Spinal Helical Actuation Patterns for Locomotion in Soft Robots
Spinal-driven locomotion was first hypothesized to exist in biological systems in the 1980's; however, only recently has the concept been applied to legged robots. In implementing spinal-driven locomotion in robots to-date, researchers have focused on bending in the spine. In this paper, we pro...
Saved in:
Published in | IEEE robotics and automation letters Vol. 5; no. 3; p. 1 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spinal-driven locomotion was first hypothesized to exist in biological systems in the 1980's; however, only recently has the concept been applied to legged robots. In implementing spinal-driven locomotion in robots to-date, researchers have focused on bending in the spine. In this paper, we propose an additional mode of spinal-driven locomotion: axial torsion via helical actuation patterns. To study torsional spinal-driven locomotion, a six-legged robot with unactuated legs is used. This robot is designed to be modular to allow for changes in the physical system, such as material stiffness of the spine and legs, and has actuators that spiral around the central elastomeric spine of the robot. A model is provided to explain torsional spinal-driven locomotion. Three spinal gaits are developed to allow the robot to walk forward, through which we demonstrate that the speed of the robot can be influenced by the stiffness of the spine and legs. We also demonstrate that a single gait can be used to drive the robot forward and turn the robot left and right by adjusting the leg positions or foot friction. The results indicate that the inclusion of helical actuation patterns can assist in movement. The addition of these actuation patterns or active axial torsion to future, more complex robots with active leg control may enhance the energy efficiency of locomotion or enable fast, dynamic maneuvering. |
---|---|
AbstractList | Spinal-driven locomotion was first hypothesized to exist in biological systems in the 1980's; however, only recently has the concept been applied to legged robots. In implementing spinal-driven locomotion in robots to-date, researchers have focused on bending in the spine. In this paper, we propose an additional mode of spinal-driven locomotion: axial torsion via helical actuation patterns. To study torsional spinal-driven locomotion, a six-legged robot with unactuated legs is used. This robot is designed to be modular to allow for changes in the physical system, such as material stiffness of the spine and legs, and has actuators that spiral around the central elastomeric spine of the robot. A model is provided to explain torsional spinal-driven locomotion. Three spinal gaits are developed to allow the robot to walk forward, through which we demonstrate that the speed of the robot can be influenced by the stiffness of the spine and legs. We also demonstrate that a single gait can be used to drive the robot forward and turn the robot left and right by adjusting the leg positions or foot friction. The results indicate that the inclusion of helical actuation patterns can assist in movement. The addition of these actuation patterns or active axial torsion to future, more complex robots with active leg control may enhance the energy efficiency of locomotion or enable fast, dynamic maneuvering. Spinal-driven locomotion was first hypothesized to exist in biological systems in the 1980s. However, only recently has the concept been applied to legged robots. In implementing spinal-driven locomotion in robots to-date, researchers have focused on bending in the spine. In this article, we propose an additional mode of spinal-driven locomotion: axial torsion via helical actuation patterns. To study torsional spinal-driven locomotion, a six-legged robot with unactuated legs is used. This robot is designed to be modular to allow for changes in the physical system, such as material stiffness of the spine and legs, and has actuators that spiral around the central elastomeric spine of the robot. A model is provided to explain torsional spinal-driven locomotion. Three spinal gaits are developed to allow the robot to walk forward, through which we demonstrate that the speed of the robot can be influenced by the stiffness of the spine and legs. We also demonstrate that a single gait can be used to drive the robot forward and turn the robot left and right by adjusting the leg positions or foot friction. The results indicate that the inclusion of helical actuation patterns can assist in movement. The addition of these actuation patterns or active axial torsion to future, more complex robots with active leg control may enhance the energy efficiency of locomotion or enable fast, dynamic maneuvering. |
Author | Gibert, James Kramer-Bottiglio, Rebecca Case, Jennifer C. SunSpiral, Vytas Booth, Joran |
Author_xml | – sequence: 1 givenname: Jennifer C. surname: Case fullname: Case, Jennifer C. email: jennifer.case@nist.gov organization: Intelligent Systems Division, National Institute of Standards and Technology, Gaithersburg, Maryland United States of America 20878 (e-mail: jennifer.case@nist.gov) – sequence: 2 givenname: James surname: Gibert fullname: Gibert, James email: jgibert@purdue.edu organization: Purdue University, United States of America (e-mail: jgibert@purdue.edu) – sequence: 3 givenname: Joran surname: Booth fullname: Booth, Joran email: joranbooth@gmail.com organization: Mechanical Engineering and Materials Science, Yale University, New Haven, CT United States of America 06511 (e-mail: joranbooth@gmail.com) – sequence: 4 givenname: Vytas surname: SunSpiral fullname: SunSpiral, Vytas email: vytas.sunspiral@nasa.gov organization: Intelligent Robotics Group, Zymergen Inc., Moffett Field, ca United States of America 94035 (e-mail: vytas.sunspiral@nasa.gov) – sequence: 5 givenname: Rebecca surname: Kramer-Bottiglio fullname: Kramer-Bottiglio, Rebecca email: rebecca.kramer@yale.edu organization: Mechanical Engineering, Yale University, New Haven, CT United States of America 06520 (e-mail: rebecca.kramer@yale.edu) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33088914$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkU1rVDEUhoNUbK3dC4JccONmxpPvZGMZilphQGm7D7mZRFPuJGOSK_jvTZ1xqK5OyHnOy0me5-gk5eQReolhiTHod-ub1ZIAgSXRilBOnqAzQqVcUCnEyaPzKbqo9R4AMCeSav4MnVIKSmnMztDl7S4mOw3Xfoqu15Vrs20xp-Grbc2XVIeQy7DOLm_zn_uYhtsc2nCTx9zqC_Q02Kn6i0M9R3cfP9xdXS_WXz59vlqtF44x1haBAgVBRq0Z9Riww2rkwByFEQNTQSonGPZCKTViLcmGBthQ5aQIwVtMz9H7fexuHrd-43xqxU5mV-LWll8m22j-7aT43XzLP43kEnMle8DbQ0DJP2Zfm9nG6vw02eTzXA1hnAolMYOOvvkPvc9z6Z_UKaox4QoE7xTsKVdyrcWH4zIYzIMf0_2YBz_m4KePvH78iOPAXxsdeLUHovf-2NbAKMeC_gaAnJQX |
CODEN | IRALC6 |
CitedBy_id | crossref_primary_10_1002_admt_202101153 crossref_primary_10_1109_LRA_2021_3072813 |
Cites_doi | 10.1109/IROS.2017.8206554 10.1089/soro.2017.0030 10.1109/IROS.2012.6386048 10.1242/jeb.056549 10.1242/jeb.199.11.2499 10.1109/ROBOSOFT.2018.8405379 10.1109/ICRA.2013.6631041 10.1242/jeb.204.11.1979 10.1109/TRO.2011.2160469 10.1109/ROBOSOFT.2018.8404892 10.1007/978-3-7091-8951-1 10.1109/ICRA.2015.7139629 10.1109/IROS.2015.7353509 10.1126/scirobotics.aat1853 10.1109/TMECH.2014.2339013 10.1109/ROBIO.2011.6181728 10.1093/oso/9780199674923.003.0031 10.1109/ROBOSOFT.2019.8722801 10.1242/jeb.180.1.75 10.1242/jeb.198.12.2477 10.1201/9780203483534 10.1007/s005860100346 10.1016/0141-5425(85)90021-4 10.1186/s40638-018-0088-4 10.1038/scientificamerican0560-148 10.1109/IROS.2010.5649134 10.1111/j.1096-3642.1985.tb01178.x 10.2307/1376265 10.1016/0141-5425(87)90020-3 10.1109/LRA.2019.2906552 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE NPM AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 5PM |
DOI | 10.1109/LRA.2020.2982352 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE/IET Electronic Library (IEL) PubMed CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2377-3766 |
EndPage | 1 |
ExternalDocumentID | 10_1109_LRA_2020_2982352 33088914 9043516 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Intramural NASA grantid: 80NSSC17K0553 – fundername: Intramural NIST DOC grantid: 9999-NIST – fundername: NASA grantid: NNX15AQ75H |
GroupedDBID | 0R~ 97E AAJGR AASAJ ABQJQ ABVLG ACGFS AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL RIA RIE RIG EJD NPM AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 5PM |
ID | FETCH-LOGICAL-c444t-f303062b9943e101c18b504c30b1048f78c641e6888b1972d3f0d38c76ffea13 |
IEDL.DBID | RIE |
ISSN | 2377-3766 |
IngestDate | Tue Sep 17 21:04:47 EDT 2024 Sat Aug 17 05:36:54 EDT 2024 Thu Oct 10 17:48:08 EDT 2024 Fri Aug 23 00:41:27 EDT 2024 Sat Nov 02 12:07:56 EDT 2024 Wed Jun 26 19:27:10 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Soft robot materials and design legged robots biologically-inspired robots |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c444t-f303062b9943e101c18b504c30b1048f78c641e6888b1972d3f0d38c76ffea13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3264-0558 0000-0003-2324-8124 0000-0002-1429-5378 0000-0002-7380-3416 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571587 |
PMID | 33088914 |
PQID | 2391258065 |
PQPubID | 4437225 |
PageCount | 1 |
ParticipantIDs | ieee_primary_9043516 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7571587 proquest_miscellaneous_2453687140 pubmed_primary_33088914 proquest_journals_2391258065 crossref_primary_10_1109_LRA_2020_2982352 |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE robotics and automation letters |
PublicationTitleAbbrev | LRA |
PublicationTitleAlternate | IEEE Robot Autom Lett |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref12 ref15 ref36 ref14 ref31 ref30 bennett (ref17) 2001; 204 ref11 o’reilly (ref18) 2000; 40 ref32 ref10 carrier (ref20) 1993; 180 kulkarni (ref34) 2015 ref2 ref1 ref16 siciliano (ref33) 2010 gracovetsky (ref5) 1997 ref24 ref23 ref26 ref25 ritter (ref22) 1996; 199 ref28 ref27 ref29 ref8 ref7 ritter (ref21) 1995; 198 ref4 ref3 ref6 wainwright (ref19) 2014 zhao (ref9) 0 |
References_xml | – ident: ref26 doi: 10.1109/IROS.2017.8206554 – ident: ref25 doi: 10.1089/soro.2017.0030 – ident: ref14 doi: 10.1109/IROS.2012.6386048 – ident: ref24 doi: 10.1242/jeb.056549 – volume: 199 start-page: 2499 year: 1996 ident: ref22 article-title: Axial muscle function during lizard locomotion publication-title: J Exp Biol doi: 10.1242/jeb.199.11.2499 contributor: fullname: ritter – ident: ref30 doi: 10.1109/ROBOSOFT.2018.8405379 – ident: ref10 doi: 10.1109/ICRA.2013.6631041 – volume: 204 start-page: 1979 year: 2001 ident: ref17 article-title: Twisting and bending: The functional role of salamander lateral hypaxial musculature during locomotion publication-title: J Exp Biol doi: 10.1242/jeb.204.11.1979 contributor: fullname: bennett – ident: ref27 doi: 10.1109/TRO.2011.2160469 – ident: ref32 doi: 10.1109/ROBOSOFT.2018.8404892 – year: 2010 ident: ref33 publication-title: Robotics Modelling Planning and Control contributor: fullname: siciliano – ident: ref4 doi: 10.1007/978-3-7091-8951-1 – ident: ref8 doi: 10.1109/ICRA.2015.7139629 – ident: ref36 doi: 10.1109/IROS.2015.7353509 – ident: ref29 doi: 10.1126/scirobotics.aat1853 – ident: ref11 doi: 10.1109/TMECH.2014.2339013 – ident: ref7 doi: 10.1109/ROBIO.2011.6181728 – ident: ref16 doi: 10.1093/oso/9780199674923.003.0031 – ident: ref28 doi: 10.1109/ROBOSOFT.2019.8722801 – volume: 180 start-page: 75 year: 1993 ident: ref20 article-title: Action of the hypaxial muscles during walking and swimming in the salamander dicamptodon ensatus publication-title: J Exp Biol doi: 10.1242/jeb.180.1.75 contributor: fullname: carrier – volume: 198 start-page: 2477 year: 1995 ident: ref21 article-title: Epaxial muscle function during locomotion in a lizard (Varanus salvator) and the proposal of a key innovation in the vertebrate axial musculoskeletal system publication-title: J Exp Biol doi: 10.1242/jeb.198.12.2477 contributor: fullname: ritter – ident: ref35 doi: 10.1201/9780203483534 – ident: ref15 doi: 10.1007/s005860100346 – ident: ref3 doi: 10.1016/0141-5425(85)90021-4 – ident: ref12 doi: 10.1186/s40638-018-0088-4 – volume: 40 start-page: 123 year: 2000 ident: ref18 article-title: The evolution of the functional role of trunk muscles during locomotion in adult amphibians publication-title: Integrative and Comparative Biology contributor: fullname: o’reilly – ident: ref2 doi: 10.1038/scientificamerican0560-148 – ident: ref6 doi: 10.1109/IROS.2010.5649134 – ident: ref23 doi: 10.1111/j.1096-3642.1985.tb01178.x – year: 2014 ident: ref19 publication-title: Axis and Circumference The Cylindrical Shape of Plants and Animals contributor: fullname: wainwright – ident: ref1 doi: 10.2307/1376265 – ident: ref13 doi: 10.1016/0141-5425(87)90020-3 – start-page: 243 year: 1997 ident: ref5 article-title: Linking the spinal engine with the legs: A theory of human gait publication-title: Movement Stability & Low Back Pain The Essential Role of the Pelvis contributor: fullname: gracovetsky – year: 2015 ident: ref34 article-title: Centrifugal forming and mechanical properties of silicone-based elastomers for soft robotic actuators contributor: fullname: kulkarni – start-page: 51 year: 0 ident: ref9 article-title: The effect of morphology on the spinal engine driven locomotion in a quadruped robot publication-title: Proc 5th Int Symp Adaptive Motion Animals Mach (amam) contributor: fullname: zhao – ident: ref31 doi: 10.1109/LRA.2019.2906552 |
SSID | ssj0001527395 |
Score | 2.1889079 |
Snippet | Spinal-driven locomotion was first hypothesized to exist in biological systems in the 1980's; however, only recently has the concept been applied to legged... Spinal-driven locomotion was first hypothesized to exist in biological systems in the 1980s. However, only recently has the concept been applied to legged... |
SourceID | pubmedcentral proquest crossref pubmed ieee |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Active control Actuation Actuators Biologically-Inspired Robots Elastomers Foot Friction Gait Legged locomotion Legged Robots Legs Locomotion Modular design Robot control Robot dynamics Robot sensing systems Robots Skin Soft Robot Materials and Design Soft robotics Stiffness |
Title | Spinal Helical Actuation Patterns for Locomotion in Soft Robots |
URI | https://ieeexplore.ieee.org/document/9043516 https://www.ncbi.nlm.nih.gov/pubmed/33088914 https://www.proquest.com/docview/2391258065 https://search.proquest.com/docview/2453687140 https://pubmed.ncbi.nlm.nih.gov/PMC7571587 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1BS-QwFH7MeNo96Lqzal2VLHgRtmPbpE1yHBZFxFlEZ8FbadIERWjF6Vw8-NvNSzvdUebgrZAQknxJ33t5730P4DgpnNadKhVSZgtMyRGhMCYJleQS-bdK5UP-p3-zi3_s8i69G8DvPhfGGOODz8wYP70vv6z1Ap_KTmXkhHucDWHIpWxztf6_pyCTmEyXnshInl7dTJz9l0TjRIrEZxatSB5fSmWdVvkxOHJF2pxvwXQ5zzbI5HG8aNRYv3ygcPzsQr7BZqd2kkl7TrZhYKrv8HWFjHDk1PYnrJBFnCBC4MgEU0sQNnLtOTirOXEKLrmqdd2W_iEPFbl1f3FyU6u6mf-A2fnZ7M9F2JVXCDVjrAktRXshUVIyatzN1LFQacQ0jZSz0YTlQmcsNpmzkRUWJyupjUoqNM-sNUVMd2CjqiuzB4QKZMGjTBsrWKEzpTOruOXcxEKWpQ7gZLnz-VNLopF74yOSuUMpR5TyDqUARrhffb9uqwI4WEKVd7dsnidUOv0MXcMB_Oqb3f1Ap0dRmXrh-rCUZgJpCQPYbZHtx6YUg7xiFgB_h3nfAbm337dUD_eeg5unPE4F318_25_wBdfUhvUewEbzvDCHTnlp1BEMp69nR_7svgFNVO4g |
link.rule.ids | 230,315,783,787,799,888,27938,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BPQAH2vLVtLQ1EhcksiSxE9vHVVW0hV2EYJG4RbFjC4SUIDZ76a_H42TTBXHoLZKtyPaz4zeZmTcAR0nhWHeqVEiZLTAlR4TCmCRUkkvU3yqVD_mfXGajW3Z-l96twEmfC2OM8cFnZoCP3pdf1nqOv8pOZeQu9zhbhQ8p8oo2W-vfHxXUEpPpwhcZydPx9dBZgEk0SKRIfG7R0t3ji6m8xyvfhkcu3TdnH2GyGGkbZvI4mDdqoP--EXH836l8gq2OeJJhu1M-w4qptmFzSY5wxxH3J6yRRdxVhNCRISaXIHDkyqtwVjPiKC4Z17pui_-Qh4rcuO84ua5V3cx2YXr2e_prFHYFFkLNGGtCS9FiSJSUjBp3NnUsVBoxTSPlrDRhudAZi03mrGSF5clKaqOSCs0za00R0z1Yq-rKfAFCBergUaaNFazQmdKZVdxybmIhy1IHcLxY-fypldHIvfkRydyhlCNKeYdSADu4Xn2_bqkCOFhAlXfnbJYnVDqGhs7hAA77ZndC0O1RVKaeuz4spZlAYcIA9ltk-3dTimFeMQuAv8K874Dq269bqod7r8LNUx6ngn99f7Q_YX00nYzz8Z_Li2-wgfNrg3wPYK15npvvjso06offwS9EyvA8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spinal+Helical+Actuation+Patterns+for+Locomotion+in+Soft+Robots&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Case%2C+Jennifer+C.&rft.au=Gibert%2C+James&rft.au=Booth%2C+Joran&rft.au=SunSpiral%2C+Vytas&rft.date=2020-07-01&rft.eissn=2377-3766&rft.volume=5&rft.issue=3&rft.spage=3814&rft.epage=3821&rft_id=info:doi/10.1109%2Flra.2020.2982352&rft_id=info%3Apmid%2F33088914&rft.externalDBID=PMC7571587 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon |