Gold Nanorod Assisted Enhanced Plasmonic Detection Scheme of COVID‐19 SARS‐CoV‐2 Spike Protein
The beautiful interplay between light and matter can give rise to many striking physical phenomena, surface plasmon resonance (SPR) being one of them. Plasmonic immunosensors monitor refractive index changes that occur as a result of specific ligand–analyte or antibody–antigen interactions taking pl...
Saved in:
Published in | Advanced theory and simulations Vol. 3; no. 11; pp. 2000185 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
John Wiley and Sons Inc
01.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The beautiful interplay between light and matter can give rise to many striking physical phenomena, surface plasmon resonance (SPR) being one of them. Plasmonic immunosensors monitor refractive index changes that occur as a result of specific ligand–analyte or antibody–antigen interactions taking place on the sensor surface. The coronavirus disease (COVID‐19) pandemic has jeopardized the entire world and has resulted in economic slowdown of most countries. In this work, a model of a sandwich plasmonic biosensor that utilizes gold nanorods (Au NRs) for the detection of COVID‐19 SARS‐CoV‐2 spike protein is presented. Simulation results for different prismatic configurations for the basic Kretschmann layout are presented. It is found that a BK7 glass prism‐based SPR sensor has an incremental sensitivity of 111.11 deg RIU−1. Additionally, using Comsol Multiphysics the electric field enhancement observed for various aspect ratios and layouts of Au NRs are discussed in depth.
The coronavirus disease (COVID‐19) pandemic has adversely affected the entire world, where apart from stressing the medical fraternity, it has resulted in a major economic slowdown. In this paper, a unique detection scheme for quantifying SARS‐CoV‐2 virus using a plasmonic immunosensor that uses gold nanorods for signal amplification is presented. |
---|---|
AbstractList | The beautiful interplay between light and matter can give rise to many striking physical phenomena, surface plasmon resonance (SPR) being one of them. Plasmonic immunosensors monitor refractive index changes that occur as a result of specific ligand-analyte or antibody-antigen interactions taking place on the sensor surface. The coronavirus disease (COVID-19) pandemic has jeopardized the entire world and has resulted in economic slowdown of most countries. In this work, a model of a sandwich plasmonic biosensor that utilizes gold nanorods (Au NRs) for the detection of COVID-19 SARS-CoV-2 spike protein is presented. Simulation results for different prismatic configurations for the basic Kretschmann layout are presented. It is found that a BK7 glass prism-based SPR sensor has an incremental sensitivity of 111.11 deg RIU-1. Additionally, using Comsol Multiphysics the electric field enhancement observed for various aspect ratios and layouts of Au NRs are discussed in depth.The beautiful interplay between light and matter can give rise to many striking physical phenomena, surface plasmon resonance (SPR) being one of them. Plasmonic immunosensors monitor refractive index changes that occur as a result of specific ligand-analyte or antibody-antigen interactions taking place on the sensor surface. The coronavirus disease (COVID-19) pandemic has jeopardized the entire world and has resulted in economic slowdown of most countries. In this work, a model of a sandwich plasmonic biosensor that utilizes gold nanorods (Au NRs) for the detection of COVID-19 SARS-CoV-2 spike protein is presented. Simulation results for different prismatic configurations for the basic Kretschmann layout are presented. It is found that a BK7 glass prism-based SPR sensor has an incremental sensitivity of 111.11 deg RIU-1. Additionally, using Comsol Multiphysics the electric field enhancement observed for various aspect ratios and layouts of Au NRs are discussed in depth. The beautiful interplay between light and matter can give rise to many striking physical phenomena, surface plasmon resonance (SPR) being one of them. Plasmonic immunosensors monitor refractive index changes that occur as a result of specific ligand–analyte or antibody–antigen interactions taking place on the sensor surface. The coronavirus disease (COVID‐19) pandemic has jeopardized the entire world and has resulted in economic slowdown of most countries. In this work, a model of a sandwich plasmonic biosensor that utilizes gold nanorods (Au NRs) for the detection of COVID‐19 SARS‐CoV‐2 spike protein is presented. Simulation results for different prismatic configurations for the basic Kretschmann layout are presented. It is found that a BK7 glass prism‐based SPR sensor has an incremental sensitivity of 111.11 deg RIU −1 . Additionally, using Comsol Multiphysics the electric field enhancement observed for various aspect ratios and layouts of Au NRs are discussed in depth. The beautiful interplay between light and matter can give rise to many striking physical phenomena, surface plasmon resonance (SPR) being one of them. Plasmonic immunosensors monitor refractive index changes that occur as a result of specific ligand–analyte or antibody–antigen interactions taking place on the sensor surface. The coronavirus disease (COVID‐19) pandemic has jeopardized the entire world and has resulted in economic slowdown of most countries. In this work, a model of a sandwich plasmonic biosensor that utilizes gold nanorods (Au NRs) for the detection of COVID‐19 SARS‐CoV‐2 spike protein is presented. Simulation results for different prismatic configurations for the basic Kretschmann layout are presented. It is found that a BK7 glass prism‐based SPR sensor has an incremental sensitivity of 111.11 deg RIU−1. Additionally, using Comsol Multiphysics the electric field enhancement observed for various aspect ratios and layouts of Au NRs are discussed in depth. The coronavirus disease (COVID‐19) pandemic has adversely affected the entire world, where apart from stressing the medical fraternity, it has resulted in a major economic slowdown. In this paper, a unique detection scheme for quantifying SARS‐CoV‐2 virus using a plasmonic immunosensor that uses gold nanorods for signal amplification is presented. The beautiful interplay between light and matter can give rise to many striking physical phenomena, surface plasmon resonance (SPR) being one of them. Plasmonic immunosensors monitor refractive index changes that occur as a result of specific ligand–analyte or antibody–antigen interactions taking place on the sensor surface. The coronavirus disease (COVID‐19) pandemic has jeopardized the entire world and has resulted in economic slowdown of most countries. In this work, a model of a sandwich plasmonic biosensor that utilizes gold nanorods (Au NRs) for the detection of COVID‐19 SARS‐CoV‐2 spike protein is presented. Simulation results for different prismatic configurations for the basic Kretschmann layout are presented. It is found that a BK7 glass prism‐based SPR sensor has an incremental sensitivity of 111.11 deg RIU −1 . Additionally, using Comsol Multiphysics the electric field enhancement observed for various aspect ratios and layouts of Au NRs are discussed in depth. The coronavirus disease (COVID‐19) pandemic has adversely affected the entire world, where apart from stressing the medical fraternity, it has resulted in a major economic slowdown. In this paper, a unique detection scheme for quantifying SARS‐CoV‐2 virus using a plasmonic immunosensor that uses gold nanorods for signal amplification is presented. |
Author | Guo, Yan Xu, Gaixia Yang, Guang Das, Chandreyee Manas Ho, Ho‐Pui Yong, Ken‐Tye Kang, Lixing |
AuthorAffiliation | 5 Department of Biomedical Engineering The Chinese University of Hong Kong New Territories Hong Kong SAR 999077 China 4 Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging Department of Biomedical Engineering School of Medicine Shenzhen University Shenzhen 518060 China 1 CINTRA CNRS/NTU/THALES UMI 3288 Research Techno Plaza 50 Nanyang Drive Border X Block Singapore 637553 Singapore 3 School of Automation Hangzhou Dianzi University Hangzhou Zhejiang 310018 China 2 School of Electrical and Electronic Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore |
AuthorAffiliation_xml | – name: 4 Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging Department of Biomedical Engineering School of Medicine Shenzhen University Shenzhen 518060 China – name: 5 Department of Biomedical Engineering The Chinese University of Hong Kong New Territories Hong Kong SAR 999077 China – name: 2 School of Electrical and Electronic Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore – name: 1 CINTRA CNRS/NTU/THALES UMI 3288 Research Techno Plaza 50 Nanyang Drive Border X Block Singapore 637553 Singapore – name: 3 School of Automation Hangzhou Dianzi University Hangzhou Zhejiang 310018 China |
Author_xml | – sequence: 1 givenname: Chandreyee Manas surname: Das fullname: Das, Chandreyee Manas organization: Nanyang Technological University – sequence: 2 givenname: Yan surname: Guo fullname: Guo, Yan organization: Hangzhou Dianzi University – sequence: 3 givenname: Guang surname: Yang fullname: Yang, Guang organization: Nanyang Technological University – sequence: 4 givenname: Lixing surname: Kang fullname: Kang, Lixing organization: Nanyang Technological University – sequence: 5 givenname: Gaixia surname: Xu fullname: Xu, Gaixia organization: Shenzhen University – sequence: 6 givenname: Ho‐Pui surname: Ho fullname: Ho, Ho‐Pui organization: The Chinese University of Hong Kong – sequence: 7 givenname: Ken‐Tye orcidid: 0000-0001-7936-2941 surname: Yong fullname: Yong, Ken‐Tye email: ktyong@ntu.edu.sg organization: Nanyang Technological University |
BookMark | eNqFkc1O3DAUhS1EBZSyZe1lNzP4N7E3SKMZCkioIELZWo5903FJ7GmcacWuj9Bn7JM0o0G0VELd2Efy-c698nmLdmOKgNAxJVNKCDuxfshTRhghhCq5gw6YpHxCuCa7f-l9dJTzl9HDqCAloXton3NaciXKA-TPU-vxRxtTnzye5RzyAB6fxaWNbhQ3rc1disHhBQzghpAirtwSOsCpwfPr-8vFrx8_qcbV7LYa1TzdjyfD1So8AL7p0wAhvkNvGttmOHq6D9GnD2d384vJ1fX55Xx2NXFCSDnxSlguBLON47LWxHpQTkpFgauyrstCqrLxdSEARM1K7azSXEvZFJoUWnl-iE63uat13YF3EIfetmbVh872jybZYF6-xLA0n9M3UxaiIESOAe-fAvr0dQ15MF3IDtrWRkjrbJiQumBCSzVap1ur61POPTTPYygxm3bMph3z3M4IiH8AFwa7-dBxldC-jukt9j208PifIWa2uKv-sL8B4uunMA |
CitedBy_id | crossref_primary_10_1007_s10965_025_04305_3 crossref_primary_10_1002_adts_202100292 crossref_primary_10_1039_D4NR04423A crossref_primary_10_1016_j_sbsr_2021_100429 crossref_primary_10_3389_fcell_2021_646884 crossref_primary_10_1016_j_cap_2022_09_006 crossref_primary_10_1039_D1AY00737H crossref_primary_10_1109_JSEN_2022_3178049 crossref_primary_10_1080_14737159_2021_1957833 crossref_primary_10_1016_j_snb_2025_137465 crossref_primary_10_1016_j_mtbio_2022_100263 crossref_primary_10_1021_acsomega_1c04024 crossref_primary_10_3389_fnano_2021_733126 crossref_primary_10_3390_s22010133 crossref_primary_10_1007_s00604_024_06373_6 crossref_primary_10_1364_OME_463241 crossref_primary_10_3390_bios13050549 crossref_primary_10_3390_s21103491 crossref_primary_10_1016_j_heliyon_2023_e18089 crossref_primary_10_1002_gch2_202100004 crossref_primary_10_1007_s00216_022_03918_7 crossref_primary_10_1039_D1CS01150B crossref_primary_10_1007_s11468_022_01639_2 crossref_primary_10_1007_s11468_023_01802_3 crossref_primary_10_1016_j_microc_2023_108970 crossref_primary_10_1039_D2RA01293F crossref_primary_10_1016_j_sna_2023_114617 crossref_primary_10_1016_j_apsusc_2022_153867 crossref_primary_10_1016_j_jpba_2022_114608 crossref_primary_10_1016_j_measurement_2024_115073 crossref_primary_10_1039_D1NJ00047K crossref_primary_10_1039_D2RA04162F crossref_primary_10_1109_ACCESS_2021_3138981 crossref_primary_10_1021_acs_jpcc_4c03602 crossref_primary_10_1002_admt_202201913 crossref_primary_10_3390_s21041485 crossref_primary_10_1039_D2SD00217E crossref_primary_10_1039_D3RA02560H crossref_primary_10_1007_s11082_023_04788_8 crossref_primary_10_1007_s11468_022_01669_w crossref_primary_10_3390_diagnostics11101838 crossref_primary_10_1016_j_virol_2025_110399 crossref_primary_10_1021_acsami_1c05770 crossref_primary_10_1109_TNB_2023_3342126 crossref_primary_10_1109_JSEN_2024_3349390 crossref_primary_10_1007_s00216_021_03298_4 crossref_primary_10_1109_TNB_2022_3156077 crossref_primary_10_1016_j_ccr_2021_214402 crossref_primary_10_2174_2666958702101010139 crossref_primary_10_3390_bios12090678 crossref_primary_10_3390_bios14060307 crossref_primary_10_1002_adts_202200886 crossref_primary_10_1088_1361_6528_acc8da crossref_primary_10_3390_bios11100349 crossref_primary_10_1002_adma_202107917 crossref_primary_10_1016_j_trac_2022_116878 crossref_primary_10_1016_j_bpc_2021_106691 crossref_primary_10_1016_j_physb_2022_414438 |
Cites_doi | 10.3906/sag-2004-172 10.1088/0022-3727/40/23/S02 10.1038/s41467-020-16638-2 10.1016/j.ijpharm.2011.05.068 10.1007/s11244-007-9030-7 10.1016/j.bios.2018.11.006 10.1056/NEJMc2007575 10.1128/mSphere.00344-20 10.1021/ac900007c 10.1016/S0003-2670(01)01156-4 10.1007/s12032-020-01382-w 10.1016/j.jmii.2020.03.013 10.1021/cm020732l 10.1021/nn2009485 10.1016/j.bios.2015.06.010 10.7150/thno.11335 10.1063/1.2721779 10.1002/adma.200802789 10.1007/s10295-005-0044-5 10.1002/ppsc.201700326 10.1038/s41467-018-07947-8 10.1016/j.colsurfb.2019.06.070 10.1016/j.bios.2006.11.026 10.1016/j.bios.2017.11.062 10.1016/j.jcv.2020.104412 10.1016/S0140-6736(20)30788-1 10.1016/j.talanta.2009.01.018 10.1016/j.snb.2012.05.019 10.1016/j.scitotenv.2020.139051 10.3906/sag-2004-174 10.1021/la904467b 10.1021/acsnano.0c02439 10.3390/mi11030306 10.1021/bc3004815 10.1016/j.bios.2013.02.008 10.1016/j.bios.2013.08.058 10.3389/fmicb.2020.01341 10.3390/diagnostics10030165 10.1073/pnas.2004911117 10.1021/acschemneuro.0c00201 10.1021/jp409298f 10.1016/j.bios.2018.09.024 10.1021/ja001215b 10.1021/acsnano.0c02624 10.1021/acsnano.6b06861 10.1080/14737159.2020.1757437 10.1016/j.jcis.2014.10.023 10.1371/journal.pone.0233744 10.1016/j.snb.2014.01.056 10.1016/j.snb.2018.03.167 10.1016/j.ab.2006.04.011 10.1021/acsnano.0c02823 10.1039/C4AN01079E |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION 7X8 5PM |
DOI | 10.1002/adts.202000185 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2513-0390 |
EndPage | n/a |
ExternalDocumentID | PMC7646005 10_1002_adts_202000185 ADTS202000185 |
Genre | article |
GrantInformation_xml | – fundername: Provost's Chair in Electrical and Electronic Engineering funderid: 002354–00001 – fundername: Singapore and French National Research Agency (ANR) funderid: NRF2017–ANR002 2DPS – fundername: National Research Foundation Singapore funderid: NRF2017 –ANR002 2DPS – fundername: Provost's Chair in Electrical and Electronic Engineering grantid: 002354–00001 – fundername: Singapore and French National Research Agency (ANR) grantid: NRF2017–ANR002 2DPS – fundername: ; grantid: NRF2017 –ANR002 2DPS |
GroupedDBID | 0R~ 1OC 33P 34L AAHHS AAHQN AAMNL AANLZ AAYCA AAZKR ABCUV ABDBF ACCFJ ACCZN ACGFS ACPOU ACUHS ACXQS ADBBV ADKYN ADXAS ADZMN ADZOD AEEZP AEIGN AEQDE AEUYR AFFPM AFWVQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB BFHJK DCZOG EBS EJD HGLYW LATKE LEEKS LUTES LYRES MEWTI O9- P2W ROL SUPJJ WXSBR ZZTAW AAYXX ABJNI ADMLS AEYWJ AGHNM AGYGG CITATION 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY 5PM |
ID | FETCH-LOGICAL-c4455-d84a3442afc35b90ade8c5581e387bb76587fdb64ee4b279ca893955f690698d3 |
ISSN | 2513-0390 |
IngestDate | Thu Aug 21 18:05:00 EDT 2025 Fri Jul 11 16:47:49 EDT 2025 Tue Jul 01 00:28:06 EDT 2025 Thu Apr 24 23:11:21 EDT 2025 Wed Jan 22 16:33:13 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4455-d84a3442afc35b90ade8c5581e387bb76587fdb64ee4b279ca893955f690698d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7936-2941 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7646005 |
PMID | 33173847 |
PQID | 2459624958 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7646005 proquest_miscellaneous_2459624958 crossref_primary_10_1002_adts_202000185 crossref_citationtrail_10_1002_adts_202000185 wiley_primary_10_1002_adts_202000185_ADTS202000185 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2020 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced theory and simulations |
PublicationYear | 2020 |
Publisher | John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley and Sons Inc |
References | 2015; 140 2007; 101 2018; 122 2020; 20 2009; 81 2013; 24 2019; 10 2015; 74 2019; 126 2020; 15 2020; 128 2003; 15 2020; 14 2020; 11 2020; 10 2020; 729 2012; 169 2020; 5 2010; 26 2020; 1 2020; 53 2020; 50 2020; 90 2005; 32 2000; 122 2014; 52 2007; 22 2018; 35 2014; 118 2015; 5 2011; 415 2009; 21 2020; 382 2013; 45 2018; 102 2018; 266 2020; 37 2014; 195 2015; 149–150 2019; 182 2011; 5 2006; 354 2001; 444 2009; 78 2020 2020; 395 2017; 11 2008; 47 2020; 117 2015; 439 2007; 40 Jinwoo J. (e_1_2_7_49_1) 2018; 266 Bobin L. (e_1_2_7_50_1) 2018; 102 e_1_2_7_9_1 Kebede Y. (e_1_2_7_13_1) 2020; 15 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_43_1 e_1_2_7_45_1 e_1_2_7_47_1 Mahari S. (e_1_2_7_26_1) 2020 e_1_2_7_28_1 Te L. T. (e_1_2_7_56_1) 2015; 149 Smith M. L. (e_1_2_7_3_1) 2020; 11 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 Bergquist R. (e_1_2_7_7_1) 2020; 15 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 Assis R. R. (e_1_2_7_21_1) 2020 Ambrosino I. (e_1_2_7_11_1) 2020; 90 Gupta N. (e_1_2_7_5_1) 2020; 90 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Somvanshi S. B. (e_1_2_7_18_1) 2020; 1 Yadav S. R. (e_1_2_7_1_1) 2020; 90 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 Jasti M. (e_1_2_7_2_1) 2020 Kadkhoda K. (e_1_2_7_6_1) 2020; 5 Tezer H. (e_1_2_7_15_1) 2020; 50 Huang X. (e_1_2_7_59_1) 2009; 78 |
References_xml | – volume: 415 start-page: 315 year: 2011 publication-title: Int. J. Pharm. – volume: 50 start-page: 563 year: 2020 publication-title: Turk. J. Med. Sci. – volume: 122 start-page: 16 year: 2018 publication-title: Biosens. Bioelectron. – volume: 45 start-page: 230 year: 2013 publication-title: Biosens. Bioelectron. – volume: 102 start-page: 504 year: 2018 publication-title: Biosens. Bioelectron. – volume: 52 start-page: 337 year: 2014 publication-title: Biosens. Bioelectron. – volume: 354 start-page: 220 year: 2006 publication-title: Anal. Biochem. – year: 2020 publication-title: bioRxiv – volume: 35 year: 2018 publication-title: Part. Part. Syst. Charact. – volume: 90 year: 2020 publication-title: Monaldi Arch. Chest Dis. – volume: 10 start-page: 28 year: 2019 publication-title: Nat. Commun. – volume: 140 start-page: 386 year: 2015 publication-title: Analyst – volume: 10 start-page: 165 year: 2020 publication-title: Diagnostics – volume: 74 start-page: 16 year: 2015 publication-title: Biosens. Bioelectron. – volume: 118 start-page: 1319 year: 2014 publication-title: J. Phys. Chem. B – volume: 182 year: 2019 publication-title: Colloids Surf., B – volume: 22 start-page: 2268 year: 2007 publication-title: Biosens. Bioelectron. – volume: 11 start-page: 1341 year: 2020 publication-title: Front. Microbiol. – volume: 169 start-page: 360 year: 2012 publication-title: Sens. Actuators, B – volume: 11 start-page: 2806 year: 2020 publication-title: Nat. Commun. – volume: 266 start-page: 710 year: 2018 publication-title: Sens. Actuators, B – year: 2020 publication-title: J. Neurol. – volume: 47 start-page: 49 year: 2008 publication-title: Top. Catal. – volume: 81 start-page: 2357 year: 2009 publication-title: Anal. Chem. – volume: 126 start-page: 501 year: 2019 publication-title: Biosens. Bioelectron. – volume: 128 year: 2020 publication-title: J. Clin. Virol. – volume: 195 start-page: 332 year: 2014 publication-title: Sens. Actuators, B – volume: 11 start-page: 306 year: 2020 publication-title: Micromachines – volume: 15 year: 2020 publication-title: PLoS One – volume: 149–150 start-page: 324 year: 2015 publication-title: Mater. Chem. Phys. – volume: 444 start-page: 149 year: 2001 publication-title: Anal. Chim. Acta – volume: 53 start-page: 454 year: 2020 publication-title: J. Microbiol., Immunol. Infect. – volume: 101 year: 2007 publication-title: J. Appl. Phys. – volume: 37 start-page: 58 year: 2020 publication-title: Med. Oncol. – volume: 382 year: 2020 publication-title: N. Engl. J. Med. – volume: 50 start-page: 592 year: 2020 publication-title: Turk. J. Med. Sci. – volume: 1 year: 2020 publication-title: Mater. Res. Innovations – volume: 26 start-page: 6066 year: 2010 publication-title: Langmuir – volume: 14 start-page: 5135 year: 2020 publication-title: ACS Nano – volume: 5 start-page: 4858 year: 2011 publication-title: ACS Nano – volume: 5 start-page: 818 year: 2015 publication-title: Theranostics – volume: 729 year: 2020 publication-title: Sci. Total Environ. – volume: 24 start-page: 878 year: 2013 publication-title: Bioconjugate Chem. – volume: 117 start-page: 9696 year: 2020 publication-title: Proc. Natl. Acad. Sci. USA – volume: 78 start-page: 1036 year: 2009 publication-title: Talanta – volume: 11 start-page: 1172 year: 2017 publication-title: ACS Nano – volume: 21 start-page: 4880 year: 2009 publication-title: Adv. Mater. – volume: 14 start-page: 3822 year: 2020 publication-title: ACS Nano – volume: 32 start-page: 669 year: 2005 publication-title: J. Ind. Microbiol. Biotechnol. – volume: 40 start-page: 7187 year: 2007 publication-title: J. Phys. D: Appl. Phys. – volume: 122 start-page: 9071 year: 2000 publication-title: J. Am. Chem. Soc. – volume: 15 year: 2020 publication-title: Geospat Health – volume: 439 start-page: 7 year: 2015 publication-title: J. Colloid Interface Sci. – volume: 11 start-page: 1206 year: 2020 publication-title: ACS Chem. Neurosci. – volume: 14 start-page: 5268 year: 2020 publication-title: ACS Nano – year: 2020 – volume: 15 start-page: 1957 year: 2003 publication-title: Chem. Mater. – volume: 5 year: 2020 publication-title: mSphere – volume: 395 start-page: 1101 year: 2020 publication-title: Lancet – volume: 20 start-page: 453 year: 2020 publication-title: Expert Rev. Mol. Diagn. – ident: e_1_2_7_10_1 doi: 10.3906/sag-2004-172 – ident: e_1_2_7_34_1 doi: 10.1088/0022-3727/40/23/S02 – ident: e_1_2_7_29_1 doi: 10.1038/s41467-020-16638-2 – ident: e_1_2_7_40_1 doi: 10.1016/j.ijpharm.2011.05.068 – ident: e_1_2_7_64_1 doi: 10.1007/s11244-007-9030-7 – ident: e_1_2_7_33_1 doi: 10.1016/j.bios.2018.11.006 – volume: 90 year: 2020 ident: e_1_2_7_5_1 publication-title: Monaldi Arch. Chest Dis. – volume: 149 start-page: 324 year: 2015 ident: e_1_2_7_56_1 publication-title: Mater. Chem. Phys. – ident: e_1_2_7_22_1 doi: 10.1056/NEJMc2007575 – volume: 5 start-page: e00344‐20 year: 2020 ident: e_1_2_7_6_1 publication-title: mSphere doi: 10.1128/mSphere.00344-20 – ident: e_1_2_7_54_1 doi: 10.1021/ac900007c – volume: 90 year: 2020 ident: e_1_2_7_1_1 publication-title: Monaldi Arch. Chest Dis. – ident: e_1_2_7_51_1 doi: 10.1016/S0003-2670(01)01156-4 – ident: e_1_2_7_27_1 – ident: e_1_2_7_4_1 doi: 10.1007/s12032-020-01382-w – ident: e_1_2_7_12_1 doi: 10.1016/j.jmii.2020.03.013 – ident: e_1_2_7_62_1 doi: 10.1021/cm020732l – year: 2020 ident: e_1_2_7_26_1 publication-title: bioRxiv – ident: e_1_2_7_46_1 doi: 10.1021/nn2009485 – ident: e_1_2_7_44_1 doi: 10.1016/j.bios.2015.06.010 – ident: e_1_2_7_63_1 doi: 10.7150/thno.11335 – ident: e_1_2_7_31_1 doi: 10.1063/1.2721779 – ident: e_1_2_7_60_1 doi: 10.1002/adma.200802789 – ident: e_1_2_7_53_1 doi: 10.1007/s10295-005-0044-5 – volume: 1 year: 2020 ident: e_1_2_7_18_1 publication-title: Mater. Res. Innovations – year: 2020 ident: e_1_2_7_21_1 publication-title: bioRxiv – ident: e_1_2_7_48_1 doi: 10.1002/ppsc.201700326 – ident: e_1_2_7_28_1 – ident: e_1_2_7_35_1 doi: 10.1038/s41467-018-07947-8 – ident: e_1_2_7_37_1 doi: 10.1016/j.colsurfb.2019.06.070 – ident: e_1_2_7_52_1 doi: 10.1016/j.bios.2006.11.026 – volume: 102 start-page: 504 year: 2018 ident: e_1_2_7_50_1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2017.11.062 – ident: e_1_2_7_17_1 doi: 10.1016/j.jcv.2020.104412 – ident: e_1_2_7_23_1 doi: 10.1016/S0140-6736(20)30788-1 – volume: 78 start-page: 1036 year: 2009 ident: e_1_2_7_59_1 publication-title: Talanta doi: 10.1016/j.talanta.2009.01.018 – ident: e_1_2_7_39_1 doi: 10.1016/j.snb.2012.05.019 – ident: e_1_2_7_9_1 doi: 10.1016/j.scitotenv.2020.139051 – volume: 50 start-page: 592 year: 2020 ident: e_1_2_7_15_1 publication-title: Turk. J. Med. Sci. doi: 10.3906/sag-2004-174 – ident: e_1_2_7_42_1 doi: 10.1021/la904467b – ident: e_1_2_7_25_1 doi: 10.1021/acsnano.0c02439 – ident: e_1_2_7_16_1 doi: 10.3390/mi11030306 – ident: e_1_2_7_65_1 doi: 10.1021/bc3004815 – ident: e_1_2_7_38_1 doi: 10.1016/j.bios.2013.02.008 – ident: e_1_2_7_55_1 doi: 10.1016/j.bios.2013.08.058 – volume: 11 start-page: 1341 year: 2020 ident: e_1_2_7_3_1 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.01341 – ident: e_1_2_7_19_1 doi: 10.3390/diagnostics10030165 – ident: e_1_2_7_8_1 doi: 10.1073/pnas.2004911117 – ident: e_1_2_7_14_1 doi: 10.1021/acschemneuro.0c00201 – ident: e_1_2_7_61_1 doi: 10.1021/jp409298f – ident: e_1_2_7_36_1 doi: 10.1016/j.bios.2018.09.024 – ident: e_1_2_7_57_1 doi: 10.1021/ja001215b – year: 2020 ident: e_1_2_7_2_1 publication-title: J. Neurol. – ident: e_1_2_7_24_1 doi: 10.1021/acsnano.0c02624 – ident: e_1_2_7_45_1 doi: 10.1021/acsnano.6b06861 – ident: e_1_2_7_20_1 doi: 10.1080/14737159.2020.1757437 – volume: 90 year: 2020 ident: e_1_2_7_11_1 publication-title: Monaldi Arch. Chest Dis. – ident: e_1_2_7_43_1 doi: 10.1016/j.jcis.2014.10.023 – ident: e_1_2_7_47_1 doi: 10.1021/jp409298f – volume: 15 start-page: e0233744 year: 2020 ident: e_1_2_7_13_1 publication-title: PLoS One doi: 10.1371/journal.pone.0233744 – ident: e_1_2_7_41_1 doi: 10.1016/j.snb.2014.01.056 – volume: 266 start-page: 710 year: 2018 ident: e_1_2_7_49_1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2018.03.167 – ident: e_1_2_7_58_1 doi: 10.1016/j.ab.2006.04.011 – ident: e_1_2_7_30_1 doi: 10.1021/acsnano.0c02823 – ident: e_1_2_7_32_1 doi: 10.1039/C4AN01079E – volume: 15 year: 2020 ident: e_1_2_7_7_1 publication-title: Geospat Health |
SSID | ssj0002140701 |
Score | 2.4222798 |
Snippet | The beautiful interplay between light and matter can give rise to many striking physical phenomena, surface plasmon resonance (SPR) being one of them.... |
SourceID | pubmedcentral proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2000185 |
SubjectTerms | COVID‐19 gold nanorods kretschmann layouts plasmonic immunosensors |
Title | Gold Nanorod Assisted Enhanced Plasmonic Detection Scheme of COVID‐19 SARS‐CoV‐2 Spike Protein |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadts.202000185 https://www.proquest.com/docview/2459624958 https://pubmed.ncbi.nlm.nih.gov/PMC7646005 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9sIFgQCxvGQkJA6rlI1j53FMd_sAIUBkW7WnKI4ddUU3qdqsBJw4c-I38ksYP-LNVosoXCzHcSwr82U844y_Qeglk6KMYio9xR3nUU6FlzDCPVlyMCBkBRpQR_m-Dw-P6NsTdjIY_OhFLS1bvlN-23iu5H-kCm0gV3VK9h8k6waFBqiDfKEECUN5IxkfNOdC6ccGtKB60UpkYrRXn5nf-h_BMl7oDDdT2UqTEzwDIS30PsHkw_GbqYt18JNRln7K3PWkOXZ1Msou5p-lOlSgcmP27dm0CyHQByINl9PVfGFzgvWS1lsmg0LFT36VUofduNsHS71he7pC6qndxgYE26VVLQq28d38S7fg2v0KcE59t1-h1RoYVIE3DkyS0B25oc3q5aAPP3-jujf0sYVoFfG6OnTkm_w_67za19Y7F4VoGJtJrp7P3fO30DYBlwN05na6O93ddzt2BHzRSOfTdtPtWEDH5PX6JNatnJXrcj3wtu8QaYtmdhfdsa4ITg2u7qGBrO8joTCFLaZwhyncYQo7TGGHKWwwhZsKa0z9-v7TT7BCE9QAR1ASrBGELYIeoKP9vdnk0LOZOLySUsY8EdMioJQUVRkwnowLIeOSsdiXQRxxHoEZG1WCh1RKykmUlAWYwQljlaLBTmIRPERbdVPLRwiLkscVD_0wpBUVJIrBSgs4FEnBWVkFQ-R1by4vLU29ypZynm8W1xC9cv0vDEHLH3u-6ASRgw5VP8aKWjZL6EJVDiqasHiIojUJuSEVC_v6nXp-ptnYo5CC0wCjEy3Lv0wiT6ezzF09vvHkn6Dbq4_pKdpqL5fyGZjDLX9ucfobj8KxaQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gold+Nanorod+Assisted+Enhanced+Plasmonic+Detection+Scheme+of+COVID%E2%80%9019+SARS%E2%80%90CoV%E2%80%902+Spike+Protein&rft.jtitle=Advanced+theory+and+simulations&rft.au=Das%2C+Chandreyee+Manas&rft.au=Guo%2C+Yan&rft.au=Yang%2C+Guang&rft.au=Kang%2C+Lixing&rft.date=2020-11-01&rft.issn=2513-0390&rft.eissn=2513-0390&rft.volume=3&rft.issue=11&rft_id=info:doi/10.1002%2Fadts.202000185&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adts_202000185 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2513-0390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2513-0390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2513-0390&client=summon |