Model-based clustering of high-dimensional data: A review

Model-based clustering is a popular tool which is renowned for its probabilistic foundations and its flexibility. However, high-dimensional data are nowadays more and more frequent and, unfortunately, classical model-based clustering techniques show a disappointing behavior in high-dimensional space...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics & data analysis Vol. 71; pp. 52 - 78
Main Authors Bouveyron, Charles, Brunet-Saumard, Camille
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Model-based clustering is a popular tool which is renowned for its probabilistic foundations and its flexibility. However, high-dimensional data are nowadays more and more frequent and, unfortunately, classical model-based clustering techniques show a disappointing behavior in high-dimensional spaces. This is mainly due to the fact that model-based clustering methods are dramatically over-parametrized in this case. However, high-dimensional spaces have specific characteristics which are useful for clustering and recent techniques exploit those characteristics. After having recalled the bases of model-based clustering, dimension reduction approaches, regularization-based techniques, parsimonious modeling, subspace clustering methods and clustering methods based on variable selection are reviewed. Existing softwares for model-based clustering of high-dimensional data will be also reviewed and their practical use will be illustrated on real-world data sets.
AbstractList Model-based clustering is a popular tool which is renowned for its probabilistic foundations and its flexibility. However, high-dimensional data are nowadays more and more frequent and, unfortunately, classical model-based clustering techniques show a disappointing behavior in high-dimensional spaces. This is mainly due to the fact that model-based clustering methods are dramatically over-parametrized in this case. However, high-dimensional spaces have specific characteristics which are useful for clustering and recent techniques exploit those characteristics. After having recalled the bases of model-based clustering, dimension reduction approaches, regularization-based techniques, parsimonious modeling, subspace clustering methods and clustering methods based on variable selection are reviewed. Existing softwares for model-based clustering of high-dimensional data will be also reviewed and their practical use will be illustrated on real-world data sets.
Model-based clustering is a popular tool which is renowned for its probabilistic foundations and its flexibility. However, high-dimensional data are nowadays more and more frequent and, unfortunately, classical model-based clustering techniques show a disappointing behavior in high-dimensional spaces. This is mainly due to the fact that model-based clustering methods are dramatically over-parametrized in this case. However, high-dimensional spaces have specific characteristics which are useful for clustering and recent techniques exploit those characteristics. After having recalled the bases of model-based clustering, this article will review dimension reduction approaches, regularization-based techniques, parsimonious modeling, subspace clustering methods and clustering methods based on variable selection. Existing softwares for model-based clustering of high-dimensional data will be also reviewed and their practical use will be illustrated on real-world data sets.
Author Bouveyron, Charles
Brunet-Saumard, Camille
Author_xml – sequence: 1
  givenname: Charles
  surname: Bouveyron
  fullname: Bouveyron, Charles
  organization: Laboratoire SAMM, EA 4543, Université Paris 1 Panthéon-Sorbonne, France
– sequence: 2
  givenname: Camille
  surname: Brunet-Saumard
  fullname: Brunet-Saumard, Camille
  email: camille.brunet@gmail.com
  organization: Laboratoire LAREMA, UMR CNRS 6093, Université d’Angers, France
BackLink https://hal.science/hal-00750909$$DView record in HAL
BookMark eNqFkMtKAzEUQIMoWB8_4GqWupiax6TJiJsivqDiRtfhTnKnTZlONJkq_r0pFRcuKlwIXM4Jl3NE9vvQIyFnjI4ZZZPL5dgmB2NOGR_noVTvkRHTipdKSL5PRhlSZV0pcUiOUlpSSnml9IjUT8FhVzaQ0BW2W6cBo-_nRWiLhZ8vSudX2CcfeugKBwNcFdMi4ofHzxNy0EKX8PTnPSavd7cvNw_l7Pn-8WY6K21VVUPZcoG8Yo5RQHQTysAppRuhVIuuAVlPtBSoRc1qlC1rqsxKDrwBtJVrQRyTi-2_C-jMW_QriF8mgDcP05nZ7ChVkta0_mCZPd-ybzG8rzENZuWTxa6DHsM6Gc6FkpzVWv-L5l5McsGkyijfojaGlCK2v2cwajb5zdJs8ptNfpMn58-S_iNZP8CQSw4RfLdbvd6qmLPm1NEk67G36HxEOxgX_C79G-n8oII
CitedBy_id crossref_primary_10_1051_eas_1677006
crossref_primary_10_3389_fbinf_2022_864382
crossref_primary_10_1007_s10044_022_01094_z
crossref_primary_10_1016_j_eswa_2025_126608
crossref_primary_10_1214_18_EJS1475
crossref_primary_10_1080_27684520_2023_2242337
crossref_primary_10_1016_j_ins_2018_06_035
crossref_primary_10_1016_j_csda_2013_04_013
crossref_primary_10_1016_j_cam_2021_113829
crossref_primary_10_1109_TPDS_2020_2975550
crossref_primary_10_1109_TCI_2017_2666551
crossref_primary_10_29220_CSAM_2024_31_2_203
crossref_primary_10_1002_env_2631
crossref_primary_10_1002_sim_7083
crossref_primary_10_1007_s00357_023_09441_3
crossref_primary_10_1016_j_advengsoft_2022_103246
crossref_primary_10_1016_j_neucom_2016_11_014
crossref_primary_10_1016_j_ecosta_2021_08_011
crossref_primary_10_1007_s12553_023_00805_8
crossref_primary_10_1007_s11222_024_10444_2
crossref_primary_10_1214_23_AOAS1871
crossref_primary_10_3390_app11115230
crossref_primary_10_1016_j_neunet_2022_02_010
crossref_primary_10_1007_s11222_021_10018_6
crossref_primary_10_1080_02664763_2024_2362275
crossref_primary_10_1186_s40854_022_00418_6
crossref_primary_10_1109_LRA_2016_2517825
crossref_primary_10_1007_s10462_022_10325_y
crossref_primary_10_1080_03610926_2021_1872636
crossref_primary_10_1016_j_asoc_2019_105806
crossref_primary_10_1016_j_neucom_2022_05_011
crossref_primary_10_3934_jimo_2020160
crossref_primary_10_1111_insr_12588
crossref_primary_10_3390_ijgi12030117
crossref_primary_10_1007_s11280_019_00743_4
crossref_primary_10_1111_tgis_12905
crossref_primary_10_3390_e19020074
crossref_primary_10_1007_s11634_020_00432_5
crossref_primary_10_1007_s11634_015_0200_3
crossref_primary_10_1007_s11634_021_00488_x
crossref_primary_10_1016_j_bpsc_2016_04_002
crossref_primary_10_1016_j_csda_2019_106822
crossref_primary_10_1002_cpe_4418
crossref_primary_10_1007_s00180_023_01387_9
crossref_primary_10_1007_s11634_022_00526_2
crossref_primary_10_1007_s11749_019_00651_9
crossref_primary_10_1109_LRA_2018_2818933
crossref_primary_10_1002_eap_2524
crossref_primary_10_1007_s11370_015_0187_9
crossref_primary_10_3389_fpsyt_2021_665536
crossref_primary_10_1016_j_scitotenv_2022_155168
crossref_primary_10_1093_molbev_msae114
crossref_primary_10_1007_s00357_017_9221_2
crossref_primary_10_1016_j_patrec_2018_07_003
crossref_primary_10_1007_s00357_019_09314_8
crossref_primary_10_1080_00949655_2024_2329976
crossref_primary_10_1016_j_csda_2021_107186
crossref_primary_10_1016_j_jprot_2015_07_024
crossref_primary_10_1162_NECO_a_00661
crossref_primary_10_1016_j_tbs_2021_03_005
crossref_primary_10_3389_fmed_2023_1076794
crossref_primary_10_1007_s00180_018_0817_8
crossref_primary_10_1111_2041_210X_13582
crossref_primary_10_1137_17M1135694
crossref_primary_10_1142_S0218488520500087
crossref_primary_10_1016_j_compag_2022_106983
crossref_primary_10_1016_j_apenergy_2018_09_050
crossref_primary_10_1007_s00357_016_9212_8
crossref_primary_10_1007_s11634_015_0219_5
crossref_primary_10_1080_03610918_2024_2314666
crossref_primary_10_1007_s00357_019_09351_3
crossref_primary_10_1016_j_isci_2023_106238
crossref_primary_10_1007_s10032_025_00514_0
crossref_primary_10_1016_j_neucom_2022_05_118
crossref_primary_10_1016_j_aei_2024_102799
crossref_primary_10_1214_18_BJPS425
crossref_primary_10_1007_s11336_024_09948_7
crossref_primary_10_1371_journal_pbio_2006387
crossref_primary_10_1007_s10618_018_0597_3
crossref_primary_10_3233_IDA_160010
crossref_primary_10_1038_s41598_021_98126_1
crossref_primary_10_1093_bioinformatics_btac183
crossref_primary_10_1080_10618600_2014_948179
crossref_primary_10_1093_imaiai_iaac019
crossref_primary_10_1007_s00357_020_09371_4
crossref_primary_10_1016_j_drudis_2021_01_008
crossref_primary_10_1175_MWR_D_16_0064_1
crossref_primary_10_1007_s00357_021_09403_7
crossref_primary_10_1016_j_patcog_2024_111158
crossref_primary_10_1027_1015_5759_a000578
crossref_primary_10_1080_02664763_2017_1414162
crossref_primary_10_1002_2015GB005178
crossref_primary_10_1007_s00180_024_01478_1
crossref_primary_10_1016_j_ijepes_2024_109977
crossref_primary_10_1007_s00357_024_09477_z
crossref_primary_10_1016_j_aei_2024_102569
crossref_primary_10_3390_rs12071219
crossref_primary_10_1002_minf_202400205
crossref_primary_10_1007_s11222_014_9505_x
crossref_primary_10_1016_j_csda_2018_05_015
crossref_primary_10_1109_COMST_2017_2705740
crossref_primary_10_1177_0278364918816374
crossref_primary_10_1080_00949655_2019_1643345
crossref_primary_10_1109_ACCESS_2022_3228238
crossref_primary_10_1016_j_jprocont_2019_12_010
crossref_primary_10_1016_j_jasrep_2021_103081
crossref_primary_10_1016_j_knosys_2024_112738
crossref_primary_10_1109_TII_2017_2683519
crossref_primary_10_1016_j_newast_2022_101973
crossref_primary_10_1111_ejn_15219
crossref_primary_10_1016_j_neuroimage_2017_01_032
crossref_primary_10_1016_j_renene_2016_12_095
crossref_primary_10_3390_e19090452
crossref_primary_10_1152_jn_00229_2021
crossref_primary_10_1155_2016_4908412
crossref_primary_10_1002_sta4_278
crossref_primary_10_1038_s41598_023_41318_8
crossref_primary_10_1111_rssb_12187
crossref_primary_10_1007_s11634_013_0147_1
crossref_primary_10_2139_ssrn_3170321
crossref_primary_10_1155_2022_4699573
crossref_primary_10_1016_j_comnet_2018_02_010
crossref_primary_10_1016_j_scitotenv_2020_143864
crossref_primary_10_1016_j_ress_2022_108844
crossref_primary_10_3390_en15238895
crossref_primary_10_3390_analytics2040041
crossref_primary_10_1214_18_AOS1794
crossref_primary_10_1080_00401706_2019_1635532
crossref_primary_10_15407_pp2019_03_058
crossref_primary_10_1016_j_csda_2018_01_012
crossref_primary_10_3390_ht8010004
crossref_primary_10_1007_s11749_024_00952_8
crossref_primary_10_1007_s13042_018_00904_3
crossref_primary_10_1007_s10260_021_00585_3
crossref_primary_10_4018_IJIIT_2018070103
crossref_primary_10_1214_17_AOAS1049
crossref_primary_10_1177_0962280217710050
crossref_primary_10_3934_mbe_2024160
crossref_primary_10_1002_sim_7928
crossref_primary_10_1007_s00357_019_9309_y
crossref_primary_10_1007_s42519_023_00357_0
crossref_primary_10_1002_sta4_177
crossref_primary_10_1007_s00357_022_09427_7
crossref_primary_10_1016_j_ins_2019_10_019
crossref_primary_10_1080_10618600_2021_1999825
crossref_primary_10_1109_ACCESS_2019_2926579
crossref_primary_10_1002_sta4_608
crossref_primary_10_3390_su122310024
crossref_primary_10_3150_19_BEJ1173
crossref_primary_10_1016_j_engappai_2024_109502
crossref_primary_10_1016_j_ins_2019_07_099
crossref_primary_10_1162_netn_a_00432
crossref_primary_10_1109_TNNLS_2015_2505060
crossref_primary_10_4018_IJSIR_2019040104
crossref_primary_10_1109_ACCESS_2023_3322929
crossref_primary_10_3390_w9090723
crossref_primary_10_1007_s00180_022_01289_2
crossref_primary_10_1093_bib_bbz016
crossref_primary_10_1007_s11227_023_05688_0
crossref_primary_10_3390_s23136119
crossref_primary_10_3389_fneur_2022_959582
crossref_primary_10_1016_j_jmva_2015_12_001
crossref_primary_10_1109_TFUZZ_2021_3136359
crossref_primary_10_1007_s00357_016_9211_9
crossref_primary_10_1007_s11222_018_9838_y
crossref_primary_10_1016_j_ejor_2021_04_038
crossref_primary_10_1016_j_patcog_2022_108994
crossref_primary_10_1080_10618600_2024_2429705
crossref_primary_10_1016_j_engappai_2025_110370
crossref_primary_10_1177_0962280216628901
crossref_primary_10_1080_19401493_2019_1711456
crossref_primary_10_1109_ACCESS_2021_3130066
crossref_primary_10_1109_ACCESS_2023_3241489
crossref_primary_10_1136_bmjopen_2017_017284
crossref_primary_10_3758_s13428_022_01795_7
crossref_primary_10_1016_j_ecosta_2017_05_001
crossref_primary_10_1093_zoolinnean_zlac008
crossref_primary_10_1007_s00357_020_09363_4
crossref_primary_10_1007_s41096_024_00181_0
crossref_primary_10_1007_s11634_018_0333_2
crossref_primary_10_1111_insr_12517
crossref_primary_10_1016_j_ins_2018_12_059
crossref_primary_10_1007_s42417_018_0052_1
crossref_primary_10_1007_s11634_013_0158_y
crossref_primary_10_1111_resp_12408
crossref_primary_10_1016_j_ecosta_2024_03_002
crossref_primary_10_1177_09622802241242317
crossref_primary_10_1016_j_enpol_2022_112886
crossref_primary_10_1109_TPAMI_2018_2885760
crossref_primary_10_1109_LGRS_2024_3436036
crossref_primary_10_1016_j_artint_2020_103237
crossref_primary_10_1007_s11634_015_0215_9
crossref_primary_10_1155_2018_8019232
crossref_primary_10_1007_s10044_020_00884_7
crossref_primary_10_1016_j_csda_2017_11_001
crossref_primary_10_1007_s11277_021_08668_w
crossref_primary_10_1007_s11634_016_0264_8
crossref_primary_10_1080_03610918_2014_889156
crossref_primary_10_1016_j_compind_2025_104273
crossref_primary_10_1007_s11336_017_9578_5
crossref_primary_10_1109_ACCESS_2018_2866364
crossref_primary_10_1007_s11634_020_00398_4
crossref_primary_10_1016_j_patrec_2020_04_024
crossref_primary_10_3390_cosmetics11060218
crossref_primary_10_1007_s00180_013_0433_6
crossref_primary_10_1111_arcm_12901
crossref_primary_10_3390_e22121438
crossref_primary_10_1016_j_datak_2021_101876
crossref_primary_10_1002_adbi_201900226
crossref_primary_10_1007_s11634_015_0204_z
crossref_primary_10_1002_cem_2699
crossref_primary_10_1016_j_apenergy_2015_08_077
crossref_primary_10_1109_TSP_2019_2932877
crossref_primary_10_1109_TCYB_2018_2846404
crossref_primary_10_23939_istcipa2023_57_013
crossref_primary_10_1093_bioinformatics_btz599
crossref_primary_10_1016_j_patcog_2024_110310
crossref_primary_10_1109_ACCESS_2017_2654247
crossref_primary_10_1016_j_health_2023_100182
crossref_primary_10_1007_s11749_019_00669_z
crossref_primary_10_1016_j_jmva_2024_105330
crossref_primary_10_1111_nmo_14898
crossref_primary_10_1016_j_jrmge_2021_07_012
crossref_primary_10_1214_16_STS604
crossref_primary_10_1016_j_istruc_2023_105134
crossref_primary_10_1007_s00357_022_09421_z
crossref_primary_10_1088_1757_899X_1076_1_012044
crossref_primary_10_1007_s00180_018_0808_9
crossref_primary_10_1007_s11222_024_10467_9
crossref_primary_10_1109_TFUZZ_2018_2869125
crossref_primary_10_1002_cem_3097
crossref_primary_10_1007_s11634_018_0336_z
crossref_primary_10_1016_j_scitotenv_2024_170765
crossref_primary_10_1109_TSP_2023_3267994
crossref_primary_10_2174_1574893613666180601080008
crossref_primary_10_3390_e26010063
crossref_primary_10_1177_23998083231151688
crossref_primary_10_3390_e21111063
crossref_primary_10_1016_j_schres_2019_05_044
crossref_primary_10_1007_s11222_019_09881_1
crossref_primary_10_1007_s00357_021_09385_6
crossref_primary_10_3390_w13202891
crossref_primary_10_1038_nn_4268
crossref_primary_10_1002_sta4_306
crossref_primary_10_1214_18_AOS1711
crossref_primary_10_1016_j_spasta_2016_05_006
crossref_primary_10_1109_TCBB_2020_3025486
crossref_primary_10_35633_inmateh_65_24
crossref_primary_10_3390_math12071091
crossref_primary_10_1123_mc_2018_0070
crossref_primary_10_1109_TPAMI_2023_3337195
crossref_primary_10_1016_j_csda_2013_10_010
crossref_primary_10_1080_02664763_2020_1845624
crossref_primary_10_1016_j_chemolab_2024_105084
crossref_primary_10_1177_1073191119873714
crossref_primary_10_1371_journal_pcbi_1010349
Cites_doi 10.1007/s11222-011-9272-x
10.1016/S0047-259X(03)00096-4
10.1016/j.csda.2012.05.011
10.1016/j.csda.2004.04.010
10.1080/01621459.1963.10500845
10.1016/j.csda.2007.02.009
10.1016/j.csda.2012.03.027
10.1037/h0071325
10.1016/0031-3203(84)90045-1
10.1214/08-AOS600
10.1207/s15327906mbr0102_10
10.1109/34.865189
10.1007/s11222-009-9138-7
10.1214/aos/1176346060
10.1071/ZO9740417
10.1145/276304.276314
10.1080/02331880108802731
10.1109/TPAMI.2004.71
10.1177/1471082X0901000405
10.1016/j.csda.2006.09.015
10.1214/07-AOS559
10.1109/T-C.1975.224208
10.1198/016214506000000113
10.1214/009053607000000758
10.1007/BF02293851
10.1093/bioinformatics/btp707
10.1007/s11222-009-9128-9
10.1007/s11222-011-9249-9
10.1016/j.csda.2006.09.014
10.1016/j.spl.2012.02.020
10.1109/TPAMI.2007.70819
10.1007/978-3-642-04174-7_41
10.1016/j.csda.2012.08.008
10.2307/2529003
10.1016/j.csda.2009.06.012
10.1137/S1064827596311451
10.1016/S0167-9473(96)00043-6
10.1214/aos/1176324456
10.1080/14786440109462720
10.1214/009053604000000067
10.1016/j.csda.2005.10.001
10.1214/08-EJS194
10.1214/aos/1176349519
10.1162/089976699300016728
10.1016/j.csda.2009.04.013
10.1016/0031-3203(94)00125-6
10.1080/01621459.1989.10478752
10.1198/jasa.2010.tm09415
10.1111/1467-9868.00082
10.1080/03610920701271095
10.1111/j.1469-1809.1936.tb02137.x
10.1109/TPAMI.2006.82
10.1016/j.csda.2012.03.003
10.1016/j.patrec.2011.07.017
10.1111/j.1541-0420.2008.01160.x
10.1007/s00357-009-9037-9
10.1016/j.jmva.2012.02.012
10.1007/s11222-008-9056-0
10.1016/j.csda.2005.12.015
10.1007/BFb0033290
10.1016/S0378-3758(02)00166-0
10.1016/j.csda.2009.05.025
10.1198/016214502760047131
10.1111/j.1467-9868.2005.00510.x
10.2307/1412159
10.1214/aos/1176344136
10.1007/s11222-010-9175-2
10.1007/s003579900058
10.1007/s11222-006-9005-8
10.1111/j.1541-0420.2007.00922.x
10.18637/jss.v004.i02
10.1093/bioinformatics/btq498
10.2307/2532201
10.1016/j.csda.2011.11.002
10.1111/j.2517-6161.1977.tb01600.x
10.1016/S0167-9473(02)00183-4
10.1093/bioinformatics/btl129
ContentType Journal Article
Copyright 2012 Elsevier B.V.
Attribution
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: Attribution
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
7S9
L.6
1XC
VOOES
DOI 10.1016/j.csda.2012.12.008
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Statistics
EISSN 1872-7352
EndPage 78
ExternalDocumentID oai_HAL_hal_00750909v1
10_1016_j_csda_2012_12_008
S0167947312004422
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
VH1
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
7S9
L.6
1XC
UMC
VOOES
ID FETCH-LOGICAL-c444t-f23e241d10aeed601ad778b377fedba596853e83919e5f1b441d52a2baec4dfa3
IEDL.DBID .~1
ISSN 0167-9473
IngestDate Fri May 09 12:12:59 EDT 2025
Sun Aug 24 03:38:23 EDT 2025
Tue Aug 05 10:03:02 EDT 2025
Thu Apr 24 22:54:49 EDT 2025
Tue Jul 01 02:24:27 EDT 2025
Fri Feb 23 02:23:51 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords High-dimensional data
Dimension reduction
Model-based clustering
Parsimonious models
Subspace clustering
Software
Regularization
R package
Variable selection
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-f23e241d10aeed601ad778b377fedba596853e83919e5f1b441d52a2baec4dfa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6956-4491
OpenAccessLink https://hal.science/hal-00750909
PQID 1671523157
PQPubID 23500
PageCount 27
ParticipantIDs hal_primary_oai_HAL_hal_00750909v1
proquest_miscellaneous_2237521988
proquest_miscellaneous_1671523157
crossref_primary_10_1016_j_csda_2012_12_008
crossref_citationtrail_10_1016_j_csda_2012_12_008
elsevier_sciencedirect_doi_10_1016_j_csda_2012_12_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-03-01
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Computational statistics & data analysis
PublicationYear 2014
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P., 1998. Automatic subspace clustering of high-dimensional data for data mining application. In: ACM SIGMOD International Conference on Management of Data, pp. 94–105.
Bouveyron, Celeux, Girard (br000100) 2011; 32
Viroli, C., 2010a. The hmfa function for the R software.
Pavlenko, Von Rosen (br000440) 2001; 35
Bickel, Levina (br000045) 2008; 36
Andrews, McNicholas (br000015) 2012; 22
Lee, Lin, Hsieh (br000260) 2007; 17
Maugis, Celeux, Martin-Magniette (br000305) 2009; 65
Efron, Hastie, Johnstone, Tibshirani (br000155) 2004; 32
McLachlan, Peel, Basford, Adams (br000355) 1999; 4
Mo, C., 2009. emgm: EM algorithm for Gaussian mixture model.
Tipping, Bishop (br000500) 1999; 11
McLachlan, G.J., 2010a. The EMMIX software.
Fisher (br000165) 1936; 7
Huber (br000245) 1985; 13
Tran, Wehrens, Buydens (br000505) 2006; 51
Xie, Pan, Shen (br000570) 2010; 26
Yoshida, Higuchi, Imoto (br000575) 2004; 8
Partovi Nia, Davison (br000430) 2012; 47
Witten, Tibshirani (br000550) 2010; 105
.
Wolfe, J.H., 1963. Object cluster analysis of social areas. Master’s thesis, University of California, Berkeley.
Sanguinetti (br000460) 2008; 30
Bishop (br000065) 2006
Montanari, Viroli (br000400) 2010; 10
Banfield, Raftery (br000025) 1993; 49
Law, Figueiredo, Jain (br000250) 2004; 26
Venables, Ripley (br000515) 2002
Galimberti, Soffritti (br000220) 2012
Bellman (br000030) 1957
Pan, Shen (br000420) 2007; 8
McNicholas, Murphy (br000365) 2008; 18
Bouchard, Celeux (br000075) 2005; 28
Celeux, Govaert (br000125) 1995; 28
Fraley, Raftery (br000180) 1999; 16
Fraley (br000175) 1998; 20
Tipping, M.E., Bishop, C.M., 1997. Probabilistic principal component analysis. Technical Report NCRG-97-010, Neural Computing Research Group, Aston University.
Bouchard, G., Bouveyron, C., 2007. The statlearn toolbox: statistical learning tools for Matlab.
Zhang, Z., Dai, G., Jordan, M.I., 2009. A flexible and efficient algorithm for regularized fisher discriminant analysis, In: Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 632–647.
Spearman (br000485) 1904; 15
Bouveyron, Brunet (br000090) 2012; 22
Cattell (br000120) 1966; 1
Yoshida, Higuchi, Imoto, Miyano (br000580) 2006; 22
Liu, Zhang, Palumbo, Lawrence (br000285) 2003; 7
Maugis, Celeux, Martin-Magniette (br000310) 2009; 53
Schwarz (br000465) 1978; 6
Andrews, McNicholas (br000010) 2011; 21
Murtagh, Raftery (br000410) 1984; 17
Ledoit, Wolf (br000255) 2003; 88
Tritchler, Fallah, Beyene (br000510) 2005; 49
Duda, Hart, Stork (br000150) 2000
McLachlan, Bean, Ben-Tovim Jones (br000335) 2011; 51
Melnykov, Melnykov (br000380) 2012; 56
Vrbik, McNicholas (br000535) 2012; 82
Bouveyron, Girard, Schmid (br000105) 2007; 52
Friedman, Hastie, Tibshirani (br000205) 2008; 104
Bergé, Bouveyron, Girard (br000035) 2012; 42
McNicholas, Murphy (br000370) 2010; 26
Murtagh (br000405) 2009; 26
Celeux, Martin-Magniette, Maugis, Raftery (br000130) 2011; 106
Scrucca (br000480) 2010; 20
Rubin, Thayer (br000455) 1982; 47
Hastie, Buja, Tibshirani (br000235) 1995; 23
Parsons, Haque, Liu (br000425) 1998; 6
Biernacki, Celeux, Govaert (br000050) 2001; 22
Ward (br000545) 1963; 58
Fraley, Raftery (br000185) 2002; 97
Wu (br000560) 1983; 11
von Borries, Wang (br000530) 2009; 53
Pearson (br000445) 1901; 6
Franczak, B.C., Browne, R.P., McNicholas, P.D., 2012. Mixtures of shifted asymmetric Laplace distributions. Preprint
Steiner, Hudec (br000490) 2007; 51
Biernacki, Jacques (br000060) 2013; 58
Campbell, Mahon (br000115) 1974; 22
Bouveyron, Brunet (br000080) 2011; 152
Foley, Sammon (br000170) 1975; 24
McNicholas, P.D., Murphy, T.B., Jampani, K.R., McDaid, A.F., Banks, L., 2011. Pgmm Version 1.0 for R: Model-based clustering and classification via latent Gaussian mixture models. Technical Report 320, Department of Mathematics and Statistics, University of Guelph.
Bouveyron, Brunet (br000095) 2012; 109
Chen, Ostrouchov (br000140) 2012
Viroli, C., 2010b. The mmfa function for the R software.
McLachlan, Krishnan (br000340) 1997
Baek, McLachlan, Flack (br000020) 2009
MacQueen (br000290) 1967
McLachlan, Peel, Bean (br000360) 2003; 41
Lin (br000275) 2010; 20
Galimberti, Montanari, Viroli (br000215) 2009; 53
McLachlan, Peel (br000345) 1998; 1451
Hotelling (br000240) 1933; 24
Fukunaga (br000210) 1990
McLachlan, Peel (br000350) 2000
Xie, Pan, Shen (br000565) 2008; 2
Bickel, Levina (br000040) 2008; 36
Biernacki, Celeux, Govaert, Langrognet (br000055) 2006; 51
Bouveyron, Girard, Schmid (br000110) 2007; 36
Friedman (br000200) 1989; 84
Manolopoulou, Kepler, Merl (br000295) 2012; 56
Ghahramani, Z., Hinton, G.E., 1997. The EM algorithm for factor analyzers. Technical report, University of Toronto.
Dempster, Laird, Robin (br000145) 1977; 39
Maugis, C., 2009. The selvarclust software.
El Karoui, N., 2007. Operator norm consistent estimation of large dimensional sparse covariance matrices. Technical report 734, UC Berkeley, Department of Statistics.
Lee, McLachlan (br000265) 2013
Bouveyron, C., Brunet, C., 2012a. Discriminative variable selection for clustering with the sparse Fisher–EM algorithm. Technical Report Preprint HAL 00685183, Laboratoire SAMM, Université Paris 1 Panthéon-Sorbonne.
Lee, Scott (br000270) 2012; 56
Pavlenko (br000435) 2003; 115
Wang, Zhou (br000540) 2008; 64
Scott, Symons (br000470) 1971; 27
Scott, D., Thompson, J., 1983. Probability density estimation in higher dimensions, In: Fifteenth Symposium in the Interface, pp. 173–179.
Mkhadri, Celeux, Nasrollah (br000390) 1997; 23
Raftery, Dean (br000450) 2006; 101
McLachlan, G.J., 2010b. The mcfa function for the R software.
Frank, A., Asuncion, A., 2010. UCI Machine Learning Repository.
Lindsay (br000280) 1995; vol. 5
O’Hagan, Murphy, Gormley (br000415) 2012; 56
McLachlan, Basford (br000330) 1988
Hall, Marron, Neeman (br000230) 2005; 67
Chang (br000135) 1983; 32
McLachlan, G.J., 2003. The EMMIX-MFA software.
Meng, Van Dyk (br000385) 1997; 59
Bouveyron (10.1016/j.csda.2012.12.008_br000080) 2011; 152
Maugis (10.1016/j.csda.2012.12.008_br000310) 2009; 53
McLachlan (10.1016/j.csda.2012.12.008_br000355) 1999; 4
Andrews (10.1016/j.csda.2012.12.008_br000010) 2011; 21
Bergé (10.1016/j.csda.2012.12.008_br000035) 2012; 42
10.1016/j.csda.2012.12.008_br000190
10.1016/j.csda.2012.12.008_br000070
10.1016/j.csda.2012.12.008_br000195
Murtagh (10.1016/j.csda.2012.12.008_br000405) 2009; 26
Banfield (10.1016/j.csda.2012.12.008_br000025) 1993; 49
Lee (10.1016/j.csda.2012.12.008_br000260) 2007; 17
Huber (10.1016/j.csda.2012.12.008_br000245) 1985; 13
Fraley (10.1016/j.csda.2012.12.008_br000185) 2002; 97
Galimberti (10.1016/j.csda.2012.12.008_br000220) 2012
10.1016/j.csda.2012.12.008_br000475
Mkhadri (10.1016/j.csda.2012.12.008_br000390) 1997; 23
MacQueen (10.1016/j.csda.2012.12.008_br000290) 1967
Tran (10.1016/j.csda.2012.12.008_br000505) 2006; 51
Partovi Nia (10.1016/j.csda.2012.12.008_br000430) 2012; 47
Yoshida (10.1016/j.csda.2012.12.008_br000580) 2006; 22
Cattell (10.1016/j.csda.2012.12.008_br000120) 1966; 1
10.1016/j.csda.2012.12.008_br000225
10.1016/j.csda.2012.12.008_br000585
Dempster (10.1016/j.csda.2012.12.008_br000145) 1977; 39
Bellman (10.1016/j.csda.2012.12.008_br000030) 1957
Chang (10.1016/j.csda.2012.12.008_br000135) 1983; 32
Biernacki (10.1016/j.csda.2012.12.008_br000050) 2001; 22
Bouveyron (10.1016/j.csda.2012.12.008_br000110) 2007; 36
Lee (10.1016/j.csda.2012.12.008_br000270) 2012; 56
Witten (10.1016/j.csda.2012.12.008_br000550) 2010; 105
Tipping (10.1016/j.csda.2012.12.008_br000500) 1999; 11
Manolopoulou (10.1016/j.csda.2012.12.008_br000295) 2012; 56
McNicholas (10.1016/j.csda.2012.12.008_br000365) 2008; 18
10.1016/j.csda.2012.12.008_br000495
10.1016/j.csda.2012.12.008_br000375
Friedman (10.1016/j.csda.2012.12.008_br000200) 1989; 84
McLachlan (10.1016/j.csda.2012.12.008_br000360) 2003; 41
Spearman (10.1016/j.csda.2012.12.008_br000485) 1904; 15
McNicholas (10.1016/j.csda.2012.12.008_br000370) 2010; 26
Friedman (10.1016/j.csda.2012.12.008_br000205) 2008; 104
Xie (10.1016/j.csda.2012.12.008_br000570) 2010; 26
Fraley (10.1016/j.csda.2012.12.008_br000180) 1999; 16
Law (10.1016/j.csda.2012.12.008_br000250) 2004; 26
Tritchler (10.1016/j.csda.2012.12.008_br000510) 2005; 49
Biernacki (10.1016/j.csda.2012.12.008_br000060) 2013; 58
Bickel (10.1016/j.csda.2012.12.008_br000040) 2008; 36
Schwarz (10.1016/j.csda.2012.12.008_br000465) 1978; 6
McLachlan (10.1016/j.csda.2012.12.008_br000330) 1988
10.1016/j.csda.2012.12.008_br000085
Liu (10.1016/j.csda.2012.12.008_br000285) 2003; 7
McLachlan (10.1016/j.csda.2012.12.008_br000350) 2000
Meng (10.1016/j.csda.2012.12.008_br000385) 1997; 59
Galimberti (10.1016/j.csda.2012.12.008_br000215) 2009; 53
10.1016/j.csda.2012.12.008_br000005
Hastie (10.1016/j.csda.2012.12.008_br000235) 1995; 23
Efron (10.1016/j.csda.2012.12.008_br000155) 2004; 32
10.1016/j.csda.2012.12.008_br000520
Hotelling (10.1016/j.csda.2012.12.008_br000240) 1933; 24
10.1016/j.csda.2012.12.008_br000525
Baek (10.1016/j.csda.2012.12.008_br000020) 2009
Bishop (10.1016/j.csda.2012.12.008_br000065) 2006
Venables (10.1016/j.csda.2012.12.008_br000515) 2002
Chen (10.1016/j.csda.2012.12.008_br000140) 2012
Fisher (10.1016/j.csda.2012.12.008_br000165) 1936; 7
Wu (10.1016/j.csda.2012.12.008_br000560) 1983; 11
Rubin (10.1016/j.csda.2012.12.008_br000455) 1982; 47
Duda (10.1016/j.csda.2012.12.008_br000150) 2000
McLachlan (10.1016/j.csda.2012.12.008_br000340) 1997
Pearson (10.1016/j.csda.2012.12.008_br000445) 1901; 6
Lindsay (10.1016/j.csda.2012.12.008_br000280) 1995; vol. 5
Celeux (10.1016/j.csda.2012.12.008_br000130) 2011; 106
10.1016/j.csda.2012.12.008_br000395
10.1016/j.csda.2012.12.008_br000555
Montanari (10.1016/j.csda.2012.12.008_br000400) 2010; 10
10.1016/j.csda.2012.12.008_br000315
Lin (10.1016/j.csda.2012.12.008_br000275) 2010; 20
McLachlan (10.1016/j.csda.2012.12.008_br000345) 1998; 1451
Pavlenko (10.1016/j.csda.2012.12.008_br000435) 2003; 115
Bouveyron (10.1016/j.csda.2012.12.008_br000090) 2012; 22
Bouveyron (10.1016/j.csda.2012.12.008_br000105) 2007; 52
Raftery (10.1016/j.csda.2012.12.008_br000450) 2006; 101
Bickel (10.1016/j.csda.2012.12.008_br000045) 2008; 36
Campbell (10.1016/j.csda.2012.12.008_br000115) 1974; 22
Vrbik (10.1016/j.csda.2012.12.008_br000535) 2012; 82
Murtagh (10.1016/j.csda.2012.12.008_br000410) 1984; 17
10.1016/j.csda.2012.12.008_br000300
Fukunaga (10.1016/j.csda.2012.12.008_br000210) 1990
Yoshida (10.1016/j.csda.2012.12.008_br000575) 2004; 8
Bouveyron (10.1016/j.csda.2012.12.008_br000100) 2011; 32
Scrucca (10.1016/j.csda.2012.12.008_br000480) 2010; 20
Hall (10.1016/j.csda.2012.12.008_br000230) 2005; 67
Maugis (10.1016/j.csda.2012.12.008_br000305) 2009; 65
McLachlan (10.1016/j.csda.2012.12.008_br000335) 2011; 51
Andrews (10.1016/j.csda.2012.12.008_br000015) 2012; 22
Bouveyron (10.1016/j.csda.2012.12.008_br000095) 2012; 109
O’Hagan (10.1016/j.csda.2012.12.008_br000415) 2012; 56
von Borries (10.1016/j.csda.2012.12.008_br000530) 2009; 53
Scott (10.1016/j.csda.2012.12.008_br000470) 1971; 27
Celeux (10.1016/j.csda.2012.12.008_br000125) 1995; 28
Fraley (10.1016/j.csda.2012.12.008_br000175) 1998; 20
Foley (10.1016/j.csda.2012.12.008_br000170) 1975; 24
Lee (10.1016/j.csda.2012.12.008_br000265) 2013
Sanguinetti (10.1016/j.csda.2012.12.008_br000460) 2008; 30
Xie (10.1016/j.csda.2012.12.008_br000565) 2008; 2
Melnykov (10.1016/j.csda.2012.12.008_br000380) 2012; 56
Pan (10.1016/j.csda.2012.12.008_br000420) 2007; 8
Wang (10.1016/j.csda.2012.12.008_br000540) 2008; 64
Biernacki (10.1016/j.csda.2012.12.008_br000055) 2006; 51
Ledoit (10.1016/j.csda.2012.12.008_br000255) 2003; 88
Ward (10.1016/j.csda.2012.12.008_br000545) 1963; 58
Bouchard (10.1016/j.csda.2012.12.008_br000075) 2005; 28
10.1016/j.csda.2012.12.008_br000160
Steiner (10.1016/j.csda.2012.12.008_br000490) 2007; 51
10.1016/j.csda.2012.12.008_br000320
Parsons (10.1016/j.csda.2012.12.008_br000425) 1998; 6
Pavlenko (10.1016/j.csda.2012.12.008_br000440) 2001; 35
10.1016/j.csda.2012.12.008_br000325
References_xml – volume: vol. 5
  year: 1995
  ident: br000280
  publication-title: Mixture Models: Theory, Geometry and Applications
– volume: 59
  start-page: 511
  year: 1997
  end-page: 567
  ident: br000385
  article-title: The EM algorithm — an old folk song sung to a fast new tune
  publication-title: Journal of the Royal Statistical Society, Series B
– reference: Bouveyron, C., Brunet, C., 2012a. Discriminative variable selection for clustering with the sparse Fisher–EM algorithm. Technical Report Preprint HAL 00685183, Laboratoire SAMM, Université Paris 1 Panthéon-Sorbonne.
– volume: 56
  start-page: 2816
  year: 2012
  end-page: 2829
  ident: br000270
  article-title: Em algorithms for multivariate gaussian mixture models with truncated and censored data
  publication-title: Computational Statistics and Data Analysis
– year: 1988
  ident: br000330
  article-title: Mixture Models: Inference and Applications to Clustering
– volume: 28
  start-page: 544
  year: 2005
  end-page: 554
  ident: br000075
  article-title: Model selection in supervised classification
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 51
  start-page: 5327
  year: 2011
  end-page: 5338
  ident: br000335
  article-title: Extension of the mixture of factor analyzers model to incorporate the multivariate
  publication-title: Computational Statistics and Data Analysis
– volume: 23
  start-page: 73
  year: 1995
  end-page: 102
  ident: br000235
  article-title: Penalized discriminant analysis
  publication-title: The Annals of Statistics
– volume: 24
  start-page: 417
  year: 1933
  end-page: 441
  ident: br000240
  article-title: Analysis of a complex of statistical variables into principal components
  publication-title: Journal of Educational Psychology
– volume: 101
  start-page: 168
  year: 2006
  end-page: 178
  ident: br000450
  article-title: Variable selection for model-based clustering
  publication-title: Journal of the American Statistical Association
– volume: 51
  start-page: 513
  year: 2006
  end-page: 525
  ident: br000505
  article-title: Knn-kernel density-based clustering for high-dimensional multivariate data
  publication-title: Computational Statistics and Data Analysis
– volume: 4
  start-page: 1
  year: 1999
  end-page: 14
  ident: br000355
  article-title: The emmix software for the fitting of mixtures of normal
  publication-title: Journal of Statistical Software
– volume: 28
  start-page: 781
  year: 1995
  end-page: 793
  ident: br000125
  article-title: Gaussian parsimonious clustering models
  publication-title: Pattern Recognition
– year: 1997
  ident: br000340
  article-title: The EM Algorithm and Extensions
– volume: 53
  start-page: 3872
  year: 2009
  end-page: 3882
  ident: br000310
  article-title: Variable selection in model-based clustering: a general variable role modeling
  publication-title: Computational Statistics and Data Analysis
– volume: 18
  start-page: 285
  year: 2008
  end-page: 296
  ident: br000365
  article-title: Parsimonious Gaussian mixture models
  publication-title: Statistics and Computing
– volume: 47
  start-page: 1
  year: 2012
  end-page: 22
  ident: br000430
  article-title: High-dimensional bayesian clustering with variable selection: the R package bclust
  publication-title: Journal of Statistical Software
– reference: El Karoui, N., 2007. Operator norm consistent estimation of large dimensional sparse covariance matrices. Technical report 734, UC Berkeley, Department of Statistics.
– volume: 7
  start-page: 249
  year: 2003
  end-page: 276
  ident: br000285
  article-title: Bayesian clustering with variable and transformation selection
  publication-title: Bayesian Statistics
– year: 2000
  ident: br000350
  article-title: Finite Mixture Models
– volume: 26
  start-page: 501
  year: 2010
  end-page: 508
  ident: br000570
  article-title: Penalized mixtures of factor analyzers with application to clustering high-dimensional microarray data
  publication-title: Bioinformatics
– volume: 20
  start-page: 471
  year: 2010
  end-page: 484
  ident: br000480
  article-title: Dimension reduction for model-based clustering
  publication-title: Statistics and Computing
– volume: 64
  start-page: 440
  year: 2008
  end-page: 448
  ident: br000540
  article-title: Variable selection for model-based high dimensional clustering and its application to microarray data
  publication-title: Biometrics
– volume: 32
  start-page: 407
  year: 2004
  end-page: 499
  ident: br000155
  article-title: Least angle regression
  publication-title: The Annals of Statistics
– volume: 22
  start-page: 719
  year: 2001
  end-page: 725
  ident: br000050
  article-title: Assessing a mixture model for clustering with the integrated completed likelihood
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 26
  start-page: 1154
  year: 2004
  end-page: 1166
  ident: br000250
  article-title: Simultaneous feature selection and clustering using mixture models
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 16
  start-page: 297
  year: 1999
  end-page: 306
  ident: br000180
  article-title: MCLUST: software for model-based cluster analysis
  publication-title: Journal of Classification
– volume: 26
  start-page: 249
  year: 2009
  end-page: 277
  ident: br000405
  article-title: The remarkable simplicity of very high dimensional data: application of model-based clustering
  publication-title: Journal of Classification
– volume: 82
  start-page: 1169
  year: 2012
  end-page: 1174
  ident: br000535
  article-title: Analytic calculations for the EM algorithm for multivariate skew-
  publication-title: Statistics & Probability Letters
– reference: McNicholas, P.D., Murphy, T.B., Jampani, K.R., McDaid, A.F., Banks, L., 2011. Pgmm Version 1.0 for R: Model-based clustering and classification via latent Gaussian mixture models. Technical Report 320, Department of Mathematics and Statistics, University of Guelph.
– volume: 105
  start-page: 713
  year: 2010
  end-page: 726
  ident: br000550
  article-title: A framework for feature selection in clustering
  publication-title: Journal of the American Statistical Association
– year: 1957
  ident: br000030
  article-title: Dynamic Programming
– volume: 22
  start-page: 1021
  year: 2012
  end-page: 1029
  ident: br000015
  article-title: Model-based clustering, classification, and discriminant analysis via mixtures of multivariate
  publication-title: Statistics and Computing
– volume: 88
  start-page: 365
  year: 2003
  end-page: 411
  ident: br000255
  article-title: A well-conditioned estimator for large-dimensional covariance matrices
  publication-title: Journal of Multivariate Analysis
– volume: 32
  start-page: 1706
  year: 2011
  end-page: 1713
  ident: br000100
  article-title: Intrinsic dimension estimation by maximum likelihood in isotropic probabilistic PCA
  publication-title: Pattern Recognition Letters
– volume: 22
  start-page: 301
  year: 2012
  end-page: 324
  ident: br000090
  article-title: Simultaneous model-based clustering and visualization in the Fisher discriminative subspace
  publication-title: Statistics and Computing
– volume: 26
  start-page: 2705
  year: 2010
  end-page: 2712
  ident: br000370
  article-title: Model-based clustering of microarray expression data via latent gaussian mixture models
  publication-title: Bioinformatics
– reference: Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P., 1998. Automatic subspace clustering of high-dimensional data for data mining application. In: ACM SIGMOD International Conference on Management of Data, pp. 94–105.
– volume: 24
  start-page: 281
  year: 1975
  end-page: 289
  ident: br000170
  article-title: An optimal set of discriminant vectors
  publication-title: IEEE Transactions on Computers
– volume: 22
  start-page: 1538
  year: 2006
  end-page: 1539
  ident: br000580
  article-title: Array cluster: an analytic tool for clustering, data visualization and model finder on gene expression profiles
  publication-title: Bioinformatics
– reference: Frank, A., Asuncion, A., 2010. UCI Machine Learning Repository.
– year: 1990
  ident: br000210
  article-title: Introduction to Statistical Pattern Recognition
– volume: 8
  start-page: 161
  year: 2004
  end-page: 172
  ident: br000575
  article-title: A mixed factor model for dimension reduction and extraction of a group structure in gene expression data
  publication-title: IEEE Computational Systems Bioinformatics Conference
– volume: 58
  start-page: 162
  year: 2013
  end-page: 176
  ident: br000060
  article-title: A generative model for rank data based on insertion sort algorithm
  publication-title: Computational Statistics and Data Analysis
– volume: 67
  start-page: 427
  year: 2005
  end-page: 444
  ident: br000230
  article-title: Geometric representation of high dimension, low sample size data
  publication-title: Journal of the Royal Statistical Society, Serie B
– volume: 21
  start-page: 361
  year: 2011
  end-page: 373
  ident: br000010
  article-title: Extending mixtures of multivariate
  publication-title: Statistics and Computing
– reference: Viroli, C., 2010a. The hmfa function for the R software.
– start-page: 1
  year: 2009
  end-page: 13
  ident: br000020
  article-title: Mixtures of factor analyzers with common factor loadings: applications to the clustering and visualisation of high-dimensional data
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 30
  start-page: 1
  year: 2008
  end-page: 29
  ident: br000460
  article-title: Dimensionality reduction of clustered datasets
  publication-title: IEEE Transactions On Pattern Analysis And Machine Intelligence
– volume: 22
  start-page: 417
  year: 1974
  end-page: 425
  ident: br000115
  article-title: A multivariate study of variation in two species of rock crabs of genus Leptograpsus
  publication-title: Australian Journal of Zoology
– volume: 20
  start-page: 343
  year: 2010
  end-page: 356
  ident: br000275
  article-title: Robust mixture modeling using multivariate skew t distribution
  publication-title: Statistics and Computing
– volume: 35
  start-page: 191
  year: 2001
  end-page: 213
  ident: br000440
  article-title: Effect of dimensionality on discrimination
  publication-title: Statistics
– year: 2012
  ident: br000140
  article-title: Parallel Model-Based Clustering
– volume: 56
  start-page: 3843
  year: 2012
  end-page: 3864
  ident: br000415
  article-title: Computational aspects of fitting mixture models via the expectation-maximization algorithm
  publication-title: Computational Statistics and Data Analysis
– volume: 6
  start-page: 461
  year: 1978
  end-page: 464
  ident: br000465
  article-title: Estimating the dimension of a model
  publication-title: The Annals of Statistics
– volume: 106
  year: 2011
  ident: br000130
  article-title: Letter to the editor
  publication-title: Journal of the American Statistical Association
– volume: 27
  start-page: 387
  year: 1971
  end-page: 397
  ident: br000470
  article-title: Clustering methods based on likelihood ratio criteria
  publication-title: Biometrics
– volume: 49
  start-page: 803
  year: 1993
  end-page: 821
  ident: br000025
  article-title: Model-based Gaussian and non-Gaussian clustering
  publication-title: Biometrics
– volume: 65
  start-page: 701
  year: 2009
  end-page: 709
  ident: br000305
  article-title: Variable selection for clustering with Gaussian mixture models
  publication-title: Biometrics
– reference: Mo, C., 2009. emgm: EM algorithm for Gaussian mixture model.
– volume: 58
  start-page: 234
  year: 1963
  end-page: 244
  ident: br000545
  article-title: Hierarchical groupings to optimize an objective function
  publication-title: Journal of the American Statistical Association
– volume: 15
  start-page: 72
  year: 1904
  end-page: 101
  ident: br000485
  article-title: The proof and measurement of association between two things
  publication-title: American Journal of Psychology
– volume: 6
  start-page: 69
  year: 1998
  end-page: 76
  ident: br000425
  article-title: Subspace clustering for high-dimensional data: a review
  publication-title: SIGKDD Exploration Newsletter
– volume: 52
  start-page: 502
  year: 2007
  end-page: 519
  ident: br000105
  article-title: High-dimensional data clustering
  publication-title: Computational Statistics and Data Analysis
– year: 2012
  ident: br000220
  article-title: Using conditional independence for parsimonious model-based Gaussian clustering
  publication-title: Statistics and Computing
– year: 2002
  ident: br000515
  article-title: Modern Applied Statistics with S
– volume: 13
  start-page: 435
  year: 1985
  end-page: 525
  ident: br000245
  article-title: Projection pursuit
  publication-title: The Annals of Statistics
– volume: 84
  start-page: 165
  year: 1989
  end-page: 175
  ident: br000200
  article-title: Regularized discriminant analysis
  publication-title: The Journal of the American Statistical Association
– volume: 104
  start-page: 177
  year: 2008
  end-page: 186
  ident: br000205
  article-title: Sparse inverse covariance estimation with the graphical lasso
  publication-title: Journal of the American Statistical Association
– reference: McLachlan, G.J., 2010b. The mcfa function for the R software.
– reference: Bouchard, G., Bouveyron, C., 2007. The statlearn toolbox: statistical learning tools for Matlab.
– volume: 42
  start-page: 1
  year: 2012
  end-page: 29
  ident: br000035
  article-title: HDclassif: an R package for model-based clustering and discriminant analysis of high-dimensional data
  publication-title: Journal of Statistical Software
– volume: 6
  start-page: 559
  year: 1901
  end-page: 572
  ident: br000445
  article-title: On lines and planes of closest fit to systems of points in space
  publication-title: Philosophical Magazine
– volume: 51
  start-page: 5416
  year: 2007
  end-page: 5428
  ident: br000490
  article-title: Classification of large data sets with mixture models via sufficient em
  publication-title: Computational Statistics and Data Analysis
– reference: Franczak, B.C., Browne, R.P., McNicholas, P.D., 2012. Mixtures of shifted asymmetric Laplace distributions. Preprint
– volume: 47
  start-page: 69
  year: 1982
  end-page: 76
  ident: br000455
  article-title: EM algorithms for ML factor analysis
  publication-title: Psychometrika
– volume: 97
  year: 2002
  ident: br000185
  article-title: Model-based clustering, discriminant analysis, and density estimation
  publication-title: Journal of the American Statistical Association
– volume: 36
  start-page: 2577
  year: 2008
  end-page: 2604
  ident: br000040
  article-title: Covariance regularization by thresholding
  publication-title: The Annals of Statistics
– reference: McLachlan, G.J., 2010a. The EMMIX software.
– volume: 51
  start-page: 587
  year: 2006
  end-page: 600
  ident: br000055
  article-title: Model-based cluster and discriminant analysis with the mixmod software
  publication-title: Computational Statistics and Data Analysis
– volume: 2
  start-page: 168
  year: 2008
  end-page: 212
  ident: br000565
  article-title: Penalized model-based clustering with cluster-specific diagonal covariance matrices and grouped variables
  publication-title: Electrical Journal of Statistics
– volume: 11
  start-page: 95
  year: 1983
  end-page: 103
  ident: br000560
  article-title: On the convergence properties of the EM algorithm
  publication-title: The Annals of Statistics
– volume: 41
  start-page: 379
  year: 2003
  ident: br000360
  article-title: Modelling high-dimensional data by mixtures of factor analyzers
  publication-title: Computational Statistics and Data Analysis
– volume: 17
  start-page: 479
  year: 1984
  end-page: 483
  ident: br000410
  article-title: Fitting straight lines to point patterns
  publication-title: Pattern Recognition
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: br000145
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society
– volume: 8
  start-page: 1145
  year: 2007
  end-page: 1164
  ident: br000420
  article-title: Penalized model-based clustering with application to variable selection
  publication-title: Journal of Machine Learning Research
– volume: 1451
  start-page: 658
  year: 1998
  end-page: 666
  ident: br000345
  article-title: Robust cluster analysis via mixtures of multivariate
  publication-title: Lecture Notes in Computer Science
– volume: 20
  start-page: 270
  year: 1998
  end-page: 281
  ident: br000175
  article-title: Algorithms for model-based Gaussian hierarchical clustering
  publication-title: SIAM Journal on Scientific Computing
– volume: 53
  start-page: 3987
  year: 2009
  end-page: 3998
  ident: br000530
  article-title: Partition clustering of high dimensional low sample size data based on
  publication-title: Computational Statistics and Data Analysis
– reference: Zhang, Z., Dai, G., Jordan, M.I., 2009. A flexible and efficient algorithm for regularized fisher discriminant analysis, In: Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 632–647.
– volume: 17
  start-page: 81
  year: 2007
  end-page: 92
  ident: br000260
  article-title: Robust mixture modeling using the skew
  publication-title: Statistics and Computing
– volume: 7
  start-page: 179
  year: 1936
  end-page: 188
  ident: br000165
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Annals of Eugenics
– reference: Viroli, C., 2010b. The mmfa function for the R software.
– start-page: 281
  year: 1967
  end-page: 297
  ident: br000290
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1
– volume: 152
  start-page: 98
  year: 2011
  end-page: 115
  ident: br000080
  article-title: On the estimation of the latent discriminative subspace in the Fisher–EM algorithm
  publication-title: Journal de la Société Francaise de Statistique
– year: 2006
  ident: br000065
  article-title: Pattern Recognition and Machine Learning
– volume: 109
  start-page: 29
  year: 2012
  end-page: 41
  ident: br000095
  article-title: Theoretical and practical considerations on the convergence properties of the Fisher–EM algorithm
  publication-title: Journal of Multivariate Analysis
– reference: McLachlan, G.J., 2003. The EMMIX-MFA software.
– volume: 11
  start-page: 443
  year: 1999
  end-page: 482
  ident: br000500
  article-title: Mixtures of probabilistic principal component analysers
  publication-title: Neural Computation
– volume: 1
  start-page: 145
  year: 1966
  end-page: 276
  ident: br000120
  article-title: The scree test for the number of factors
  publication-title: Multivariate Behavioral Research
– volume: 56
  start-page: 1381
  year: 2012
  end-page: 1395
  ident: br000380
  article-title: Initializing the em algorithm in gaussian mixture models with an unknown number of components
  publication-title: Computational Statistics and Data Analysis
– volume: 115
  start-page: 565
  year: 2003
  end-page: 584
  ident: br000435
  article-title: On feature selection, curse of dimensionality and error probability in discriminant analysis
  publication-title: Journal of Statistical Planning and Inference
– reference: Scott, D., Thompson, J., 1983. Probability density estimation in higher dimensions, In: Fifteenth Symposium in the Interface, pp. 173–179.
– reference: Wolfe, J.H., 1963. Object cluster analysis of social areas. Master’s thesis, University of California, Berkeley.
– year: 2013
  ident: br000265
  article-title: Finite mixtures of multivariate skew
  publication-title: Statistics and Computing
– reference: Ghahramani, Z., Hinton, G.E., 1997. The EM algorithm for factor analyzers. Technical report, University of Toronto.
– volume: 56
  start-page: 3809
  year: 2012
  end-page: 3820
  ident: br000295
  article-title: Mixtures of gaussian wells: theory, computation, and application
  publication-title: Computational Statistics and Data Analysis
– volume: 32
  start-page: 267
  year: 1983
  end-page: 275
  ident: br000135
  article-title: On using principal component before separating a mixture of two multivariate normal distributions
  publication-title: Journal of the Royal Statistical Society, Series C
– reference: .
– year: 2000
  ident: br000150
  article-title: Pattern Classification
– volume: 10
  start-page: 441
  year: 2010
  end-page: 460
  ident: br000400
  article-title: Heteroscedastic factor mixture analysis
  publication-title: Statistical Modelling
– volume: 49
  start-page: 63
  year: 2005
  end-page: 76
  ident: br000510
  article-title: A spectral clustering method for microarray data
  publication-title: Computational Statistics and Data Analysis
– volume: 36
  start-page: 199
  year: 2008
  end-page: 227
  ident: br000045
  article-title: Regularized estimation of large covariance matrices
  publication-title: The Annals of Statistics
– volume: 36
  start-page: 2607
  year: 2007
  end-page: 2623
  ident: br000110
  article-title: High dimensional discriminant analysis
  publication-title: Communications in Statistics: Theory and Methods
– volume: 53
  start-page: 4301
  year: 2009
  end-page: 4310
  ident: br000215
  article-title: Penalized factor mixture analysis for variable selection in clustered data
  publication-title: Computational Statistics and Data Analysis
– reference: Maugis, C., 2009. The selvarclust software.
– reference: Tipping, M.E., Bishop, C.M., 1997. Probabilistic principal component analysis. Technical Report NCRG-97-010, Neural Computing Research Group, Aston University.
– volume: 23
  start-page: 403
  year: 1997
  end-page: 423
  ident: br000390
  article-title: Regularization in discriminant analysis: a survey
  publication-title: Computational Statistics and Data Analysis
– volume: 8
  start-page: 1145
  year: 2007
  ident: 10.1016/j.csda.2012.12.008_br000420
  article-title: Penalized model-based clustering with application to variable selection
  publication-title: Journal of Machine Learning Research
– volume: 22
  start-page: 1021
  issue: 5
  year: 2012
  ident: 10.1016/j.csda.2012.12.008_br000015
  article-title: Model-based clustering, classification, and discriminant analysis via mixtures of multivariate t-distributions
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-011-9272-x
– volume: 88
  start-page: 365
  year: 2003
  ident: 10.1016/j.csda.2012.12.008_br000255
  article-title: A well-conditioned estimator for large-dimensional covariance matrices
  publication-title: Journal of Multivariate Analysis
  doi: 10.1016/S0047-259X(03)00096-4
– volume: 56
  start-page: 3843
  issue: 12
  year: 2012
  ident: 10.1016/j.csda.2012.12.008_br000415
  article-title: Computational aspects of fitting mixture models via the expectation-maximization algorithm
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2012.05.011
– ident: 10.1016/j.csda.2012.12.008_br000195
– volume: 49
  start-page: 63
  issue: 1
  year: 2005
  ident: 10.1016/j.csda.2012.12.008_br000510
  article-title: A spectral clustering method for microarray data
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2004.04.010
– volume: 58
  start-page: 234
  year: 1963
  ident: 10.1016/j.csda.2012.12.008_br000545
  article-title: Hierarchical groupings to optimize an objective function
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1963.10500845
– volume: 52
  start-page: 502
  issue: 1
  year: 2007
  ident: 10.1016/j.csda.2012.12.008_br000105
  article-title: High-dimensional data clustering
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2007.02.009
– volume: 56
  start-page: 3809
  issue: 12
  year: 2012
  ident: 10.1016/j.csda.2012.12.008_br000295
  article-title: Mixtures of gaussian wells: theory, computation, and application
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2012.03.027
– volume: 24
  start-page: 417
  year: 1933
  ident: 10.1016/j.csda.2012.12.008_br000240
  article-title: Analysis of a complex of statistical variables into principal components
  publication-title: Journal of Educational Psychology
  doi: 10.1037/h0071325
– volume: 17
  start-page: 479
  year: 1984
  ident: 10.1016/j.csda.2012.12.008_br000410
  article-title: Fitting straight lines to point patterns
  publication-title: Pattern Recognition
  doi: 10.1016/0031-3203(84)90045-1
– volume: 36
  start-page: 2577
  year: 2008
  ident: 10.1016/j.csda.2012.12.008_br000040
  article-title: Covariance regularization by thresholding
  publication-title: The Annals of Statistics
  doi: 10.1214/08-AOS600
– volume: 1
  start-page: 145
  issue: 2
  year: 1966
  ident: 10.1016/j.csda.2012.12.008_br000120
  article-title: The scree test for the number of factors
  publication-title: Multivariate Behavioral Research
  doi: 10.1207/s15327906mbr0102_10
– volume: 22
  start-page: 719
  issue: 7
  year: 2001
  ident: 10.1016/j.csda.2012.12.008_br000050
  article-title: Assessing a mixture model for clustering with the integrated completed likelihood
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.865189
– volume: 20
  start-page: 471
  issue: 4
  year: 2010
  ident: 10.1016/j.csda.2012.12.008_br000480
  article-title: Dimension reduction for model-based clustering
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-009-9138-7
– volume: 11
  start-page: 95
  year: 1983
  ident: 10.1016/j.csda.2012.12.008_br000560
  article-title: On the convergence properties of the EM algorithm
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176346060
– volume: 22
  start-page: 417
  year: 1974
  ident: 10.1016/j.csda.2012.12.008_br000115
  article-title: A multivariate study of variation in two species of rock crabs of genus Leptograpsus
  publication-title: Australian Journal of Zoology
  doi: 10.1071/ZO9740417
– ident: 10.1016/j.csda.2012.12.008_br000005
  doi: 10.1145/276304.276314
– volume: 35
  start-page: 191
  issue: 3
  year: 2001
  ident: 10.1016/j.csda.2012.12.008_br000440
  article-title: Effect of dimensionality on discrimination
  publication-title: Statistics
  doi: 10.1080/02331880108802731
– year: 2006
  ident: 10.1016/j.csda.2012.12.008_br000065
– volume: 26
  start-page: 1154
  issue: 9
  year: 2004
  ident: 10.1016/j.csda.2012.12.008_br000250
  article-title: Simultaneous feature selection and clustering using mixture models
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2004.71
– volume: 10
  start-page: 441
  issue: 4
  year: 2010
  ident: 10.1016/j.csda.2012.12.008_br000400
  article-title: Heteroscedastic factor mixture analysis
  publication-title: Statistical Modelling
  doi: 10.1177/1471082X0901000405
– volume: 51
  start-page: 5327
  year: 2011
  ident: 10.1016/j.csda.2012.12.008_br000335
  article-title: Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2006.09.015
– ident: 10.1016/j.csda.2012.12.008_br000160
  doi: 10.1214/07-AOS559
– start-page: 281
  year: 1967
  ident: 10.1016/j.csda.2012.12.008_br000290
  article-title: Some methods for classification and analysis of multivariate observations
– year: 2012
  ident: 10.1016/j.csda.2012.12.008_br000140
– volume: 106
  issue: 493
  year: 2011
  ident: 10.1016/j.csda.2012.12.008_br000130
  article-title: Letter to the editor
  publication-title: Journal of the American Statistical Association
– volume: 24
  start-page: 281
  year: 1975
  ident: 10.1016/j.csda.2012.12.008_br000170
  article-title: An optimal set of discriminant vectors
  publication-title: IEEE Transactions on Computers
  doi: 10.1109/T-C.1975.224208
– volume: 101
  start-page: 168
  issue: 473
  year: 2006
  ident: 10.1016/j.csda.2012.12.008_br000450
  article-title: Variable selection for model-based clustering
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214506000000113
– ident: 10.1016/j.csda.2012.12.008_br000475
– volume: 36
  start-page: 199
  year: 2008
  ident: 10.1016/j.csda.2012.12.008_br000045
  article-title: Regularized estimation of large covariance matrices
  publication-title: The Annals of Statistics
  doi: 10.1214/009053607000000758
– volume: 47
  start-page: 69
  issue: 1
  year: 1982
  ident: 10.1016/j.csda.2012.12.008_br000455
  article-title: EM algorithms for ML factor analysis
  publication-title: Psychometrika
  doi: 10.1007/BF02293851
– ident: 10.1016/j.csda.2012.12.008_br000395
– start-page: 1
  year: 2009
  ident: 10.1016/j.csda.2012.12.008_br000020
  article-title: Mixtures of factor analyzers with common factor loadings: applications to the clustering and visualisation of high-dimensional data
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 42
  start-page: 1
  issue: 6
  year: 2012
  ident: 10.1016/j.csda.2012.12.008_br000035
  article-title: HDclassif: an R package for model-based clustering and discriminant analysis of high-dimensional data
  publication-title: Journal of Statistical Software
– volume: 26
  start-page: 501
  issue: 4
  year: 2010
  ident: 10.1016/j.csda.2012.12.008_br000570
  article-title: Penalized mixtures of factor analyzers with application to clustering high-dimensional microarray data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp707
– volume: 20
  start-page: 343
  year: 2010
  ident: 10.1016/j.csda.2012.12.008_br000275
  article-title: Robust mixture modeling using multivariate skew t distribution
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-009-9128-9
– ident: 10.1016/j.csda.2012.12.008_br000070
– year: 1988
  ident: 10.1016/j.csda.2012.12.008_br000330
– volume: 8
  start-page: 161
  year: 2004
  ident: 10.1016/j.csda.2012.12.008_br000575
  article-title: A mixed factor model for dimension reduction and extraction of a group structure in gene expression data
  publication-title: IEEE Computational Systems Bioinformatics Conference
– volume: 22
  start-page: 301
  issue: 1
  year: 2012
  ident: 10.1016/j.csda.2012.12.008_br000090
  article-title: Simultaneous model-based clustering and visualization in the Fisher discriminative subspace
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-011-9249-9
– volume: 51
  start-page: 5416
  issue: 11
  year: 2007
  ident: 10.1016/j.csda.2012.12.008_br000490
  article-title: Classification of large data sets with mixture models via sufficient em
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2006.09.014
– volume: 82
  start-page: 1169
  year: 2012
  ident: 10.1016/j.csda.2012.12.008_br000535
  article-title: Analytic calculations for the EM algorithm for multivariate skew-t mixture models
  publication-title: Statistics & Probability Letters
  doi: 10.1016/j.spl.2012.02.020
– ident: 10.1016/j.csda.2012.12.008_br000375
– ident: 10.1016/j.csda.2012.12.008_br000300
– volume: 30
  start-page: 1
  issue: 3
  year: 2008
  ident: 10.1016/j.csda.2012.12.008_br000460
  article-title: Dimensionality reduction of clustered datasets
  publication-title: IEEE Transactions On Pattern Analysis And Machine Intelligence
  doi: 10.1109/TPAMI.2007.70819
– ident: 10.1016/j.csda.2012.12.008_br000585
  doi: 10.1007/978-3-642-04174-7_41
– volume: 58
  start-page: 162
  issue: 0
  year: 2013
  ident: 10.1016/j.csda.2012.12.008_br000060
  article-title: A generative model for rank data based on insertion sort algorithm
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2012.08.008
– volume: 27
  start-page: 387
  year: 1971
  ident: 10.1016/j.csda.2012.12.008_br000470
  article-title: Clustering methods based on likelihood ratio criteria
  publication-title: Biometrics
  doi: 10.2307/2529003
– volume: 7
  start-page: 249
  year: 2003
  ident: 10.1016/j.csda.2012.12.008_br000285
  article-title: Bayesian clustering with variable and transformation selection
  publication-title: Bayesian Statistics
– volume: 53
  start-page: 3987
  issue: 12
  year: 2009
  ident: 10.1016/j.csda.2012.12.008_br000530
  article-title: Partition clustering of high dimensional low sample size data based on p-values
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2009.06.012
– volume: 20
  start-page: 270
  year: 1998
  ident: 10.1016/j.csda.2012.12.008_br000175
  article-title: Algorithms for model-based Gaussian hierarchical clustering
  publication-title: SIAM Journal on Scientific Computing
  doi: 10.1137/S1064827596311451
– volume: 23
  start-page: 403
  year: 1997
  ident: 10.1016/j.csda.2012.12.008_br000390
  article-title: Regularization in discriminant analysis: a survey
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/S0167-9473(96)00043-6
– volume: 23
  start-page: 73
  year: 1995
  ident: 10.1016/j.csda.2012.12.008_br000235
  article-title: Penalized discriminant analysis
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176324456
– year: 1990
  ident: 10.1016/j.csda.2012.12.008_br000210
– volume: 6
  start-page: 559
  issue: 2
  year: 1901
  ident: 10.1016/j.csda.2012.12.008_br000445
  article-title: On lines and planes of closest fit to systems of points in space
  publication-title: Philosophical Magazine
  doi: 10.1080/14786440109462720
– volume: 32
  start-page: 407
  year: 2004
  ident: 10.1016/j.csda.2012.12.008_br000155
  article-title: Least angle regression
  publication-title: The Annals of Statistics
  doi: 10.1214/009053604000000067
– volume: 51
  start-page: 513
  issue: 2
  year: 2006
  ident: 10.1016/j.csda.2012.12.008_br000505
  article-title: Knn-kernel density-based clustering for high-dimensional multivariate data
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2005.10.001
– volume: 2
  start-page: 168
  year: 2008
  ident: 10.1016/j.csda.2012.12.008_br000565
  article-title: Penalized model-based clustering with cluster-specific diagonal covariance matrices and grouped variables
  publication-title: Electrical Journal of Statistics
  doi: 10.1214/08-EJS194
– volume: 13
  start-page: 435
  issue: 2
  year: 1985
  ident: 10.1016/j.csda.2012.12.008_br000245
  article-title: Projection pursuit
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176349519
– volume: 11
  start-page: 443
  issue: 2
  year: 1999
  ident: 10.1016/j.csda.2012.12.008_br000500
  article-title: Mixtures of probabilistic principal component analysers
  publication-title: Neural Computation
  doi: 10.1162/089976699300016728
– volume: 53
  start-page: 3872
  year: 2009
  ident: 10.1016/j.csda.2012.12.008_br000310
  article-title: Variable selection in model-based clustering: a general variable role modeling
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2009.04.013
– volume: 6
  start-page: 69
  issue: 1
  year: 1998
  ident: 10.1016/j.csda.2012.12.008_br000425
  article-title: Subspace clustering for high-dimensional data: a review
  publication-title: SIGKDD Exploration Newsletter
– volume: 28
  start-page: 781
  year: 1995
  ident: 10.1016/j.csda.2012.12.008_br000125
  article-title: Gaussian parsimonious clustering models
  publication-title: Pattern Recognition
  doi: 10.1016/0031-3203(94)00125-6
– volume: 84
  start-page: 165
  year: 1989
  ident: 10.1016/j.csda.2012.12.008_br000200
  article-title: Regularized discriminant analysis
  publication-title: The Journal of the American Statistical Association
  doi: 10.1080/01621459.1989.10478752
– volume: 105
  start-page: 713
  issue: 490
  year: 2010
  ident: 10.1016/j.csda.2012.12.008_br000550
  article-title: A framework for feature selection in clustering
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/jasa.2010.tm09415
– volume: 59
  start-page: 511
  issue: 3
  year: 1997
  ident: 10.1016/j.csda.2012.12.008_br000385
  article-title: The EM algorithm — an old folk song sung to a fast new tune
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/1467-9868.00082
– volume: 36
  start-page: 2607
  issue: 14
  year: 2007
  ident: 10.1016/j.csda.2012.12.008_br000110
  article-title: High dimensional discriminant analysis
  publication-title: Communications in Statistics: Theory and Methods
  doi: 10.1080/03610920701271095
– ident: 10.1016/j.csda.2012.12.008_br000520
– year: 2002
  ident: 10.1016/j.csda.2012.12.008_br000515
– ident: 10.1016/j.csda.2012.12.008_br000325
– volume: 7
  start-page: 179
  year: 1936
  ident: 10.1016/j.csda.2012.12.008_br000165
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Annals of Eugenics
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– volume: 28
  start-page: 544
  issue: 4
  year: 2005
  ident: 10.1016/j.csda.2012.12.008_br000075
  article-title: Model selection in supervised classification
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2006.82
– volume: 56
  start-page: 2816
  issue: 9
  year: 2012
  ident: 10.1016/j.csda.2012.12.008_br000270
  article-title: Em algorithms for multivariate gaussian mixture models with truncated and censored data
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2012.03.003
– ident: 10.1016/j.csda.2012.12.008_br000495
– volume: 32
  start-page: 1706
  issue: 14
  year: 2011
  ident: 10.1016/j.csda.2012.12.008_br000100
  article-title: Intrinsic dimension estimation by maximum likelihood in isotropic probabilistic PCA
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2011.07.017
– volume: 32
  start-page: 267
  issue: 3
  year: 1983
  ident: 10.1016/j.csda.2012.12.008_br000135
  article-title: On using principal component before separating a mixture of two multivariate normal distributions
  publication-title: Journal of the Royal Statistical Society, Series C
– volume: 65
  start-page: 701
  issue: 3
  year: 2009
  ident: 10.1016/j.csda.2012.12.008_br000305
  article-title: Variable selection for clustering with Gaussian mixture models
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2008.01160.x
– year: 2000
  ident: 10.1016/j.csda.2012.12.008_br000350
– volume: 26
  start-page: 249
  year: 2009
  ident: 10.1016/j.csda.2012.12.008_br000405
  article-title: The remarkable simplicity of very high dimensional data: application of model-based clustering
  publication-title: Journal of Classification
  doi: 10.1007/s00357-009-9037-9
– year: 1957
  ident: 10.1016/j.csda.2012.12.008_br000030
– volume: 109
  start-page: 29
  year: 2012
  ident: 10.1016/j.csda.2012.12.008_br000095
  article-title: Theoretical and practical considerations on the convergence properties of the Fisher–EM algorithm
  publication-title: Journal of Multivariate Analysis
  doi: 10.1016/j.jmva.2012.02.012
– year: 2012
  ident: 10.1016/j.csda.2012.12.008_br000220
  article-title: Using conditional independence for parsimonious model-based Gaussian clustering
  publication-title: Statistics and Computing
– ident: 10.1016/j.csda.2012.12.008_br000225
– volume: 18
  start-page: 285
  issue: 3
  year: 2008
  ident: 10.1016/j.csda.2012.12.008_br000365
  article-title: Parsimonious Gaussian mixture models
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-008-9056-0
– ident: 10.1016/j.csda.2012.12.008_br000525
– year: 2013
  ident: 10.1016/j.csda.2012.12.008_br000265
  article-title: Finite mixtures of multivariate skew t-distributions: some recent and new results
  publication-title: Statistics and Computing
– ident: 10.1016/j.csda.2012.12.008_br000320
– volume: 51
  start-page: 587
  year: 2006
  ident: 10.1016/j.csda.2012.12.008_br000055
  article-title: Model-based cluster and discriminant analysis with the mixmod software
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2005.12.015
– volume: 1451
  start-page: 658
  year: 1998
  ident: 10.1016/j.csda.2012.12.008_br000345
  article-title: Robust cluster analysis via mixtures of multivariate t-distributions
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/BFb0033290
– volume: 104
  start-page: 177
  year: 2008
  ident: 10.1016/j.csda.2012.12.008_br000205
  article-title: Sparse inverse covariance estimation with the graphical lasso
  publication-title: Journal of the American Statistical Association
– volume: 115
  start-page: 565
  year: 2003
  ident: 10.1016/j.csda.2012.12.008_br000435
  article-title: On feature selection, curse of dimensionality and error probability in discriminant analysis
  publication-title: Journal of Statistical Planning and Inference
  doi: 10.1016/S0378-3758(02)00166-0
– ident: 10.1016/j.csda.2012.12.008_br000555
– year: 2000
  ident: 10.1016/j.csda.2012.12.008_br000150
– volume: 53
  start-page: 4301
  issue: 12
  year: 2009
  ident: 10.1016/j.csda.2012.12.008_br000215
  article-title: Penalized factor mixture analysis for variable selection in clustered data
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2009.05.025
– volume: 97
  issue: 458
  year: 2002
  ident: 10.1016/j.csda.2012.12.008_br000185
  article-title: Model-based clustering, discriminant analysis, and density estimation
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214502760047131
– volume: 67
  start-page: 427
  issue: 3
  year: 2005
  ident: 10.1016/j.csda.2012.12.008_br000230
  article-title: Geometric representation of high dimension, low sample size data
  publication-title: Journal of the Royal Statistical Society, Serie B
  doi: 10.1111/j.1467-9868.2005.00510.x
– volume: 15
  start-page: 72
  year: 1904
  ident: 10.1016/j.csda.2012.12.008_br000485
  article-title: The proof and measurement of association between two things
  publication-title: American Journal of Psychology
  doi: 10.2307/1412159
– volume: 6
  start-page: 461
  year: 1978
  ident: 10.1016/j.csda.2012.12.008_br000465
  article-title: Estimating the dimension of a model
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176344136
– volume: 21
  start-page: 361
  issue: 3
  year: 2011
  ident: 10.1016/j.csda.2012.12.008_br000010
  article-title: Extending mixtures of multivariate t-factor analyzers
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-010-9175-2
– volume: 16
  start-page: 297
  year: 1999
  ident: 10.1016/j.csda.2012.12.008_br000180
  article-title: MCLUST: software for model-based cluster analysis
  publication-title: Journal of Classification
  doi: 10.1007/s003579900058
– volume: 17
  start-page: 81
  year: 2007
  ident: 10.1016/j.csda.2012.12.008_br000260
  article-title: Robust mixture modeling using the skew t-distribution
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-006-9005-8
– volume: 64
  start-page: 440
  year: 2008
  ident: 10.1016/j.csda.2012.12.008_br000540
  article-title: Variable selection for model-based high dimensional clustering and its application to microarray data
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2007.00922.x
– volume: 4
  start-page: 1
  issue: 2
  year: 1999
  ident: 10.1016/j.csda.2012.12.008_br000355
  article-title: The emmix software for the fitting of mixtures of normal t-components
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v004.i02
– volume: 26
  start-page: 2705
  issue: 21
  year: 2010
  ident: 10.1016/j.csda.2012.12.008_br000370
  article-title: Model-based clustering of microarray expression data via latent gaussian mixture models
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq498
– volume: 49
  start-page: 803
  year: 1993
  ident: 10.1016/j.csda.2012.12.008_br000025
  article-title: Model-based Gaussian and non-Gaussian clustering
  publication-title: Biometrics
  doi: 10.2307/2532201
– volume: 56
  start-page: 1381
  issue: 6
  year: 2012
  ident: 10.1016/j.csda.2012.12.008_br000380
  article-title: Initializing the em algorithm in gaussian mixture models with an unknown number of components
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2011.11.002
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: 10.1016/j.csda.2012.12.008_br000145
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: vol. 5
  year: 1995
  ident: 10.1016/j.csda.2012.12.008_br000280
– volume: 41
  start-page: 379
  year: 2003
  ident: 10.1016/j.csda.2012.12.008_br000360
  article-title: Modelling high-dimensional data by mixtures of factor analyzers
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/S0167-9473(02)00183-4
– ident: 10.1016/j.csda.2012.12.008_br000315
– volume: 152
  start-page: 98
  issue: 3
  year: 2011
  ident: 10.1016/j.csda.2012.12.008_br000080
  article-title: On the estimation of the latent discriminative subspace in the Fisher–EM algorithm
  publication-title: Journal de la Société Francaise de Statistique
– ident: 10.1016/j.csda.2012.12.008_br000085
– year: 1997
  ident: 10.1016/j.csda.2012.12.008_br000340
– volume: 47
  start-page: 1
  issue: 5
  year: 2012
  ident: 10.1016/j.csda.2012.12.008_br000430
  article-title: High-dimensional bayesian clustering with variable selection: the R package bclust
  publication-title: Journal of Statistical Software
– ident: 10.1016/j.csda.2012.12.008_br000190
– volume: 22
  start-page: 1538
  year: 2006
  ident: 10.1016/j.csda.2012.12.008_br000580
  article-title: Array cluster: an analytic tool for clustering, data visualization and model finder on gene expression profiles
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl129
SSID ssj0002478
Score 2.5550747
Snippet Model-based clustering is a popular tool which is renowned for its probabilistic foundations and its flexibility. However, high-dimensional data are nowadays...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 52
SubjectTerms Clustering
Computer programs
data collection
Data processing
Dimension reduction
Flexibility
High-dimensional data
Mathematics
Model-based clustering
Parsimonious models
R package
Regularization
Software
Statistics
Statistics Theory
Subspace clustering
Variable selection
Title Model-based clustering of high-dimensional data: A review
URI https://dx.doi.org/10.1016/j.csda.2012.12.008
https://www.proquest.com/docview/1671523157
https://www.proquest.com/docview/2237521988
https://hal.science/hal-00750909
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLaAXcYBwTZE-aUMcZtMY8eOY24VAhU6OGxD42bZjq0xVS2iLUf-dt6rk05MwAEpUhTLVqz3nPe-JN_7TMihZxapFjmVTmkqKh2pi1zQUrsgeHSlL7De-fKq7F-Lixt5s0RO2loYpFU2sT_F9Hm0blq6jTW7d7e33Z9IoNdCFQwdLTjGYSEUrvKjx380Dy5SNEZ9b-zdFM4kjpef1Kg9xPj8kyBuMflyclr-gyzJ_4L1PAOdrZO1BjpmvTS7DbIURp_I6uVCd3XymWjc2mxIMTXVmR_OUAUBclM2jhnqEtMatfyTDkeG3NDjrJel4pUv5Prs9NdJnzabI1AvhJjSyIsA2bdmuYU0B69VtlaqcoVSMdTOSl1CIg4Af5gOMjIHsKeW3HJngxd1tMUmWRmNR2GLZFoqm5fWRx6c0EVeaV9qFjRAQxekLjqEtVYxvlEOxw0shqaliP01aEmDljRwgCU75NtizF3SzXizt2yNbZ5530Bgf3PcAXhmcQOUyu73vhtsS1go1w-sQ762jjPw7OAPETsK49nEwJoA-FIwqV7vA_BJAcTRVbX9zknukI9wJRJxbZesTO9nYQ-QzNTtz5fqPvnQOx_0r_A8-PF78ARuHfGV
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFLYYHNgOEwzQOsbI0G7INHbsOOZWoaECLZeBxM2yHVvrVLVobXfcb-e9OikCDQ6TcnJsxXrPfu9L8vl7hHzzzCLVIqfSKU1FpSN1kQtaahcEj670BZ53Hl6X_VtxeSfv1shZexYGaZVN7E8xfRmtm5ZuY83u_WjU_YEEei1UwdDRgkMc3hCwfbGMwcnfR54HFykco8A3dm9OziSSl5_VKD7E-PKbINaY_Hd2evMTaZLPovUyBZ1vkfcNdsx6aXrbZC1MPpB3w5Xw6myHaKxtNqaYm-rMjxcogwDJKZvGDIWJaY1i_kmII0Ny6GnWy9LplV1ye_795qxPm-oI1Ash5jTyIkD6rVluIc_Be5WtlapcoVQMtbNSl5CJA-AfpoOMzAHuqSW33NngRR1tsUfWJ9NJ-EgyLZXNS-sjD07oIq-0LzULGrChC1IXHcJaqxjfSIdjBYuxaTlivwxa0qAlDVxgyQ45Xo25T8IZr_aWrbHNE_cbiOyvjjsCz6wegFrZ_d7AYFsCQ7n-wzrka-s4A5sH_4jYSZguZgbWBOCXgkn1ch_ATwowjq6qT_85yUOy2b8ZDszg4vpqn7yFOyKx2D6T9fnvRTgAWDN3X5bL9gFrbvGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-based+clustering+of+high-dimensional+data%3A+A+review&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Bouveyron%2C+Charles&rft.au=Brunet-Saumard%2C+Camille&rft.date=2014-03-01&rft.issn=0167-9473&rft.volume=71+p.52-78&rft.spage=52&rft.epage=78&rft_id=info:doi/10.1016%2Fj.csda.2012.12.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon