microbial abundance, dissolved organic carbon, and nitrogen in Tibetan plateau glaciers publication-title: Earth System Science Data – volume: 755 year: 2021 article-title: UV degradation of natural and synthetic microfibers causes fragmentation and release of polymer degradation products and chemical additives publication-title: Science of the Total Environment – volume: 8 start-page: 8894 year: 2020 end-page: 8908 article-title: Current state and perspectives related to the polyethylene terephthalate hydrolases available for biorecycling publication-title: ACS Sustainable Chemistry & Engineering – volume: 703 year: 2020 article-title: Mini‐review of microplastics in the atmosphere and their risks to humans publication-title: Science of the Total Environment – volume: 61 year: 2022 article-title: Discovery and genetic code expansion of a polyethylene terephthalate (PET) hydrolase from the human saliva metagenome for the degradation and bio‐functionalization of PET publication-title: Angewandte Chemie (International Ed in English) – volume: 89 start-page: 502 year: 2021 end-page: 511 article-title: Structural basis of mutants of PET‐degrading enzyme from Saccharomonospora viridis AHK190 with high activity and thermal stability publication-title: Proteins – volume: 37 start-page: 420 year: 2019 end-page: 423 article-title: SignalP 5.0 improves signal peptide predictions using deep neural networks publication-title: Nature Biotechnology – volume: 9 start-page: 382 year: 2018 article-title: Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation publication-title: Nature Communications – volume: 75 start-page: 133 year: 2011 end-page: 191 article-title: Oxidative stress resistance in publication-title: Microbiology and Molecular Biology Reviews – volume: 78 start-page: 1556 year: 2012 end-page: 1562 article-title: Isolation of a novel cutinase homolog with polyethylene terephthalate‐degrading activity from leaf‐branch compost by using a metagenomic approach publication-title: Applied and Environmental Microbiology – volume: 53 start-page: 1858 year: 2014 end-page: 1869 article-title: Crystal structure and thermodynamic and kinetic stability of metagenome‐derived LC‐cutinase publication-title: Biochemistry – volume: 99 start-page: 4297 year: 2015 end-page: 4307 article-title: Structural basis for the Ca ‐enhanced thermostability and activity of PET‐degrading cutinase‐like enzyme from Saccharomonospora viridis AHK190 publication-title: Applied Microbiology and Biotechnology – volume: 11 start-page: 4403 year: 2020 article-title: Flexible genes establish widespread bacteriophage pan‐genomes in cryoconite hole ecosystems publication-title: Nature Communications – volume: 10 start-page: 2984 year: 2016 end-page: 2988 article-title: Light‐dependent microbial metabolisms drive carbon fluxes on glacier surfaces publication-title: ISME Journal – volume: 8 start-page: 2106 year: 2017 article-title: Structural insight into catalytic mechanism of PET hydrolase publication-title: Nature Communications – volume: 9 start-page: 16038 year: 2019 article-title: Efficient degradation of poly(ethylene terephthalate) with cutinase exhibiting improved catalytic activity generated using mutagenesis and additive‐based approaches publication-title: Scientific Reports – volume: 31 start-page: 1674 year: 2015 end-page: 1676 article-title: MEGAHIT: an ultra‐fast single‐node solution for large and complex metagenomics assembly via succinct de Bruijn graph publication-title: Bioinformatics – ident: e_1_2_10_19_1 doi: 10.1038/s41598-019-52379-z – ident: e_1_2_10_14_1 doi: 10.1111/j.1365-313X.2006.02842.x – ident: e_1_2_10_40_1 doi: 10.1007/s00253-014-6272-8 – ident: e_1_2_10_10_1 doi: 10.1126/science.aaf2853 – ident: e_1_2_10_24_1 doi: 10.1007/978-1-0716-2795-2_12 – ident: e_1_2_10_58_1 doi: 10.1016/j.scitotenv.2020.143634 – ident: e_1_2_10_13_1 doi: 10.1128/AEM.02773-17 – ident: e_1_2_10_9_1 doi: 10.3389/fmicb.2020.00114 – ident: e_1_2_10_31_1 doi: 10.1093/nar/gkf436 – ident: e_1_2_10_42_1 doi: 10.1016/j.envadv.2021.100084 – ident: e_1_2_10_34_1 doi: 10.1093/nar/gkz239 – ident: e_1_2_10_18_1 doi: 10.1038/ismej.2016.72 – ident: e_1_2_10_23_1 doi: 10.1038/s41467-017-02255-z – ident: e_1_2_10_35_1 doi: 10.1093/bioinformatics/btv033 – ident: e_1_2_10_16_1 doi: 10.1002/prot.26034 – ident: e_1_2_10_26_1 doi: 10.1002/prot.21123 – ident: e_1_2_10_54_1 doi: 10.1128/mSystems.00504-20 – ident: e_1_2_10_22_1 doi: 10.1126/sciadv.1700782 – ident: e_1_2_10_5_1 doi: 10.1073/pnas.1718804115 – ident: e_1_2_10_6_1 doi: 10.1002/cbic.202000793 – ident: e_1_2_10_15_1 doi: 10.1002/anie.202203061 – ident: e_1_2_10_55_1 doi: 10.3389/fmicb.2021.765531 – ident: e_1_2_10_57_1 doi: 10.1016/j.scitotenv.2019.135226 – ident: e_1_2_10_45_1 doi: 10.1007/s00253-014-5672-0 – ident: e_1_2_10_27_1 doi: 10.1186/1471-2105-11-119 – ident: e_1_2_10_43_1 doi: 10.1371/journal.pone.0009490 – ident: e_1_2_10_56_1 doi: 10.1126/science.aad6359 – ident: e_1_2_10_44_1 doi: 10.1093/nar/gku316 – ident: e_1_2_10_50_1 doi: 10.1128/AEM.06725-11 – ident: e_1_2_10_51_1 doi: 10.1021/bi401561p – year: 2020 ident: e_1_2_10_2_1 article-title: Rapid evolution of plastic‐degrading enzymes prevalent in the global ocean publication-title: bioRxiv – ident: e_1_2_10_8_1 doi: 10.1128/AEM.01842-21 – ident: e_1_2_10_21_1 doi: 10.1016/j.bbapap.2015.04.015 – ident: e_1_2_10_41_1 doi: 10.1007/s10924-018-1245-0 – ident: e_1_2_10_12_1 doi: 10.1016/j.scitotenv.2019.135504 – ident: e_1_2_10_49_1 doi: 10.1016/j.scitotenv.2020.143170 – ident: e_1_2_10_3_1 doi: 10.1038/s41587-019-0036-z – ident: e_1_2_10_48_1 doi: 10.1128/MMBR.00015-10 – ident: e_1_2_10_36_1 doi: 10.1139/anc-2018-0030 – ident: e_1_2_10_25_1 doi: 10.1088/1748-9326/aa7445 – ident: e_1_2_10_4_1 doi: 10.1038/s41564-019-0370-4 – ident: e_1_2_10_28_1 doi: 10.1038/s41467-018-02881-1 – ident: e_1_2_10_47_1 doi: 10.1038/msb.2011.75 – ident: e_1_2_10_7_1 doi: 10.1038/s41467-020-18236-8 – ident: e_1_2_10_32_1 doi: 10.1002/cssc.202100740 – ident: e_1_2_10_11_1 doi: 10.1002/prot.26325 – ident: e_1_2_10_30_1 doi: 10.1002/prot.26245 – volume: 16 year: 2023 ident: e_1_2_10_39_1 article-title: Concentration‐dependent inhibition of mesophilic PETases on poly(ethylene terephthalate) can be eliminated by enzyme engineering publication-title: ChemSusChem – ident: e_1_2_10_20_1 doi: 10.1128/mSystems.01112-20 – ident: e_1_2_10_52_1 doi: 10.1371/journal.pcbi.1009578 – ident: e_1_2_10_46_1 doi: 10.1101/gr.1239303 – ident: e_1_2_10_53_1 doi: 10.1099/ijsem.0.001058 – ident: e_1_2_10_38_1 doi: 10.1038/s41587-022-01367-2 – ident: e_1_2_10_33_1 doi: 10.1021/acssuschemeng.0c01638 – ident: e_1_2_10_37_1 doi: 10.5194/essd-14-2303-2022 – ident: e_1_2_10_59_1 doi: 10.1016/j.envpol.2019.07.121 – ident: e_1_2_10_17_1 doi: 10.1038/s41467-022-35237-x – ident: e_1_2_10_29_1 doi: 10.1038/s41586-021-03819-2 |
SSID | ssj0017370 |
Score | 2.5052621 |
Snippet | Polyethylene terephthalate (PET) is a major component of microplastic contamination globally, which is now detected in pristine environments including Polar... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2822 |
SubjectTerms | Antarctic region Arctic region Bridges Carbon Carbon sources Contamination data collection disulfide bonds Glaciers Hydrolases metagenomics microbiology Microorganisms Microplastics Plastic debris Polyethylene terephthalate polyethylene terephthalates Relative abundance sequence analysis Sequencing Thermal stability |
Title | Glacier as a source of novel polyethylene terephthalate hydrolases |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.16516 https://www.ncbi.nlm.nih.gov/pubmed/37775503 https://www.proquest.com/docview/2903303271 https://www.proquest.com/docview/2870997921 https://www.proquest.com/docview/3040374127 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBejMNhL23X9SJsODfrQF4dYsqz4sR3LymB7GAv0zZzkE4EaO8RJIf3re_IXa0tbSt8MOmHppN_dT_L5jrEzSeiz9fWSViaIcDIOEmtjQnykICGP6NBfDfz-E1_Nol_Xqosm9P_CNPkh-gs3j4zaXnuAg6n-Azm9RAS-1tIojFXok277iC1Pi_72CaRCLetyca1sKNrkPj6W51H_h37pCdl8yF1r5zPdYaYbdhNzcjNar8zI3j3K6Piuee2y7Zaa8otmL31mH7DYYx-bYpWbL-zyZw5kCJYcKg68ufTnpeNFeYs5X5T5BmnRyYkhp7XCxXw1h5yYLJ9vsiUdoCus9tls-uPf96ugrcAQ2IiYVWCFclmsTGRCMkQCQyT2hBCiJh5GylVWKWUEZJjg2MEksaDACZ9qNLMOrDxgW0VZ4BHjxsZOQuJiS6RNxEjMz4E2MYnpbAIwYKNO_6lt05P7Khl52h1TvGJSr5i0VsyAnfcdFk1mjudFh92Cpi1EK2oeS_LfQocD9q1vJnD5LyZQYLkmGbJmSaIT8YKMJDMoiZcJPWCHzWbpxyO11nQElDS5eslfG2hK2Ksfjt_a4YR9EkS_mkCbIdtaLdd4SnRpZb7WiLgHSysGJA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VVgguUB6FLQWMBBKXrDZ2bG8OHOiLLX0cUCv1FhxnrJWIktU-QMvP6l_hDzHOS7SIIg49cIvkcWJ7Xt_YzgzAa0HaZ6vtJS3TIMLhIIitVaTxkTQxeUSHfmvg-ESNzqKP5_J8BS7af2Hq_BDdhpvXjMpeewX3G9K_aDl9hQe-2FI_VDJUzcXKQ1x-o7Bt9u5gl3j8hvP9vdOdUdBUFghsRIghsFy6TMk0SkNSMI4hEipAE6ImfBFqIa2UMuUmwxgHzgxja6Rx3KfQzKwzVtB7b8GaryPu8_XvfupSVlHnqkBdM7iQN-mE_O2hKwO-7Al_g7eX0XLl7vbvw492oepbLl_6i3nat9-v5JD8v1ZyHe416Ju9r9XlAaxg8RBu1_U4l49g-0NuyNZNmZkxw-pzDVY6VpRfMWeTMl8iyTX5aWQkjjgZz8cmJ7DOxstsWlIcgrPHcHYjE9iA1aIs8Cmw1ConTOyUJVzKFRK4dUanish0NjSmB_2W4YltMrD7QiB50kZinhGJZ0RSMaIHb7sOkzr5yJ9Jt1oJShorNKPmgSCIwnXYg1ddM9kPfyhkCiwXREMGO451zK-hEWTpBUFPrnvwpJbObjxCa01RrqDJVTL2t4EmZF6qh81_7fAS7oxOj4-So4OTw2dwlxParO8VbcHqfLrA54QO5-mLSh0ZfL5pqf0JA_Zk9g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIhAX3o-FAkYCiUtWGzu21wcOwLK0FCqEqNRb6jhjrUSUrPYBWv4Vf4VfxDgv0SJAHHrgFsnjxPY8_I09mQF4LEj7XH28pGUWJTgeRcY5RRqfSGtoR_QYjgbeHajdw-TNkTzagm_dvzBNfoj-wC1oRm2vg4LPc_-TktNHeBRqLQ1jJWPVxlXu4-YLeW3LZ3sTYvETzqevPr7cjdrCApFLCDBEjkufK5klWUz6xTFGAgVoY9QEL2ItpJNSZtzmaHDk7dg4K63nIYNm7rx1gt57Ds4namRCtYjJhz5jFXWu69O1g4t5m00oBA-dGvDJjfAXdHsSLNe73fQKfO_WqQly-TRcr7Kh-3oqheR_tZBX4XKLvdnzRlmuwRaW1-FCU41zcwNevC4sWboFs0tmWXOrwSrPyuozFmxeFRskqaZdGhkJI85nq5ktCKqz2SZfVOSF4PImHJ7JBG7BdlmVeAdY5pQX1njlCJVyhQRtvdWZIjKdj60dwLDjd-ra_OuhDEiRdn5YYEQaGJHWjBjA077DvEk98nvSnU6A0tYGLal5JAigcB0P4FHfTNYjXAnZEqs10ZC5NkYb_gcaQXZeEPDkegC3G-HsxyO01uTjCppcLWJ_G2hKxqV-uPuvHR7CxfeTafp272D_HlziBDWboKId2F4t1nifoOEqe1ArI4PjsxbaH0VwY6U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glacier+as+a+source+of+novel+polyethylene+terephthalate+hydrolases&rft.jtitle=Environmental+microbiology&rft.au=Qi%2C+Xiaoyan&rft.au=Ji%2C+Mukan&rft.au=Yin%2C+Chao%E2%80%90Fan&rft.au=Zhou%2C+Ning%E2%80%90Yi&rft.date=2023-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=25&rft.issue=12&rft.spage=2822&rft.epage=2833&rft_id=info:doi/10.1111%2F1462-2920.16516&rft.externalDBID=10.1111%252F1462-2920.16516&rft.externalDocID=EMI16516 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon |