Effect of plasma compression on plasma sheet stability

Plasma sheet stability to the ballooning mode is analyzed using several physical formulations: ideal MHD, stochastic theory, fast‐MHD, and the Kruskal‐Oberman formulation. It is shown that the major difference among them lies in the plasma compression expression. Explicit computations using the corr...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 26; no. 17; pp. 2705 - 2708
Main Author Lee, D.-Y.
Format Journal Article
LanguageEnglish
Published Washington, DC Blackwell Publishing Ltd 01.09.1999
American Geophysical Union
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plasma sheet stability to the ballooning mode is analyzed using several physical formulations: ideal MHD, stochastic theory, fast‐MHD, and the Kruskal‐Oberman formulation. It is shown that the major difference among them lies in the plasma compression expression. Explicit computations using the corresponding ballooning equations were performed for two different types of model field lines. For very high β field lines that are excessively stretched where the stochastic description is most appropriate, the ballooning mode is found to be stable or at best weakly unstable. For field lines that are not too much stretched but even rather round, the ballooning instability can be triggered, within both ideal MHD and the stochastic theory, when βe > βec: Here the threshold value of the equatorial beta, βec, is roughly less than unity and practically set by the ideal MHD limit. Also in contrast to a recent suggestion, the fast‐MHD description where the time scale of interest is too short to allow plasma parallel motion is shown to be more stable than ideal MHD. It indicates no instability in all the equilibria that were tested. The Kruskal‐Oberman description is even more stable than fast‐MHD.
AbstractList Plasma sheet stability to the ballooning mode is analyzed using several physical formulations: ideal MHD, stochastic theory, fast-MHD, and the Kruskal-Oberman formulation. It is shown that the major difference among them lies in the plasma compression expression. Explicit computations using the corresponding ballooning equations were performed for two different types of model field lines. For very high beta field lines that are excessively stretched where the stochastic description is most appropriate, the ballooning mode is found to be stable or at best weakly unstable. For field lines that are not too much stretched but even rather round, the ballooning instability can be triggered, within both ideal MHD and the stochastic theory, when beta sub(e) > beta sub(e) super(c) : here the threshold value of the equatorial beta, beta sub(e) super(c) , is roughly less than unity and practically set by the ideal MHD limit. Also in contrast to a recent suggestion, the fast-MHD description where the time scale of interest is too short to allow plasma parallel motion is shown to be more stable than ideal MHD. It indicates no instability in all the equilibria that were tested. The Kruskal-Oberman description is even more stable than fast-MHD.
Plasma sheet stability to the ballooning mode is analyzed using several physical formulations: ideal MHD, stochastic theory, fast‐MHD, and the Kruskal‐Oberman formulation. It is shown that the major difference among them lies in the plasma compression expression. Explicit computations using the corresponding ballooning equations were performed for two different types of model field lines. For very high β field lines that are excessively stretched where the stochastic description is most appropriate, the ballooning mode is found to be stable or at best weakly unstable. For field lines that are not too much stretched but even rather round, the ballooning instability can be triggered, within both ideal MHD and the stochastic theory, when β e > β e c : Here the threshold value of the equatorial beta, β e c , is roughly less than unity and practically set by the ideal MHD limit. Also in contrast to a recent suggestion, the fast‐MHD description where the time scale of interest is too short to allow plasma parallel motion is shown to be more stable than ideal MHD. It indicates no instability in all the equilibria that were tested. The Kruskal‐Oberman description is even more stable than fast‐MHD.
Plasma sheet stability to the ballooning mode is analyzed using several physical formulations: ideal MHD, stochastic theory, fast‐MHD, and the Kruskal‐Oberman formulation. It is shown that the major difference among them lies in the plasma compression expression. Explicit computations using the corresponding ballooning equations were performed for two different types of model field lines. For very high β field lines that are excessively stretched where the stochastic description is most appropriate, the ballooning mode is found to be stable or at best weakly unstable. For field lines that are not too much stretched but even rather round, the ballooning instability can be triggered, within both ideal MHD and the stochastic theory, when βe > βec: Here the threshold value of the equatorial beta, βec, is roughly less than unity and practically set by the ideal MHD limit. Also in contrast to a recent suggestion, the fast‐MHD description where the time scale of interest is too short to allow plasma parallel motion is shown to be more stable than ideal MHD. It indicates no instability in all the equilibria that were tested. The Kruskal‐Oberman description is even more stable than fast‐MHD.
Author Lee, D.-Y.
Author_xml – sequence: 1
  givenname: D.-Y.
  surname: Lee
  fullname: Lee, D.-Y.
  organization: Center for Plasma and Fusion Studies, Korea Advanced Institute of Science and Technology, Taejon, Korea
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1930953$$DView record in Pascal Francis
BookMark eNp9kFFLwzAQx4NMcJu--QH6IOKD1UuTpsmjjFmFTkUGPoY0u2C1a2fTofv2RjbUp8HBHcfv9-e4ERk0bYOEnFK4opCoa6qUygsFkCo4IEOqOI8lQDYgQwAV5iQTR2Tk_RsAMGB0SMTUObR91LpoVRu_NJFtl6sOva_aJgq12_pXxD7yvSmruuo3x-TQmdrjya6Pyfx2Op_cxcVjfj-5KWLLecpjZ0tMFgsJBiTLaOoSy0thHChcMI6WCUUdSy2y0qBbMARphDKCJ6KURrExOd_Grrr2Y42-18vKW6xr02C79ppKkBmVIoAX-8GUgZLARBbQyy1qu9b7Dp1eddXSdBtNQf-8Uf9_Y8DPdsnGW1O7zjS28n-OCsEpC1iyxT6rGjd7I3X-XFDGFA9SvJUq3-PXr2S6dx0OzVL98pDrtJg9zeQk0wX7BmehkIA
CODEN GPRLAJ
CitedBy_id crossref_primary_10_1063_1_1357828
crossref_primary_10_1063_1_1526830
crossref_primary_10_1029_2003GL018823
crossref_primary_10_1029_2000JA900035
crossref_primary_10_1029_2010JA015566
crossref_primary_10_1016_S1364_6826_01_00052_9
crossref_primary_10_1029_2000JA000415
crossref_primary_10_1016_S1364_6826_01_00050_5
crossref_primary_10_1029_2004JA010537
Cites_doi 10.1029/90JA02346
10.1029/98JA00589
10.1029/1998GL900105
10.1029/97JA01595
10.1029/93JA01746
10.1029/93GL03533
10.1063/1.1705885
10.1029/98GL00412
10.1029/1999JA900227
10.1029/91JA01106
10.1029/95JA01523
10.1029/96JA01314
10.1029/JA078i019p03773
10.1029/94JA00862
10.1029/92JA00875
10.1007/978-94-009-4722-1_17
10.1063/1.871099
ContentType Journal Article
Copyright Copyright 1999 by the American Geophysical Union.
1999 INIST-CNRS
Copyright_xml – notice: Copyright 1999 by the American Geophysical Union.
– notice: 1999 INIST-CNRS
DBID BSCLL
IQODW
AAYXX
CITATION
8FD
FR3
H8D
KR7
L7M
7TG
KL.
DOI 10.1029/1999GL900590
DatabaseName Istex
Pascal-Francis
CrossRef
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
DatabaseTitleList Meteorological & Geoastrophysical Abstracts - Academic
Aerospace Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage 2708
ExternalDocumentID 10_1029_1999GL900590
1930953
GRL13394
ark_67375_WNG_5LMPM8C7_L
Genre article
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
31~
33P
50Y
5GY
5VS
6TJ
702
8-1
A00
AAESR
AAHHS
AAIHA
AAJUZ
AASGY
AAXRX
AAZKR
ABCUV
ABCVL
ABHUG
ABPPZ
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEFZC
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AI.
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALXUD
AMYDB
ASPBG
AVUZU
AVWKF
AZFZN
AZVAB
BDRZF
BENPR
BFHJK
BMXJE
BRXPI
BSCLL
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F5P
FEDTE
G-S
GODZA
HVGLF
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
VH1
VOH
WBKPD
WH7
WIH
WXSBR
WYJ
XSW
ZCG
ZZTAW
~02
~OA
~~A
ALUQN
WIN
08R
3V.
7XC
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAPBV
ABJCF
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
D1K
DDYGU
DWQXO
GNUQQ
GUQSH
HCIFZ
IQODW
K6-
L6V
LK5
M2O
M2P
M7R
M7S
MVM
OHT
P62
PALCI
PATMY
PCBAR
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
RIWAO
RJQFR
SAMSI
UQL
AAYXX
ABJNI
CITATION
GROUPED_DOAJ
8FD
FR3
H8D
KR7
L7M
7TG
KL.
ID FETCH-LOGICAL-c4454-fcbe2dd80a083715f2c4b6af09ed34ec3691f35ce3baefd3e08a69a6426b8a93
ISSN 0094-8276
IngestDate Fri Aug 16 06:23:35 EDT 2024
Fri Jun 28 06:28:19 EDT 2024
Fri Aug 23 03:38:18 EDT 2024
Sun Oct 29 17:07:39 EDT 2023
Sat Aug 24 00:39:46 EDT 2024
Wed Jan 17 05:00:15 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords Ballooning instability
Plasma compression
MHD model
Two dimensional system
Magnetospheric substorm
Stochastic theory
Theoretical study
Plasma layer
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4454-fcbe2dd80a083715f2c4b6af09ed34ec3691f35ce3baefd3e08a69a6426b8a93
Notes istex:196236B667619A1317BE85838BC19DB65475B336
ark:/67375/WNG-5LMPM8C7-L
ArticleID:1999GL900590
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/1999GL900590
PQID 1530980367
PQPubID 23500
PageCount 4
ParticipantIDs proquest_miscellaneous_18087186
proquest_miscellaneous_1530980367
crossref_primary_10_1029_1999GL900590
pascalfrancis_primary_1930953
wiley_primary_10_1029_1999GL900590_GRL13394
istex_primary_ark_67375_WNG_5LMPM8C7_L
PublicationCentury 1900
PublicationDate 1 September 1999
PublicationDateYYYYMMDD 1999-09-01
PublicationDate_xml – month: 09
  year: 1999
  text: 1 September 1999
  day: 01
PublicationDecade 1990
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
PublicationTitle Geophysical research letters
PublicationTitleAlternate Geophys. Res. Lett
PublicationYear 1999
Publisher Blackwell Publishing Ltd
American Geophysical Union
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Geophysical Union
References Kan, J. R., On the structure of the magnetotail current sheet, J. Geophys. Res., 78, 3773, 1973
Lee, D.-Y.K. W. Min, On the possibility of the MHD-ballooning instability in the magnetotail-like field reversal, J. Geophys. Res., 101, 17347, 1996
Birn, J.K. SchindlerL. JanickeM. Hesse, Magnetotaildynamics under isobaric constraints, J. Geophys. Res., 99, 14863, 1994
Ohtani, S.-I.T. Tamao, Does the ballooning instability trigger substorms in the near-earth magnetotail? J. Geophys. Res., 98, 19369, 1993
Chen, L.A. Hasegawa, Kinetic theory of geomagnetic pulsations, 1., Internal excitation by energetic particles, J. Geophys. Res., 96, 1503, 1991
Lee, D.-Y., Ballooning instability in the tail plasma sheet, Geophys. Res. Lett., 25, 4059, 1998
Kruskal, M. D.C. R. Oberman, On the stability of plasma in static equilibrium, Phys. Fluids, 1, 275, 1958
Lee, D.-Y.R. A. Wolf, Is the earth's magnetotail balloon unstable? J. Geophys. Res., 97, 19251, 1992
Hurricane, O. A., MHD ballooning stability of a sheared plasma sheet, J. Geophys. Res., 102, 19903, 1997
Hurricane, O. A.R. PellatF. V. Coroniti, A new approach to low-frequency "MHD-like" waves in magnetospheric plasmas, J. Geophys. Res., 100, 19421, 1995b
Hurricane, O. A.R. PellatF. V. Coroniti, The stability of a stochastic plasma with respect to low frequency perturbations, Phys. Plasmas, 2, 1, 289, 1995a
Horton, W.H. Vernon WongJ. W. Van Dam, Substorm trigger conditions, J. Geophys. Res., 1999
Bhattacharjee, A.Z. W. MaX. Wang, Ballooning instability of a thin current sheet in the high-Lundquist-number magnetotail, Geophys. Res. Lett., 25, 861, 1998
Wu, C. C.P. L. PritchettF. V. Coroniti, Hydromagnetic equilibrium and instabilities in the convectively driven near-earth plasma sheet, J. Geophys. Res., 103, 11797, 1998
Roux, A.S. PerrautP. RobertA. MoraneA. PedersenA. KorthG. KremserB. AparicioD. RodgersR. Pellinen, Plasma sheet instability related to the westward traveling surge, J. Geophys. Res., 96, 17697, 1991
Hurricane, O. A.R. PellatF. V. Coroniti, The kinetic response of a stochastic plasma to low frequency perturbations, Geophys. Res. Lett., 21, 253, 1994
1997; 102
1973; 78
1991; 96
1993; 98
1994; 99
1986
1998; 103
1995; 100
1995; 2
1992; 97
1958; 1
1996; 101
1998; 25
1994; 21
1999
e_1_2_1_7_1
e_1_2_1_8_1
e_1_2_1_5_1
e_1_2_1_6_1
e_1_2_1_3_1
e_1_2_1_12_1
e_1_2_1_4_1
e_1_2_1_13_1
e_1_2_1_10_1
e_1_2_1_2_1
e_1_2_1_11_1
e_1_2_1_16_1
e_1_2_1_17_1
e_1_2_1_14_1
e_1_2_1_15_1
e_1_2_1_9_1
e_1_2_1_18_1
References_xml – volume: 2
  start-page: 289
  issue: 1
  year: 1995
  article-title: The stability of a stochastic plasma with respect to low frequency perturbations
  publication-title: Phys. Plasmas
– volume: 101
  start-page: 17347
  year: 1996
  article-title: On the possibility of the MHD‐ballooning instability in the magnetotail‐like field reversal
  publication-title: J. Geophys. Res.
– volume: 98
  start-page: 19369
  year: 1993
  article-title: Does the ballooning instability trigger substorms in the near‐earth magnetotail?
  publication-title: J. Geophys. Res.
– volume: 1
  start-page: 275
  year: 1958
  article-title: On the stability of plasma in static equilibrium
  publication-title: Phys. Fluids
– volume: 100
  start-page: 19421
  year: 1995
  article-title: A new approach to low‐frequency “MHD‐like” waves in magnetospheric plasmas
  publication-title: J. Geophys. Res.
– volume: 96
  start-page: 1503
  year: 1991
  article-title: Kinetic theory of geomagnetic pulsations, 1., Internal excitation by energetic particles
  publication-title: J. Geophys. Res.
– volume: 78
  start-page: 3773
  year: 1973
  article-title: On the structure of the magnetotail current sheet
  publication-title: J. Geophys. Res.
– volume: 103
  start-page: 11797
  year: 1998
  article-title: Hydromagnetic equilibrium and instabilities in the convectively driven near‐earth plasma sheet
  publication-title: J. Geophys. Res.
– volume: 102
  start-page: 19903
  year: 1997
  article-title: MHD ballooning stability of a sheared plasma sheet
  publication-title: J. Geophys. Res.
– volume: 96
  start-page: 17697
  year: 1991
  article-title: Plasma sheet instability related to the westward traveling surge
  publication-title: J. Geophys. Res.
– volume: 97
  start-page: 19251
  year: 1992
  article-title: Is the earth's magnetotail balloon unstable?
  publication-title: J. Geophys. Res.
– volume: 25
  start-page: 861
  year: 1998
  article-title: Ballooning instability of a thin current sheet in the high‐Lundquist‐number magnetotail
  publication-title: Geophys. Res. Lett.
– volume: 99
  start-page: 14863
  year: 1994
  article-title: Magnetotaildynamics under isobaric constraints
  publication-title: J. Geophys. Res.
– start-page: 233
  year: 1986
– volume: 21
  start-page: 253
  year: 1994
  article-title: The kinetic response of a stochastic plasma to low frequency perturbations
  publication-title: Geophys. Res. Lett.
– volume: 25
  start-page: 4059
  year: 1998
  article-title: Ballooning instability in the tail plasma sheet
  publication-title: Geophys. Res. Lett.
– year: 1999
  article-title: Substorm trigger conditions
  publication-title: J. Geophys. Res.
– ident: e_1_2_1_4_1
  doi: 10.1029/90JA02346
– ident: e_1_2_1_18_1
  doi: 10.1029/98JA00589
– ident: e_1_2_1_12_1
  doi: 10.1029/1998GL900105
– ident: e_1_2_1_6_1
  doi: 10.1029/97JA01595
– ident: e_1_2_1_15_1
  doi: 10.1029/93JA01746
– ident: e_1_2_1_9_1
  doi: 10.1029/93GL03533
– ident: e_1_2_1_11_1
  doi: 10.1063/1.1705885
– ident: e_1_2_1_2_1
  doi: 10.1029/98GL00412
– ident: e_1_2_1_5_1
  doi: 10.1029/1999JA900227
– ident: e_1_2_1_16_1
  doi: 10.1029/91JA01106
– ident: e_1_2_1_8_1
  doi: 10.1029/95JA01523
– ident: e_1_2_1_13_1
  doi: 10.1029/96JA01314
– ident: e_1_2_1_10_1
  doi: 10.1029/JA078i019p03773
– ident: e_1_2_1_3_1
  doi: 10.1029/94JA00862
– ident: e_1_2_1_14_1
  doi: 10.1029/92JA00875
– ident: e_1_2_1_17_1
  doi: 10.1007/978-94-009-4722-1_17
– ident: e_1_2_1_7_1
  doi: 10.1063/1.871099
SSID ssj0003031
Score 1.6960373
Snippet Plasma sheet stability to the ballooning mode is analyzed using several physical formulations: ideal MHD, stochastic theory, fast‐MHD, and the Kruskal‐Oberman...
Plasma sheet stability to the ballooning mode is analyzed using several physical formulations: ideal MHD, stochastic theory, fast-MHD, and the Kruskal-Oberman...
SourceID proquest
crossref
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 2705
SubjectTerms Ballooning modes
Earth, ocean, space
Exact sciences and technology
External geophysics
Instability
Magnetic storms, substorms
Magnetohydrodynamics
Mathematical models
MHD
Physics of the magnetosphere
Plasma compression
Stability
Stochasticity
Title Effect of plasma compression on plasma sheet stability
URI https://api.istex.fr/ark:/67375/WNG-5LMPM8C7-L/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F1999GL900590
https://search.proquest.com/docview/1530980367
https://search.proquest.com/docview/18087186
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB50F8EX8YqxViOoLyVrkplJZh5L1RTZ9kF2tfoSJjMTCtWkNFuo_nrPXJLNyipVWEJ2yITkfDPnknND6CUIFTB9tDANTWRERC4iIWUVqVqBwDdVfhKT4Hx0nB0uyYcTerLuumazS1bVTP7cmlfyP6jCGOBqsmT_AdnhpjAA54AvHAFhOF4LY196uLXNoLvvwgaIu8DWxngB_Gh3ahzPoAbaQNgNP26h2_MeKV_353Tvm03xGZRtH6vzdjYERnyZrT8WuAIDvP9Y4BkgJxFLc1992vE8TmAsds1ne6bo0th78PMxi8tjOhKX8JdtZcVxaiqZmoco5tzmuK5FTu9m_00SDfGB1jOe8nI8-yaapjmndIKm-5-WX5eDvAUh7Poi-lfz6Q0w_814_obiMTV76MoEwooOKFy7JiYbVsbYVrHKxuIuuuOthHDfQX4P3dDNfXSrsF2Yf8CZjduV3QOUuSUQtnXowA5HSyCEnx-1SyAclsBDtHj_bnFwGPlWGJEkhJKolpVOlWKxgB2UJ7ROJakyUcdcK0y0xBlPakylxpXQtcI6ZiLjAozLrGKC40do0rSNfoxCbEryUaJUJRUhWDEmMFCO0lqIiicsQK96MpXnruBJuQ2OAL22NBwuEhdnJkgwp-Xn46Kk8yNg2Qd5OQ_Q7gaR13fl2BQ7DNCLnuglsDbjrxKNbi-7EoRxzBmoWHmAnv_pGhaDyc-yAO1ZvP76zGXxcZ5gzMmTa77kDrq93kVP0WR1cal3QQldVc_8KvwFY61_eA
link.rule.ids 315,786,790,27955,27956,50847,50956
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NVoi9IMZAZDAWpI0XFJHWdmI_ThNrB2kfphYmXizHP4SESKe1k9h_z52TlfYBpEl5iCInij7bd2f7u-8AjtGp4NLHGypoYjNuSpMZa-vMBYcOn1R-BpTgPJkW4zn_fCWuujqnlAvT6kOsN9xoZkR7TROcNqQ7tQESyaQE-lGlYvrkI-gLktTrQf_06_z7fG2M0UK3RfMUz-SwLDruO37h4-b7W16pTwD_JpakWSJQoa1wsRWCbgay0ROdP4OnXQiZnrZ9vgc7vnkOj0exRO8d3kVSp13uQ9FKE6eLkF5jkPzLpEQgb4mvTYpX93T5w_tVimFiJMrevYDZ-afZ2Tjr6iRklnPBs2BrP3RO5gbhLQciDC2vCxNy5R3j3rJCDQIT1rPa-OCYz6UplMGVR1FLo9hL6DWLxr-ClJFem-DO1dZxzpyUhiFyQgRjajWQCZzcw6SvWzUMHU-xh0pvwpnA-4jhupG5-UkMslLob9ORFtUE5_NZqasEDrdA_vtVxUgJL4F396BrHPd0mGEav7hdarTUuZLof8sEjv7VRua4HpRFAh9if_33n_XossIFu-IHD2p9BE_Gs0mlq4vpl9ew26o6EAXtDfRWN7f-EGOWVf22G5d_AOF14h8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9swFL2sDSt7GVu3Mm9r60G7l2HqRJItPZa2Sbe5oYxmK3sR1_pgMOaEJoX13-9KdrPkoYOBH4yRjTmS7od0dC7AATkVSn0choImJuNYYobG1Jn1lhx-UPnphwPOF-PifMI_XYvrbsEtnIVp9SGWC25hZkR7HSb4zPpObCBoZIbz86NKxdOTG9CjQINT8tU7_jr5PlnaYjLQbc08xTM5KIuO-k5fOFp9f80p9QK-vwNJEueEk28LXKxFoKtxbHREw2fwtIsg0-O2y5_DI9dsw-NRrNB7R3eR02nmL6BolYnTqU9nFCP_wjTwx1vea5PS1T2d_3BukVKUGHmydy_hanh2dXKedWUSMsO54Jk3tRtYK3MkdMu-8APD6wJ9rpxl3BlWqL5nwjhWo_OWuVxioZASj6KWqNgObDbTxr2ClAW5NsGtrY3lnFkpkRFyQnjEWvVlAof3MOlZK4ah4yb2QOlVOBN4HzFcNsKbn4FAVgr9bTzSorqg6XxS6iqB3TWQ_35VsSCEl8C7e9A1Dfuwl4GNm97ONRnqXElyv2UC-w-1kTmlg7JI4EPsr3_-sx59qShfV_z1f7Xeh63L06GuPo4_v4EnraZDIKC9hc3Fza3bpYhlUe91w_IPjFHhSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+plasma+compression+on+plasma+sheet+stability&rft.jtitle=Geophysical+research+letters&rft.au=Lee%2C+D.%E2%80%90Y.&rft.date=1999-09-01&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=26&rft.issue=17&rft.spage=2705&rft.epage=2708&rft_id=info:doi/10.1029%2F1999GL900590&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_1999GL900590
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon