Model-based clustering of high-dimensional data: A review
Model-based clustering is a popular tool which is renowned for its probabilistic foundations and its flexibility. However, high-dimensional data are nowadays more and more frequent and, unfortunately, classical model-based clustering techniques show a disappointing behavior in high-dimensional space...
Saved in:
Published in | Computational statistics & data analysis Vol. 71; pp. 52 - 78 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Model-based clustering is a popular tool which is renowned for its probabilistic foundations and its flexibility. However, high-dimensional data are nowadays more and more frequent and, unfortunately, classical model-based clustering techniques show a disappointing behavior in high-dimensional spaces. This is mainly due to the fact that model-based clustering methods are dramatically over-parametrized in this case. However, high-dimensional spaces have specific characteristics which are useful for clustering and recent techniques exploit those characteristics. After having recalled the bases of model-based clustering, dimension reduction approaches, regularization-based techniques, parsimonious modeling, subspace clustering methods and clustering methods based on variable selection are reviewed. Existing softwares for model-based clustering of high-dimensional data will be also reviewed and their practical use will be illustrated on real-world data sets. |
---|---|
AbstractList | Model-based clustering is a popular tool which is renowned for its probabilistic foundations and its flexibility. However, high-dimensional data are nowadays more and more frequent and, unfortunately, classical model-based clustering techniques show a disappointing behavior in high-dimensional spaces. This is mainly due to the fact that model-based clustering methods are dramatically over-parametrized in this case. However, high-dimensional spaces have specific characteristics which are useful for clustering and recent techniques exploit those characteristics. After having recalled the bases of model-based clustering, dimension reduction approaches, regularization-based techniques, parsimonious modeling, subspace clustering methods and clustering methods based on variable selection are reviewed. Existing softwares for model-based clustering of high-dimensional data will be also reviewed and their practical use will be illustrated on real-world data sets. Model-based clustering is a popular tool which is renowned for its probabilistic foundations and its flexibility. However, high-dimensional data are nowadays more and more frequent and, unfortunately, classical model-based clustering techniques show a disappointing behavior in high-dimensional spaces. This is mainly due to the fact that model-based clustering methods are dramatically over-parametrized in this case. However, high-dimensional spaces have specific characteristics which are useful for clustering and recent techniques exploit those characteristics. After having recalled the bases of model-based clustering, this article will review dimension reduction approaches, regularization-based techniques, parsimonious modeling, subspace clustering methods and clustering methods based on variable selection. Existing softwares for model-based clustering of high-dimensional data will be also reviewed and their practical use will be illustrated on real-world data sets. |
Author | Bouveyron, Charles Brunet-Saumard, Camille |
Author_xml | – sequence: 1 givenname: Charles surname: Bouveyron fullname: Bouveyron, Charles organization: Laboratoire SAMM, EA 4543, Université Paris 1 Panthéon-Sorbonne, France – sequence: 2 givenname: Camille surname: Brunet-Saumard fullname: Brunet-Saumard, Camille email: camille.brunet@gmail.com organization: Laboratoire LAREMA, UMR CNRS 6093, Université d’Angers, France |
BackLink | https://hal.science/hal-00750909$$DView record in HAL |
BookMark | eNqFkMtKAzEUQIMoWB8_4GqWupiax6TJiJsivqDiRtfhTnKnTZlONJkq_r0pFRcuKlwIXM4Jl3NE9vvQIyFnjI4ZZZPL5dgmB2NOGR_noVTvkRHTipdKSL5PRhlSZV0pcUiOUlpSSnml9IjUT8FhVzaQ0BW2W6cBo-_nRWiLhZ8vSudX2CcfeugKBwNcFdMi4ofHzxNy0EKX8PTnPSavd7cvNw_l7Pn-8WY6K21VVUPZcoG8Yo5RQHQTysAppRuhVIuuAVlPtBSoRc1qlC1rqsxKDrwBtJVrQRyTi-2_C-jMW_QriF8mgDcP05nZ7ChVkta0_mCZPd-ybzG8rzENZuWTxa6DHsM6Gc6FkpzVWv-L5l5McsGkyijfojaGlCK2v2cwajb5zdJs8ptNfpMn58-S_iNZP8CQSw4RfLdbvd6qmLPm1NEk67G36HxEOxgX_C79G-n8oII |
CitedBy_id | crossref_primary_10_1051_eas_1677006 crossref_primary_10_3389_fbinf_2022_864382 crossref_primary_10_1007_s10044_022_01094_z crossref_primary_10_1016_j_eswa_2025_126608 crossref_primary_10_1214_18_EJS1475 crossref_primary_10_1080_27684520_2023_2242337 crossref_primary_10_1016_j_ins_2018_06_035 crossref_primary_10_1016_j_csda_2013_04_013 crossref_primary_10_1016_j_cam_2021_113829 crossref_primary_10_1109_TPDS_2020_2975550 crossref_primary_10_1109_TCI_2017_2666551 crossref_primary_10_29220_CSAM_2024_31_2_203 crossref_primary_10_1002_env_2631 crossref_primary_10_1002_sim_7083 crossref_primary_10_1007_s00357_023_09441_3 crossref_primary_10_1016_j_advengsoft_2022_103246 crossref_primary_10_1016_j_neucom_2016_11_014 crossref_primary_10_1016_j_ecosta_2021_08_011 crossref_primary_10_1007_s12553_023_00805_8 crossref_primary_10_1007_s11222_024_10444_2 crossref_primary_10_1214_23_AOAS1871 crossref_primary_10_3390_app11115230 crossref_primary_10_1016_j_neunet_2022_02_010 crossref_primary_10_1007_s11222_021_10018_6 crossref_primary_10_1080_02664763_2024_2362275 crossref_primary_10_1186_s40854_022_00418_6 crossref_primary_10_1109_LRA_2016_2517825 crossref_primary_10_1007_s10462_022_10325_y crossref_primary_10_1080_03610926_2021_1872636 crossref_primary_10_1016_j_asoc_2019_105806 crossref_primary_10_1016_j_neucom_2022_05_011 crossref_primary_10_3934_jimo_2020160 crossref_primary_10_1111_insr_12588 crossref_primary_10_3390_ijgi12030117 crossref_primary_10_1007_s11280_019_00743_4 crossref_primary_10_1111_tgis_12905 crossref_primary_10_3390_e19020074 crossref_primary_10_1007_s11634_020_00432_5 crossref_primary_10_1007_s11634_015_0200_3 crossref_primary_10_1007_s11634_021_00488_x crossref_primary_10_1016_j_bpsc_2016_04_002 crossref_primary_10_1016_j_csda_2019_106822 crossref_primary_10_1002_cpe_4418 crossref_primary_10_1007_s00180_023_01387_9 crossref_primary_10_1007_s11634_022_00526_2 crossref_primary_10_1007_s11749_019_00651_9 crossref_primary_10_1109_LRA_2018_2818933 crossref_primary_10_1002_eap_2524 crossref_primary_10_1007_s11370_015_0187_9 crossref_primary_10_3389_fpsyt_2021_665536 crossref_primary_10_1016_j_scitotenv_2022_155168 crossref_primary_10_1093_molbev_msae114 crossref_primary_10_1007_s00357_017_9221_2 crossref_primary_10_1016_j_patrec_2018_07_003 crossref_primary_10_1007_s00357_019_09314_8 crossref_primary_10_1080_00949655_2024_2329976 crossref_primary_10_1016_j_csda_2021_107186 crossref_primary_10_1016_j_jprot_2015_07_024 crossref_primary_10_1162_NECO_a_00661 crossref_primary_10_1016_j_tbs_2021_03_005 crossref_primary_10_3389_fmed_2023_1076794 crossref_primary_10_1007_s00180_018_0817_8 crossref_primary_10_1111_2041_210X_13582 crossref_primary_10_1137_17M1135694 crossref_primary_10_1142_S0218488520500087 crossref_primary_10_1016_j_compag_2022_106983 crossref_primary_10_1016_j_apenergy_2018_09_050 crossref_primary_10_1007_s00357_016_9212_8 crossref_primary_10_1007_s11634_015_0219_5 crossref_primary_10_1080_03610918_2024_2314666 crossref_primary_10_1007_s00357_019_09351_3 crossref_primary_10_1016_j_isci_2023_106238 crossref_primary_10_1007_s10032_025_00514_0 crossref_primary_10_1016_j_neucom_2022_05_118 crossref_primary_10_1016_j_aei_2024_102799 crossref_primary_10_1214_18_BJPS425 crossref_primary_10_1007_s11336_024_09948_7 crossref_primary_10_1371_journal_pbio_2006387 crossref_primary_10_1007_s10618_018_0597_3 crossref_primary_10_3233_IDA_160010 crossref_primary_10_1038_s41598_021_98126_1 crossref_primary_10_1093_bioinformatics_btac183 crossref_primary_10_1080_10618600_2014_948179 crossref_primary_10_1093_imaiai_iaac019 crossref_primary_10_1007_s00357_020_09371_4 crossref_primary_10_1016_j_drudis_2021_01_008 crossref_primary_10_1175_MWR_D_16_0064_1 crossref_primary_10_1007_s00357_021_09403_7 crossref_primary_10_1016_j_patcog_2024_111158 crossref_primary_10_1027_1015_5759_a000578 crossref_primary_10_1080_02664763_2017_1414162 crossref_primary_10_1002_2015GB005178 crossref_primary_10_1007_s00180_024_01478_1 crossref_primary_10_1016_j_ijepes_2024_109977 crossref_primary_10_1007_s00357_024_09477_z crossref_primary_10_1016_j_aei_2024_102569 crossref_primary_10_3390_rs12071219 crossref_primary_10_1002_minf_202400205 crossref_primary_10_1007_s11222_014_9505_x crossref_primary_10_1016_j_csda_2018_05_015 crossref_primary_10_1109_COMST_2017_2705740 crossref_primary_10_1177_0278364918816374 crossref_primary_10_1080_00949655_2019_1643345 crossref_primary_10_1109_ACCESS_2022_3228238 crossref_primary_10_1016_j_jprocont_2019_12_010 crossref_primary_10_1016_j_jasrep_2021_103081 crossref_primary_10_1016_j_knosys_2024_112738 crossref_primary_10_1109_TII_2017_2683519 crossref_primary_10_1016_j_newast_2022_101973 crossref_primary_10_1111_ejn_15219 crossref_primary_10_1016_j_neuroimage_2017_01_032 crossref_primary_10_1016_j_renene_2016_12_095 crossref_primary_10_3390_e19090452 crossref_primary_10_1152_jn_00229_2021 crossref_primary_10_1155_2016_4908412 crossref_primary_10_1002_sta4_278 crossref_primary_10_1038_s41598_023_41318_8 crossref_primary_10_1111_rssb_12187 crossref_primary_10_1007_s11634_013_0147_1 crossref_primary_10_2139_ssrn_3170321 crossref_primary_10_1155_2022_4699573 crossref_primary_10_1016_j_comnet_2018_02_010 crossref_primary_10_1016_j_scitotenv_2020_143864 crossref_primary_10_1016_j_ress_2022_108844 crossref_primary_10_3390_en15238895 crossref_primary_10_3390_analytics2040041 crossref_primary_10_1214_18_AOS1794 crossref_primary_10_1080_00401706_2019_1635532 crossref_primary_10_15407_pp2019_03_058 crossref_primary_10_1016_j_csda_2018_01_012 crossref_primary_10_3390_ht8010004 crossref_primary_10_1007_s11749_024_00952_8 crossref_primary_10_1007_s13042_018_00904_3 crossref_primary_10_1007_s10260_021_00585_3 crossref_primary_10_4018_IJIIT_2018070103 crossref_primary_10_1214_17_AOAS1049 crossref_primary_10_1177_0962280217710050 crossref_primary_10_3934_mbe_2024160 crossref_primary_10_1002_sim_7928 crossref_primary_10_1007_s00357_019_9309_y crossref_primary_10_1007_s42519_023_00357_0 crossref_primary_10_1002_sta4_177 crossref_primary_10_1007_s00357_022_09427_7 crossref_primary_10_1016_j_ins_2019_10_019 crossref_primary_10_1080_10618600_2021_1999825 crossref_primary_10_1109_ACCESS_2019_2926579 crossref_primary_10_1002_sta4_608 crossref_primary_10_3390_su122310024 crossref_primary_10_3150_19_BEJ1173 crossref_primary_10_1016_j_engappai_2024_109502 crossref_primary_10_1016_j_ins_2019_07_099 crossref_primary_10_1162_netn_a_00432 crossref_primary_10_1109_TNNLS_2015_2505060 crossref_primary_10_4018_IJSIR_2019040104 crossref_primary_10_1109_ACCESS_2023_3322929 crossref_primary_10_3390_w9090723 crossref_primary_10_1007_s00180_022_01289_2 crossref_primary_10_1093_bib_bbz016 crossref_primary_10_1007_s11227_023_05688_0 crossref_primary_10_3390_s23136119 crossref_primary_10_3389_fneur_2022_959582 crossref_primary_10_1016_j_jmva_2015_12_001 crossref_primary_10_1109_TFUZZ_2021_3136359 crossref_primary_10_1007_s00357_016_9211_9 crossref_primary_10_1007_s11222_018_9838_y crossref_primary_10_1016_j_ejor_2021_04_038 crossref_primary_10_1016_j_patcog_2022_108994 crossref_primary_10_1080_10618600_2024_2429705 crossref_primary_10_1016_j_engappai_2025_110370 crossref_primary_10_1177_0962280216628901 crossref_primary_10_1080_19401493_2019_1711456 crossref_primary_10_1109_ACCESS_2021_3130066 crossref_primary_10_1109_ACCESS_2023_3241489 crossref_primary_10_1136_bmjopen_2017_017284 crossref_primary_10_3758_s13428_022_01795_7 crossref_primary_10_1016_j_ecosta_2017_05_001 crossref_primary_10_1093_zoolinnean_zlac008 crossref_primary_10_1007_s00357_020_09363_4 crossref_primary_10_1007_s41096_024_00181_0 crossref_primary_10_1007_s11634_018_0333_2 crossref_primary_10_1111_insr_12517 crossref_primary_10_1016_j_ins_2018_12_059 crossref_primary_10_1007_s42417_018_0052_1 crossref_primary_10_1007_s11634_013_0158_y crossref_primary_10_1111_resp_12408 crossref_primary_10_1016_j_ecosta_2024_03_002 crossref_primary_10_1177_09622802241242317 crossref_primary_10_1016_j_enpol_2022_112886 crossref_primary_10_1109_TPAMI_2018_2885760 crossref_primary_10_1109_LGRS_2024_3436036 crossref_primary_10_1016_j_artint_2020_103237 crossref_primary_10_1007_s11634_015_0215_9 crossref_primary_10_1155_2018_8019232 crossref_primary_10_1007_s10044_020_00884_7 crossref_primary_10_1016_j_csda_2017_11_001 crossref_primary_10_1007_s11277_021_08668_w crossref_primary_10_1007_s11634_016_0264_8 crossref_primary_10_1080_03610918_2014_889156 crossref_primary_10_1016_j_compind_2025_104273 crossref_primary_10_1007_s11336_017_9578_5 crossref_primary_10_1109_ACCESS_2018_2866364 crossref_primary_10_1007_s11634_020_00398_4 crossref_primary_10_1016_j_patrec_2020_04_024 crossref_primary_10_3390_cosmetics11060218 crossref_primary_10_1007_s00180_013_0433_6 crossref_primary_10_1111_arcm_12901 crossref_primary_10_3390_e22121438 crossref_primary_10_1016_j_datak_2021_101876 crossref_primary_10_1002_adbi_201900226 crossref_primary_10_1007_s11634_015_0204_z crossref_primary_10_1002_cem_2699 crossref_primary_10_1016_j_apenergy_2015_08_077 crossref_primary_10_1109_TSP_2019_2932877 crossref_primary_10_1109_TCYB_2018_2846404 crossref_primary_10_23939_istcipa2023_57_013 crossref_primary_10_1093_bioinformatics_btz599 crossref_primary_10_1016_j_patcog_2024_110310 crossref_primary_10_1109_ACCESS_2017_2654247 crossref_primary_10_1016_j_health_2023_100182 crossref_primary_10_1007_s11749_019_00669_z crossref_primary_10_1016_j_jmva_2024_105330 crossref_primary_10_1111_nmo_14898 crossref_primary_10_1016_j_jrmge_2021_07_012 crossref_primary_10_1214_16_STS604 crossref_primary_10_1016_j_istruc_2023_105134 crossref_primary_10_1007_s00357_022_09421_z crossref_primary_10_1088_1757_899X_1076_1_012044 crossref_primary_10_1007_s00180_018_0808_9 crossref_primary_10_1007_s11222_024_10467_9 crossref_primary_10_1109_TFUZZ_2018_2869125 crossref_primary_10_1002_cem_3097 crossref_primary_10_1007_s11634_018_0336_z crossref_primary_10_1016_j_scitotenv_2024_170765 crossref_primary_10_1109_TSP_2023_3267994 crossref_primary_10_2174_1574893613666180601080008 crossref_primary_10_3390_e26010063 crossref_primary_10_1177_23998083231151688 crossref_primary_10_3390_e21111063 crossref_primary_10_1016_j_schres_2019_05_044 crossref_primary_10_1007_s11222_019_09881_1 crossref_primary_10_1007_s00357_021_09385_6 crossref_primary_10_3390_w13202891 crossref_primary_10_1038_nn_4268 crossref_primary_10_1002_sta4_306 crossref_primary_10_1214_18_AOS1711 crossref_primary_10_1016_j_spasta_2016_05_006 crossref_primary_10_1109_TCBB_2020_3025486 crossref_primary_10_35633_inmateh_65_24 crossref_primary_10_3390_math12071091 crossref_primary_10_1123_mc_2018_0070 crossref_primary_10_1109_TPAMI_2023_3337195 crossref_primary_10_1016_j_csda_2013_10_010 crossref_primary_10_1080_02664763_2020_1845624 crossref_primary_10_1016_j_chemolab_2024_105084 crossref_primary_10_1177_1073191119873714 crossref_primary_10_1371_journal_pcbi_1010349 |
Cites_doi | 10.1007/s11222-011-9272-x 10.1016/S0047-259X(03)00096-4 10.1016/j.csda.2012.05.011 10.1016/j.csda.2004.04.010 10.1080/01621459.1963.10500845 10.1016/j.csda.2007.02.009 10.1016/j.csda.2012.03.027 10.1037/h0071325 10.1016/0031-3203(84)90045-1 10.1214/08-AOS600 10.1207/s15327906mbr0102_10 10.1109/34.865189 10.1007/s11222-009-9138-7 10.1214/aos/1176346060 10.1071/ZO9740417 10.1145/276304.276314 10.1080/02331880108802731 10.1109/TPAMI.2004.71 10.1177/1471082X0901000405 10.1016/j.csda.2006.09.015 10.1214/07-AOS559 10.1109/T-C.1975.224208 10.1198/016214506000000113 10.1214/009053607000000758 10.1007/BF02293851 10.1093/bioinformatics/btp707 10.1007/s11222-009-9128-9 10.1007/s11222-011-9249-9 10.1016/j.csda.2006.09.014 10.1016/j.spl.2012.02.020 10.1109/TPAMI.2007.70819 10.1007/978-3-642-04174-7_41 10.1016/j.csda.2012.08.008 10.2307/2529003 10.1016/j.csda.2009.06.012 10.1137/S1064827596311451 10.1016/S0167-9473(96)00043-6 10.1214/aos/1176324456 10.1080/14786440109462720 10.1214/009053604000000067 10.1016/j.csda.2005.10.001 10.1214/08-EJS194 10.1214/aos/1176349519 10.1162/089976699300016728 10.1016/j.csda.2009.04.013 10.1016/0031-3203(94)00125-6 10.1080/01621459.1989.10478752 10.1198/jasa.2010.tm09415 10.1111/1467-9868.00082 10.1080/03610920701271095 10.1111/j.1469-1809.1936.tb02137.x 10.1109/TPAMI.2006.82 10.1016/j.csda.2012.03.003 10.1016/j.patrec.2011.07.017 10.1111/j.1541-0420.2008.01160.x 10.1007/s00357-009-9037-9 10.1016/j.jmva.2012.02.012 10.1007/s11222-008-9056-0 10.1016/j.csda.2005.12.015 10.1007/BFb0033290 10.1016/S0378-3758(02)00166-0 10.1016/j.csda.2009.05.025 10.1198/016214502760047131 10.1111/j.1467-9868.2005.00510.x 10.2307/1412159 10.1214/aos/1176344136 10.1007/s11222-010-9175-2 10.1007/s003579900058 10.1007/s11222-006-9005-8 10.1111/j.1541-0420.2007.00922.x 10.18637/jss.v004.i02 10.1093/bioinformatics/btq498 10.2307/2532201 10.1016/j.csda.2011.11.002 10.1111/j.2517-6161.1977.tb01600.x 10.1016/S0167-9473(02)00183-4 10.1093/bioinformatics/btl129 |
ContentType | Journal Article |
Copyright | 2012 Elsevier B.V. Attribution |
Copyright_xml | – notice: 2012 Elsevier B.V. – notice: Attribution |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 7S9 L.6 1XC VOOES |
DOI | 10.1016/j.csda.2012.12.008 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Statistics |
EISSN | 1872-7352 |
EndPage | 78 |
ExternalDocumentID | oai_HAL_hal_00750909v1 10_1016_j_csda_2012_12_008 S0167947312004422 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDS SES SEW SME SPC SPCBC SSB SSD SST SSV SSW SSZ T5K VH1 VOH WUQ XPP ZMT ZY4 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 8FD EFKBS JQ2 L7M L~C L~D 7S9 L.6 1XC UMC VOOES |
ID | FETCH-LOGICAL-c444t-f23e241d10aeed601ad778b377fedba596853e83919e5f1b441d52a2baec4dfa3 |
IEDL.DBID | .~1 |
ISSN | 0167-9473 |
IngestDate | Fri May 09 12:12:59 EDT 2025 Sun Aug 24 03:38:23 EDT 2025 Tue Aug 05 10:03:02 EDT 2025 Thu Apr 24 22:54:49 EDT 2025 Tue Jul 01 02:24:27 EDT 2025 Fri Feb 23 02:23:51 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | High-dimensional data Dimension reduction Model-based clustering Parsimonious models Subspace clustering Software Regularization R package Variable selection |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Attribution: http://creativecommons.org/licenses/by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c444t-f23e241d10aeed601ad778b377fedba596853e83919e5f1b441d52a2baec4dfa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6956-4491 |
OpenAccessLink | https://hal.science/hal-00750909 |
PQID | 1671523157 |
PQPubID | 23500 |
PageCount | 27 |
ParticipantIDs | hal_primary_oai_HAL_hal_00750909v1 proquest_miscellaneous_2237521988 proquest_miscellaneous_1671523157 crossref_primary_10_1016_j_csda_2012_12_008 crossref_citationtrail_10_1016_j_csda_2012_12_008 elsevier_sciencedirect_doi_10_1016_j_csda_2012_12_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-03-01 |
PublicationDateYYYYMMDD | 2014-03-01 |
PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Computational statistics & data analysis |
PublicationYear | 2014 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P., 1998. Automatic subspace clustering of high-dimensional data for data mining application. In: ACM SIGMOD International Conference on Management of Data, pp. 94–105. Bouveyron, Celeux, Girard (br000100) 2011; 32 Viroli, C., 2010a. The hmfa function for the R software. Pavlenko, Von Rosen (br000440) 2001; 35 Bickel, Levina (br000045) 2008; 36 Andrews, McNicholas (br000015) 2012; 22 Lee, Lin, Hsieh (br000260) 2007; 17 Maugis, Celeux, Martin-Magniette (br000305) 2009; 65 Efron, Hastie, Johnstone, Tibshirani (br000155) 2004; 32 McLachlan, Peel, Basford, Adams (br000355) 1999; 4 Mo, C., 2009. emgm: EM algorithm for Gaussian mixture model. Tipping, Bishop (br000500) 1999; 11 McLachlan, G.J., 2010a. The EMMIX software. Fisher (br000165) 1936; 7 Huber (br000245) 1985; 13 Tran, Wehrens, Buydens (br000505) 2006; 51 Xie, Pan, Shen (br000570) 2010; 26 Yoshida, Higuchi, Imoto (br000575) 2004; 8 Partovi Nia, Davison (br000430) 2012; 47 Witten, Tibshirani (br000550) 2010; 105 . Wolfe, J.H., 1963. Object cluster analysis of social areas. Master’s thesis, University of California, Berkeley. Sanguinetti (br000460) 2008; 30 Bishop (br000065) 2006 Montanari, Viroli (br000400) 2010; 10 Banfield, Raftery (br000025) 1993; 49 Law, Figueiredo, Jain (br000250) 2004; 26 Venables, Ripley (br000515) 2002 Galimberti, Soffritti (br000220) 2012 Bellman (br000030) 1957 Pan, Shen (br000420) 2007; 8 McNicholas, Murphy (br000365) 2008; 18 Bouchard, Celeux (br000075) 2005; 28 Celeux, Govaert (br000125) 1995; 28 Fraley, Raftery (br000180) 1999; 16 Fraley (br000175) 1998; 20 Tipping, M.E., Bishop, C.M., 1997. Probabilistic principal component analysis. Technical Report NCRG-97-010, Neural Computing Research Group, Aston University. Bouchard, G., Bouveyron, C., 2007. The statlearn toolbox: statistical learning tools for Matlab. Zhang, Z., Dai, G., Jordan, M.I., 2009. A flexible and efficient algorithm for regularized fisher discriminant analysis, In: Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 632–647. Spearman (br000485) 1904; 15 Bouveyron, Brunet (br000090) 2012; 22 Cattell (br000120) 1966; 1 Yoshida, Higuchi, Imoto, Miyano (br000580) 2006; 22 Liu, Zhang, Palumbo, Lawrence (br000285) 2003; 7 Maugis, Celeux, Martin-Magniette (br000310) 2009; 53 Schwarz (br000465) 1978; 6 Andrews, McNicholas (br000010) 2011; 21 Murtagh, Raftery (br000410) 1984; 17 Ledoit, Wolf (br000255) 2003; 88 Tritchler, Fallah, Beyene (br000510) 2005; 49 Duda, Hart, Stork (br000150) 2000 McLachlan, Bean, Ben-Tovim Jones (br000335) 2011; 51 Melnykov, Melnykov (br000380) 2012; 56 Vrbik, McNicholas (br000535) 2012; 82 Bouveyron, Girard, Schmid (br000105) 2007; 52 Friedman, Hastie, Tibshirani (br000205) 2008; 104 Bergé, Bouveyron, Girard (br000035) 2012; 42 McNicholas, Murphy (br000370) 2010; 26 Murtagh (br000405) 2009; 26 Celeux, Martin-Magniette, Maugis, Raftery (br000130) 2011; 106 Scrucca (br000480) 2010; 20 Rubin, Thayer (br000455) 1982; 47 Hastie, Buja, Tibshirani (br000235) 1995; 23 Parsons, Haque, Liu (br000425) 1998; 6 Biernacki, Celeux, Govaert (br000050) 2001; 22 Ward (br000545) 1963; 58 Fraley, Raftery (br000185) 2002; 97 Wu (br000560) 1983; 11 von Borries, Wang (br000530) 2009; 53 Pearson (br000445) 1901; 6 Franczak, B.C., Browne, R.P., McNicholas, P.D., 2012. Mixtures of shifted asymmetric Laplace distributions. Preprint Steiner, Hudec (br000490) 2007; 51 Biernacki, Jacques (br000060) 2013; 58 Campbell, Mahon (br000115) 1974; 22 Bouveyron, Brunet (br000080) 2011; 152 Foley, Sammon (br000170) 1975; 24 McNicholas, P.D., Murphy, T.B., Jampani, K.R., McDaid, A.F., Banks, L., 2011. Pgmm Version 1.0 for R: Model-based clustering and classification via latent Gaussian mixture models. Technical Report 320, Department of Mathematics and Statistics, University of Guelph. Bouveyron, Brunet (br000095) 2012; 109 Chen, Ostrouchov (br000140) 2012 Viroli, C., 2010b. The mmfa function for the R software. McLachlan, Krishnan (br000340) 1997 Baek, McLachlan, Flack (br000020) 2009 MacQueen (br000290) 1967 McLachlan, Peel, Bean (br000360) 2003; 41 Lin (br000275) 2010; 20 Galimberti, Montanari, Viroli (br000215) 2009; 53 McLachlan, Peel (br000345) 1998; 1451 Hotelling (br000240) 1933; 24 Fukunaga (br000210) 1990 McLachlan, Peel (br000350) 2000 Xie, Pan, Shen (br000565) 2008; 2 Bickel, Levina (br000040) 2008; 36 Biernacki, Celeux, Govaert, Langrognet (br000055) 2006; 51 Bouveyron, Girard, Schmid (br000110) 2007; 36 Friedman (br000200) 1989; 84 Manolopoulou, Kepler, Merl (br000295) 2012; 56 Ghahramani, Z., Hinton, G.E., 1997. The EM algorithm for factor analyzers. Technical report, University of Toronto. Dempster, Laird, Robin (br000145) 1977; 39 Maugis, C., 2009. The selvarclust software. El Karoui, N., 2007. Operator norm consistent estimation of large dimensional sparse covariance matrices. Technical report 734, UC Berkeley, Department of Statistics. Lee, McLachlan (br000265) 2013 Bouveyron, C., Brunet, C., 2012a. Discriminative variable selection for clustering with the sparse Fisher–EM algorithm. Technical Report Preprint HAL 00685183, Laboratoire SAMM, Université Paris 1 Panthéon-Sorbonne. Lee, Scott (br000270) 2012; 56 Pavlenko (br000435) 2003; 115 Wang, Zhou (br000540) 2008; 64 Scott, Symons (br000470) 1971; 27 Scott, D., Thompson, J., 1983. Probability density estimation in higher dimensions, In: Fifteenth Symposium in the Interface, pp. 173–179. Mkhadri, Celeux, Nasrollah (br000390) 1997; 23 Raftery, Dean (br000450) 2006; 101 McLachlan, G.J., 2010b. The mcfa function for the R software. Frank, A., Asuncion, A., 2010. UCI Machine Learning Repository. Lindsay (br000280) 1995; vol. 5 O’Hagan, Murphy, Gormley (br000415) 2012; 56 McLachlan, Basford (br000330) 1988 Hall, Marron, Neeman (br000230) 2005; 67 Chang (br000135) 1983; 32 McLachlan, G.J., 2003. The EMMIX-MFA software. Meng, Van Dyk (br000385) 1997; 59 Bouveyron (10.1016/j.csda.2012.12.008_br000080) 2011; 152 Maugis (10.1016/j.csda.2012.12.008_br000310) 2009; 53 McLachlan (10.1016/j.csda.2012.12.008_br000355) 1999; 4 Andrews (10.1016/j.csda.2012.12.008_br000010) 2011; 21 Bergé (10.1016/j.csda.2012.12.008_br000035) 2012; 42 10.1016/j.csda.2012.12.008_br000190 10.1016/j.csda.2012.12.008_br000070 10.1016/j.csda.2012.12.008_br000195 Murtagh (10.1016/j.csda.2012.12.008_br000405) 2009; 26 Banfield (10.1016/j.csda.2012.12.008_br000025) 1993; 49 Lee (10.1016/j.csda.2012.12.008_br000260) 2007; 17 Huber (10.1016/j.csda.2012.12.008_br000245) 1985; 13 Fraley (10.1016/j.csda.2012.12.008_br000185) 2002; 97 Galimberti (10.1016/j.csda.2012.12.008_br000220) 2012 10.1016/j.csda.2012.12.008_br000475 Mkhadri (10.1016/j.csda.2012.12.008_br000390) 1997; 23 MacQueen (10.1016/j.csda.2012.12.008_br000290) 1967 Tran (10.1016/j.csda.2012.12.008_br000505) 2006; 51 Partovi Nia (10.1016/j.csda.2012.12.008_br000430) 2012; 47 Yoshida (10.1016/j.csda.2012.12.008_br000580) 2006; 22 Cattell (10.1016/j.csda.2012.12.008_br000120) 1966; 1 10.1016/j.csda.2012.12.008_br000225 10.1016/j.csda.2012.12.008_br000585 Dempster (10.1016/j.csda.2012.12.008_br000145) 1977; 39 Bellman (10.1016/j.csda.2012.12.008_br000030) 1957 Chang (10.1016/j.csda.2012.12.008_br000135) 1983; 32 Biernacki (10.1016/j.csda.2012.12.008_br000050) 2001; 22 Bouveyron (10.1016/j.csda.2012.12.008_br000110) 2007; 36 Lee (10.1016/j.csda.2012.12.008_br000270) 2012; 56 Witten (10.1016/j.csda.2012.12.008_br000550) 2010; 105 Tipping (10.1016/j.csda.2012.12.008_br000500) 1999; 11 Manolopoulou (10.1016/j.csda.2012.12.008_br000295) 2012; 56 McNicholas (10.1016/j.csda.2012.12.008_br000365) 2008; 18 10.1016/j.csda.2012.12.008_br000495 10.1016/j.csda.2012.12.008_br000375 Friedman (10.1016/j.csda.2012.12.008_br000200) 1989; 84 McLachlan (10.1016/j.csda.2012.12.008_br000360) 2003; 41 Spearman (10.1016/j.csda.2012.12.008_br000485) 1904; 15 McNicholas (10.1016/j.csda.2012.12.008_br000370) 2010; 26 Friedman (10.1016/j.csda.2012.12.008_br000205) 2008; 104 Xie (10.1016/j.csda.2012.12.008_br000570) 2010; 26 Fraley (10.1016/j.csda.2012.12.008_br000180) 1999; 16 Law (10.1016/j.csda.2012.12.008_br000250) 2004; 26 Tritchler (10.1016/j.csda.2012.12.008_br000510) 2005; 49 Biernacki (10.1016/j.csda.2012.12.008_br000060) 2013; 58 Bickel (10.1016/j.csda.2012.12.008_br000040) 2008; 36 Schwarz (10.1016/j.csda.2012.12.008_br000465) 1978; 6 McLachlan (10.1016/j.csda.2012.12.008_br000330) 1988 10.1016/j.csda.2012.12.008_br000085 Liu (10.1016/j.csda.2012.12.008_br000285) 2003; 7 McLachlan (10.1016/j.csda.2012.12.008_br000350) 2000 Meng (10.1016/j.csda.2012.12.008_br000385) 1997; 59 Galimberti (10.1016/j.csda.2012.12.008_br000215) 2009; 53 10.1016/j.csda.2012.12.008_br000005 Hastie (10.1016/j.csda.2012.12.008_br000235) 1995; 23 Efron (10.1016/j.csda.2012.12.008_br000155) 2004; 32 10.1016/j.csda.2012.12.008_br000520 Hotelling (10.1016/j.csda.2012.12.008_br000240) 1933; 24 10.1016/j.csda.2012.12.008_br000525 Baek (10.1016/j.csda.2012.12.008_br000020) 2009 Bishop (10.1016/j.csda.2012.12.008_br000065) 2006 Venables (10.1016/j.csda.2012.12.008_br000515) 2002 Chen (10.1016/j.csda.2012.12.008_br000140) 2012 Fisher (10.1016/j.csda.2012.12.008_br000165) 1936; 7 Wu (10.1016/j.csda.2012.12.008_br000560) 1983; 11 Rubin (10.1016/j.csda.2012.12.008_br000455) 1982; 47 Duda (10.1016/j.csda.2012.12.008_br000150) 2000 McLachlan (10.1016/j.csda.2012.12.008_br000340) 1997 Pearson (10.1016/j.csda.2012.12.008_br000445) 1901; 6 Lindsay (10.1016/j.csda.2012.12.008_br000280) 1995; vol. 5 Celeux (10.1016/j.csda.2012.12.008_br000130) 2011; 106 10.1016/j.csda.2012.12.008_br000395 10.1016/j.csda.2012.12.008_br000555 Montanari (10.1016/j.csda.2012.12.008_br000400) 2010; 10 10.1016/j.csda.2012.12.008_br000315 Lin (10.1016/j.csda.2012.12.008_br000275) 2010; 20 McLachlan (10.1016/j.csda.2012.12.008_br000345) 1998; 1451 Pavlenko (10.1016/j.csda.2012.12.008_br000435) 2003; 115 Bouveyron (10.1016/j.csda.2012.12.008_br000090) 2012; 22 Bouveyron (10.1016/j.csda.2012.12.008_br000105) 2007; 52 Raftery (10.1016/j.csda.2012.12.008_br000450) 2006; 101 Bickel (10.1016/j.csda.2012.12.008_br000045) 2008; 36 Campbell (10.1016/j.csda.2012.12.008_br000115) 1974; 22 Vrbik (10.1016/j.csda.2012.12.008_br000535) 2012; 82 Murtagh (10.1016/j.csda.2012.12.008_br000410) 1984; 17 10.1016/j.csda.2012.12.008_br000300 Fukunaga (10.1016/j.csda.2012.12.008_br000210) 1990 Yoshida (10.1016/j.csda.2012.12.008_br000575) 2004; 8 Bouveyron (10.1016/j.csda.2012.12.008_br000100) 2011; 32 Scrucca (10.1016/j.csda.2012.12.008_br000480) 2010; 20 Hall (10.1016/j.csda.2012.12.008_br000230) 2005; 67 Maugis (10.1016/j.csda.2012.12.008_br000305) 2009; 65 McLachlan (10.1016/j.csda.2012.12.008_br000335) 2011; 51 Andrews (10.1016/j.csda.2012.12.008_br000015) 2012; 22 Bouveyron (10.1016/j.csda.2012.12.008_br000095) 2012; 109 O’Hagan (10.1016/j.csda.2012.12.008_br000415) 2012; 56 von Borries (10.1016/j.csda.2012.12.008_br000530) 2009; 53 Scott (10.1016/j.csda.2012.12.008_br000470) 1971; 27 Celeux (10.1016/j.csda.2012.12.008_br000125) 1995; 28 Fraley (10.1016/j.csda.2012.12.008_br000175) 1998; 20 Foley (10.1016/j.csda.2012.12.008_br000170) 1975; 24 Lee (10.1016/j.csda.2012.12.008_br000265) 2013 Sanguinetti (10.1016/j.csda.2012.12.008_br000460) 2008; 30 Xie (10.1016/j.csda.2012.12.008_br000565) 2008; 2 Melnykov (10.1016/j.csda.2012.12.008_br000380) 2012; 56 Pan (10.1016/j.csda.2012.12.008_br000420) 2007; 8 Wang (10.1016/j.csda.2012.12.008_br000540) 2008; 64 Biernacki (10.1016/j.csda.2012.12.008_br000055) 2006; 51 Ledoit (10.1016/j.csda.2012.12.008_br000255) 2003; 88 Ward (10.1016/j.csda.2012.12.008_br000545) 1963; 58 Bouchard (10.1016/j.csda.2012.12.008_br000075) 2005; 28 10.1016/j.csda.2012.12.008_br000160 Steiner (10.1016/j.csda.2012.12.008_br000490) 2007; 51 10.1016/j.csda.2012.12.008_br000320 Parsons (10.1016/j.csda.2012.12.008_br000425) 1998; 6 Pavlenko (10.1016/j.csda.2012.12.008_br000440) 2001; 35 10.1016/j.csda.2012.12.008_br000325 |
References_xml | – volume: vol. 5 year: 1995 ident: br000280 publication-title: Mixture Models: Theory, Geometry and Applications – volume: 59 start-page: 511 year: 1997 end-page: 567 ident: br000385 article-title: The EM algorithm — an old folk song sung to a fast new tune publication-title: Journal of the Royal Statistical Society, Series B – reference: Bouveyron, C., Brunet, C., 2012a. Discriminative variable selection for clustering with the sparse Fisher–EM algorithm. Technical Report Preprint HAL 00685183, Laboratoire SAMM, Université Paris 1 Panthéon-Sorbonne. – volume: 56 start-page: 2816 year: 2012 end-page: 2829 ident: br000270 article-title: Em algorithms for multivariate gaussian mixture models with truncated and censored data publication-title: Computational Statistics and Data Analysis – year: 1988 ident: br000330 article-title: Mixture Models: Inference and Applications to Clustering – volume: 28 start-page: 544 year: 2005 end-page: 554 ident: br000075 article-title: Model selection in supervised classification publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 51 start-page: 5327 year: 2011 end-page: 5338 ident: br000335 article-title: Extension of the mixture of factor analyzers model to incorporate the multivariate publication-title: Computational Statistics and Data Analysis – volume: 23 start-page: 73 year: 1995 end-page: 102 ident: br000235 article-title: Penalized discriminant analysis publication-title: The Annals of Statistics – volume: 24 start-page: 417 year: 1933 end-page: 441 ident: br000240 article-title: Analysis of a complex of statistical variables into principal components publication-title: Journal of Educational Psychology – volume: 101 start-page: 168 year: 2006 end-page: 178 ident: br000450 article-title: Variable selection for model-based clustering publication-title: Journal of the American Statistical Association – volume: 51 start-page: 513 year: 2006 end-page: 525 ident: br000505 article-title: Knn-kernel density-based clustering for high-dimensional multivariate data publication-title: Computational Statistics and Data Analysis – volume: 4 start-page: 1 year: 1999 end-page: 14 ident: br000355 article-title: The emmix software for the fitting of mixtures of normal publication-title: Journal of Statistical Software – volume: 28 start-page: 781 year: 1995 end-page: 793 ident: br000125 article-title: Gaussian parsimonious clustering models publication-title: Pattern Recognition – year: 1997 ident: br000340 article-title: The EM Algorithm and Extensions – volume: 53 start-page: 3872 year: 2009 end-page: 3882 ident: br000310 article-title: Variable selection in model-based clustering: a general variable role modeling publication-title: Computational Statistics and Data Analysis – volume: 18 start-page: 285 year: 2008 end-page: 296 ident: br000365 article-title: Parsimonious Gaussian mixture models publication-title: Statistics and Computing – volume: 47 start-page: 1 year: 2012 end-page: 22 ident: br000430 article-title: High-dimensional bayesian clustering with variable selection: the R package bclust publication-title: Journal of Statistical Software – reference: El Karoui, N., 2007. Operator norm consistent estimation of large dimensional sparse covariance matrices. Technical report 734, UC Berkeley, Department of Statistics. – volume: 7 start-page: 249 year: 2003 end-page: 276 ident: br000285 article-title: Bayesian clustering with variable and transformation selection publication-title: Bayesian Statistics – year: 2000 ident: br000350 article-title: Finite Mixture Models – volume: 26 start-page: 501 year: 2010 end-page: 508 ident: br000570 article-title: Penalized mixtures of factor analyzers with application to clustering high-dimensional microarray data publication-title: Bioinformatics – volume: 20 start-page: 471 year: 2010 end-page: 484 ident: br000480 article-title: Dimension reduction for model-based clustering publication-title: Statistics and Computing – volume: 64 start-page: 440 year: 2008 end-page: 448 ident: br000540 article-title: Variable selection for model-based high dimensional clustering and its application to microarray data publication-title: Biometrics – volume: 32 start-page: 407 year: 2004 end-page: 499 ident: br000155 article-title: Least angle regression publication-title: The Annals of Statistics – volume: 22 start-page: 719 year: 2001 end-page: 725 ident: br000050 article-title: Assessing a mixture model for clustering with the integrated completed likelihood publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 26 start-page: 1154 year: 2004 end-page: 1166 ident: br000250 article-title: Simultaneous feature selection and clustering using mixture models publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 16 start-page: 297 year: 1999 end-page: 306 ident: br000180 article-title: MCLUST: software for model-based cluster analysis publication-title: Journal of Classification – volume: 26 start-page: 249 year: 2009 end-page: 277 ident: br000405 article-title: The remarkable simplicity of very high dimensional data: application of model-based clustering publication-title: Journal of Classification – volume: 82 start-page: 1169 year: 2012 end-page: 1174 ident: br000535 article-title: Analytic calculations for the EM algorithm for multivariate skew- publication-title: Statistics & Probability Letters – reference: McNicholas, P.D., Murphy, T.B., Jampani, K.R., McDaid, A.F., Banks, L., 2011. Pgmm Version 1.0 for R: Model-based clustering and classification via latent Gaussian mixture models. Technical Report 320, Department of Mathematics and Statistics, University of Guelph. – volume: 105 start-page: 713 year: 2010 end-page: 726 ident: br000550 article-title: A framework for feature selection in clustering publication-title: Journal of the American Statistical Association – year: 1957 ident: br000030 article-title: Dynamic Programming – volume: 22 start-page: 1021 year: 2012 end-page: 1029 ident: br000015 article-title: Model-based clustering, classification, and discriminant analysis via mixtures of multivariate publication-title: Statistics and Computing – volume: 88 start-page: 365 year: 2003 end-page: 411 ident: br000255 article-title: A well-conditioned estimator for large-dimensional covariance matrices publication-title: Journal of Multivariate Analysis – volume: 32 start-page: 1706 year: 2011 end-page: 1713 ident: br000100 article-title: Intrinsic dimension estimation by maximum likelihood in isotropic probabilistic PCA publication-title: Pattern Recognition Letters – volume: 22 start-page: 301 year: 2012 end-page: 324 ident: br000090 article-title: Simultaneous model-based clustering and visualization in the Fisher discriminative subspace publication-title: Statistics and Computing – volume: 26 start-page: 2705 year: 2010 end-page: 2712 ident: br000370 article-title: Model-based clustering of microarray expression data via latent gaussian mixture models publication-title: Bioinformatics – reference: Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P., 1998. Automatic subspace clustering of high-dimensional data for data mining application. In: ACM SIGMOD International Conference on Management of Data, pp. 94–105. – volume: 24 start-page: 281 year: 1975 end-page: 289 ident: br000170 article-title: An optimal set of discriminant vectors publication-title: IEEE Transactions on Computers – volume: 22 start-page: 1538 year: 2006 end-page: 1539 ident: br000580 article-title: Array cluster: an analytic tool for clustering, data visualization and model finder on gene expression profiles publication-title: Bioinformatics – reference: Frank, A., Asuncion, A., 2010. UCI Machine Learning Repository. – year: 1990 ident: br000210 article-title: Introduction to Statistical Pattern Recognition – volume: 8 start-page: 161 year: 2004 end-page: 172 ident: br000575 article-title: A mixed factor model for dimension reduction and extraction of a group structure in gene expression data publication-title: IEEE Computational Systems Bioinformatics Conference – volume: 58 start-page: 162 year: 2013 end-page: 176 ident: br000060 article-title: A generative model for rank data based on insertion sort algorithm publication-title: Computational Statistics and Data Analysis – volume: 67 start-page: 427 year: 2005 end-page: 444 ident: br000230 article-title: Geometric representation of high dimension, low sample size data publication-title: Journal of the Royal Statistical Society, Serie B – volume: 21 start-page: 361 year: 2011 end-page: 373 ident: br000010 article-title: Extending mixtures of multivariate publication-title: Statistics and Computing – reference: Viroli, C., 2010a. The hmfa function for the R software. – start-page: 1 year: 2009 end-page: 13 ident: br000020 article-title: Mixtures of factor analyzers with common factor loadings: applications to the clustering and visualisation of high-dimensional data publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 30 start-page: 1 year: 2008 end-page: 29 ident: br000460 article-title: Dimensionality reduction of clustered datasets publication-title: IEEE Transactions On Pattern Analysis And Machine Intelligence – volume: 22 start-page: 417 year: 1974 end-page: 425 ident: br000115 article-title: A multivariate study of variation in two species of rock crabs of genus Leptograpsus publication-title: Australian Journal of Zoology – volume: 20 start-page: 343 year: 2010 end-page: 356 ident: br000275 article-title: Robust mixture modeling using multivariate skew t distribution publication-title: Statistics and Computing – volume: 35 start-page: 191 year: 2001 end-page: 213 ident: br000440 article-title: Effect of dimensionality on discrimination publication-title: Statistics – year: 2012 ident: br000140 article-title: Parallel Model-Based Clustering – volume: 56 start-page: 3843 year: 2012 end-page: 3864 ident: br000415 article-title: Computational aspects of fitting mixture models via the expectation-maximization algorithm publication-title: Computational Statistics and Data Analysis – volume: 6 start-page: 461 year: 1978 end-page: 464 ident: br000465 article-title: Estimating the dimension of a model publication-title: The Annals of Statistics – volume: 106 year: 2011 ident: br000130 article-title: Letter to the editor publication-title: Journal of the American Statistical Association – volume: 27 start-page: 387 year: 1971 end-page: 397 ident: br000470 article-title: Clustering methods based on likelihood ratio criteria publication-title: Biometrics – volume: 49 start-page: 803 year: 1993 end-page: 821 ident: br000025 article-title: Model-based Gaussian and non-Gaussian clustering publication-title: Biometrics – volume: 65 start-page: 701 year: 2009 end-page: 709 ident: br000305 article-title: Variable selection for clustering with Gaussian mixture models publication-title: Biometrics – reference: Mo, C., 2009. emgm: EM algorithm for Gaussian mixture model. – volume: 58 start-page: 234 year: 1963 end-page: 244 ident: br000545 article-title: Hierarchical groupings to optimize an objective function publication-title: Journal of the American Statistical Association – volume: 15 start-page: 72 year: 1904 end-page: 101 ident: br000485 article-title: The proof and measurement of association between two things publication-title: American Journal of Psychology – volume: 6 start-page: 69 year: 1998 end-page: 76 ident: br000425 article-title: Subspace clustering for high-dimensional data: a review publication-title: SIGKDD Exploration Newsletter – volume: 52 start-page: 502 year: 2007 end-page: 519 ident: br000105 article-title: High-dimensional data clustering publication-title: Computational Statistics and Data Analysis – year: 2012 ident: br000220 article-title: Using conditional independence for parsimonious model-based Gaussian clustering publication-title: Statistics and Computing – year: 2002 ident: br000515 article-title: Modern Applied Statistics with S – volume: 13 start-page: 435 year: 1985 end-page: 525 ident: br000245 article-title: Projection pursuit publication-title: The Annals of Statistics – volume: 84 start-page: 165 year: 1989 end-page: 175 ident: br000200 article-title: Regularized discriminant analysis publication-title: The Journal of the American Statistical Association – volume: 104 start-page: 177 year: 2008 end-page: 186 ident: br000205 article-title: Sparse inverse covariance estimation with the graphical lasso publication-title: Journal of the American Statistical Association – reference: McLachlan, G.J., 2010b. The mcfa function for the R software. – reference: Bouchard, G., Bouveyron, C., 2007. The statlearn toolbox: statistical learning tools for Matlab. – volume: 42 start-page: 1 year: 2012 end-page: 29 ident: br000035 article-title: HDclassif: an R package for model-based clustering and discriminant analysis of high-dimensional data publication-title: Journal of Statistical Software – volume: 6 start-page: 559 year: 1901 end-page: 572 ident: br000445 article-title: On lines and planes of closest fit to systems of points in space publication-title: Philosophical Magazine – volume: 51 start-page: 5416 year: 2007 end-page: 5428 ident: br000490 article-title: Classification of large data sets with mixture models via sufficient em publication-title: Computational Statistics and Data Analysis – reference: Franczak, B.C., Browne, R.P., McNicholas, P.D., 2012. Mixtures of shifted asymmetric Laplace distributions. Preprint – volume: 47 start-page: 69 year: 1982 end-page: 76 ident: br000455 article-title: EM algorithms for ML factor analysis publication-title: Psychometrika – volume: 97 year: 2002 ident: br000185 article-title: Model-based clustering, discriminant analysis, and density estimation publication-title: Journal of the American Statistical Association – volume: 36 start-page: 2577 year: 2008 end-page: 2604 ident: br000040 article-title: Covariance regularization by thresholding publication-title: The Annals of Statistics – reference: McLachlan, G.J., 2010a. The EMMIX software. – volume: 51 start-page: 587 year: 2006 end-page: 600 ident: br000055 article-title: Model-based cluster and discriminant analysis with the mixmod software publication-title: Computational Statistics and Data Analysis – volume: 2 start-page: 168 year: 2008 end-page: 212 ident: br000565 article-title: Penalized model-based clustering with cluster-specific diagonal covariance matrices and grouped variables publication-title: Electrical Journal of Statistics – volume: 11 start-page: 95 year: 1983 end-page: 103 ident: br000560 article-title: On the convergence properties of the EM algorithm publication-title: The Annals of Statistics – volume: 41 start-page: 379 year: 2003 ident: br000360 article-title: Modelling high-dimensional data by mixtures of factor analyzers publication-title: Computational Statistics and Data Analysis – volume: 17 start-page: 479 year: 1984 end-page: 483 ident: br000410 article-title: Fitting straight lines to point patterns publication-title: Pattern Recognition – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: br000145 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: Journal of the Royal Statistical Society – volume: 8 start-page: 1145 year: 2007 end-page: 1164 ident: br000420 article-title: Penalized model-based clustering with application to variable selection publication-title: Journal of Machine Learning Research – volume: 1451 start-page: 658 year: 1998 end-page: 666 ident: br000345 article-title: Robust cluster analysis via mixtures of multivariate publication-title: Lecture Notes in Computer Science – volume: 20 start-page: 270 year: 1998 end-page: 281 ident: br000175 article-title: Algorithms for model-based Gaussian hierarchical clustering publication-title: SIAM Journal on Scientific Computing – volume: 53 start-page: 3987 year: 2009 end-page: 3998 ident: br000530 article-title: Partition clustering of high dimensional low sample size data based on publication-title: Computational Statistics and Data Analysis – reference: Zhang, Z., Dai, G., Jordan, M.I., 2009. A flexible and efficient algorithm for regularized fisher discriminant analysis, In: Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 632–647. – volume: 17 start-page: 81 year: 2007 end-page: 92 ident: br000260 article-title: Robust mixture modeling using the skew publication-title: Statistics and Computing – volume: 7 start-page: 179 year: 1936 end-page: 188 ident: br000165 article-title: The use of multiple measurements in taxonomic problems publication-title: Annals of Eugenics – reference: Viroli, C., 2010b. The mmfa function for the R software. – start-page: 281 year: 1967 end-page: 297 ident: br000290 article-title: Some methods for classification and analysis of multivariate observations publication-title: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1 – volume: 152 start-page: 98 year: 2011 end-page: 115 ident: br000080 article-title: On the estimation of the latent discriminative subspace in the Fisher–EM algorithm publication-title: Journal de la Société Francaise de Statistique – year: 2006 ident: br000065 article-title: Pattern Recognition and Machine Learning – volume: 109 start-page: 29 year: 2012 end-page: 41 ident: br000095 article-title: Theoretical and practical considerations on the convergence properties of the Fisher–EM algorithm publication-title: Journal of Multivariate Analysis – reference: McLachlan, G.J., 2003. The EMMIX-MFA software. – volume: 11 start-page: 443 year: 1999 end-page: 482 ident: br000500 article-title: Mixtures of probabilistic principal component analysers publication-title: Neural Computation – volume: 1 start-page: 145 year: 1966 end-page: 276 ident: br000120 article-title: The scree test for the number of factors publication-title: Multivariate Behavioral Research – volume: 56 start-page: 1381 year: 2012 end-page: 1395 ident: br000380 article-title: Initializing the em algorithm in gaussian mixture models with an unknown number of components publication-title: Computational Statistics and Data Analysis – volume: 115 start-page: 565 year: 2003 end-page: 584 ident: br000435 article-title: On feature selection, curse of dimensionality and error probability in discriminant analysis publication-title: Journal of Statistical Planning and Inference – reference: Scott, D., Thompson, J., 1983. Probability density estimation in higher dimensions, In: Fifteenth Symposium in the Interface, pp. 173–179. – reference: Wolfe, J.H., 1963. Object cluster analysis of social areas. Master’s thesis, University of California, Berkeley. – year: 2013 ident: br000265 article-title: Finite mixtures of multivariate skew publication-title: Statistics and Computing – reference: Ghahramani, Z., Hinton, G.E., 1997. The EM algorithm for factor analyzers. Technical report, University of Toronto. – volume: 56 start-page: 3809 year: 2012 end-page: 3820 ident: br000295 article-title: Mixtures of gaussian wells: theory, computation, and application publication-title: Computational Statistics and Data Analysis – volume: 32 start-page: 267 year: 1983 end-page: 275 ident: br000135 article-title: On using principal component before separating a mixture of two multivariate normal distributions publication-title: Journal of the Royal Statistical Society, Series C – reference: . – year: 2000 ident: br000150 article-title: Pattern Classification – volume: 10 start-page: 441 year: 2010 end-page: 460 ident: br000400 article-title: Heteroscedastic factor mixture analysis publication-title: Statistical Modelling – volume: 49 start-page: 63 year: 2005 end-page: 76 ident: br000510 article-title: A spectral clustering method for microarray data publication-title: Computational Statistics and Data Analysis – volume: 36 start-page: 199 year: 2008 end-page: 227 ident: br000045 article-title: Regularized estimation of large covariance matrices publication-title: The Annals of Statistics – volume: 36 start-page: 2607 year: 2007 end-page: 2623 ident: br000110 article-title: High dimensional discriminant analysis publication-title: Communications in Statistics: Theory and Methods – volume: 53 start-page: 4301 year: 2009 end-page: 4310 ident: br000215 article-title: Penalized factor mixture analysis for variable selection in clustered data publication-title: Computational Statistics and Data Analysis – reference: Maugis, C., 2009. The selvarclust software. – reference: Tipping, M.E., Bishop, C.M., 1997. Probabilistic principal component analysis. Technical Report NCRG-97-010, Neural Computing Research Group, Aston University. – volume: 23 start-page: 403 year: 1997 end-page: 423 ident: br000390 article-title: Regularization in discriminant analysis: a survey publication-title: Computational Statistics and Data Analysis – volume: 8 start-page: 1145 year: 2007 ident: 10.1016/j.csda.2012.12.008_br000420 article-title: Penalized model-based clustering with application to variable selection publication-title: Journal of Machine Learning Research – volume: 22 start-page: 1021 issue: 5 year: 2012 ident: 10.1016/j.csda.2012.12.008_br000015 article-title: Model-based clustering, classification, and discriminant analysis via mixtures of multivariate t-distributions publication-title: Statistics and Computing doi: 10.1007/s11222-011-9272-x – volume: 88 start-page: 365 year: 2003 ident: 10.1016/j.csda.2012.12.008_br000255 article-title: A well-conditioned estimator for large-dimensional covariance matrices publication-title: Journal of Multivariate Analysis doi: 10.1016/S0047-259X(03)00096-4 – volume: 56 start-page: 3843 issue: 12 year: 2012 ident: 10.1016/j.csda.2012.12.008_br000415 article-title: Computational aspects of fitting mixture models via the expectation-maximization algorithm publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2012.05.011 – ident: 10.1016/j.csda.2012.12.008_br000195 – volume: 49 start-page: 63 issue: 1 year: 2005 ident: 10.1016/j.csda.2012.12.008_br000510 article-title: A spectral clustering method for microarray data publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2004.04.010 – volume: 58 start-page: 234 year: 1963 ident: 10.1016/j.csda.2012.12.008_br000545 article-title: Hierarchical groupings to optimize an objective function publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1963.10500845 – volume: 52 start-page: 502 issue: 1 year: 2007 ident: 10.1016/j.csda.2012.12.008_br000105 article-title: High-dimensional data clustering publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2007.02.009 – volume: 56 start-page: 3809 issue: 12 year: 2012 ident: 10.1016/j.csda.2012.12.008_br000295 article-title: Mixtures of gaussian wells: theory, computation, and application publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2012.03.027 – volume: 24 start-page: 417 year: 1933 ident: 10.1016/j.csda.2012.12.008_br000240 article-title: Analysis of a complex of statistical variables into principal components publication-title: Journal of Educational Psychology doi: 10.1037/h0071325 – volume: 17 start-page: 479 year: 1984 ident: 10.1016/j.csda.2012.12.008_br000410 article-title: Fitting straight lines to point patterns publication-title: Pattern Recognition doi: 10.1016/0031-3203(84)90045-1 – volume: 36 start-page: 2577 year: 2008 ident: 10.1016/j.csda.2012.12.008_br000040 article-title: Covariance regularization by thresholding publication-title: The Annals of Statistics doi: 10.1214/08-AOS600 – volume: 1 start-page: 145 issue: 2 year: 1966 ident: 10.1016/j.csda.2012.12.008_br000120 article-title: The scree test for the number of factors publication-title: Multivariate Behavioral Research doi: 10.1207/s15327906mbr0102_10 – volume: 22 start-page: 719 issue: 7 year: 2001 ident: 10.1016/j.csda.2012.12.008_br000050 article-title: Assessing a mixture model for clustering with the integrated completed likelihood publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.865189 – volume: 20 start-page: 471 issue: 4 year: 2010 ident: 10.1016/j.csda.2012.12.008_br000480 article-title: Dimension reduction for model-based clustering publication-title: Statistics and Computing doi: 10.1007/s11222-009-9138-7 – volume: 11 start-page: 95 year: 1983 ident: 10.1016/j.csda.2012.12.008_br000560 article-title: On the convergence properties of the EM algorithm publication-title: The Annals of Statistics doi: 10.1214/aos/1176346060 – volume: 22 start-page: 417 year: 1974 ident: 10.1016/j.csda.2012.12.008_br000115 article-title: A multivariate study of variation in two species of rock crabs of genus Leptograpsus publication-title: Australian Journal of Zoology doi: 10.1071/ZO9740417 – ident: 10.1016/j.csda.2012.12.008_br000005 doi: 10.1145/276304.276314 – volume: 35 start-page: 191 issue: 3 year: 2001 ident: 10.1016/j.csda.2012.12.008_br000440 article-title: Effect of dimensionality on discrimination publication-title: Statistics doi: 10.1080/02331880108802731 – year: 2006 ident: 10.1016/j.csda.2012.12.008_br000065 – volume: 26 start-page: 1154 issue: 9 year: 2004 ident: 10.1016/j.csda.2012.12.008_br000250 article-title: Simultaneous feature selection and clustering using mixture models publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2004.71 – volume: 10 start-page: 441 issue: 4 year: 2010 ident: 10.1016/j.csda.2012.12.008_br000400 article-title: Heteroscedastic factor mixture analysis publication-title: Statistical Modelling doi: 10.1177/1471082X0901000405 – volume: 51 start-page: 5327 year: 2011 ident: 10.1016/j.csda.2012.12.008_br000335 article-title: Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2006.09.015 – ident: 10.1016/j.csda.2012.12.008_br000160 doi: 10.1214/07-AOS559 – start-page: 281 year: 1967 ident: 10.1016/j.csda.2012.12.008_br000290 article-title: Some methods for classification and analysis of multivariate observations – year: 2012 ident: 10.1016/j.csda.2012.12.008_br000140 – volume: 106 issue: 493 year: 2011 ident: 10.1016/j.csda.2012.12.008_br000130 article-title: Letter to the editor publication-title: Journal of the American Statistical Association – volume: 24 start-page: 281 year: 1975 ident: 10.1016/j.csda.2012.12.008_br000170 article-title: An optimal set of discriminant vectors publication-title: IEEE Transactions on Computers doi: 10.1109/T-C.1975.224208 – volume: 101 start-page: 168 issue: 473 year: 2006 ident: 10.1016/j.csda.2012.12.008_br000450 article-title: Variable selection for model-based clustering publication-title: Journal of the American Statistical Association doi: 10.1198/016214506000000113 – ident: 10.1016/j.csda.2012.12.008_br000475 – volume: 36 start-page: 199 year: 2008 ident: 10.1016/j.csda.2012.12.008_br000045 article-title: Regularized estimation of large covariance matrices publication-title: The Annals of Statistics doi: 10.1214/009053607000000758 – volume: 47 start-page: 69 issue: 1 year: 1982 ident: 10.1016/j.csda.2012.12.008_br000455 article-title: EM algorithms for ML factor analysis publication-title: Psychometrika doi: 10.1007/BF02293851 – ident: 10.1016/j.csda.2012.12.008_br000395 – start-page: 1 year: 2009 ident: 10.1016/j.csda.2012.12.008_br000020 article-title: Mixtures of factor analyzers with common factor loadings: applications to the clustering and visualisation of high-dimensional data publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 42 start-page: 1 issue: 6 year: 2012 ident: 10.1016/j.csda.2012.12.008_br000035 article-title: HDclassif: an R package for model-based clustering and discriminant analysis of high-dimensional data publication-title: Journal of Statistical Software – volume: 26 start-page: 501 issue: 4 year: 2010 ident: 10.1016/j.csda.2012.12.008_br000570 article-title: Penalized mixtures of factor analyzers with application to clustering high-dimensional microarray data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp707 – volume: 20 start-page: 343 year: 2010 ident: 10.1016/j.csda.2012.12.008_br000275 article-title: Robust mixture modeling using multivariate skew t distribution publication-title: Statistics and Computing doi: 10.1007/s11222-009-9128-9 – ident: 10.1016/j.csda.2012.12.008_br000070 – year: 1988 ident: 10.1016/j.csda.2012.12.008_br000330 – volume: 8 start-page: 161 year: 2004 ident: 10.1016/j.csda.2012.12.008_br000575 article-title: A mixed factor model for dimension reduction and extraction of a group structure in gene expression data publication-title: IEEE Computational Systems Bioinformatics Conference – volume: 22 start-page: 301 issue: 1 year: 2012 ident: 10.1016/j.csda.2012.12.008_br000090 article-title: Simultaneous model-based clustering and visualization in the Fisher discriminative subspace publication-title: Statistics and Computing doi: 10.1007/s11222-011-9249-9 – volume: 51 start-page: 5416 issue: 11 year: 2007 ident: 10.1016/j.csda.2012.12.008_br000490 article-title: Classification of large data sets with mixture models via sufficient em publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2006.09.014 – volume: 82 start-page: 1169 year: 2012 ident: 10.1016/j.csda.2012.12.008_br000535 article-title: Analytic calculations for the EM algorithm for multivariate skew-t mixture models publication-title: Statistics & Probability Letters doi: 10.1016/j.spl.2012.02.020 – ident: 10.1016/j.csda.2012.12.008_br000375 – ident: 10.1016/j.csda.2012.12.008_br000300 – volume: 30 start-page: 1 issue: 3 year: 2008 ident: 10.1016/j.csda.2012.12.008_br000460 article-title: Dimensionality reduction of clustered datasets publication-title: IEEE Transactions On Pattern Analysis And Machine Intelligence doi: 10.1109/TPAMI.2007.70819 – ident: 10.1016/j.csda.2012.12.008_br000585 doi: 10.1007/978-3-642-04174-7_41 – volume: 58 start-page: 162 issue: 0 year: 2013 ident: 10.1016/j.csda.2012.12.008_br000060 article-title: A generative model for rank data based on insertion sort algorithm publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2012.08.008 – volume: 27 start-page: 387 year: 1971 ident: 10.1016/j.csda.2012.12.008_br000470 article-title: Clustering methods based on likelihood ratio criteria publication-title: Biometrics doi: 10.2307/2529003 – volume: 7 start-page: 249 year: 2003 ident: 10.1016/j.csda.2012.12.008_br000285 article-title: Bayesian clustering with variable and transformation selection publication-title: Bayesian Statistics – volume: 53 start-page: 3987 issue: 12 year: 2009 ident: 10.1016/j.csda.2012.12.008_br000530 article-title: Partition clustering of high dimensional low sample size data based on p-values publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2009.06.012 – volume: 20 start-page: 270 year: 1998 ident: 10.1016/j.csda.2012.12.008_br000175 article-title: Algorithms for model-based Gaussian hierarchical clustering publication-title: SIAM Journal on Scientific Computing doi: 10.1137/S1064827596311451 – volume: 23 start-page: 403 year: 1997 ident: 10.1016/j.csda.2012.12.008_br000390 article-title: Regularization in discriminant analysis: a survey publication-title: Computational Statistics and Data Analysis doi: 10.1016/S0167-9473(96)00043-6 – volume: 23 start-page: 73 year: 1995 ident: 10.1016/j.csda.2012.12.008_br000235 article-title: Penalized discriminant analysis publication-title: The Annals of Statistics doi: 10.1214/aos/1176324456 – year: 1990 ident: 10.1016/j.csda.2012.12.008_br000210 – volume: 6 start-page: 559 issue: 2 year: 1901 ident: 10.1016/j.csda.2012.12.008_br000445 article-title: On lines and planes of closest fit to systems of points in space publication-title: Philosophical Magazine doi: 10.1080/14786440109462720 – volume: 32 start-page: 407 year: 2004 ident: 10.1016/j.csda.2012.12.008_br000155 article-title: Least angle regression publication-title: The Annals of Statistics doi: 10.1214/009053604000000067 – volume: 51 start-page: 513 issue: 2 year: 2006 ident: 10.1016/j.csda.2012.12.008_br000505 article-title: Knn-kernel density-based clustering for high-dimensional multivariate data publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2005.10.001 – volume: 2 start-page: 168 year: 2008 ident: 10.1016/j.csda.2012.12.008_br000565 article-title: Penalized model-based clustering with cluster-specific diagonal covariance matrices and grouped variables publication-title: Electrical Journal of Statistics doi: 10.1214/08-EJS194 – volume: 13 start-page: 435 issue: 2 year: 1985 ident: 10.1016/j.csda.2012.12.008_br000245 article-title: Projection pursuit publication-title: The Annals of Statistics doi: 10.1214/aos/1176349519 – volume: 11 start-page: 443 issue: 2 year: 1999 ident: 10.1016/j.csda.2012.12.008_br000500 article-title: Mixtures of probabilistic principal component analysers publication-title: Neural Computation doi: 10.1162/089976699300016728 – volume: 53 start-page: 3872 year: 2009 ident: 10.1016/j.csda.2012.12.008_br000310 article-title: Variable selection in model-based clustering: a general variable role modeling publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2009.04.013 – volume: 6 start-page: 69 issue: 1 year: 1998 ident: 10.1016/j.csda.2012.12.008_br000425 article-title: Subspace clustering for high-dimensional data: a review publication-title: SIGKDD Exploration Newsletter – volume: 28 start-page: 781 year: 1995 ident: 10.1016/j.csda.2012.12.008_br000125 article-title: Gaussian parsimonious clustering models publication-title: Pattern Recognition doi: 10.1016/0031-3203(94)00125-6 – volume: 84 start-page: 165 year: 1989 ident: 10.1016/j.csda.2012.12.008_br000200 article-title: Regularized discriminant analysis publication-title: The Journal of the American Statistical Association doi: 10.1080/01621459.1989.10478752 – volume: 105 start-page: 713 issue: 490 year: 2010 ident: 10.1016/j.csda.2012.12.008_br000550 article-title: A framework for feature selection in clustering publication-title: Journal of the American Statistical Association doi: 10.1198/jasa.2010.tm09415 – volume: 59 start-page: 511 issue: 3 year: 1997 ident: 10.1016/j.csda.2012.12.008_br000385 article-title: The EM algorithm — an old folk song sung to a fast new tune publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/1467-9868.00082 – volume: 36 start-page: 2607 issue: 14 year: 2007 ident: 10.1016/j.csda.2012.12.008_br000110 article-title: High dimensional discriminant analysis publication-title: Communications in Statistics: Theory and Methods doi: 10.1080/03610920701271095 – ident: 10.1016/j.csda.2012.12.008_br000520 – year: 2002 ident: 10.1016/j.csda.2012.12.008_br000515 – ident: 10.1016/j.csda.2012.12.008_br000325 – volume: 7 start-page: 179 year: 1936 ident: 10.1016/j.csda.2012.12.008_br000165 article-title: The use of multiple measurements in taxonomic problems publication-title: Annals of Eugenics doi: 10.1111/j.1469-1809.1936.tb02137.x – volume: 28 start-page: 544 issue: 4 year: 2005 ident: 10.1016/j.csda.2012.12.008_br000075 article-title: Model selection in supervised classification publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2006.82 – volume: 56 start-page: 2816 issue: 9 year: 2012 ident: 10.1016/j.csda.2012.12.008_br000270 article-title: Em algorithms for multivariate gaussian mixture models with truncated and censored data publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2012.03.003 – ident: 10.1016/j.csda.2012.12.008_br000495 – volume: 32 start-page: 1706 issue: 14 year: 2011 ident: 10.1016/j.csda.2012.12.008_br000100 article-title: Intrinsic dimension estimation by maximum likelihood in isotropic probabilistic PCA publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2011.07.017 – volume: 32 start-page: 267 issue: 3 year: 1983 ident: 10.1016/j.csda.2012.12.008_br000135 article-title: On using principal component before separating a mixture of two multivariate normal distributions publication-title: Journal of the Royal Statistical Society, Series C – volume: 65 start-page: 701 issue: 3 year: 2009 ident: 10.1016/j.csda.2012.12.008_br000305 article-title: Variable selection for clustering with Gaussian mixture models publication-title: Biometrics doi: 10.1111/j.1541-0420.2008.01160.x – year: 2000 ident: 10.1016/j.csda.2012.12.008_br000350 – volume: 26 start-page: 249 year: 2009 ident: 10.1016/j.csda.2012.12.008_br000405 article-title: The remarkable simplicity of very high dimensional data: application of model-based clustering publication-title: Journal of Classification doi: 10.1007/s00357-009-9037-9 – year: 1957 ident: 10.1016/j.csda.2012.12.008_br000030 – volume: 109 start-page: 29 year: 2012 ident: 10.1016/j.csda.2012.12.008_br000095 article-title: Theoretical and practical considerations on the convergence properties of the Fisher–EM algorithm publication-title: Journal of Multivariate Analysis doi: 10.1016/j.jmva.2012.02.012 – year: 2012 ident: 10.1016/j.csda.2012.12.008_br000220 article-title: Using conditional independence for parsimonious model-based Gaussian clustering publication-title: Statistics and Computing – ident: 10.1016/j.csda.2012.12.008_br000225 – volume: 18 start-page: 285 issue: 3 year: 2008 ident: 10.1016/j.csda.2012.12.008_br000365 article-title: Parsimonious Gaussian mixture models publication-title: Statistics and Computing doi: 10.1007/s11222-008-9056-0 – ident: 10.1016/j.csda.2012.12.008_br000525 – year: 2013 ident: 10.1016/j.csda.2012.12.008_br000265 article-title: Finite mixtures of multivariate skew t-distributions: some recent and new results publication-title: Statistics and Computing – ident: 10.1016/j.csda.2012.12.008_br000320 – volume: 51 start-page: 587 year: 2006 ident: 10.1016/j.csda.2012.12.008_br000055 article-title: Model-based cluster and discriminant analysis with the mixmod software publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2005.12.015 – volume: 1451 start-page: 658 year: 1998 ident: 10.1016/j.csda.2012.12.008_br000345 article-title: Robust cluster analysis via mixtures of multivariate t-distributions publication-title: Lecture Notes in Computer Science doi: 10.1007/BFb0033290 – volume: 104 start-page: 177 year: 2008 ident: 10.1016/j.csda.2012.12.008_br000205 article-title: Sparse inverse covariance estimation with the graphical lasso publication-title: Journal of the American Statistical Association – volume: 115 start-page: 565 year: 2003 ident: 10.1016/j.csda.2012.12.008_br000435 article-title: On feature selection, curse of dimensionality and error probability in discriminant analysis publication-title: Journal of Statistical Planning and Inference doi: 10.1016/S0378-3758(02)00166-0 – ident: 10.1016/j.csda.2012.12.008_br000555 – year: 2000 ident: 10.1016/j.csda.2012.12.008_br000150 – volume: 53 start-page: 4301 issue: 12 year: 2009 ident: 10.1016/j.csda.2012.12.008_br000215 article-title: Penalized factor mixture analysis for variable selection in clustered data publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2009.05.025 – volume: 97 issue: 458 year: 2002 ident: 10.1016/j.csda.2012.12.008_br000185 article-title: Model-based clustering, discriminant analysis, and density estimation publication-title: Journal of the American Statistical Association doi: 10.1198/016214502760047131 – volume: 67 start-page: 427 issue: 3 year: 2005 ident: 10.1016/j.csda.2012.12.008_br000230 article-title: Geometric representation of high dimension, low sample size data publication-title: Journal of the Royal Statistical Society, Serie B doi: 10.1111/j.1467-9868.2005.00510.x – volume: 15 start-page: 72 year: 1904 ident: 10.1016/j.csda.2012.12.008_br000485 article-title: The proof and measurement of association between two things publication-title: American Journal of Psychology doi: 10.2307/1412159 – volume: 6 start-page: 461 year: 1978 ident: 10.1016/j.csda.2012.12.008_br000465 article-title: Estimating the dimension of a model publication-title: The Annals of Statistics doi: 10.1214/aos/1176344136 – volume: 21 start-page: 361 issue: 3 year: 2011 ident: 10.1016/j.csda.2012.12.008_br000010 article-title: Extending mixtures of multivariate t-factor analyzers publication-title: Statistics and Computing doi: 10.1007/s11222-010-9175-2 – volume: 16 start-page: 297 year: 1999 ident: 10.1016/j.csda.2012.12.008_br000180 article-title: MCLUST: software for model-based cluster analysis publication-title: Journal of Classification doi: 10.1007/s003579900058 – volume: 17 start-page: 81 year: 2007 ident: 10.1016/j.csda.2012.12.008_br000260 article-title: Robust mixture modeling using the skew t-distribution publication-title: Statistics and Computing doi: 10.1007/s11222-006-9005-8 – volume: 64 start-page: 440 year: 2008 ident: 10.1016/j.csda.2012.12.008_br000540 article-title: Variable selection for model-based high dimensional clustering and its application to microarray data publication-title: Biometrics doi: 10.1111/j.1541-0420.2007.00922.x – volume: 4 start-page: 1 issue: 2 year: 1999 ident: 10.1016/j.csda.2012.12.008_br000355 article-title: The emmix software for the fitting of mixtures of normal t-components publication-title: Journal of Statistical Software doi: 10.18637/jss.v004.i02 – volume: 26 start-page: 2705 issue: 21 year: 2010 ident: 10.1016/j.csda.2012.12.008_br000370 article-title: Model-based clustering of microarray expression data via latent gaussian mixture models publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq498 – volume: 49 start-page: 803 year: 1993 ident: 10.1016/j.csda.2012.12.008_br000025 article-title: Model-based Gaussian and non-Gaussian clustering publication-title: Biometrics doi: 10.2307/2532201 – volume: 56 start-page: 1381 issue: 6 year: 2012 ident: 10.1016/j.csda.2012.12.008_br000380 article-title: Initializing the em algorithm in gaussian mixture models with an unknown number of components publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2011.11.002 – volume: 39 start-page: 1 issue: 1 year: 1977 ident: 10.1016/j.csda.2012.12.008_br000145 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: Journal of the Royal Statistical Society doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: vol. 5 year: 1995 ident: 10.1016/j.csda.2012.12.008_br000280 – volume: 41 start-page: 379 year: 2003 ident: 10.1016/j.csda.2012.12.008_br000360 article-title: Modelling high-dimensional data by mixtures of factor analyzers publication-title: Computational Statistics and Data Analysis doi: 10.1016/S0167-9473(02)00183-4 – ident: 10.1016/j.csda.2012.12.008_br000315 – volume: 152 start-page: 98 issue: 3 year: 2011 ident: 10.1016/j.csda.2012.12.008_br000080 article-title: On the estimation of the latent discriminative subspace in the Fisher–EM algorithm publication-title: Journal de la Société Francaise de Statistique – ident: 10.1016/j.csda.2012.12.008_br000085 – year: 1997 ident: 10.1016/j.csda.2012.12.008_br000340 – volume: 47 start-page: 1 issue: 5 year: 2012 ident: 10.1016/j.csda.2012.12.008_br000430 article-title: High-dimensional bayesian clustering with variable selection: the R package bclust publication-title: Journal of Statistical Software – ident: 10.1016/j.csda.2012.12.008_br000190 – volume: 22 start-page: 1538 year: 2006 ident: 10.1016/j.csda.2012.12.008_br000580 article-title: Array cluster: an analytic tool for clustering, data visualization and model finder on gene expression profiles publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl129 |
SSID | ssj0002478 |
Score | 2.5550747 |
Snippet | Model-based clustering is a popular tool which is renowned for its probabilistic foundations and its flexibility. However, high-dimensional data are nowadays... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 52 |
SubjectTerms | Clustering Computer programs data collection Data processing Dimension reduction Flexibility High-dimensional data Mathematics Model-based clustering Parsimonious models R package Regularization Software Statistics Statistics Theory Subspace clustering Variable selection |
Title | Model-based clustering of high-dimensional data: A review |
URI | https://dx.doi.org/10.1016/j.csda.2012.12.008 https://www.proquest.com/docview/1671523157 https://www.proquest.com/docview/2237521988 https://hal.science/hal-00750909 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLaAXcYBwTZE-aUMcZtMY8eOY24VAhU6OGxD42bZjq0xVS2iLUf-dt6rk05MwAEpUhTLVqz3nPe-JN_7TMihZxapFjmVTmkqKh2pi1zQUrsgeHSlL7De-fKq7F-Lixt5s0RO2loYpFU2sT_F9Hm0blq6jTW7d7e33Z9IoNdCFQwdLTjGYSEUrvKjx380Dy5SNEZ9b-zdFM4kjpef1Kg9xPj8kyBuMflyclr-gyzJ_4L1PAOdrZO1BjpmvTS7DbIURp_I6uVCd3XymWjc2mxIMTXVmR_OUAUBclM2jhnqEtMatfyTDkeG3NDjrJel4pUv5Prs9NdJnzabI1AvhJjSyIsA2bdmuYU0B69VtlaqcoVSMdTOSl1CIg4Af5gOMjIHsKeW3HJngxd1tMUmWRmNR2GLZFoqm5fWRx6c0EVeaV9qFjRAQxekLjqEtVYxvlEOxw0shqaliP01aEmDljRwgCU75NtizF3SzXizt2yNbZ5530Bgf3PcAXhmcQOUyu73vhtsS1go1w-sQ762jjPw7OAPETsK49nEwJoA-FIwqV7vA_BJAcTRVbX9zknukI9wJRJxbZesTO9nYQ-QzNTtz5fqPvnQOx_0r_A8-PF78ARuHfGV |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFLYYHNgOEwzQOsbI0G7INHbsOOZWoaECLZeBxM2yHVvrVLVobXfcb-e9OikCDQ6TcnJsxXrPfu9L8vl7hHzzzCLVIqfSKU1FpSN1kQtaahcEj670BZ53Hl6X_VtxeSfv1shZexYGaZVN7E8xfRmtm5ZuY83u_WjU_YEEei1UwdDRgkMc3hCwfbGMwcnfR54HFykco8A3dm9OziSSl5_VKD7E-PKbINaY_Hd2evMTaZLPovUyBZ1vkfcNdsx6aXrbZC1MPpB3w5Xw6myHaKxtNqaYm-rMjxcogwDJKZvGDIWJaY1i_kmII0Ny6GnWy9LplV1ye_795qxPm-oI1Ash5jTyIkD6rVluIc_Be5WtlapcoVQMtbNSl5CJA-AfpoOMzAHuqSW33NngRR1tsUfWJ9NJ-EgyLZXNS-sjD07oIq-0LzULGrChC1IXHcJaqxjfSIdjBYuxaTlivwxa0qAlDVxgyQ45Xo25T8IZr_aWrbHNE_cbiOyvjjsCz6wegFrZ_d7AYFsCQ7n-wzrka-s4A5sH_4jYSZguZgbWBOCXgkn1ch_ATwowjq6qT_85yUOy2b8ZDszg4vpqn7yFOyKx2D6T9fnvRTgAWDN3X5bL9gFrbvGA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-based+clustering+of+high-dimensional+data%3A+A+review&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Bouveyron%2C+Charles&rft.au=Brunet-Saumard%2C+Camille&rft.date=2014-03-01&rft.issn=0167-9473&rft.volume=71+p.52-78&rft.spage=52&rft.epage=78&rft_id=info:doi/10.1016%2Fj.csda.2012.12.008&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon |