PubTator central: automated concept annotation for biomedical full text articles
PubTator Central (https://www.ncbi.nlm.nih.gov/research/pubtator/) is a web service for viewing and retrieving bioconcept annotations in full text biomedical articles. PubTator Central (PTC) provides automated annotations from state-of-the-art text mining systems for genes/proteins, genetic variants...
Saved in:
Published in | Nucleic acids research Vol. 47; no. W1; pp. W587 - W593 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
02.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | PubTator Central (https://www.ncbi.nlm.nih.gov/research/pubtator/) is a web service for viewing and retrieving bioconcept annotations in full text biomedical articles. PubTator Central (PTC) provides automated annotations from state-of-the-art text mining systems for genes/proteins, genetic variants, diseases, chemicals, species and cell lines, all available for immediate download. PTC annotates PubMed (29 million abstracts) and the PMC Text Mining subset (3 million full text articles). The new PTC web interface allows users to build full text document collections and visualize concept annotations in each document. Annotations are downloadable in multiple formats (XML, JSON and tab delimited) via the online interface, a RESTful web service and bulk FTP. Improved concept identification systems and a new disambiguation module based on deep learning increase annotation accuracy, and the new server-side architecture is significantly faster. PTC is synchronized with PubMed and PubMed Central, with new articles added daily. The original PubTator service has served annotated abstracts for ∼300 million requests, enabling third-party research in use cases such as biocuration support, gene prioritization, genetic disease analysis, and literature-based knowledge discovery. We demonstrate the full text results in PTC significantly increase biomedical concept coverage and anticipate this expansion will both enhance existing downstream applications and enable new use cases. |
---|---|
AbstractList | PubTator Central (https://www.ncbi.nlm.nih.gov/research/pubtator/) is a web service for viewing and retrieving bioconcept annotations in full text biomedical articles. PubTator Central (PTC) provides automated annotations from state-of-the-art text mining systems for genes/proteins, genetic variants, diseases, chemicals, species and cell lines, all available for immediate download. PTC annotates PubMed (29 million abstracts) and the PMC Text Mining subset (3 million full text articles). The new PTC web interface allows users to build full text document collections and visualize concept annotations in each document. Annotations are downloadable in multiple formats (XML, JSON and tab delimited) via the online interface, a RESTful web service and bulk FTP. Improved concept identification systems and a new disambiguation module based on deep learning increase annotation accuracy, and the new server-side architecture is significantly faster. PTC is synchronized with PubMed and PubMed Central, with new articles added daily. The original PubTator service has served annotated abstracts for ∼300 million requests, enabling third-party research in use cases such as biocuration support, gene prioritization, genetic disease analysis, and literature-based knowledge discovery. We demonstrate the full text results in PTC significantly increase biomedical concept coverage and anticipate this expansion will both enhance existing downstream applications and enable new use cases. PubTator Central ( https://www.ncbi.nlm.nih.gov/research/pubtator/ ) is a web service for viewing and retrieving bioconcept annotations in full text biomedical articles. PubTator Central (PTC) provides automated annotations from state-of-the-art text mining systems for genes/proteins, genetic variants, diseases, chemicals, species and cell lines, all available for immediate download. PTC annotates PubMed (29 million abstracts) and the PMC Text Mining subset (3 million full text articles). The new PTC web interface allows users to build full text document collections and visualize concept annotations in each document. Annotations are downloadable in multiple formats (XML, JSON and tab delimited) via the online interface, a RESTful web service and bulk FTP. Improved concept identification systems and a new disambiguation module based on deep learning increase annotation accuracy, and the new server-side architecture is significantly faster. PTC is synchronized with PubMed and PubMed Central, with new articles added daily. The original PubTator service has served annotated abstracts for ∼300 million requests, enabling third-party research in use cases such as biocuration support, gene prioritization, genetic disease analysis, and literature-based knowledge discovery. We demonstrate the full text results in PTC significantly increase biomedical concept coverage and anticipate this expansion will both enhance existing downstream applications and enable new use cases. PubTator Central (https://www.ncbi.nlm.nih.gov/research/pubtator/) is a web service for viewing and retrieving bioconcept annotations in full text biomedical articles. PubTator Central (PTC) provides automated annotations from state-of-the-art text mining systems for genes/proteins, genetic variants, diseases, chemicals, species and cell lines, all available for immediate download. PTC annotates PubMed (29 million abstracts) and the PMC Text Mining subset (3 million full text articles). The new PTC web interface allows users to build full text document collections and visualize concept annotations in each document. Annotations are downloadable in multiple formats (XML, JSON and tab delimited) via the online interface, a RESTful web service and bulk FTP. Improved concept identification systems and a new disambiguation module based on deep learning increase annotation accuracy, and the new server-side architecture is significantly faster. PTC is synchronized with PubMed and PubMed Central, with new articles added daily. The original PubTator service has served annotated abstracts for ∼300 million requests, enabling third-party research in use cases such as biocuration support, gene prioritization, genetic disease analysis, and literature-based knowledge discovery. We demonstrate the full text results in PTC significantly increase biomedical concept coverage and anticipate this expansion will both enhance existing downstream applications and enable new use cases.PubTator Central (https://www.ncbi.nlm.nih.gov/research/pubtator/) is a web service for viewing and retrieving bioconcept annotations in full text biomedical articles. PubTator Central (PTC) provides automated annotations from state-of-the-art text mining systems for genes/proteins, genetic variants, diseases, chemicals, species and cell lines, all available for immediate download. PTC annotates PubMed (29 million abstracts) and the PMC Text Mining subset (3 million full text articles). The new PTC web interface allows users to build full text document collections and visualize concept annotations in each document. Annotations are downloadable in multiple formats (XML, JSON and tab delimited) via the online interface, a RESTful web service and bulk FTP. Improved concept identification systems and a new disambiguation module based on deep learning increase annotation accuracy, and the new server-side architecture is significantly faster. PTC is synchronized with PubMed and PubMed Central, with new articles added daily. The original PubTator service has served annotated abstracts for ∼300 million requests, enabling third-party research in use cases such as biocuration support, gene prioritization, genetic disease analysis, and literature-based knowledge discovery. We demonstrate the full text results in PTC significantly increase biomedical concept coverage and anticipate this expansion will both enhance existing downstream applications and enable new use cases. |
Author | Wei, Chih-Hsuan Allot, Alexis Lu, Zhiyong Leaman, Robert |
AuthorAffiliation | National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD, USA |
AuthorAffiliation_xml | – name: National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD, USA |
Author_xml | – sequence: 1 givenname: Chih-Hsuan orcidid: 0000-0001-5094-7321 surname: Wei fullname: Wei, Chih-Hsuan organization: National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD, USA – sequence: 2 givenname: Alexis surname: Allot fullname: Allot, Alexis organization: National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD, USA – sequence: 3 givenname: Robert surname: Leaman fullname: Leaman, Robert organization: National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD, USA – sequence: 4 givenname: Zhiyong orcidid: 0000-0002-8301-9553 surname: Lu fullname: Lu, Zhiyong organization: National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31114887$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUlLBDEUhIMoOi4Xf4D0UYR2svXmQZDBDQQ9jOeQTr8eo-lkTNKi_np7HEdUPOXwvqoKVdto3ToLCO0TfExwxcZW-vHs6Z2V1RoaEZbTlFc5XUcjzHCWEszLLbQdwiPGhJOMb6ItRgjhZVmM0N1dX09ldD5RYKOX5iSRfXSdjNAkylkF85hIa12UUTubtANZa9dBo5U0Sdsbk0R4HRgftTIQdtFGK02Ava93B91fnE8nV-nN7eX15OwmVZzzmLakyqFpoKRlhTE0ChjFNeUALatYXSvJm5oVihe0KDJM80ZJwqHGVVaUBSNsB50ufed93S30n78Xc6876d-Ek1r8vlj9IGbuReQ5plmxMDj8MvDuuYcQRaeDAmOkBdcHQSmjBA_tLdCDn1nfIasaBwAvAeVdCB5aofSysCFaG0GwWCwlhqXEcqlBcvRHsnL9B_4AatqYDA |
CitedBy_id | crossref_primary_10_1093_nar_gkad914 crossref_primary_10_1016_j_tibtech_2023_09_015 crossref_primary_10_1016_j_csbj_2024_08_016 crossref_primary_10_1007_s00784_022_04413_0 crossref_primary_10_1093_bib_bbab134 crossref_primary_10_1038_s41597_025_04377_2 crossref_primary_10_1016_j_jbiomech_2024_112271 crossref_primary_10_1186_s12911_020_1044_0 crossref_primary_10_1093_infdis_jiaa332 crossref_primary_10_1093_nargab_lqab113 crossref_primary_10_1038_s41525_019_0100_0 crossref_primary_10_3892_ijmm_2022_5090 crossref_primary_10_1161_CIRCGEN_121_003536 crossref_primary_10_1016_j_jbi_2021_103779 crossref_primary_10_1016_j_jbi_2023_104405 crossref_primary_10_1186_s13059_022_02827_3 crossref_primary_10_1016_j_jbi_2024_104588 crossref_primary_10_1038_s41596_020_00455_4 crossref_primary_10_1093_bioinformatics_btae564 crossref_primary_10_1093_bioinformatics_btad599 crossref_primary_10_1371_journal_pbio_3001520 crossref_primary_10_1093_database_baac043 crossref_primary_10_1007_s00799_023_00356_3 crossref_primary_10_1093_database_baae106 crossref_primary_10_1093_bioinformatics_btad361 crossref_primary_10_1186_s12859_024_05730_9 crossref_primary_10_1162_coli_a_00520 crossref_primary_10_1200_CCI_19_00169 crossref_primary_10_1038_s41588_023_01414_x crossref_primary_10_1145_3588319 crossref_primary_10_1038_s41598_024_64835_6 crossref_primary_10_1371_journal_pone_0274042 crossref_primary_10_3390_biomedicines8110455 crossref_primary_10_1371_journal_pone_0291142 crossref_primary_10_1093_nar_gkac1139 crossref_primary_10_1007_s13258_023_01405_6 crossref_primary_10_1007_s12539_024_00605_2 crossref_primary_10_3389_fmicb_2023_1086021 crossref_primary_10_3390_proteomes9020029 crossref_primary_10_1093_bioinformatics_btaa660 crossref_primary_10_3389_fendo_2023_1195145 crossref_primary_10_15252_msb_202211036 crossref_primary_10_3389_fgene_2022_820361 crossref_primary_10_1186_s13326_023_00293_9 crossref_primary_10_1093_bioinformatics_btac721 crossref_primary_10_3389_fphar_2020_602030 crossref_primary_10_1093_database_baac066 crossref_primary_10_1186_s12911_020_1105_4 crossref_primary_10_1186_s13040_023_00332_2 crossref_primary_10_1093_database_baad036 crossref_primary_10_1017_S0021859623000618 crossref_primary_10_1093_database_baae125 crossref_primary_10_1016_j_ejpn_2022_12_005 crossref_primary_10_1073_pnas_2100766118 crossref_primary_10_1186_s13643_023_02247_9 crossref_primary_10_1093_database_baac062 crossref_primary_10_1371_journal_pone_0285716 crossref_primary_10_1093_nar_gkab779 crossref_primary_10_1016_j_jbi_2024_104716 crossref_primary_10_1093_bioinformatics_btz857 crossref_primary_10_1093_nar_gkaa328 crossref_primary_10_1016_j_isci_2023_106356 crossref_primary_10_1093_bib_bbac543 crossref_primary_10_1093_bioinformatics_btab880 crossref_primary_10_3934_mbe_2023391 crossref_primary_10_1038_s41598_023_27962_0 crossref_primary_10_1093_bioinformatics_btaa430 crossref_primary_10_1016_j_techfore_2020_120513 crossref_primary_10_1038_s41593_023_01259_x crossref_primary_10_1248_bpb_b24_00319 crossref_primary_10_1016_j_pnpbp_2022_110638 crossref_primary_10_7717_peerj_14738 crossref_primary_10_1186_s12911_023_02136_0 crossref_primary_10_1093_nar_gkaa333 crossref_primary_10_3390_ijms25042072 crossref_primary_10_3390_rs13112064 crossref_primary_10_1093_bioinformatics_btae246 crossref_primary_10_3390_healthcare8040466 crossref_primary_10_1002_brx2_57 crossref_primary_10_1016_j_jbi_2021_103867 crossref_primary_10_7554_eLife_93429 crossref_primary_10_1093_bioinformatics_btad603 crossref_primary_10_1016_j_neucom_2024_129171 crossref_primary_10_1038_s41598_022_12093_9 crossref_primary_10_1186_s13040_022_00311_z crossref_primary_10_1080_07853890_2024_2304108 crossref_primary_10_1093_bib_bbaa142 crossref_primary_10_1093_cvr_cvab067 crossref_primary_10_1016_j_jbi_2022_104211 crossref_primary_10_1093_narcan_zcae008 crossref_primary_10_1186_s12911_024_02501_7 crossref_primary_10_1016_j_patter_2022_100659 crossref_primary_10_1007_s41060_025_00724_z crossref_primary_10_1038_s41439_022_00222_9 crossref_primary_10_1080_07391102_2021_1950571 crossref_primary_10_1093_database_baac038 crossref_primary_10_1093_database_baac037 crossref_primary_10_1093_database_baad005 crossref_primary_10_1007_s00799_023_00368_z crossref_primary_10_1038_s41597_021_00875_1 crossref_primary_10_1093_nar_gkae235 crossref_primary_10_2174_1574893618666230224142324 crossref_primary_10_1007_s00210_023_02741_w crossref_primary_10_1186_s13326_023_00292_w crossref_primary_10_1371_journal_pbio_3001470 crossref_primary_10_1186_s13059_020_02181_2 crossref_primary_10_3389_frma_2021_683212 crossref_primary_10_1093_nar_gkab1011 crossref_primary_10_1093_nar_gkac983 crossref_primary_10_1093_nar_gkae366 crossref_primary_10_1016_j_smim_2020_101420 crossref_primary_10_1093_bioinformatics_btac539 crossref_primary_10_1016_j_ggedit_2022_100024 crossref_primary_10_1016_j_jbi_2023_104474 crossref_primary_10_7554_eLife_93429_3 crossref_primary_10_1016_j_envint_2022_107323 crossref_primary_10_1093_bioinformatics_btac654 crossref_primary_10_1093_database_baae079 crossref_primary_10_1016_j_jad_2023_03_023 crossref_primary_10_1186_s13326_025_00328_3 crossref_primary_10_1186_s40824_023_00353_2 crossref_primary_10_1016_j_aiopen_2024_08_002 crossref_primary_10_1093_database_baae071 crossref_primary_10_1016_j_celrep_2022_110400 crossref_primary_10_1099_jmm_0_001520 crossref_primary_10_1016_j_ebiom_2024_104988 crossref_primary_10_1038_s41597_023_02617_x crossref_primary_10_1371_journal_pbio_3000716 crossref_primary_10_1109_TCBB_2024_3451051 crossref_primary_10_1016_j_csbj_2024_03_021 crossref_primary_10_1093_bioinformatics_btac660 crossref_primary_10_1016_j_jbi_2023_104487 crossref_primary_10_1038_s41572_022_00365_7 crossref_primary_10_1093_bioinformatics_btab331 crossref_primary_10_1093_bioinformatics_btab694 crossref_primary_10_1038_s41684_024_01491_3 crossref_primary_10_1007_s41109_022_00466_y crossref_primary_10_2196_48115 crossref_primary_10_1093_database_baae069 crossref_primary_10_7554_eLife_61981 crossref_primary_10_1093_g3journal_jkac059 crossref_primary_10_1515_medgen_2021_2075 crossref_primary_10_1016_j_jbi_2024_104731 crossref_primary_10_1038_s41598_021_93346_x crossref_primary_10_5808_GI_2020_18_2_e15 crossref_primary_10_1016_j_csbj_2024_03_017 crossref_primary_10_5808_GI_2020_18_2_e18 crossref_primary_10_7717_peerj_18202 crossref_primary_10_1093_bioinformatics_btae185 crossref_primary_10_3389_fgene_2022_855739 crossref_primary_10_1016_j_ipm_2025_104128 crossref_primary_10_1016_j_jbi_2024_104729 crossref_primary_10_1108_AJIM_03_2022_0141 crossref_primary_10_1093_nar_gkab326 crossref_primary_10_1002_humu_24451 crossref_primary_10_1038_s41597_024_03835_7 crossref_primary_10_1021_acssynbio_4c00347 crossref_primary_10_1186_s12911_021_01706_4 crossref_primary_10_1186_s12859_024_05881_9 crossref_primary_10_1007_s41109_021_00435_x crossref_primary_10_1099_mgen_0_001183 crossref_primary_10_1093_bioinformatics_btae194 crossref_primary_10_1200_CCI_20_00087 crossref_primary_10_1016_j_patter_2020_100153 crossref_primary_10_1093_database_baac102 crossref_primary_10_3390_biochem1020007 crossref_primary_10_1093_bioadv_vbae042 crossref_primary_10_1002_2211_5463_13796 crossref_primary_10_1093_nar_gkac1005 crossref_primary_10_1093_bioinformatics_btab365 crossref_primary_10_1093_nar_gkaa969 crossref_primary_10_3389_fendo_2022_869053 crossref_primary_10_1093_bib_bbac383 crossref_primary_10_1093_database_baac098 crossref_primary_10_1093_database_baae039 crossref_primary_10_1155_2022_8937084 crossref_primary_10_1093_bioadv_vbac034 crossref_primary_10_1093_database_baac090 crossref_primary_10_3389_fgene_2022_894209 crossref_primary_10_1093_nar_gkad445 crossref_primary_10_1093_database_baad061 crossref_primary_10_1016_j_ipm_2024_103743 crossref_primary_10_1093_bioinformatics_btae648 crossref_primary_10_1016_j_nbt_2023_09_001 crossref_primary_10_1093_bioinformatics_btad310 crossref_primary_10_1093_bioinformatics_btae402 crossref_primary_10_1093_nar_gkaa979 crossref_primary_10_12688_f1000research_21463_1 crossref_primary_10_1038_s41597_024_03083_9 crossref_primary_10_1016_j_mcpro_2023_100682 crossref_primary_10_5808_gi_21013 crossref_primary_10_1371_journal_pcbi_1012745 crossref_primary_10_3389_fimmu_2021_629193 crossref_primary_10_1186_s12864_021_08239_0 crossref_primary_10_1109_JBHI_2024_3383610 crossref_primary_10_1093_bib_bbac282 crossref_primary_10_1002_cpt_3500 crossref_primary_10_1124_pharmrev_122_000715 crossref_primary_10_3389_fgene_2022_799349 crossref_primary_10_1093_bioadv_vbae106 crossref_primary_10_1093_bioinformatics_btac598 crossref_primary_10_1093_database_baae057 crossref_primary_10_1016_j_bbagrm_2021_194768 crossref_primary_10_1042_ETLS20190003 crossref_primary_10_1186_s12859_022_05083_1 crossref_primary_10_1007_s11192_022_04607_z crossref_primary_10_1093_nargab_lqab062 crossref_primary_10_7717_peerj_cs_1333 crossref_primary_10_1016_j_isci_2021_102365 crossref_primary_10_3389_frai_2025_1528562 crossref_primary_10_1016_j_heliyon_2024_e36375 crossref_primary_10_1093_nar_gkaa952 crossref_primary_10_3390_ijms241411515 crossref_primary_10_1016_j_jbi_2023_104464 crossref_primary_10_1093_bioinformatics_btad698 crossref_primary_10_1016_j_aichem_2024_100060 crossref_primary_10_3389_frai_2021_732381 crossref_primary_10_1007_s11192_020_03811_z crossref_primary_10_1534_g3_120_401775 crossref_primary_10_1093_database_baaf013 crossref_primary_10_1186_s12967_021_02965_5 crossref_primary_10_1016_j_jare_2024_12_004 crossref_primary_10_1186_s12911_020_01227_6 crossref_primary_10_1186_s13326_024_00314_1 |
Cites_doi | 10.1093/database/bas010 10.1093/database/bau038 10.1186/1471-2105-11-492 10.1093/database/baw161 10.1186/1471-2105-10-46 10.1186/s13321-018-0317-4 10.1093/bioinformatics/btx541 10.1093/bioinformatics/btw343 10.1371/journal.pone.0164680 10.1371/journal.pcbi.1006390 10.1093/nar/gkt441 10.1093/bioinformatics/btt474 10.1093/nar/gks563 10.12688/wellcomeopenres.10210.1 10.1093/database/bau003 10.7171/jbt.18-2902-002 10.1186/1471-2105-11-85 10.1109/JBHI.2015.2422651 10.1186/1471-2105-9-402 10.1093/database/bay137 10.1093/database/baw068 10.1371/journal.pcbi.1005017 10.1186/1471-2105-12-S8-S5 10.1093/bioinformatics/bty114 10.1093/database/bau094 10.1186/gb-2008-9-s2-s3 10.1016/j.jbi.2013.12.006 10.1371/journal.pone.0038460 10.1093/bioinformatics/btx439 10.1038/s41598-018-24457-1 10.1186/s13326-017-0113-5 10.1093/bioinformatics/btw511 10.1093/database/baw043 10.1016/j.ygeno.2016.10.003 10.4172/jpb.1000291 10.1371/journal.pone.0152725 10.1093/database/bas043 10.1371/journal.pcbi.1005962 10.1155/2015/918710 10.1093/database/bat064 10.1093/database/baw032 10.1093/nar/gky355 10.1093/bioinformatics/btt156 10.1093/database/bas020 10.1186/1758-2946-7-S1-S2 10.1088/1742-6596/1069/1/012037 |
ContentType | Journal Article |
Copyright | Published by Oxford University Press on behalf of Nucleic Acids Research 2019. Published by Oxford University Press on behalf of Nucleic Acids Research 2019. 2019 |
Copyright_xml | – notice: Published by Oxford University Press on behalf of Nucleic Acids Research 2019. – notice: Published by Oxford University Press on behalf of Nucleic Acids Research 2019. 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/nar/gkz389 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | W593 |
ExternalDocumentID | PMC6602571 31114887 10_1093_nar_gkz389 |
Genre | Journal Article Research Support, N.I.H., Intramural |
GrantInformation_xml | – fundername: ; ; ; |
GroupedDBID | --- -DZ -~X .I3 0R~ 123 18M 1TH 29N 2WC 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPXW AAUQX AAVAP AAYXX ABEJV ABGNP ABPTD ABQLI ABXVV ACGFO ACGFS ACIWK ACNCT ACPRK ACUTJ ADBBV ADHZD AEGXH AENEX AENZO AFFNX AFPKN AFRAH AFYAG AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL AOIJS BAWUL BAYMD BCNDV CAG CIDKT CITATION CS3 CZ4 DIK DU5 D~K E3Z EBD EBS EMOBN F5P GROUPED_DOAJ GX1 H13 HH5 HYE HZ~ IH2 KAQDR KQ8 KSI OAWHX OBC OBS OEB OES OJQWA OVT P2P PEELM PQQKQ R44 RD5 RNS ROL ROZ RPM RXO SV3 TN5 TOX TR2 WG7 WOQ X7H XSB YSK ZKX ~91 ~D7 ~KM CGR CUY CVF ECM EIF M49 NPM 7X8 5PM |
ID | FETCH-LOGICAL-c444t-f196edde828900edce320b24eef393bbca4db37c472775026dca14eb095787313 |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 18:07:42 EDT 2025 Fri Jul 11 04:39:26 EDT 2025 Thu Apr 03 07:02:08 EDT 2025 Tue Jul 01 02:07:21 EDT 2025 Thu Apr 24 23:07:36 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | W1 |
Language | English |
License | Published by Oxford University Press on behalf of Nucleic Acids Research 2019. This work is written by (a) US Government employee(s) and is in the public domain in the US. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c444t-f196edde828900edce320b24eef393bbca4db37c472775026dca14eb095787313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors. |
ORCID | 0000-0001-5094-7321 0000-0002-8301-9553 |
OpenAccessLink | https://academic.oup.com/nar/article-pdf/47/W1/W587/28880193/gkz389.pdf |
PMID | 31114887 |
PQID | 2232101041 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6602571 proquest_miscellaneous_2232101041 pubmed_primary_31114887 crossref_citationtrail_10_1093_nar_gkz389 crossref_primary_10_1093_nar_gkz389 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-02 |
PublicationDateYYYYMMDD | 2019-07-02 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2019 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Arighi (2019062808230262300_B44) 2017; 482 Kim (2019062808230262300_B47) 2014 Wei (2019062808230262300_B34) 2011; 12 Wei (2019062808230262300_B35) 2015; 2015 Nentidis (2019062808230262300_B21) 2017 Westergaard (2019062808230262300_B27) 2018; 14 Singhal (2019062808230262300_B22) 2016; 12 Wei (2019062808230262300_B2) 2016; 2016 Mahmood (2019062808230262300_B23) 2016; 11 Huang (2019062808230262300_B16) 2018; 8 Doğan (2019062808230262300_B46) 2014; 47 Cohen (2019062808230262300_B49) 2010; 11 Wei (2019062808230262300_B37) 2015; 19 Wei (2019062808230262300_B38) 2017; 34 Pyysalo (2019062808230262300_B19) 2018 Comeau (2019062808230262300_B29) 2019 Sohn (2019062808230262300_B36) 2008; 9 Singhal (2019062808230262300_B1) 2016; 2016 Venkatesan (2019062808230262300_B6) 2016; 1 Wei (2019062808230262300_B10) 2013; 41 Poux (2019062808230262300_B12) 2017; 33 Wei (2019062808230262300_B31) 2013; 29 Hirschman (2019062808230262300_B51) 2012; 2012 Morgan (2019062808230262300_B45) 2008; 9 Wei (2019062808230262300_B33) 2012; 7 Lee (2019062808230262300_B18) 2016; 32 Leaman (2019062808230262300_B32) 2013; 29 Matos (2019062808230262300_B5) 2018; 2018 Qin (2019062808230262300_B17) 2018; 1069 Shao (2019062808230262300_B15) 2013; 6 Leaman (2019062808230262300_B39) 2016; 32 Percha (2019062808230262300_B20) 2018; 34 Krallinger (2019062808230262300_B42) 2015; 7 Peng (2019062808230262300_B30) 2014; 2014 Yepes (2019062808230262300_B52) 2014; 2014 Comeau (2019062808230262300_B48) 2013; 2013 Rak (2019062808230262300_B9) 2012; 2012 Garcia-Pelaez (2019062808230262300_B3) 2019; 2019 Li (2019062808230262300_B41) 2016; 2016 Bairoch (2019062808230262300_B40) 2018; 29 Lee (2019062808230262300_B24) 2016; 2016 Burger (2019062808230262300_B13) 2014; 2014 Lu (2019062808230262300_B26) 2012; 2012 Allot (2019062808230262300_B28) 2018; 46 Gerner (2019062808230262300_B43) 2010; 11 Lee (2019062808230262300_B11) 2018; 14 Liu (2019062808230262300_B14) 2016; 108 Mork (2019062808230262300_B25) 2017; 8 Soto (2019062808230262300_B4) 2018 Thomas (2019062808230262300_B8) 2012; 40 Lee (2019062808230262300_B7) 2016; 11 Lin (2019062808230262300_B50) 2009; 10 |
References_xml | – volume: 2012 start-page: bas010 year: 2012 ident: 2019062808230262300_B9 article-title: Argo: an integrative, interactive, text mining-based workbench supporting curation publication-title: Database doi: 10.1093/database/bas010 – volume: 2014 start-page: bau038 year: 2014 ident: 2019062808230262300_B30 article-title: iSimp in BioC standard format: enhancing the interoperability of a sentence simplification system publication-title: Database doi: 10.1093/database/bau038 – volume: 11 start-page: 492 year: 2010 ident: 2019062808230262300_B49 article-title: The structural and content aspects of abstracts versus bodies of full text journal articles are different publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-492 – volume: 2016 start-page: baw161 year: 2016 ident: 2019062808230262300_B1 article-title: Pressing needs of biomedical text mining in biocuration and beyond: opportunities and challenges publication-title: Database doi: 10.1093/database/baw161 – volume: 10 start-page: 46 year: 2009 ident: 2019062808230262300_B50 article-title: Is searching full text more effective than searching abstracts publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-46 – volume: 2018 start-page: 68 year: 2018 ident: 2019062808230262300_B5 article-title: Configurable web-services for biomedical document annotation publication-title: J. Cheminform. doi: 10.1186/s13321-018-0317-4 – volume: 34 start-page: 80 year: 2017 ident: 2019062808230262300_B38 article-title: tmVar 2.0: integrating genomic variant information from literature with dbSNP and ClinVar for precision medicine publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx541 – volume: 32 start-page: 2839 year: 2016 ident: 2019062808230262300_B39 article-title: TaggerOne: joint named entity recognition and normalization with semi-Markov Model publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw343 – volume: 11 start-page: e0164680 year: 2016 ident: 2019062808230262300_B7 article-title: BEST: next-generation biomedical entity search tool for knowledge discovery from biomedical literature publication-title: PLoS One doi: 10.1371/journal.pone.0164680 – volume: 14 start-page: e1006390 year: 2018 ident: 2019062808230262300_B11 article-title: Scaling up data curation using deep learning: An application to literature triage in genomic variation resources publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1006390 – volume: 482 start-page: 376 year: 2017 ident: 2019062808230262300_B44 article-title: Bio-ID track overview publication-title: Proc. BioCreative Workshop – volume: 41 start-page: W518 year: 2013 ident: 2019062808230262300_B10 article-title: PubTator: a Web-based text mining tool for assisting Biocuration publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt441 – volume: 29 start-page: 2909 year: 2013 ident: 2019062808230262300_B32 article-title: DNorm: disease name normalization with pairwise learning to rank publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt474 – volume: 40 start-page: W585 year: 2012 ident: 2019062808230262300_B8 article-title: GeneView: a comprehensive semantic search engine for PubMed publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks563 – volume: 1 start-page: 25 year: 2016 ident: 2019062808230262300_B6 article-title: SciLite: a platform for displaying text-mined annotations as a means to link research articles with biological data publication-title: Wellcome Open Res. doi: 10.12688/wellcomeopenres.10210.1 – start-page: btz070 year: 2019 ident: 2019062808230262300_B29 article-title: PMC text mining subset in BioC: about 3 million full text articles and growing publication-title: Bioinformatics – volume: 2014 start-page: bau003 year: 2014 ident: 2019062808230262300_B52 article-title: Literature mining of genetic variants for curation: quantifying the importance of supplementary material publication-title: Database doi: 10.1093/database/bau003 – volume: 29 start-page: 25 year: 2018 ident: 2019062808230262300_B40 article-title: The Cellosaurus, a Cell-Line Knowledge Resource publication-title: J. Biomol. Tech. doi: 10.7171/jbt.18-2902-002 – volume: 11 start-page: 85 year: 2010 ident: 2019062808230262300_B43 article-title: LINNAEUS: a species name identification system for biomedical literature publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-85 – volume: 19 start-page: 1385 year: 2015 ident: 2019062808230262300_B37 article-title: SimConcept: a hybrid approach for simplifying composite named entities in biomedical text publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2015.2422651 – volume: 9 start-page: 402 year: 2008 ident: 2019062808230262300_B36 article-title: Abbreviation definition identification based on automatic precision estimates publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-402 – start-page: bty871 year: 2018 ident: 2019062808230262300_B4 article-title: Thalia: Semantic search engine for biomedical abstracts publication-title: Bioinformatics – volume: 2019 start-page: bay137 year: 2019 ident: 2019062808230262300_B3 article-title: PubTerm: a web tool for organizing, annotating and curating genes, diseases, molecules and other concepts from PubMed records publication-title: Database doi: 10.1093/database/bay137 – volume: 2016 start-page: baw068 year: 2016 ident: 2019062808230262300_B41 article-title: BioCreative V CDR task corpus: a resource for chemical disease relation extraction publication-title: Database doi: 10.1093/database/baw068 – volume: 12 start-page: e1005017 year: 2016 ident: 2019062808230262300_B22 article-title: Text mining genotype-phenotype relationships from biomedical literature for database curation and precision medicine publication-title: PLoS Comput Biol. doi: 10.1371/journal.pcbi.1005017 – volume: 12 start-page: S5 year: 2011 ident: 2019062808230262300_B34 article-title: Cross-species gene normalization by species inference publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-S8-S5 – volume: 34 start-page: 2614 year: 2018 ident: 2019062808230262300_B20 article-title: A global network of biomedical relationships derived from text publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty114 – volume: 2014 start-page: bau094 year: 2014 ident: 2019062808230262300_B13 article-title: Hybrid curation of gene–mutation relations combining automated extraction and crowdsourcing publication-title: Database doi: 10.1093/database/bau094 – volume: 9 start-page: S3 year: 2008 ident: 2019062808230262300_B45 article-title: Overview of BioCreative II gene normalization publication-title: Genome Biol. doi: 10.1186/gb-2008-9-s2-s3 – volume: 47 start-page: 1 year: 2014 ident: 2019062808230262300_B46 article-title: NCBI disease corpus: a resource for disease name recognition and concept normalization publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2013.12.006 – volume: 7 start-page: e38460 year: 2012 ident: 2019062808230262300_B33 article-title: SR4GN: a species recognition software tool for gene normalization publication-title: PLoS One doi: 10.1371/journal.pone.0038460 – start-page: 48 year: 2017 ident: 2019062808230262300_B21 article-title: Results of the fifth edition of the BioASQ Challenge publication-title: BioNLP – volume: 33 start-page: 3454 year: 2017 ident: 2019062808230262300_B12 article-title: On expert curation and scalability: UniProtKB/Swiss-Prot as a case study publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx439 – volume: 8 start-page: 6518 year: 2018 ident: 2019062808230262300_B16 article-title: Integrative annotation and knowledge discovery of kinase post-translational modifications and cancer-associated mutations through federated protein ontologies and resources publication-title: Sci. Rep. doi: 10.1038/s41598-018-24457-1 – volume: 8 start-page: 8 year: 2017 ident: 2019062808230262300_B25 article-title: 12 years on - Is the NLM medical text indexer still useful and relevant publication-title: J. Biomed. Semantics doi: 10.1186/s13326-017-0113-5 – volume: 32 start-page: 2886 year: 2016 ident: 2019062808230262300_B18 article-title: HiPub: translating PubMed and PMC texts to networks for knowledge discovery publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw511 – volume: 2016 start-page: baw043 year: 2016 ident: 2019062808230262300_B24 article-title: BRONCO: Biomedical entity Relation ONcology COrpus for extracting gene-variant-disease-drug relations publication-title: Database doi: 10.1093/database/baw043 – volume: 108 start-page: 151 year: 2016 ident: 2019062808230262300_B14 article-title: A PubMed-wide study of endometriosis publication-title: Genomics doi: 10.1016/j.ygeno.2016.10.003 – volume: 6 start-page: 275 year: 2013 ident: 2019062808230262300_B15 article-title: A proteomic study of human Merkel cell carcinoma publication-title: J. Proteomics Bioinform. doi: 10.4172/jpb.1000291 – start-page: bty845 year: 2018 ident: 2019062808230262300_B19 article-title: LION LBD: a literature-based discovery system for cancer biology publication-title: Bioinformatics – volume: 11 start-page: e0152725 year: 2016 ident: 2019062808230262300_B23 article-title: DiMeX: a text mining system for mutation-disease association extraction publication-title: PLoS One doi: 10.1371/journal.pone.0152725 – volume: 2012 start-page: bas043 year: 2012 ident: 2019062808230262300_B26 article-title: Biocuration workflows and text mining: overview of the BioCreative 2012 Workshop Track II publication-title: Database doi: 10.1093/database/bas043 – volume: 14 start-page: e1005962 year: 2018 ident: 2019062808230262300_B27 article-title: A comprehensive and quantitative comparison of text-mining in 15 million full-text articles versus their corresponding abstracts publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005962 – volume: 2015 start-page: 7 year: 2015 ident: 2019062808230262300_B35 article-title: GNormPlus: An integrative approach for tagging genes, gene families, and protein domains publication-title: Biomed Res Int. doi: 10.1155/2015/918710 – start-page: 1746 year: 2014 ident: 2019062808230262300_B47 article-title: Convolutional neural networks for sentence classification publication-title: EMNLP – volume: 2013 start-page: bat064 year: 2013 ident: 2019062808230262300_B48 article-title: BioC: a minimalist approach to interoperability for biomedical text processing publication-title: Database doi: 10.1093/database/bat064 – volume: 2016 start-page: baw032 year: 2016 ident: 2019062808230262300_B2 article-title: Assessing the state of the art in biomedical relation extraction: overview of the BioCreative V chemical-disease relation (CDR) task publication-title: Database doi: 10.1093/database/baw032 – volume: 46 start-page: W530 year: 2018 ident: 2019062808230262300_B28 article-title: LitVar: a semantic search engine for linking genomic variant data in PubMed and PMC publication-title: Nucleic. Acids. Res. doi: 10.1093/nar/gky355 – volume: 29 start-page: 1433 year: 2013 ident: 2019062808230262300_B31 article-title: tmVar: A text mining approach for extracting sequence variants in biomedical literature publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt156 – volume: 2012 start-page: bas020 year: 2012 ident: 2019062808230262300_B51 article-title: Text mining for the biocuration workflow publication-title: Database doi: 10.1093/database/bas020 – volume: 7 start-page: S2 year: 2015 ident: 2019062808230262300_B42 article-title: The CHEMDNER corpus of chemicals and drugs and its annotation principles publication-title: J. Cheminform. doi: 10.1186/1758-2946-7-S1-S2 – volume: 1069 start-page: 012037 year: 2018 ident: 2019062808230262300_B17 article-title: Evaluation of the performance of BioNLP tools for discovering causal genes in terms with pathway enrichment publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1069/1/012037 |
SSID | ssj0014154 |
Score | 2.6824691 |
Snippet | PubTator Central (https://www.ncbi.nlm.nih.gov/research/pubtator/) is a web service for viewing and retrieving bioconcept annotations in full text biomedical... PubTator Central ( https://www.ncbi.nlm.nih.gov/research/pubtator/ ) is a web service for viewing and retrieving bioconcept annotations in full text biomedical... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | W587 |
SubjectTerms | Cell Line Data Curation Data Mining - methods Disease Genes Genetic Variation Humans Proteins PubMed Software User-Computer Interface Web Server Issue |
Title | PubTator central: automated concept annotation for biomedical full text articles |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31114887 https://www.proquest.com/docview/2232101041 https://pubmed.ncbi.nlm.nih.gov/PMC6602571 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLc6dtgu0wbb6D6Qp02TpiqQxG6T7FYhUIU2xKEIblHsODSiSxAkmuCv33u2kyaUA-MStakdNXm_2O_z9wj5BjtkkHnwImUhSx3OmXAiVzEnEkiglck01T7d38eT2Sk_Oh-fDwZ_u9UlldiVdw_WlTxFqnAO5IpVsv8h2faicAI-g3zhCBKG46NkfFKLORrNI5tiqSuX66oELVRhtZquSBwlRVF2cgpNwb2pXAT7c4SpH6MmP66rqx4j1THSuco8xeBCx--lQzm5CdfnC2d2U69ANl0uy6qpnclblf2XSqyz1SRzt-drHR9Z5Lel3UStD0KXPTlu1y3JNJ-p4czcVWYp1fVYUX-tNeyaFlNnXmflPBvbjVfZr6Zx4toKb9ivCsw-P7y4vGOmAVGfSPveBtemHZqAO4thdmzmPiPPfbAvsPVF4B604SfQagzvmL2thtc2Ynswd8_M7Wsya-bJ_Szbjtoyf01eWXuDTo1835CBKjbJ1rQA2Py5pd-pzgDWoZVN8mK_6f63RU4abFF74Z-0RRa1yKIrZFFAFl0hiyKyKCKLNsh6S04PD-b7M8d233Ak57xyMlibFWx-aJK7Lt4G813hc6UyFjEhZMJTwQLJQQMGtdOfpDLxuBKgs8MmwDz2jmwUZaG2CQ3GKoqk70pXhRwGCOwhoMJAJCqUoaeG5EfzJGNpqemxQ8oyXpfYkHxtx14ZQpYHR31pBBLDg8MgWFKosr6JQR32PXRCeEPy3giovQ7z0DsQBkMS9ETXDkAu9v4vRb7QnOyTCRgPgffhUf_uI3m5eos-kY3qulafQbetxI7G4Y72DP0DQr2tIQ |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PubTator+central%3A+automated+concept+annotation+for+biomedical+full+text+articles&rft.jtitle=Nucleic+acids+research&rft.au=Wei%2C+Chih-Hsuan&rft.au=Allot%2C+Alexis&rft.au=Leaman%2C+Robert&rft.au=Lu%2C+Zhiyong&rft.date=2019-07-02&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=47&rft.issue=W1&rft.spage=W587&rft.epage=W593&rft_id=info:doi/10.1093%2Fnar%2Fgkz389&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_nar_gkz389 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |