Glacier as a source of novel polyethylene terephthalate hydrolases

Polyethylene terephthalate (PET) is a major component of microplastic contamination globally, which is now detected in pristine environments including Polar and mountain glaciers. As a carbon‐rich molecule, PET could be a carbon source for microorganisms dwelling in glacier habitats. Thus, glacial m...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental microbiology Vol. 25; no. 12; pp. 2822 - 2833
Main Authors Qi, Xiaoyan, Ji, Mukan, Yin, Chao‐Fan, Zhou, Ning‐Yi, Liu, Yongqin
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.12.2023
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Polyethylene terephthalate (PET) is a major component of microplastic contamination globally, which is now detected in pristine environments including Polar and mountain glaciers. As a carbon‐rich molecule, PET could be a carbon source for microorganisms dwelling in glacier habitats. Thus, glacial microorganisms may be potential PET degraders with novel PET hydrolases. Here, we obtained 414 putative PET hydrolase sequences by searching a global glacier metagenome dataset. Metagenomes from the Alps and Tibetan glaciers exhibited a higher relative abundance of putative PET hydrolases than those from the Arctic and Antarctic. Twelve putative PET hydrolase sequences were cloned and expressed, with one sequence (designated as GlacPETase) proven to degrade amorphous PET film with a similar performance as IsPETase, but with a higher thermostability. GlacPETase exhibited only 30% sequence identity to known active PET hydrolases with a novel disulphide bridge location and, therefore may represent a novel PET hydrolases class. The present work suggests that extreme carbon‐poor environments may harbour a diverse range of known and novel PET hydrolases for carbon acquisition as an environmental adaptation mechanism. Qi et al. identified 414 genes of potential Polyethylene terephthalate (PET) hydrolases from metagenomes of global glaciers. By cloning and expression in E. coli, one enzyme demonstrated evident activity against PET. This enzyme, designated as GlacPETase is mesophilic and harbours a single disulphide bridge at the N‐terminus. This work revealed the potential of obtaining novel PET degradation enzymes from glacier environment.
AbstractList Polyethylene terephthalate (PET) is a major component of microplastic contamination globally, which is now detected in pristine environments including Polar and mountain glaciers. As a carbon‐rich molecule, PET could be a carbon source for microorganisms dwelling in glacier habitats. Thus, glacial microorganisms may be potential PET degraders with novel PET hydrolases. Here, we obtained 414 putative PET hydrolase sequences by searching a global glacier metagenome dataset. Metagenomes from the Alps and Tibetan glaciers exhibited a higher relative abundance of putative PET hydrolases than those from the Arctic and Antarctic. Twelve putative PET hydrolase sequences were cloned and expressed, with one sequence (designated as GlacPETase) proven to degrade amorphous PET film with a similar performance as Is PETase, but with a higher thermostability. GlacPETase exhibited only 30% sequence identity to known active PET hydrolases with a novel disulphide bridge location and, therefore may represent a novel PET hydrolases class. The present work suggests that extreme carbon‐poor environments may harbour a diverse range of known and novel PET hydrolases for carbon acquisition as an environmental adaptation mechanism.
Polyethylene terephthalate (PET) is a major component of microplastic contamination globally, which is now detected in pristine environments including Polar and mountain glaciers. As a carbon‐rich molecule, PET could be a carbon source for microorganisms dwelling in glacier habitats. Thus, glacial microorganisms may be potential PET degraders with novel PET hydrolases. Here, we obtained 414 putative PET hydrolase sequences by searching a global glacier metagenome dataset. Metagenomes from the Alps and Tibetan glaciers exhibited a higher relative abundance of putative PET hydrolases than those from the Arctic and Antarctic. Twelve putative PET hydrolase sequences were cloned and expressed, with one sequence (designated as GlacPETase) proven to degrade amorphous PET film with a similar performance as IsPETase, but with a higher thermostability. GlacPETase exhibited only 30% sequence identity to known active PET hydrolases with a novel disulphide bridge location and, therefore may represent a novel PET hydrolases class. The present work suggests that extreme carbon‐poor environments may harbour a diverse range of known and novel PET hydrolases for carbon acquisition as an environmental adaptation mechanism. Qi et al. identified 414 genes of potential Polyethylene terephthalate (PET) hydrolases from metagenomes of global glaciers. By cloning and expression in E. coli, one enzyme demonstrated evident activity against PET. This enzyme, designated as GlacPETase is mesophilic and harbours a single disulphide bridge at the N‐terminus. This work revealed the potential of obtaining novel PET degradation enzymes from glacier environment.
Polyethylene terephthalate (PET) is a major component of microplastic contamination globally, which is now detected in pristine environments including Polar and mountain glaciers. As a carbon-rich molecule, PET could be a carbon source for microorganisms dwelling in glacier habitats. Thus, glacial microorganisms may be potential PET degraders with novel PET hydrolases. Here, we obtained 414 putative PET hydrolase sequences by searching a global glacier metagenome dataset. Metagenomes from the Alps and Tibetan glaciers exhibited a higher relative abundance of putative PET hydrolases than those from the Arctic and Antarctic. Twelve putative PET hydrolase sequences were cloned and expressed, with one sequence (designated as GlacPETase) proven to degrade amorphous PET film with a similar performance as IsPETase, but with a higher thermostability. GlacPETase exhibited only 30% sequence identity to known active PET hydrolases with a novel disulphide bridge location and, therefore may represent a novel PET hydrolases class. The present work suggests that extreme carbon-poor environments may harbour a diverse range of known and novel PET hydrolases for carbon acquisition as an environmental adaptation mechanism.Polyethylene terephthalate (PET) is a major component of microplastic contamination globally, which is now detected in pristine environments including Polar and mountain glaciers. As a carbon-rich molecule, PET could be a carbon source for microorganisms dwelling in glacier habitats. Thus, glacial microorganisms may be potential PET degraders with novel PET hydrolases. Here, we obtained 414 putative PET hydrolase sequences by searching a global glacier metagenome dataset. Metagenomes from the Alps and Tibetan glaciers exhibited a higher relative abundance of putative PET hydrolases than those from the Arctic and Antarctic. Twelve putative PET hydrolase sequences were cloned and expressed, with one sequence (designated as GlacPETase) proven to degrade amorphous PET film with a similar performance as IsPETase, but with a higher thermostability. GlacPETase exhibited only 30% sequence identity to known active PET hydrolases with a novel disulphide bridge location and, therefore may represent a novel PET hydrolases class. The present work suggests that extreme carbon-poor environments may harbour a diverse range of known and novel PET hydrolases for carbon acquisition as an environmental adaptation mechanism.
Polyethylene terephthalate (PET) is a major component of microplastic contamination globally, which is now detected in pristine environments including Polar and mountain glaciers. As a carbon‐rich molecule, PET could be a carbon source for microorganisms dwelling in glacier habitats. Thus, glacial microorganisms may be potential PET degraders with novel PET hydrolases. Here, we obtained 414 putative PET hydrolase sequences by searching a global glacier metagenome dataset. Metagenomes from the Alps and Tibetan glaciers exhibited a higher relative abundance of putative PET hydrolases than those from the Arctic and Antarctic. Twelve putative PET hydrolase sequences were cloned and expressed, with one sequence (designated as GlacPETase) proven to degrade amorphous PET film with a similar performance as IsPETase, but with a higher thermostability. GlacPETase exhibited only 30% sequence identity to known active PET hydrolases with a novel disulphide bridge location and, therefore may represent a novel PET hydrolases class. The present work suggests that extreme carbon‐poor environments may harbour a diverse range of known and novel PET hydrolases for carbon acquisition as an environmental adaptation mechanism.
Author Yin, Chao‐Fan
Ji, Mukan
Zhou, Ning‐Yi
Qi, Xiaoyan
Liu, Yongqin
Author_xml – sequence: 1
  givenname: Xiaoyan
  orcidid: 0000-0001-8599-139X
  surname: Qi
  fullname: Qi, Xiaoyan
  organization: Shanghai Jiao Tong University
– sequence: 2
  givenname: Mukan
  orcidid: 0000-0001-8139-2875
  surname: Ji
  fullname: Ji, Mukan
  organization: Lanzhou University
– sequence: 3
  givenname: Chao‐Fan
  orcidid: 0000-0002-6905-0909
  surname: Yin
  fullname: Yin, Chao‐Fan
  organization: Shanghai Jiao Tong University
– sequence: 4
  givenname: Ning‐Yi
  orcidid: 0000-0002-0917-5750
  surname: Zhou
  fullname: Zhou, Ning‐Yi
  email: ningyi.zhou@sjtu.edu.cn
  organization: Shanghai Jiao Tong University
– sequence: 5
  givenname: Yongqin
  orcidid: 0000-0003-2876-7484
  surname: Liu
  fullname: Liu, Yongqin
  email: yql@lzu.edu.cn
  organization: University of Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37775503$$D View this record in MEDLINE/PubMed
BookMark eNqFkT1PwzAQhi1UBKUws6FILCyl_oybESooSEUsMFtX56IGuXGxU1D-PS4tDJUQt_hsPe_d-d4T0mt8g4ScM3rNUoyYzPmQFzxdc8XyA9L_fen95owfk5MY3yhlWmh6RI6F1lopKvrkdurA1hgyiBlk0a-DxcxXWeM_0GUr7zpsF53DBrMWA64W7QIctJgtujJ4BxHjKTmswEU8250D8np_9zJ5GM6ep4-Tm9nQSqnyoeWqKnM1l3MmdM6RoZQMgaEWXKbBlFVKzTmUWCCtYFxYUFCl6UVR2gqsGJCrbd1V8O9rjK1Z1tGic9CgX0cjqKRCS8b1vygfa1oUuuAsoZd76FtaQpM-YnhBhaCC6w11saPW8yWWZhXqJYTO_CwyAWoL2OBjDFgZW7fQ1r5pA9TOMGo2hpmNJWZjj_k2LOlGe7qf0n8rdp0-a4fdf7i5e3rc6r4AvD-jpw
CitedBy_id crossref_primary_10_1128_aem_02242_23
crossref_primary_10_1016_j_jhazmat_2024_134395
crossref_primary_10_1021_acs_est_4c02845
crossref_primary_10_1016_j_greenca_2025_02_003
crossref_primary_10_1016_j_ijbiomac_2024_134202
crossref_primary_10_1016_j_watbs_2025_100366
crossref_primary_10_1128_aem_00346_25
crossref_primary_10_1021_acs_est_4c01495
crossref_primary_10_1039_D4GC00528G
crossref_primary_10_1016_j_jhazmat_2024_136642
crossref_primary_10_1139_er_2023_0107
crossref_primary_10_1016_j_tibtech_2024_08_013
crossref_primary_10_1016_j_envres_2024_120140
Cites_doi 10.1038/s41598-019-52379-z
10.1111/j.1365-313X.2006.02842.x
10.1007/s00253-014-6272-8
10.1126/science.aaf2853
10.1007/978-1-0716-2795-2_12
10.1016/j.scitotenv.2020.143634
10.1128/AEM.02773-17
10.3389/fmicb.2020.00114
10.1093/nar/gkf436
10.1016/j.envadv.2021.100084
10.1093/nar/gkz239
10.1038/ismej.2016.72
10.1038/s41467-017-02255-z
10.1093/bioinformatics/btv033
10.1002/prot.26034
10.1002/prot.21123
10.1128/mSystems.00504-20
10.1126/sciadv.1700782
10.1073/pnas.1718804115
10.1002/cbic.202000793
10.1002/anie.202203061
10.3389/fmicb.2021.765531
10.1016/j.scitotenv.2019.135226
10.1007/s00253-014-5672-0
10.1186/1471-2105-11-119
10.1371/journal.pone.0009490
10.1126/science.aad6359
10.1093/nar/gku316
10.1128/AEM.06725-11
10.1021/bi401561p
10.1128/AEM.01842-21
10.1016/j.bbapap.2015.04.015
10.1007/s10924-018-1245-0
10.1016/j.scitotenv.2019.135504
10.1016/j.scitotenv.2020.143170
10.1038/s41587-019-0036-z
10.1128/MMBR.00015-10
10.1139/anc-2018-0030
10.1088/1748-9326/aa7445
10.1038/s41564-019-0370-4
10.1038/s41467-018-02881-1
10.1038/msb.2011.75
10.1038/s41467-020-18236-8
10.1002/cssc.202100740
10.1002/prot.26325
10.1002/prot.26245
10.1128/mSystems.01112-20
10.1371/journal.pcbi.1009578
10.1101/gr.1239303
10.1099/ijsem.0.001058
10.1038/s41587-022-01367-2
10.1021/acssuschemeng.0c01638
10.5194/essd-14-2303-2022
10.1016/j.envpol.2019.07.121
10.1038/s41467-022-35237-x
10.1038/s41586-021-03819-2
ContentType Journal Article
Copyright 2023 Applied Microbiology International and John Wiley Sons & Ltd.
2023 Applied Microbiology International and John Wiley & Sons Ltd.
Copyright_xml – notice: 2023 Applied Microbiology International and John Wiley Sons & Ltd.
– notice: 2023 Applied Microbiology International and John Wiley & Sons Ltd.
DBID AAYXX
CITATION
NPM
7QH
7QL
7ST
7T7
7TN
7U9
7UA
8FD
C1K
F1W
FR3
H94
H95
H97
L.G
M7N
P64
SOI
7X8
7S9
L.6
DOI 10.1111/1462-2920.16516
DatabaseName CrossRef
PubMed
Aqualine
Bacteriology Abstracts (Microbiology B)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Oceanic Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Oceanic Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
AGRICOLA
PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1462-2920
EndPage 2833
ExternalDocumentID 37775503
10_1111_1462_2920_16516
EMI16516
Genre shortCommunication
Journal Article
GeographicLocations Arctic region
Antarctic region
GeographicLocations_xml – name: Arctic region
– name: Antarctic region
GrantInformation_xml – fundername: The Seed Industry Revitalization Project of Guangdong Province
  funderid: 23050202
– fundername: Second Tibetan Plateau Scientific Expedition and Research Program (STEP)
  funderid: 2019QZKK0503
– fundername: National Natural Science Foundation of China
  funderid: 42171138; 918512
– fundername: Major Research plan of the National Natural Science Foundation of China
  funderid: 91851207
– fundername: the National Key Research and Development Plans
  funderid: 2021YFC2300904
– fundername: Major Research plan of the National Natural Science Foundation of China
  grantid: 91851207
– fundername: National Natural Science Foundation of China
  grantid: 42171138
– fundername: The Seed Industry Revitalization Project of Guangdong Province
  grantid: 23050202
– fundername: Second Tibetan Plateau Scientific Expedition and Research Program (STEP)
  grantid: 2019QZKK0503
– fundername: the National Key Research and Development Plans
  grantid: 2021YFC2300904
– fundername: National Natural Science Foundation of China
  grantid: 918512
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OIG
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XIH
YUY
ZZTAW
~02
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
NPM
7QH
7QL
7ST
7T7
7TN
7U9
7UA
8FD
C1K
F1W
FR3
H94
H95
H97
L.G
M7N
P64
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c4456-c25fd65b4b13762e1e441ea1e73241735c555b2ade9e0fa89ca5af29139dcfac3
IEDL.DBID DR2
ISSN 1462-2912
1462-2920
IngestDate Fri Jul 11 18:39:44 EDT 2025
Fri Jul 11 01:24:16 EDT 2025
Fri Jul 25 12:11:24 EDT 2025
Mon Jul 21 06:06:34 EDT 2025
Thu Apr 24 23:08:20 EDT 2025
Tue Jul 01 04:00:52 EDT 2025
Wed Aug 20 07:27:16 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License 2023 Applied Microbiology International and John Wiley Sons & Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4456-c25fd65b4b13762e1e441ea1e73241735c555b2ade9e0fa89ca5af29139dcfac3
Notes Xiaoyan Qi and Mukan Ji contributed equally to this study.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6905-0909
0000-0002-0917-5750
0000-0001-8139-2875
0000-0003-2876-7484
0000-0001-8599-139X
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1462-2920.16516
PMID 37775503
PQID 2903303271
PQPubID 1066360
PageCount 12
ParticipantIDs proquest_miscellaneous_3040374127
proquest_miscellaneous_2870997921
proquest_journals_2903303271
pubmed_primary_37775503
crossref_citationtrail_10_1111_1462_2920_16516
crossref_primary_10_1111_1462_2920_16516
wiley_primary_10_1111_1462_2920_16516_EMI16516
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2023
2023-12-00
2023-Dec
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: England
– name: Oxford
PublicationTitle Environmental microbiology
PublicationTitleAlternate Environ Microbiol
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2010; 11
2017; 8
2017; 3
2021; 22
2015; 31
2003; 13
2018; 84
2020; 11
2022a; 14
2004; 32
2020; 8
2021; 758
2018; 9
2020; 5
2020; 3
2021; 596
2023; 2555
2006; 65
2021; 755
2010; 5
2016; 351
2014; 98
2014; 53
2019; 9
2021; 6
2019; 4
2021; 5
2022b; 40
2021; 89
2002; 30
2023; 16
2019; 37
2022; 90
2015; 99
2016; 10
2011; 75
2015; 1854
2022; 88
2012; 78
2020; 708
2020; 703
2018; 26
2011; 7
2014; 42
2021; 14
2021; 12
2022; 61
2020
2018; 115
2017; 12
2019; 47
2022; 13
2019; 254
2022; 18
2016; 66
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
Luisana Avilan B.R.L. (e_1_2_10_39_1) 2023; 16
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
Alam I. (e_1_2_10_2_1) 2020
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 84
  year: 2018
  article-title: New insights into the function and global distribution of polyethylene terephthalate (PET)‐degrading bacteria and enzymes in marine and terrestrial metagenomes
  publication-title: Applied and Environmental Microbiology
– volume: 30
  start-page: 3059
  year: 2002
  end-page: 3066
  article-title: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform
  publication-title: Nucleic Acids Research
– volume: 14
  start-page: 4115
  year: 2021
  end-page: 4122
  article-title: Emerging strategies in polyethylene terephthalate hydrolase research for biorecycling
  publication-title: ChemSusChem
– volume: 90
  start-page: 1443
  year: 2022
  end-page: 1456
  article-title: Plastics degradation by hydrolytic enzymes: the plastics‐active enzymes database—PAZy
  publication-title: Proteins: structure, Function, and Bioinformatics
– volume: 7
  start-page: 539
  year: 2011
  article-title: Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal omega
  publication-title: Molecular Systems Biology
– volume: 3
  start-page: 6
  year: 2020
  end-page: 13
  article-title: A review of possible pathways of marine microplastics transport in the ocean
  publication-title: Anthropocene Coasts
– volume: 22
  start-page: 1627
  year: 2021
  end-page: 1637
  article-title: Comparative biochemistry of four polyester (PET) hydrolases**
  publication-title: Chembiochem
– volume: 12
  year: 2017
  article-title: Contamination of the Arctic reflected in microbial metagenomes from the Greenland ice sheet
  publication-title: Environmental Research Letters
– volume: 65
  start-page: 712
  year: 2006
  end-page: 725
  article-title: Comparison of multiple Amber force fields and development of improved protein backbone parameters
  publication-title: Proteins
– volume: 11
  start-page: 119
  year: 2010
  article-title: Prodigal: prokaryotic gene recognition and translation initiation site identification
  publication-title: BMC Bioinformatics
– volume: 351
  start-page: 1196
  year: 2016
  end-page: 1199
  article-title: A bacterium that degrades and assimilates poly(ethylene terephthalate)
  publication-title: Science
– volume: 708
  year: 2020
  article-title: Microbial mercury methylation profile in terminus of a high‐elevation glacier on the northern boundary of the Tibetan plateau
  publication-title: Science of the Total Environment
– volume: 4
  start-page: 925
  year: 2019
  end-page: 932
  article-title: Airborne microbial transport limitation to isolated Antarctic soil habitats
  publication-title: Nature Microbiology
– volume: 12
  year: 2021
  article-title: Actinobacteria from desert: diversity and biotechnological applications
  publication-title: Frontiers in Microbiology
– volume: 13
  start-page: 7850
  year: 2022
  article-title: Sourcing thermotolerant poly(ethylene terephthalate) hydrolase scaffolds from natural diversity
  publication-title: Nature Communications
– volume: 3
  year: 2017
  article-title: Production, use, and fate of all plastics ever made
  publication-title: Science Advances
– volume: 26
  start-page: 3613
  year: 2018
  end-page: 3625
  article-title: Microbial degradation of UV‐pretreated low‐density polyethylene films by novel polyethylene‐degrading bacteria isolated from plastic‐dump soil
  publication-title: Journal of Polymers and the Environment
– volume: 16
  year: 2023
  article-title: Concentration‐dependent inhibition of mesophilic PETases on poly(ethylene terephthalate) can be eliminated by enzyme engineering
  publication-title: ChemSusChem
– volume: 1854
  start-page: 1019
  year: 2015
  end-page: 1037
  article-title: Enzyme function initiative‐enzyme similarity tool (EFI‐EST): a web tool for generating protein sequence similarity networks
  publication-title: Biochimica et Biophysica Acta
– volume: 11
  year: 2020
  article-title: A novel polyester hydrolase from the marine bacterium –structural and functional insights
  publication-title: Frontiers in Microbiology
– volume: 40
  start-page: 1341
  year: 2022b
  end-page: 1348
  article-title: A genome and gene catalog of glacier microbiomes
  publication-title: Nature Biotechnology
– volume: 98
  start-page: 7815
  year: 2014
  end-page: 7823
  article-title: Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca
  publication-title: Applied Microbiology and Biotechnology
– volume: 13
  start-page: 2498
  year: 2003
  end-page: 2504
  article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks
  publication-title: Genome Research
– volume: 6
  start-page: e01112
  year: 2021
  end-page: e01120
  article-title: Phylogenetic distribution of plastic‐degrading microorganisms
  publication-title: mSystems
– volume: 115
  start-page: E4350
  year: 2018
  end-page: E4357
  article-title: Characterization and engineering of a plastic‐degrading aromatic polyesterase
  publication-title: Proceedings of the National Academy of Sciences
– volume: 5
  year: 2010
  article-title: FastTree 2–approximately maximum‐likelihood trees for large alignments
  publication-title: PLoS One
– volume: 758
  year: 2021
  article-title: Microplastics in glaciers of the Tibetan plateau: evidence for the long‐range transport of microplastics
  publication-title: Science of the Total Environment
– volume: 351
  start-page: 1154
  year: 2016
  end-page: 1155
  article-title: Feeding on plastic
  publication-title: Science
– volume: 5
  year: 2020
  article-title: Microbial metabolic redundancy is a key mechanism in a sulfur‐rich glacial ecosystem
  publication-title: Msystems
– volume: 88
  year: 2022
  article-title: Antarctic polyester hydrolases degrade aliphatic and aromatic polyesters at moderate temperatures
  publication-title: Applied and Environmental Microbiology
– volume: 2555
  start-page: 167
  year: 2023
  end-page: 179
  article-title: Metagenomic screening of a novel PET esterase via In vitro expression system
  publication-title: Methods in Molecular Biology
– volume: 42
  start-page: W320
  year: 2014
  end-page: W324
  article-title: Deciphering key features in protein structures with the new ENDscript server
  publication-title: Nucleic Acids Research
– volume: 18
  year: 2022
  article-title: Implementation of residue‐level coarse‐grained models in GENESIS for large‐scale molecular dynamics simulations
  publication-title: PLoS Computational Biology
– volume: 66
  start-page: 2813
  year: 2016
  end-page: 2818
  article-title: sp. nov., isolated from a microbial consortium that degrades poly(ethylene terephthalate)
  publication-title: International Journal of Systematic and Evolutionary Microbiology
– volume: 32
  start-page: 1792
  year: 2004
  end-page: 1797
  article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput
  publication-title: Nucleic Acids Research
– volume: 254
  year: 2019
  article-title: Importance of atmospheric transport for microplastics deposited in remote areas
  publication-title: Environmental Pollution
– year: 2020
  article-title: Rapid evolution of plastic‐degrading enzymes prevalent in the global ocean
  publication-title: bioRxiv
– volume: 596
  start-page: 583
  year: 2021
  end-page: 589
  article-title: Highly accurate protein structure prediction with AlphaFold
  publication-title: Nature
– volume: 47
  start-page: W256
  year: 2019
  end-page: W259
  article-title: Interactive tree of life (iTOL) v4: recent updates and new developments
  publication-title: Nucleic Acids Research
– volume: 90
  start-page: 504
  year: 2022
  end-page: 511
  article-title: Novel putative polyethylene terephthalate (PET) plastic degrading enzymes from the environmental metagenome
  publication-title: Proteins
– volume: 5
  year: 2021
  article-title: Macroplastics contamination on glaciers from Italian Central‐Western Alps
  publication-title: Environmental Advances
– volume: 14
  start-page: 2303
  year: 2022a
  end-page: 2314
  article-title: A comprehensive dataset of microbial abundance, dissolved organic carbon, and nitrogen in Tibetan plateau glaciers
  publication-title: Earth System Science Data
– volume: 755
  year: 2021
  article-title: UV degradation of natural and synthetic microfibers causes fragmentation and release of polymer degradation products and chemical additives
  publication-title: Science of the Total Environment
– volume: 8
  start-page: 8894
  year: 2020
  end-page: 8908
  article-title: Current state and perspectives related to the polyethylene terephthalate hydrolases available for biorecycling
  publication-title: ACS Sustainable Chemistry & Engineering
– volume: 703
  year: 2020
  article-title: Mini‐review of microplastics in the atmosphere and their risks to humans
  publication-title: Science of the Total Environment
– volume: 61
  year: 2022
  article-title: Discovery and genetic code expansion of a polyethylene terephthalate (PET) hydrolase from the human saliva metagenome for the degradation and bio‐functionalization of PET
  publication-title: Angewandte Chemie (International Ed in English)
– volume: 89
  start-page: 502
  year: 2021
  end-page: 511
  article-title: Structural basis of mutants of PET‐degrading enzyme from Saccharomonospora viridis AHK190 with high activity and thermal stability
  publication-title: Proteins
– volume: 37
  start-page: 420
  year: 2019
  end-page: 423
  article-title: SignalP 5.0 improves signal peptide predictions using deep neural networks
  publication-title: Nature Biotechnology
– volume: 9
  start-page: 382
  year: 2018
  article-title: Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation
  publication-title: Nature Communications
– volume: 75
  start-page: 133
  year: 2011
  end-page: 191
  article-title: Oxidative stress resistance in
  publication-title: Microbiology and Molecular Biology Reviews
– volume: 78
  start-page: 1556
  year: 2012
  end-page: 1562
  article-title: Isolation of a novel cutinase homolog with polyethylene terephthalate‐degrading activity from leaf‐branch compost by using a metagenomic approach
  publication-title: Applied and Environmental Microbiology
– volume: 53
  start-page: 1858
  year: 2014
  end-page: 1869
  article-title: Crystal structure and thermodynamic and kinetic stability of metagenome‐derived LC‐cutinase
  publication-title: Biochemistry
– volume: 99
  start-page: 4297
  year: 2015
  end-page: 4307
  article-title: Structural basis for the Ca ‐enhanced thermostability and activity of PET‐degrading cutinase‐like enzyme from Saccharomonospora viridis AHK190
  publication-title: Applied Microbiology and Biotechnology
– volume: 11
  start-page: 4403
  year: 2020
  article-title: Flexible genes establish widespread bacteriophage pan‐genomes in cryoconite hole ecosystems
  publication-title: Nature Communications
– volume: 10
  start-page: 2984
  year: 2016
  end-page: 2988
  article-title: Light‐dependent microbial metabolisms drive carbon fluxes on glacier surfaces
  publication-title: ISME Journal
– volume: 8
  start-page: 2106
  year: 2017
  article-title: Structural insight into catalytic mechanism of PET hydrolase
  publication-title: Nature Communications
– volume: 9
  start-page: 16038
  year: 2019
  article-title: Efficient degradation of poly(ethylene terephthalate) with cutinase exhibiting improved catalytic activity generated using mutagenesis and additive‐based approaches
  publication-title: Scientific Reports
– volume: 31
  start-page: 1674
  year: 2015
  end-page: 1676
  article-title: MEGAHIT: an ultra‐fast single‐node solution for large and complex metagenomics assembly via succinct de Bruijn graph
  publication-title: Bioinformatics
– ident: e_1_2_10_19_1
  doi: 10.1038/s41598-019-52379-z
– ident: e_1_2_10_14_1
  doi: 10.1111/j.1365-313X.2006.02842.x
– ident: e_1_2_10_40_1
  doi: 10.1007/s00253-014-6272-8
– ident: e_1_2_10_10_1
  doi: 10.1126/science.aaf2853
– ident: e_1_2_10_24_1
  doi: 10.1007/978-1-0716-2795-2_12
– ident: e_1_2_10_58_1
  doi: 10.1016/j.scitotenv.2020.143634
– ident: e_1_2_10_13_1
  doi: 10.1128/AEM.02773-17
– ident: e_1_2_10_9_1
  doi: 10.3389/fmicb.2020.00114
– ident: e_1_2_10_31_1
  doi: 10.1093/nar/gkf436
– ident: e_1_2_10_42_1
  doi: 10.1016/j.envadv.2021.100084
– ident: e_1_2_10_34_1
  doi: 10.1093/nar/gkz239
– ident: e_1_2_10_18_1
  doi: 10.1038/ismej.2016.72
– ident: e_1_2_10_23_1
  doi: 10.1038/s41467-017-02255-z
– ident: e_1_2_10_35_1
  doi: 10.1093/bioinformatics/btv033
– ident: e_1_2_10_16_1
  doi: 10.1002/prot.26034
– ident: e_1_2_10_26_1
  doi: 10.1002/prot.21123
– ident: e_1_2_10_54_1
  doi: 10.1128/mSystems.00504-20
– ident: e_1_2_10_22_1
  doi: 10.1126/sciadv.1700782
– ident: e_1_2_10_5_1
  doi: 10.1073/pnas.1718804115
– ident: e_1_2_10_6_1
  doi: 10.1002/cbic.202000793
– ident: e_1_2_10_15_1
  doi: 10.1002/anie.202203061
– ident: e_1_2_10_55_1
  doi: 10.3389/fmicb.2021.765531
– ident: e_1_2_10_57_1
  doi: 10.1016/j.scitotenv.2019.135226
– ident: e_1_2_10_45_1
  doi: 10.1007/s00253-014-5672-0
– ident: e_1_2_10_27_1
  doi: 10.1186/1471-2105-11-119
– ident: e_1_2_10_43_1
  doi: 10.1371/journal.pone.0009490
– ident: e_1_2_10_56_1
  doi: 10.1126/science.aad6359
– ident: e_1_2_10_44_1
  doi: 10.1093/nar/gku316
– ident: e_1_2_10_50_1
  doi: 10.1128/AEM.06725-11
– ident: e_1_2_10_51_1
  doi: 10.1021/bi401561p
– year: 2020
  ident: e_1_2_10_2_1
  article-title: Rapid evolution of plastic‐degrading enzymes prevalent in the global ocean
  publication-title: bioRxiv
– ident: e_1_2_10_8_1
  doi: 10.1128/AEM.01842-21
– ident: e_1_2_10_21_1
  doi: 10.1016/j.bbapap.2015.04.015
– ident: e_1_2_10_41_1
  doi: 10.1007/s10924-018-1245-0
– ident: e_1_2_10_12_1
  doi: 10.1016/j.scitotenv.2019.135504
– ident: e_1_2_10_49_1
  doi: 10.1016/j.scitotenv.2020.143170
– ident: e_1_2_10_3_1
  doi: 10.1038/s41587-019-0036-z
– ident: e_1_2_10_48_1
  doi: 10.1128/MMBR.00015-10
– ident: e_1_2_10_36_1
  doi: 10.1139/anc-2018-0030
– ident: e_1_2_10_25_1
  doi: 10.1088/1748-9326/aa7445
– ident: e_1_2_10_4_1
  doi: 10.1038/s41564-019-0370-4
– ident: e_1_2_10_28_1
  doi: 10.1038/s41467-018-02881-1
– ident: e_1_2_10_47_1
  doi: 10.1038/msb.2011.75
– ident: e_1_2_10_7_1
  doi: 10.1038/s41467-020-18236-8
– ident: e_1_2_10_32_1
  doi: 10.1002/cssc.202100740
– ident: e_1_2_10_11_1
  doi: 10.1002/prot.26325
– ident: e_1_2_10_30_1
  doi: 10.1002/prot.26245
– volume: 16
  year: 2023
  ident: e_1_2_10_39_1
  article-title: Concentration‐dependent inhibition of mesophilic PETases on poly(ethylene terephthalate) can be eliminated by enzyme engineering
  publication-title: ChemSusChem
– ident: e_1_2_10_20_1
  doi: 10.1128/mSystems.01112-20
– ident: e_1_2_10_52_1
  doi: 10.1371/journal.pcbi.1009578
– ident: e_1_2_10_46_1
  doi: 10.1101/gr.1239303
– ident: e_1_2_10_53_1
  doi: 10.1099/ijsem.0.001058
– ident: e_1_2_10_38_1
  doi: 10.1038/s41587-022-01367-2
– ident: e_1_2_10_33_1
  doi: 10.1021/acssuschemeng.0c01638
– ident: e_1_2_10_37_1
  doi: 10.5194/essd-14-2303-2022
– ident: e_1_2_10_59_1
  doi: 10.1016/j.envpol.2019.07.121
– ident: e_1_2_10_17_1
  doi: 10.1038/s41467-022-35237-x
– ident: e_1_2_10_29_1
  doi: 10.1038/s41586-021-03819-2
SSID ssj0017370
Score 2.5052621
Snippet Polyethylene terephthalate (PET) is a major component of microplastic contamination globally, which is now detected in pristine environments including Polar...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2822
SubjectTerms Antarctic region
Arctic region
Bridges
Carbon
Carbon sources
Contamination
data collection
disulfide bonds
Glaciers
Hydrolases
metagenomics
microbiology
Microorganisms
Microplastics
Plastic debris
Polyethylene terephthalate
polyethylene terephthalates
Relative abundance
sequence analysis
Sequencing
Thermal stability
Title Glacier as a source of novel polyethylene terephthalate hydrolases
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.16516
https://www.ncbi.nlm.nih.gov/pubmed/37775503
https://www.proquest.com/docview/2903303271
https://www.proquest.com/docview/2870997921
https://www.proquest.com/docview/3040374127
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBejMNhL23X9SJsODfrQF4dYsqz4sR3LymB7GAv0zZzkE4EaO8RJIf3re_IXa0tbSt8MOmHppN_dT_L5jrEzSeiz9fWSViaIcDIOEmtjQnykICGP6NBfDfz-E1_Nol_Xqosm9P_CNPkh-gs3j4zaXnuAg6n-Azm9RAS-1tIojFXok277iC1Pi_72CaRCLetyca1sKNrkPj6W51H_h37pCdl8yF1r5zPdYaYbdhNzcjNar8zI3j3K6Piuee2y7Zaa8otmL31mH7DYYx-bYpWbL-zyZw5kCJYcKg68ufTnpeNFeYs5X5T5BmnRyYkhp7XCxXw1h5yYLJ9vsiUdoCus9tls-uPf96ugrcAQ2IiYVWCFclmsTGRCMkQCQyT2hBCiJh5GylVWKWUEZJjg2MEksaDACZ9qNLMOrDxgW0VZ4BHjxsZOQuJiS6RNxEjMz4E2MYnpbAIwYKNO_6lt05P7Khl52h1TvGJSr5i0VsyAnfcdFk1mjudFh92Cpi1EK2oeS_LfQocD9q1vJnD5LyZQYLkmGbJmSaIT8YKMJDMoiZcJPWCHzWbpxyO11nQElDS5eslfG2hK2Ksfjt_a4YR9EkS_mkCbIdtaLdd4SnRpZb7WiLgHSysGJA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VVgguUB6FLQWMBBKXrDZ2bG8OHOiLLX0cUCv1FhxnrJWIktU-QMvP6l_hDzHOS7SIIg49cIvkcWJ7Xt_YzgzAa0HaZ6vtJS3TIMLhIIitVaTxkTQxeUSHfmvg-ESNzqKP5_J8BS7af2Hq_BDdhpvXjMpeewX3G9K_aDl9hQe-2FI_VDJUzcXKQ1x-o7Bt9u5gl3j8hvP9vdOdUdBUFghsRIghsFy6TMk0SkNSMI4hEipAE6ImfBFqIa2UMuUmwxgHzgxja6Rx3KfQzKwzVtB7b8GaryPu8_XvfupSVlHnqkBdM7iQN-mE_O2hKwO-7Al_g7eX0XLl7vbvw492oepbLl_6i3nat9-v5JD8v1ZyHe416Ju9r9XlAaxg8RBu1_U4l49g-0NuyNZNmZkxw-pzDVY6VpRfMWeTMl8iyTX5aWQkjjgZz8cmJ7DOxstsWlIcgrPHcHYjE9iA1aIs8Cmw1ConTOyUJVzKFRK4dUanish0NjSmB_2W4YltMrD7QiB50kZinhGJZ0RSMaIHb7sOkzr5yJ9Jt1oJShorNKPmgSCIwnXYg1ddM9kPfyhkCiwXREMGO451zK-hEWTpBUFPrnvwpJbObjxCa01RrqDJVTL2t4EmZF6qh81_7fAS7oxOj4-So4OTw2dwlxParO8VbcHqfLrA54QO5-mLSh0ZfL5pqf0JA_Zk9g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIhAX3o-FAkYCiUtWGzu21wcOwLK0FCqEqNRb6jhjrUSUrPYBWv4Vf4VfxDgv0SJAHHrgFsnjxPY8_I09mQF4LEj7XH28pGUWJTgeRcY5RRqfSGtoR_QYjgbeHajdw-TNkTzagm_dvzBNfoj-wC1oRm2vg4LPc_-TktNHeBRqLQ1jJWPVxlXu4-YLeW3LZ3sTYvETzqevPr7cjdrCApFLCDBEjkufK5klWUz6xTFGAgVoY9QEL2ItpJNSZtzmaHDk7dg4K63nIYNm7rx1gt57Ds4namRCtYjJhz5jFXWu69O1g4t5m00oBA-dGvDJjfAXdHsSLNe73fQKfO_WqQly-TRcr7Kh-3oqheR_tZBX4XKLvdnzRlmuwRaW1-FCU41zcwNevC4sWboFs0tmWXOrwSrPyuozFmxeFRskqaZdGhkJI85nq5ktCKqz2SZfVOSF4PImHJ7JBG7BdlmVeAdY5pQX1njlCJVyhQRtvdWZIjKdj60dwLDjd-ra_OuhDEiRdn5YYEQaGJHWjBjA077DvEk98nvSnU6A0tYGLal5JAigcB0P4FHfTNYjXAnZEqs10ZC5NkYb_gcaQXZeEPDkegC3G-HsxyO01uTjCppcLWJ_G2hKxqV-uPuvHR7CxfeTafp272D_HlziBDWboKId2F4t1nifoOEqe1ArI4PjsxbaH0VwY6U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glacier+as+a+source+of+novel+polyethylene+terephthalate+hydrolases&rft.jtitle=Environmental+microbiology&rft.au=Qi%2C+Xiaoyan&rft.au=Ji%2C+Mukan&rft.au=Yin%2C+Chao%E2%80%90Fan&rft.au=Zhou%2C+Ning%E2%80%90Yi&rft.date=2023-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=25&rft.issue=12&rft.spage=2822&rft.epage=2833&rft_id=info:doi/10.1111%2F1462-2920.16516&rft.externalDBID=10.1111%252F1462-2920.16516&rft.externalDocID=EMI16516
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon