Gold Nanorod Assisted Enhanced Plasmonic Detection Scheme of COVID‐19 SARS‐CoV‐2 Spike Protein

The beautiful interplay between light and matter can give rise to many striking physical phenomena, surface plasmon resonance (SPR) being one of them. Plasmonic immunosensors monitor refractive index changes that occur as a result of specific ligand–analyte or antibody–antigen interactions taking pl...

Full description

Saved in:
Bibliographic Details
Published inAdvanced theory and simulations Vol. 3; no. 11; pp. 2000185 - n/a
Main Authors Das, Chandreyee Manas, Guo, Yan, Yang, Guang, Kang, Lixing, Xu, Gaixia, Ho, Ho‐Pui, Yong, Ken‐Tye
Format Journal Article
LanguageEnglish
Published Hoboken John Wiley and Sons Inc 01.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The beautiful interplay between light and matter can give rise to many striking physical phenomena, surface plasmon resonance (SPR) being one of them. Plasmonic immunosensors monitor refractive index changes that occur as a result of specific ligand–analyte or antibody–antigen interactions taking place on the sensor surface. The coronavirus disease (COVID‐19) pandemic has jeopardized the entire world and has resulted in economic slowdown of most countries. In this work, a model of a sandwich plasmonic biosensor that utilizes gold nanorods (Au NRs) for the detection of COVID‐19 SARS‐CoV‐2 spike protein is presented. Simulation results for different prismatic configurations for the basic Kretschmann layout are presented. It is found that a BK7 glass prism‐based SPR sensor has an incremental sensitivity of 111.11 deg RIU−1. Additionally, using Comsol Multiphysics the electric field enhancement observed for various aspect ratios and layouts of Au NRs are discussed in depth. The coronavirus disease (COVID‐19) pandemic has adversely affected the entire world, where apart from stressing the medical fraternity, it has resulted in a major economic slowdown. In this paper, a unique detection scheme for quantifying SARS‐CoV‐2 virus using a plasmonic immunosensor that uses gold nanorods for signal amplification is presented.
AbstractList The beautiful interplay between light and matter can give rise to many striking physical phenomena, surface plasmon resonance (SPR) being one of them. Plasmonic immunosensors monitor refractive index changes that occur as a result of specific ligand-analyte or antibody-antigen interactions taking place on the sensor surface. The coronavirus disease (COVID-19) pandemic has jeopardized the entire world and has resulted in economic slowdown of most countries. In this work, a model of a sandwich plasmonic biosensor that utilizes gold nanorods (Au NRs) for the detection of COVID-19 SARS-CoV-2 spike protein is presented. Simulation results for different prismatic configurations for the basic Kretschmann layout are presented. It is found that a BK7 glass prism-based SPR sensor has an incremental sensitivity of 111.11 deg RIU-1. Additionally, using Comsol Multiphysics the electric field enhancement observed for various aspect ratios and layouts of Au NRs are discussed in depth.The beautiful interplay between light and matter can give rise to many striking physical phenomena, surface plasmon resonance (SPR) being one of them. Plasmonic immunosensors monitor refractive index changes that occur as a result of specific ligand-analyte or antibody-antigen interactions taking place on the sensor surface. The coronavirus disease (COVID-19) pandemic has jeopardized the entire world and has resulted in economic slowdown of most countries. In this work, a model of a sandwich plasmonic biosensor that utilizes gold nanorods (Au NRs) for the detection of COVID-19 SARS-CoV-2 spike protein is presented. Simulation results for different prismatic configurations for the basic Kretschmann layout are presented. It is found that a BK7 glass prism-based SPR sensor has an incremental sensitivity of 111.11 deg RIU-1. Additionally, using Comsol Multiphysics the electric field enhancement observed for various aspect ratios and layouts of Au NRs are discussed in depth.
The beautiful interplay between light and matter can give rise to many striking physical phenomena, surface plasmon resonance (SPR) being one of them. Plasmonic immunosensors monitor refractive index changes that occur as a result of specific ligand–analyte or antibody–antigen interactions taking place on the sensor surface. The coronavirus disease (COVID‐19) pandemic has jeopardized the entire world and has resulted in economic slowdown of most countries. In this work, a model of a sandwich plasmonic biosensor that utilizes gold nanorods (Au NRs) for the detection of COVID‐19 SARS‐CoV‐2 spike protein is presented. Simulation results for different prismatic configurations for the basic Kretschmann layout are presented. It is found that a BK7 glass prism‐based SPR sensor has an incremental sensitivity of 111.11 deg RIU −1 . Additionally, using Comsol Multiphysics the electric field enhancement observed for various aspect ratios and layouts of Au NRs are discussed in depth.
The beautiful interplay between light and matter can give rise to many striking physical phenomena, surface plasmon resonance (SPR) being one of them. Plasmonic immunosensors monitor refractive index changes that occur as a result of specific ligand–analyte or antibody–antigen interactions taking place on the sensor surface. The coronavirus disease (COVID‐19) pandemic has jeopardized the entire world and has resulted in economic slowdown of most countries. In this work, a model of a sandwich plasmonic biosensor that utilizes gold nanorods (Au NRs) for the detection of COVID‐19 SARS‐CoV‐2 spike protein is presented. Simulation results for different prismatic configurations for the basic Kretschmann layout are presented. It is found that a BK7 glass prism‐based SPR sensor has an incremental sensitivity of 111.11 deg RIU−1. Additionally, using Comsol Multiphysics the electric field enhancement observed for various aspect ratios and layouts of Au NRs are discussed in depth. The coronavirus disease (COVID‐19) pandemic has adversely affected the entire world, where apart from stressing the medical fraternity, it has resulted in a major economic slowdown. In this paper, a unique detection scheme for quantifying SARS‐CoV‐2 virus using a plasmonic immunosensor that uses gold nanorods for signal amplification is presented.
The beautiful interplay between light and matter can give rise to many striking physical phenomena, surface plasmon resonance (SPR) being one of them. Plasmonic immunosensors monitor refractive index changes that occur as a result of specific ligand–analyte or antibody–antigen interactions taking place on the sensor surface. The coronavirus disease (COVID‐19) pandemic has jeopardized the entire world and has resulted in economic slowdown of most countries. In this work, a model of a sandwich plasmonic biosensor that utilizes gold nanorods (Au NRs) for the detection of COVID‐19 SARS‐CoV‐2 spike protein is presented. Simulation results for different prismatic configurations for the basic Kretschmann layout are presented. It is found that a BK7 glass prism‐based SPR sensor has an incremental sensitivity of 111.11 deg RIU −1 . Additionally, using Comsol Multiphysics the electric field enhancement observed for various aspect ratios and layouts of Au NRs are discussed in depth. The coronavirus disease (COVID‐19) pandemic has adversely affected the entire world, where apart from stressing the medical fraternity, it has resulted in a major economic slowdown. In this paper, a unique detection scheme for quantifying SARS‐CoV‐2 virus using a plasmonic immunosensor that uses gold nanorods for signal amplification is presented.
Author Guo, Yan
Xu, Gaixia
Yang, Guang
Das, Chandreyee Manas
Ho, Ho‐Pui
Yong, Ken‐Tye
Kang, Lixing
AuthorAffiliation 5 Department of Biomedical Engineering The Chinese University of Hong Kong New Territories Hong Kong SAR 999077 China
4 Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging Department of Biomedical Engineering School of Medicine Shenzhen University Shenzhen 518060 China
1 CINTRA CNRS/NTU/THALES UMI 3288 Research Techno Plaza 50 Nanyang Drive Border X Block Singapore 637553 Singapore
3 School of Automation Hangzhou Dianzi University Hangzhou Zhejiang 310018 China
2 School of Electrical and Electronic Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
AuthorAffiliation_xml – name: 4 Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging Department of Biomedical Engineering School of Medicine Shenzhen University Shenzhen 518060 China
– name: 5 Department of Biomedical Engineering The Chinese University of Hong Kong New Territories Hong Kong SAR 999077 China
– name: 2 School of Electrical and Electronic Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
– name: 1 CINTRA CNRS/NTU/THALES UMI 3288 Research Techno Plaza 50 Nanyang Drive Border X Block Singapore 637553 Singapore
– name: 3 School of Automation Hangzhou Dianzi University Hangzhou Zhejiang 310018 China
Author_xml – sequence: 1
  givenname: Chandreyee Manas
  surname: Das
  fullname: Das, Chandreyee Manas
  organization: Nanyang Technological University
– sequence: 2
  givenname: Yan
  surname: Guo
  fullname: Guo, Yan
  organization: Hangzhou Dianzi University
– sequence: 3
  givenname: Guang
  surname: Yang
  fullname: Yang, Guang
  organization: Nanyang Technological University
– sequence: 4
  givenname: Lixing
  surname: Kang
  fullname: Kang, Lixing
  organization: Nanyang Technological University
– sequence: 5
  givenname: Gaixia
  surname: Xu
  fullname: Xu, Gaixia
  organization: Shenzhen University
– sequence: 6
  givenname: Ho‐Pui
  surname: Ho
  fullname: Ho, Ho‐Pui
  organization: The Chinese University of Hong Kong
– sequence: 7
  givenname: Ken‐Tye
  orcidid: 0000-0001-7936-2941
  surname: Yong
  fullname: Yong, Ken‐Tye
  email: ktyong@ntu.edu.sg
  organization: Nanyang Technological University
BookMark eNqFkc1O3DAUhS1EBZSyZe1lNzP4N7E3SKMZCkioIELZWo5903FJ7GmcacWuj9Bn7JM0o0G0VELd2Efy-c698nmLdmOKgNAxJVNKCDuxfshTRhghhCq5gw6YpHxCuCa7f-l9dJTzl9HDqCAloXton3NaciXKA-TPU-vxRxtTnzye5RzyAB6fxaWNbhQ3rc1disHhBQzghpAirtwSOsCpwfPr-8vFrx8_qcbV7LYa1TzdjyfD1So8AL7p0wAhvkNvGttmOHq6D9GnD2d384vJ1fX55Xx2NXFCSDnxSlguBLON47LWxHpQTkpFgauyrstCqrLxdSEARM1K7azSXEvZFJoUWnl-iE63uat13YF3EIfetmbVh872jybZYF6-xLA0n9M3UxaiIESOAe-fAvr0dQ15MF3IDtrWRkjrbJiQumBCSzVap1ur61POPTTPYygxm3bMph3z3M4IiH8AFwa7-dBxldC-jukt9j208PifIWa2uKv-sL8B4uunMA
CitedBy_id crossref_primary_10_1007_s10965_025_04305_3
crossref_primary_10_1002_adts_202100292
crossref_primary_10_1039_D4NR04423A
crossref_primary_10_1016_j_sbsr_2021_100429
crossref_primary_10_3389_fcell_2021_646884
crossref_primary_10_1016_j_cap_2022_09_006
crossref_primary_10_1039_D1AY00737H
crossref_primary_10_1109_JSEN_2022_3178049
crossref_primary_10_1080_14737159_2021_1957833
crossref_primary_10_1016_j_snb_2025_137465
crossref_primary_10_1016_j_mtbio_2022_100263
crossref_primary_10_1021_acsomega_1c04024
crossref_primary_10_3389_fnano_2021_733126
crossref_primary_10_3390_s22010133
crossref_primary_10_1007_s00604_024_06373_6
crossref_primary_10_1364_OME_463241
crossref_primary_10_3390_bios13050549
crossref_primary_10_3390_s21103491
crossref_primary_10_1016_j_heliyon_2023_e18089
crossref_primary_10_1002_gch2_202100004
crossref_primary_10_1007_s00216_022_03918_7
crossref_primary_10_1039_D1CS01150B
crossref_primary_10_1007_s11468_022_01639_2
crossref_primary_10_1007_s11468_023_01802_3
crossref_primary_10_1016_j_microc_2023_108970
crossref_primary_10_1039_D2RA01293F
crossref_primary_10_1016_j_sna_2023_114617
crossref_primary_10_1016_j_apsusc_2022_153867
crossref_primary_10_1016_j_jpba_2022_114608
crossref_primary_10_1016_j_measurement_2024_115073
crossref_primary_10_1039_D1NJ00047K
crossref_primary_10_1039_D2RA04162F
crossref_primary_10_1109_ACCESS_2021_3138981
crossref_primary_10_1021_acs_jpcc_4c03602
crossref_primary_10_1002_admt_202201913
crossref_primary_10_3390_s21041485
crossref_primary_10_1039_D2SD00217E
crossref_primary_10_1039_D3RA02560H
crossref_primary_10_1007_s11082_023_04788_8
crossref_primary_10_1007_s11468_022_01669_w
crossref_primary_10_3390_diagnostics11101838
crossref_primary_10_1016_j_virol_2025_110399
crossref_primary_10_1021_acsami_1c05770
crossref_primary_10_1109_TNB_2023_3342126
crossref_primary_10_1109_JSEN_2024_3349390
crossref_primary_10_1007_s00216_021_03298_4
crossref_primary_10_1109_TNB_2022_3156077
crossref_primary_10_1016_j_ccr_2021_214402
crossref_primary_10_2174_2666958702101010139
crossref_primary_10_3390_bios12090678
crossref_primary_10_3390_bios14060307
crossref_primary_10_1002_adts_202200886
crossref_primary_10_1088_1361_6528_acc8da
crossref_primary_10_3390_bios11100349
crossref_primary_10_1002_adma_202107917
crossref_primary_10_1016_j_trac_2022_116878
crossref_primary_10_1016_j_bpc_2021_106691
crossref_primary_10_1016_j_physb_2022_414438
Cites_doi 10.3906/sag-2004-172
10.1088/0022-3727/40/23/S02
10.1038/s41467-020-16638-2
10.1016/j.ijpharm.2011.05.068
10.1007/s11244-007-9030-7
10.1016/j.bios.2018.11.006
10.1056/NEJMc2007575
10.1128/mSphere.00344-20
10.1021/ac900007c
10.1016/S0003-2670(01)01156-4
10.1007/s12032-020-01382-w
10.1016/j.jmii.2020.03.013
10.1021/cm020732l
10.1021/nn2009485
10.1016/j.bios.2015.06.010
10.7150/thno.11335
10.1063/1.2721779
10.1002/adma.200802789
10.1007/s10295-005-0044-5
10.1002/ppsc.201700326
10.1038/s41467-018-07947-8
10.1016/j.colsurfb.2019.06.070
10.1016/j.bios.2006.11.026
10.1016/j.bios.2017.11.062
10.1016/j.jcv.2020.104412
10.1016/S0140-6736(20)30788-1
10.1016/j.talanta.2009.01.018
10.1016/j.snb.2012.05.019
10.1016/j.scitotenv.2020.139051
10.3906/sag-2004-174
10.1021/la904467b
10.1021/acsnano.0c02439
10.3390/mi11030306
10.1021/bc3004815
10.1016/j.bios.2013.02.008
10.1016/j.bios.2013.08.058
10.3389/fmicb.2020.01341
10.3390/diagnostics10030165
10.1073/pnas.2004911117
10.1021/acschemneuro.0c00201
10.1021/jp409298f
10.1016/j.bios.2018.09.024
10.1021/ja001215b
10.1021/acsnano.0c02624
10.1021/acsnano.6b06861
10.1080/14737159.2020.1757437
10.1016/j.jcis.2014.10.023
10.1371/journal.pone.0233744
10.1016/j.snb.2014.01.056
10.1016/j.snb.2018.03.167
10.1016/j.ab.2006.04.011
10.1021/acsnano.0c02823
10.1039/C4AN01079E
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley‐VCH GmbH.
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
7X8
5PM
DOI 10.1002/adts.202000185
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef


DeliveryMethod fulltext_linktorsrc
EISSN 2513-0390
EndPage n/a
ExternalDocumentID PMC7646005
10_1002_adts_202000185
ADTS202000185
Genre article
GrantInformation_xml – fundername: Provost's Chair in Electrical and Electronic Engineering
  funderid: 002354–00001
– fundername: Singapore and French National Research Agency (ANR)
  funderid: NRF2017–ANR002 2DPS
– fundername: National Research Foundation Singapore
  funderid: NRF2017 –ANR002 2DPS
– fundername: Provost's Chair in Electrical and Electronic Engineering
  grantid: 002354–00001
– fundername: Singapore and French National Research Agency (ANR)
  grantid: NRF2017–ANR002 2DPS
– fundername: ;
  grantid: NRF2017 –ANR002 2DPS
GroupedDBID 0R~
1OC
33P
34L
AAHHS
AAHQN
AAMNL
AANLZ
AAYCA
AAZKR
ABCUV
ABDBF
ACCFJ
ACCZN
ACGFS
ACPOU
ACUHS
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEQDE
AEUYR
AFFPM
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
BFHJK
DCZOG
EBS
EJD
HGLYW
LATKE
LEEKS
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WXSBR
ZZTAW
AAYXX
ABJNI
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
5PM
ID FETCH-LOGICAL-c4455-d84a3442afc35b90ade8c5581e387bb76587fdb64ee4b279ca893955f690698d3
ISSN 2513-0390
IngestDate Thu Aug 21 18:05:00 EDT 2025
Fri Jul 11 16:47:49 EDT 2025
Tue Jul 01 00:28:06 EDT 2025
Thu Apr 24 23:11:21 EDT 2025
Wed Jan 22 16:33:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4455-d84a3442afc35b90ade8c5581e387bb76587fdb64ee4b279ca893955f690698d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7936-2941
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7646005
PMID 33173847
PQID 2459624958
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7646005
proquest_miscellaneous_2459624958
crossref_primary_10_1002_adts_202000185
crossref_citationtrail_10_1002_adts_202000185
wiley_primary_10_1002_adts_202000185_ADTS202000185
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2020
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced theory and simulations
PublicationYear 2020
Publisher John Wiley and Sons Inc
Publisher_xml – name: John Wiley and Sons Inc
References 2015; 140
2007; 101
2018; 122
2020; 20
2009; 81
2013; 24
2019; 10
2015; 74
2019; 126
2020; 15
2020; 128
2003; 15
2020; 14
2020; 11
2020; 10
2020; 729
2012; 169
2020; 5
2010; 26
2020; 1
2020; 53
2020; 50
2020; 90
2005; 32
2000; 122
2014; 52
2007; 22
2018; 35
2014; 118
2015; 5
2011; 415
2009; 21
2020; 382
2013; 45
2018; 102
2018; 266
2020; 37
2014; 195
2015; 149–150
2019; 182
2011; 5
2006; 354
2001; 444
2009; 78
2020
2020; 395
2017; 11
2008; 47
2020; 117
2015; 439
2007; 40
Jinwoo J. (e_1_2_7_49_1) 2018; 266
Bobin L. (e_1_2_7_50_1) 2018; 102
e_1_2_7_9_1
Kebede Y. (e_1_2_7_13_1) 2020; 15
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_43_1
e_1_2_7_45_1
e_1_2_7_47_1
Mahari S. (e_1_2_7_26_1) 2020
e_1_2_7_28_1
Te L. T. (e_1_2_7_56_1) 2015; 149
Smith M. L. (e_1_2_7_3_1) 2020; 11
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
Bergquist R. (e_1_2_7_7_1) 2020; 15
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
Assis R. R. (e_1_2_7_21_1) 2020
Ambrosino I. (e_1_2_7_11_1) 2020; 90
Gupta N. (e_1_2_7_5_1) 2020; 90
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Somvanshi S. B. (e_1_2_7_18_1) 2020; 1
Yadav S. R. (e_1_2_7_1_1) 2020; 90
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
Jasti M. (e_1_2_7_2_1) 2020
Kadkhoda K. (e_1_2_7_6_1) 2020; 5
Tezer H. (e_1_2_7_15_1) 2020; 50
Huang X. (e_1_2_7_59_1) 2009; 78
References_xml – volume: 415
  start-page: 315
  year: 2011
  publication-title: Int. J. Pharm.
– volume: 50
  start-page: 563
  year: 2020
  publication-title: Turk. J. Med. Sci.
– volume: 122
  start-page: 16
  year: 2018
  publication-title: Biosens. Bioelectron.
– volume: 45
  start-page: 230
  year: 2013
  publication-title: Biosens. Bioelectron.
– volume: 102
  start-page: 504
  year: 2018
  publication-title: Biosens. Bioelectron.
– volume: 52
  start-page: 337
  year: 2014
  publication-title: Biosens. Bioelectron.
– volume: 354
  start-page: 220
  year: 2006
  publication-title: Anal. Biochem.
– year: 2020
  publication-title: bioRxiv
– volume: 35
  year: 2018
  publication-title: Part. Part. Syst. Charact.
– volume: 90
  year: 2020
  publication-title: Monaldi Arch. Chest Dis.
– volume: 10
  start-page: 28
  year: 2019
  publication-title: Nat. Commun.
– volume: 140
  start-page: 386
  year: 2015
  publication-title: Analyst
– volume: 10
  start-page: 165
  year: 2020
  publication-title: Diagnostics
– volume: 74
  start-page: 16
  year: 2015
  publication-title: Biosens. Bioelectron.
– volume: 118
  start-page: 1319
  year: 2014
  publication-title: J. Phys. Chem. B
– volume: 182
  year: 2019
  publication-title: Colloids Surf., B
– volume: 22
  start-page: 2268
  year: 2007
  publication-title: Biosens. Bioelectron.
– volume: 11
  start-page: 1341
  year: 2020
  publication-title: Front. Microbiol.
– volume: 169
  start-page: 360
  year: 2012
  publication-title: Sens. Actuators, B
– volume: 11
  start-page: 2806
  year: 2020
  publication-title: Nat. Commun.
– volume: 266
  start-page: 710
  year: 2018
  publication-title: Sens. Actuators, B
– year: 2020
  publication-title: J. Neurol.
– volume: 47
  start-page: 49
  year: 2008
  publication-title: Top. Catal.
– volume: 81
  start-page: 2357
  year: 2009
  publication-title: Anal. Chem.
– volume: 126
  start-page: 501
  year: 2019
  publication-title: Biosens. Bioelectron.
– volume: 128
  year: 2020
  publication-title: J. Clin. Virol.
– volume: 195
  start-page: 332
  year: 2014
  publication-title: Sens. Actuators, B
– volume: 11
  start-page: 306
  year: 2020
  publication-title: Micromachines
– volume: 15
  year: 2020
  publication-title: PLoS One
– volume: 149–150
  start-page: 324
  year: 2015
  publication-title: Mater. Chem. Phys.
– volume: 444
  start-page: 149
  year: 2001
  publication-title: Anal. Chim. Acta
– volume: 53
  start-page: 454
  year: 2020
  publication-title: J. Microbiol., Immunol. Infect.
– volume: 101
  year: 2007
  publication-title: J. Appl. Phys.
– volume: 37
  start-page: 58
  year: 2020
  publication-title: Med. Oncol.
– volume: 382
  year: 2020
  publication-title: N. Engl. J. Med.
– volume: 50
  start-page: 592
  year: 2020
  publication-title: Turk. J. Med. Sci.
– volume: 1
  year: 2020
  publication-title: Mater. Res. Innovations
– volume: 26
  start-page: 6066
  year: 2010
  publication-title: Langmuir
– volume: 14
  start-page: 5135
  year: 2020
  publication-title: ACS Nano
– volume: 5
  start-page: 4858
  year: 2011
  publication-title: ACS Nano
– volume: 5
  start-page: 818
  year: 2015
  publication-title: Theranostics
– volume: 729
  year: 2020
  publication-title: Sci. Total Environ.
– volume: 24
  start-page: 878
  year: 2013
  publication-title: Bioconjugate Chem.
– volume: 117
  start-page: 9696
  year: 2020
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 78
  start-page: 1036
  year: 2009
  publication-title: Talanta
– volume: 11
  start-page: 1172
  year: 2017
  publication-title: ACS Nano
– volume: 21
  start-page: 4880
  year: 2009
  publication-title: Adv. Mater.
– volume: 14
  start-page: 3822
  year: 2020
  publication-title: ACS Nano
– volume: 32
  start-page: 669
  year: 2005
  publication-title: J. Ind. Microbiol. Biotechnol.
– volume: 40
  start-page: 7187
  year: 2007
  publication-title: J. Phys. D: Appl. Phys.
– volume: 122
  start-page: 9071
  year: 2000
  publication-title: J. Am. Chem. Soc.
– volume: 15
  year: 2020
  publication-title: Geospat Health
– volume: 439
  start-page: 7
  year: 2015
  publication-title: J. Colloid Interface Sci.
– volume: 11
  start-page: 1206
  year: 2020
  publication-title: ACS Chem. Neurosci.
– volume: 14
  start-page: 5268
  year: 2020
  publication-title: ACS Nano
– year: 2020
– volume: 15
  start-page: 1957
  year: 2003
  publication-title: Chem. Mater.
– volume: 5
  year: 2020
  publication-title: mSphere
– volume: 395
  start-page: 1101
  year: 2020
  publication-title: Lancet
– volume: 20
  start-page: 453
  year: 2020
  publication-title: Expert Rev. Mol. Diagn.
– ident: e_1_2_7_10_1
  doi: 10.3906/sag-2004-172
– ident: e_1_2_7_34_1
  doi: 10.1088/0022-3727/40/23/S02
– ident: e_1_2_7_29_1
  doi: 10.1038/s41467-020-16638-2
– ident: e_1_2_7_40_1
  doi: 10.1016/j.ijpharm.2011.05.068
– ident: e_1_2_7_64_1
  doi: 10.1007/s11244-007-9030-7
– ident: e_1_2_7_33_1
  doi: 10.1016/j.bios.2018.11.006
– volume: 90
  year: 2020
  ident: e_1_2_7_5_1
  publication-title: Monaldi Arch. Chest Dis.
– volume: 149
  start-page: 324
  year: 2015
  ident: e_1_2_7_56_1
  publication-title: Mater. Chem. Phys.
– ident: e_1_2_7_22_1
  doi: 10.1056/NEJMc2007575
– volume: 5
  start-page: e00344‐20
  year: 2020
  ident: e_1_2_7_6_1
  publication-title: mSphere
  doi: 10.1128/mSphere.00344-20
– ident: e_1_2_7_54_1
  doi: 10.1021/ac900007c
– volume: 90
  year: 2020
  ident: e_1_2_7_1_1
  publication-title: Monaldi Arch. Chest Dis.
– ident: e_1_2_7_51_1
  doi: 10.1016/S0003-2670(01)01156-4
– ident: e_1_2_7_27_1
– ident: e_1_2_7_4_1
  doi: 10.1007/s12032-020-01382-w
– ident: e_1_2_7_12_1
  doi: 10.1016/j.jmii.2020.03.013
– ident: e_1_2_7_62_1
  doi: 10.1021/cm020732l
– year: 2020
  ident: e_1_2_7_26_1
  publication-title: bioRxiv
– ident: e_1_2_7_46_1
  doi: 10.1021/nn2009485
– ident: e_1_2_7_44_1
  doi: 10.1016/j.bios.2015.06.010
– ident: e_1_2_7_63_1
  doi: 10.7150/thno.11335
– ident: e_1_2_7_31_1
  doi: 10.1063/1.2721779
– ident: e_1_2_7_60_1
  doi: 10.1002/adma.200802789
– ident: e_1_2_7_53_1
  doi: 10.1007/s10295-005-0044-5
– volume: 1
  year: 2020
  ident: e_1_2_7_18_1
  publication-title: Mater. Res. Innovations
– year: 2020
  ident: e_1_2_7_21_1
  publication-title: bioRxiv
– ident: e_1_2_7_48_1
  doi: 10.1002/ppsc.201700326
– ident: e_1_2_7_28_1
– ident: e_1_2_7_35_1
  doi: 10.1038/s41467-018-07947-8
– ident: e_1_2_7_37_1
  doi: 10.1016/j.colsurfb.2019.06.070
– ident: e_1_2_7_52_1
  doi: 10.1016/j.bios.2006.11.026
– volume: 102
  start-page: 504
  year: 2018
  ident: e_1_2_7_50_1
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2017.11.062
– ident: e_1_2_7_17_1
  doi: 10.1016/j.jcv.2020.104412
– ident: e_1_2_7_23_1
  doi: 10.1016/S0140-6736(20)30788-1
– volume: 78
  start-page: 1036
  year: 2009
  ident: e_1_2_7_59_1
  publication-title: Talanta
  doi: 10.1016/j.talanta.2009.01.018
– ident: e_1_2_7_39_1
  doi: 10.1016/j.snb.2012.05.019
– ident: e_1_2_7_9_1
  doi: 10.1016/j.scitotenv.2020.139051
– volume: 50
  start-page: 592
  year: 2020
  ident: e_1_2_7_15_1
  publication-title: Turk. J. Med. Sci.
  doi: 10.3906/sag-2004-174
– ident: e_1_2_7_42_1
  doi: 10.1021/la904467b
– ident: e_1_2_7_25_1
  doi: 10.1021/acsnano.0c02439
– ident: e_1_2_7_16_1
  doi: 10.3390/mi11030306
– ident: e_1_2_7_65_1
  doi: 10.1021/bc3004815
– ident: e_1_2_7_38_1
  doi: 10.1016/j.bios.2013.02.008
– ident: e_1_2_7_55_1
  doi: 10.1016/j.bios.2013.08.058
– volume: 11
  start-page: 1341
  year: 2020
  ident: e_1_2_7_3_1
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.01341
– ident: e_1_2_7_19_1
  doi: 10.3390/diagnostics10030165
– ident: e_1_2_7_8_1
  doi: 10.1073/pnas.2004911117
– ident: e_1_2_7_14_1
  doi: 10.1021/acschemneuro.0c00201
– ident: e_1_2_7_61_1
  doi: 10.1021/jp409298f
– ident: e_1_2_7_36_1
  doi: 10.1016/j.bios.2018.09.024
– ident: e_1_2_7_57_1
  doi: 10.1021/ja001215b
– year: 2020
  ident: e_1_2_7_2_1
  publication-title: J. Neurol.
– ident: e_1_2_7_24_1
  doi: 10.1021/acsnano.0c02624
– ident: e_1_2_7_45_1
  doi: 10.1021/acsnano.6b06861
– ident: e_1_2_7_20_1
  doi: 10.1080/14737159.2020.1757437
– volume: 90
  year: 2020
  ident: e_1_2_7_11_1
  publication-title: Monaldi Arch. Chest Dis.
– ident: e_1_2_7_43_1
  doi: 10.1016/j.jcis.2014.10.023
– ident: e_1_2_7_47_1
  doi: 10.1021/jp409298f
– volume: 15
  start-page: e0233744
  year: 2020
  ident: e_1_2_7_13_1
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0233744
– ident: e_1_2_7_41_1
  doi: 10.1016/j.snb.2014.01.056
– volume: 266
  start-page: 710
  year: 2018
  ident: e_1_2_7_49_1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2018.03.167
– ident: e_1_2_7_58_1
  doi: 10.1016/j.ab.2006.04.011
– ident: e_1_2_7_30_1
  doi: 10.1021/acsnano.0c02823
– ident: e_1_2_7_32_1
  doi: 10.1039/C4AN01079E
– volume: 15
  year: 2020
  ident: e_1_2_7_7_1
  publication-title: Geospat Health
SSID ssj0002140701
Score 2.4222798
Snippet The beautiful interplay between light and matter can give rise to many striking physical phenomena, surface plasmon resonance (SPR) being one of them....
SourceID pubmedcentral
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2000185
SubjectTerms COVID‐19
gold nanorods
kretschmann layouts
plasmonic immunosensors
Title Gold Nanorod Assisted Enhanced Plasmonic Detection Scheme of COVID‐19 SARS‐CoV‐2 Spike Protein
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadts.202000185
https://www.proquest.com/docview/2459624958
https://pubmed.ncbi.nlm.nih.gov/PMC7646005
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9sIFgQCxvGQkJA6rlI1j53FMd_sAIUBkW7WnKI4ddUU3qdqsBJw4c-I38ksYP-LNVosoXCzHcSwr82U844y_Qeglk6KMYio9xR3nUU6FlzDCPVlyMCBkBRpQR_m-Dw-P6NsTdjIY_OhFLS1bvlN-23iu5H-kCm0gV3VK9h8k6waFBqiDfKEECUN5IxkfNOdC6ccGtKB60UpkYrRXn5nf-h_BMl7oDDdT2UqTEzwDIS30PsHkw_GbqYt18JNRln7K3PWkOXZ1Msou5p-lOlSgcmP27dm0CyHQByINl9PVfGFzgvWS1lsmg0LFT36VUofduNsHS71he7pC6qndxgYE26VVLQq28d38S7fg2v0KcE59t1-h1RoYVIE3DkyS0B25oc3q5aAPP3-jujf0sYVoFfG6OnTkm_w_67za19Y7F4VoGJtJrp7P3fO30DYBlwN05na6O93ddzt2BHzRSOfTdtPtWEDH5PX6JNatnJXrcj3wtu8QaYtmdhfdsa4ITg2u7qGBrO8joTCFLaZwhyncYQo7TGGHKWwwhZsKa0z9-v7TT7BCE9QAR1ASrBGELYIeoKP9vdnk0LOZOLySUsY8EdMioJQUVRkwnowLIeOSsdiXQRxxHoEZG1WCh1RKykmUlAWYwQljlaLBTmIRPERbdVPLRwiLkscVD_0wpBUVJIrBSgs4FEnBWVkFQ-R1by4vLU29ypZynm8W1xC9cv0vDEHLH3u-6ASRgw5VP8aKWjZL6EJVDiqasHiIojUJuSEVC_v6nXp-ptnYo5CC0wCjEy3Lv0wiT6ezzF09vvHkn6Dbq4_pKdpqL5fyGZjDLX9ucfobj8KxaQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gold+Nanorod+Assisted+Enhanced+Plasmonic+Detection+Scheme+of+COVID%E2%80%9019+SARS%E2%80%90CoV%E2%80%902+Spike+Protein&rft.jtitle=Advanced+theory+and+simulations&rft.au=Das%2C+Chandreyee+Manas&rft.au=Guo%2C+Yan&rft.au=Yang%2C+Guang&rft.au=Kang%2C+Lixing&rft.date=2020-11-01&rft.issn=2513-0390&rft.eissn=2513-0390&rft.volume=3&rft.issue=11&rft_id=info:doi/10.1002%2Fadts.202000185&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adts_202000185
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2513-0390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2513-0390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2513-0390&client=summon