Optimized programming algorithm for cylindrical and directional deep brain stimulation electrodes
Objective. Deep brain stimulation (DBS) is a growing treatment option for movement and psychiatric disorders. As DBS technology moves toward directional leads with increased numbers of smaller electrode contacts, trial-and-error methods of manual DBS programming are becoming too time-consuming for c...
Saved in:
Published in | Journal of neural engineering Vol. 15; no. 2; pp. 26005 - 26022 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
01.04.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1741-2560 1741-2552 1741-2552 |
DOI | 10.1088/1741-2552/aaa14b |
Cover
Abstract | Objective. Deep brain stimulation (DBS) is a growing treatment option for movement and psychiatric disorders. As DBS technology moves toward directional leads with increased numbers of smaller electrode contacts, trial-and-error methods of manual DBS programming are becoming too time-consuming for clinical feasibility. We propose an algorithm to automate DBS programming in near real-time for a wide range of DBS lead designs. Approach. Magnetic resonance imaging and diffusion tensor imaging are used to build finite element models that include anisotropic conductivity. The algorithm maximizes activation of target tissue and utilizes the Hessian matrix of the electric potential to approximate activation of neurons in all directions. We demonstrate our algorithm's ability in an example programming case that targets the subthalamic nucleus (STN) for the treatment of Parkinson's disease for three lead designs: the Medtronic 3389 (four cylindrical contacts), the direct STNAcute (two cylindrical contacts, six directional contacts), and the Medtronic-Sapiens lead (40 directional contacts). Main results. The optimization algorithm returns patient-specific contact configurations in near real-time-less than 10 s for even the most complex leads. When the lead was placed centrally in the target STN, the directional leads were able to activate over 50% of the region, whereas the Medtronic 3389 could activate only 40%. When the lead was placed 2 mm lateral to the target, the directional leads performed as well as they did in the central position, but the Medtronic 3389 activated only 2.9% of the STN. Significance. This DBS programming algorithm can be applied to cylindrical electrodes as well as novel directional leads that are too complex with modern technology to be manually programmed. This algorithm may reduce clinical programming time and encourage the use of directional leads, since they activate a larger volume of the target area than cylindrical electrodes in central and off-target lead placements. |
---|---|
AbstractList | Deep brain stimulation (DBS) is a growing treatment option for movement and psychiatric disorders. As DBS technology moves toward directional leads with increased numbers of smaller electrode contacts, trial-and-error methods of manual DBS programming are becoming too time-consuming for clinical feasibility. We propose an algorithm to automate DBS programming in near real-time for a wide range of DBS lead designs.OBJECTIVEDeep brain stimulation (DBS) is a growing treatment option for movement and psychiatric disorders. As DBS technology moves toward directional leads with increased numbers of smaller electrode contacts, trial-and-error methods of manual DBS programming are becoming too time-consuming for clinical feasibility. We propose an algorithm to automate DBS programming in near real-time for a wide range of DBS lead designs.Magnetic resonance imaging and diffusion tensor imaging are used to build finite element models that include anisotropic conductivity. The algorithm maximizes activation of target tissue and utilizes the Hessian matrix of the electric potential to approximate activation of neurons in all directions. We demonstrate our algorithm's ability in an example programming case that targets the subthalamic nucleus (STN) for the treatment of Parkinson's disease for three lead designs: the Medtronic 3389 (four cylindrical contacts), the direct STNAcute (two cylindrical contacts, six directional contacts), and the Medtronic-Sapiens lead (40 directional contacts).APPROACHMagnetic resonance imaging and diffusion tensor imaging are used to build finite element models that include anisotropic conductivity. The algorithm maximizes activation of target tissue and utilizes the Hessian matrix of the electric potential to approximate activation of neurons in all directions. We demonstrate our algorithm's ability in an example programming case that targets the subthalamic nucleus (STN) for the treatment of Parkinson's disease for three lead designs: the Medtronic 3389 (four cylindrical contacts), the direct STNAcute (two cylindrical contacts, six directional contacts), and the Medtronic-Sapiens lead (40 directional contacts).The optimization algorithm returns patient-specific contact configurations in near real-time-less than 10 s for even the most complex leads. When the lead was placed centrally in the target STN, the directional leads were able to activate over 50% of the region, whereas the Medtronic 3389 could activate only 40%. When the lead was placed 2 mm lateral to the target, the directional leads performed as well as they did in the central position, but the Medtronic 3389 activated only 2.9% of the STN.MAIN RESULTSThe optimization algorithm returns patient-specific contact configurations in near real-time-less than 10 s for even the most complex leads. When the lead was placed centrally in the target STN, the directional leads were able to activate over 50% of the region, whereas the Medtronic 3389 could activate only 40%. When the lead was placed 2 mm lateral to the target, the directional leads performed as well as they did in the central position, but the Medtronic 3389 activated only 2.9% of the STN.This DBS programming algorithm can be applied to cylindrical electrodes as well as novel directional leads that are too complex with modern technology to be manually programmed. This algorithm may reduce clinical programming time and encourage the use of directional leads, since they activate a larger volume of the target area than cylindrical electrodes in central and off-target lead placements.SIGNIFICANCEThis DBS programming algorithm can be applied to cylindrical electrodes as well as novel directional leads that are too complex with modern technology to be manually programmed. This algorithm may reduce clinical programming time and encourage the use of directional leads, since they activate a larger volume of the target area than cylindrical electrodes in central and off-target lead placements. Objective. Deep brain stimulation (DBS) is a growing treatment option for movement and psychiatric disorders. As DBS technology moves toward directional leads with increased numbers of smaller electrode contacts, trial-and-error methods of manual DBS programming are becoming too time-consuming for clinical feasibility. We propose an algorithm to automate DBS programming in near real-time for a wide range of DBS lead designs. Approach. Magnetic resonance imaging and diffusion tensor imaging are used to build finite element models that include anisotropic conductivity. The algorithm maximizes activation of target tissue and utilizes the Hessian matrix of the electric potential to approximate activation of neurons in all directions. We demonstrate our algorithm's ability in an example programming case that targets the subthalamic nucleus (STN) for the treatment of Parkinson's disease for three lead designs: the Medtronic 3389 (four cylindrical contacts), the direct STNAcute (two cylindrical contacts, six directional contacts), and the Medtronic-Sapiens lead (40 directional contacts). Main results. The optimization algorithm returns patient-specific contact configurations in near real-time-less than 10 s for even the most complex leads. When the lead was placed centrally in the target STN, the directional leads were able to activate over 50% of the region, whereas the Medtronic 3389 could activate only 40%. When the lead was placed 2 mm lateral to the target, the directional leads performed as well as they did in the central position, but the Medtronic 3389 activated only 2.9% of the STN. Significance. This DBS programming algorithm can be applied to cylindrical electrodes as well as novel directional leads that are too complex with modern technology to be manually programmed. This algorithm may reduce clinical programming time and encourage the use of directional leads, since they activate a larger volume of the target area than cylindrical electrodes in central and off-target lead placements. Deep brain stimulation (DBS) is a growing treatment option for movement and psychiatric disorders. As DBS technology moves toward directional leads with increased numbers of smaller electrode contacts, trial-and-error methods of manual DBS programming are becoming too time-consuming for clinical feasibility. We propose an algorithm to automate DBS programming in near real-time for a wide range of DBS lead designs. Magnetic resonance imaging and diffusion tensor imaging are used to build finite element models that include anisotropic conductivity. The algorithm maximizes activation of target tissue and utilizes the Hessian matrix of the electric potential to approximate activation of neurons in all directions. We demonstrate our algorithm's ability in an example programming case that targets the subthalamic nucleus (STN) for the treatment of Parkinson's disease for three lead designs: the Medtronic 3389 (four cylindrical contacts), the direct STNAcute (two cylindrical contacts, six directional contacts), and the Medtronic-Sapiens lead (40 directional contacts). The optimization algorithm returns patient-specific contact configurations in near real-time-less than 10 s for even the most complex leads. When the lead was placed centrally in the target STN, the directional leads were able to activate over 50% of the region, whereas the Medtronic 3389 could activate only 40%. When the lead was placed 2 mm lateral to the target, the directional leads performed as well as they did in the central position, but the Medtronic 3389 activated only 2.9% of the STN. This DBS programming algorithm can be applied to cylindrical electrodes as well as novel directional leads that are too complex with modern technology to be manually programmed. This algorithm may reduce clinical programming time and encourage the use of directional leads, since they activate a larger volume of the target area than cylindrical electrodes in central and off-target lead placements. |
Author | Butson, Christopher R Anderson, Daria Nesterovich Vorwerk, Johannes Dorval, Alan D Osting, Braxton |
Author_xml | – sequence: 1 givenname: Daria Nesterovich orcidid: 0000-0002-9093-7504 surname: Anderson fullname: Anderson, Daria Nesterovich organization: University of Utah Scientific Computing & Imaging (SCI) Institute, Salt Lake City, UT, United States of America – sequence: 2 givenname: Braxton orcidid: 0000-0002-4123-9048 surname: Osting fullname: Osting, Braxton organization: University of Utah Department of Mathematics, Salt Lake City, UT, United States of America – sequence: 3 givenname: Johannes orcidid: 0000-0003-3597-4203 surname: Vorwerk fullname: Vorwerk, Johannes organization: University of Utah Scientific Computing & Imaging (SCI) Institute, Salt Lake City, UT, United States of America – sequence: 4 givenname: Alan D orcidid: 0000-0002-3789-1818 surname: Dorval fullname: Dorval, Alan D organization: University of Utah Department of Bioengineering, Salt Lake City, UT, United States of America – sequence: 5 givenname: Christopher R orcidid: 0000-0002-2319-1263 surname: Butson fullname: Butson, Christopher R email: butson@sci.utah.edu organization: University of Utah Departments of Neurology and Neurosurgery, Salt Lake City, UT, United States of America |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29235446$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kDtPwzAURi1URB-wMyGPDJTarhMnI6p4SZW6wGw5fhRXThzsZCi_Hpc-BiSYbF-f70rfGYNB4xsNwDVG9xgVxQwziqcky8hMCIFpdQZGp9HgdM_REIxj3CA0x6xEF2BISjLPKM1HQKzaztb2SyvYBr8Ooq5ts4bCrX2w3UcNjQ9Qbp1tVLBSOCgaBZUNWnbWN-mttG5hFYRtYEybeid2H1C7RASvdLwE50a4qK8O5wS8Pz2-LV6my9Xz6-JhOZWU0m5qEDMMa0Urpg0SqCyY0ZIakuOMFTliMlOlQUhKShSRgrG8kKSc06LCBpdoPgG3-72px2evY8drG6V2TjTa95HjkuWUkuQkoTcHtK9qrXgbbC3Clh-1JCDfAzL4GIM2XNrup1iXmjqOEd_55zvBfCeb7_2nIPoVPO7-J3K3j1jf8o3vQ7Ia_8a_Aa-Nl1g |
CODEN | JNEIEZ |
CitedBy_id | crossref_primary_10_2176_nmc_ra_2021_0214 crossref_primary_10_3389_fnins_2019_01152 crossref_primary_10_1002_mp_14496 crossref_primary_10_1080_02688697_2024_2311128 crossref_primary_10_1371_journal_pone_0217985 crossref_primary_10_3390_polym15224439 crossref_primary_10_2139_ssrn_4010997 crossref_primary_10_3389_fnins_2021_680938 crossref_primary_10_1002_mds_28878 crossref_primary_10_1016_j_brs_2022_02_017 crossref_primary_10_1088_1741_2552_ac17d7 crossref_primary_10_1016_j_brs_2019_11_013 crossref_primary_10_1111_ner_13120 crossref_primary_10_1186_s12984_021_00873_9 crossref_primary_10_3389_fnhum_2024_1201574 crossref_primary_10_1080_21681163_2018_1484817 crossref_primary_10_1088_1741_2552_aae590 crossref_primary_10_23736_S0390_5616_19_04827_6 crossref_primary_10_1088_1741_2552_ac7e6c crossref_primary_10_1109_TBME_2020_2974102 crossref_primary_10_1007_s12028_021_01227_y crossref_primary_10_1088_1741_2552_ab7b1d crossref_primary_10_54101_ACEN_2022_2_10 crossref_primary_10_1007_s11571_024_10210_0 crossref_primary_10_1016_j_brs_2020_03_017 crossref_primary_10_1016_j_ncl_2020_01_001 crossref_primary_10_1088_1741_2552_acf522 crossref_primary_10_1088_1741_2552_ad0e7c crossref_primary_10_1093_nsr_nwac212 crossref_primary_10_3389_fnhum_2020_00145 crossref_primary_10_1109_JSSC_2022_3204508 crossref_primary_10_1016_j_neurol_2020_02_009 crossref_primary_10_1016_j_parkreldis_2023_105346 crossref_primary_10_1093_braincomms_fcad025 crossref_primary_10_1016_j_neuroimage_2020_117330 crossref_primary_10_1159_000509781 crossref_primary_10_1088_1741_2552_ab3c95 crossref_primary_10_1111_ner_13356 crossref_primary_10_1016_j_brs_2024_11_002 crossref_primary_10_1088_1741_2552_abb581 crossref_primary_10_1016_j_bspc_2022_104253 crossref_primary_10_1016_j_brs_2021_03_009 crossref_primary_10_1088_1741_2552_abf066 crossref_primary_10_3389_fnhum_2021_749567 crossref_primary_10_1080_14737175_2023_2208749 crossref_primary_10_1007_s00415_024_12751_0 crossref_primary_10_1088_1741_2552_aaeeb7 crossref_primary_10_1016_j_parkreldis_2019_01_009 crossref_primary_10_3389_fnhum_2020_00055 crossref_primary_10_1088_1741_2552_ace5de crossref_primary_10_3389_fneur_2022_825178 crossref_primary_10_3389_fnhum_2022_925283 crossref_primary_10_1111_ner_13508 crossref_primary_10_1515_bmt_2020_0210 crossref_primary_10_1001_jamaneurol_2021_1910 crossref_primary_10_1088_1361_6560_ab5229 crossref_primary_10_1371_journal_pone_0316002 crossref_primary_10_1002_ana_25567 crossref_primary_10_1016_j_brs_2019_05_001 crossref_primary_10_1016_j_wneu_2022_11_085 crossref_primary_10_3389_fnhum_2021_644593 crossref_primary_10_14802_jmd_20052 crossref_primary_10_1088_1741_2552_abf8ca crossref_primary_10_1097_WCO_0000000000000999 crossref_primary_10_1038_s41551_023_01021_5 crossref_primary_10_1097_WNP_0000000000000892 crossref_primary_10_1109_TBCAS_2021_3112756 crossref_primary_10_1007_s13311_018_0667_7 crossref_primary_10_1111_ner_12929 crossref_primary_10_1002_hbm_26097 crossref_primary_10_1016_j_copbio_2021_10_012 crossref_primary_10_3389_fnins_2019_00804 crossref_primary_10_1089_bioe_2020_0034 crossref_primary_10_1088_1741_2552_ab35b1 crossref_primary_10_3389_fnins_2022_834026 crossref_primary_10_1080_17434440_2021_1962286 crossref_primary_10_1007_s11910_019_0961_8 crossref_primary_10_1093_brain_awaa188 crossref_primary_10_1371_journal_pcbi_1009281 crossref_primary_10_1016_j_neurom_2023_04_471 crossref_primary_10_3389_fnhum_2024_1333183 |
Cites_doi | 10.1016/j.wneu.2012.06.028 10.1016/j.neuroimage.2014.12.002 10.1038/mp.2008.55 10.1002/mds.22663 10.1088/1741-2560/8/4/046030 10.1016/j.neuroimage.2010.02.014 10.1016/j.mri.2012.05.001 10.1212/WNL.0b013e3181bd809b 10.1159/000375172 10.1152/jn.00353.2001 10.1016/j.clinph.2003.10.033 10.1002/mds.21551 10.1016/j.neuron.2005.02.014 10.1016/j.jns.2009.08.003 10.1088/1741-2560/10/5/056023 10.1007/s11682-016-9589-3 10.1016/j.neuroimage.2006.09.034 10.1056/NEJMoa035275 10.1159/000029730 10.1227/01.NEU.0000325492.58799.35 10.1212/WNL.60.1.78 10.1088/1741-2560/2/4/010 10.1109/TBME.1986.325670 10.1152/jn.01129.2015 10.1016/j.brs.2010.01.003 10.1016/j.biopsych.2009.09.013 10.1016/j.clinph.2005.10.007 10.1016/j.neuroimage.2011.06.069 10.1016/S0014-4886(63)80005-9 10.1016/S1474-4422(07)70035-2 10.1109/IEMBS.2006.260844 10.1016/j.clinph.2010.07.026 10.1093/brain/awh571 10.1159/000088654 10.1109/10.184700 10.1007/978-1-84800-155-8_7 10.1109/10.102812 10.1007/s11548-009-0391-1 10.1159/000108588 10.1016/S0306-4522(98)00330-3 10.1145/2629697 10.1002/mds.10162 10.1056/NEJMoa042187 10.1109/TBME.2012.2189885 10.1212/01.WNL.0000073986.74883.36 10.1016/j.biopsych.2013.01.034 10.3171/jns.1996.84.2.0203 10.1152/jn.00305.2006 10.1016/j.biopsych.2008.08.029 10.1016/S1474-4422(04)00934-2 10.1093/brain/awu102 10.1016/j.clinph.2005.06.023 10.1109/TVCG.2012.92 10.3389/fnins.2016.00119 10.1159/000358014 10.1111/ner.12330 10.1136/jnnp.71.2.215 10.1002/ana.22089 10.1212/WNL.0000000000000823 10.1016/j.neuroimage.2012.05.055 10.1002/mds.20959 10.1088/1741-2560/3/1/001 10.1136/jnnp.2004.047373 10.1016/j.clinph.2004.05.031 10.1001/archneur.62.8.noc40425 10.1212/WNL.55.3.A21 10.3171/2013.4.JNS122324 10.1002/mds.10163 10.1007/s00415-003-1109-8 10.3174/ajnr.A2906 10.1001/archneur.62.4.554 10.1159/000068964 10.1109/TBME.1976.324593 10.1093/brain/awp315 10.1016/j.parkreldis.2016.09.014 10.1002/mds.20961 10.1097/01376517-200508000-00006 10.1093/brain/122.10.1919 10.1109/10.126616 10.1227/01.NEU.0000170434.44335.19 10.1212/WNL.59.5.706 10.3389/fneng.2011.00015 10.1007/978-3-211-33081-4_66 10.1109/TBME.2015.2457873 10.1016/s0140-6736(80)91680-3 10.1007/s100720200093 10.1109/TNSRE.2014.2308997 10.1056/NEJM199810153391603 10.1148/radiol.2301021640 10.1007/s10544-015-9961-x 10.1093/brain/124.9.1777 10.1088/1741-2560/13/3/036023 10.1159/000235804 |
ContentType | Journal Article |
Copyright | 2018 IOP Publishing Ltd |
Copyright_xml | – notice: 2018 IOP Publishing Ltd |
DBID | O3W TSCCA AAYXX CITATION NPM 7X8 |
DOI | 10.1088/1741-2552/aaa14b |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
DocumentTitleAlternate | Optimized programming algorithm for cylindrical and directional deep brain stimulation electrodes |
EISSN | 1741-2552 |
ExternalDocumentID | 29235446 10_1088_1741_2552_aaa14b jneaaa14b |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Science Foundation grantid: 10037840; 1256065; 1351112 funderid: https://doi.org/10.13039/100000001 |
GroupedDBID | --- 1JI 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NT- NT. O3W P2P PJBAE RIN RO9 ROL RPA SY9 TSCCA W28 XPP AAYXX ADEQX CITATION 02O 1WK AERVB AHSEE ARNYC BBWZM FEDTE HVGLF JCGBZ NPM Q02 RNS S3P 7X8 AEINN |
ID | FETCH-LOGICAL-c444t-f07f71ed4b7ef0a0987fec4f261578607c5d9f00cc42d2ca7768c29348b1f1903 |
IEDL.DBID | O3W |
ISSN | 1741-2560 1741-2552 |
IngestDate | Fri Sep 05 07:20:22 EDT 2025 Wed Feb 19 02:32:46 EST 2025 Tue Jul 01 01:58:38 EDT 2025 Thu Apr 24 22:52:52 EDT 2025 Wed Aug 21 03:33:55 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c444t-f07f71ed4b7ef0a0987fec4f261578607c5d9f00cc42d2ca7768c29348b1f1903 |
Notes | JNE-101872.R3 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4123-9048 0000-0002-9093-7504 0000-0002-3789-1818 0000-0003-3597-4203 0000-0002-2319-1263 |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/1741-2552/aaa14b |
PMID | 29235446 |
PQID | 1976442174 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | crossref_primary_10_1088_1741_2552_aaa14b iop_journals_10_1088_1741_2552_aaa14b crossref_citationtrail_10_1088_1741_2552_aaa14b proquest_miscellaneous_1976442174 pubmed_primary_29235446 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-01 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of neural engineering |
PublicationTitleAbbrev | JNE |
PublicationTitleAlternate | J. Neural Eng |
PublicationYear | 2018 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 89 van Dijkand K J (85) 2015; 12 90 91 92 93 94 96 97 10 98 11 99 13 14 15 16 17 19 Butson C R (12) 2006; 3 1 2 3 4 5 6 8 9 20 21 22 23 26 27 29 Grant M (25) 2014 Grant M (24) 2008 31 32 33 34 35 36 37 38 39 Noecker A M (56) 2017 40 41 42 43 44 45 46 47 Chaturvedi A (18) 2013; 10 48 49 Zhang T C (101) 2010; 7 50 51 52 53 54 55 57 58 59 Wei X F (95) 2005; 2 Guridi J (28) 2000; 55 Vitek J L (88) 2013 60 61 64 65 66 67 68 69 Peterson E (63) 2011; 8 Howell B (30) 2016; 13 70 71 Peña E (62) 2017; 14 72 73 74 75 76 77 78 79 Boston Scientific Corportation (7) 2015 100 80 St. Jude Medical Infinity™ IPG Clinician’s Manual. Plano (81) 2015 82 83 84 86 87 |
References_xml | – ident: 39 doi: 10.1016/j.wneu.2012.06.028 – ident: 29 doi: 10.1016/j.neuroimage.2014.12.002 – ident: 26 doi: 10.1038/mp.2008.55 – ident: 93 doi: 10.1002/mds.22663 – year: 2015 ident: 7 publication-title: Exhibit C—Boston Scientific Products – volume: 8 issn: 1741-2552 year: 2011 ident: 63 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/4/046030 – ident: 27 doi: 10.1016/j.neuroimage.2010.02.014 – ident: 22 doi: 10.1016/j.mri.2012.05.001 – ident: 65 doi: 10.1212/WNL.0b013e3181bd809b – ident: 66 doi: 10.1159/000375172 – ident: 51 doi: 10.1152/jn.00353.2001 – ident: 50 doi: 10.1016/j.clinph.2003.10.033 – ident: 2 doi: 10.1002/mds.21551 – ident: 47 doi: 10.1016/j.neuron.2005.02.014 – ident: 100 doi: 10.1016/j.jns.2009.08.003 – volume: 10 issn: 1741-2552 year: 2013 ident: 18 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/10/5/056023 – ident: 44 doi: 10.1007/s11682-016-9589-3 – ident: 13 doi: 10.1016/j.neuroimage.2006.09.034 – ident: 36 doi: 10.1056/NEJMoa035275 – ident: 54 doi: 10.1159/000029730 – ident: 21 doi: 10.1227/01.NEU.0000325492.58799.35 – ident: 84 doi: 10.1212/WNL.60.1.78 – volume: 2 start-page: 139 issn: 1741-2552 year: 2005 ident: 95 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/2/4/010 – ident: 69 doi: 10.1109/TBME.1986.325670 – ident: 4 doi: 10.1152/jn.01129.2015 – ident: 17 doi: 10.1016/j.brs.2010.01.003 – ident: 6 doi: 10.1016/j.biopsych.2009.09.013 – ident: 14 doi: 10.1016/j.clinph.2005.10.007 – ident: 59 doi: 10.1016/j.neuroimage.2011.06.069 – volume: 7 issn: 1741-2552 year: 2010 ident: 101 publication-title: J. Neural Eng. – ident: 68 doi: 10.1016/S0014-4886(63)80005-9 – ident: 87 doi: 10.1016/S1474-4422(07)70035-2 – ident: 49 doi: 10.1109/IEMBS.2006.260844 – ident: 46 doi: 10.1016/j.clinph.2010.07.026 – ident: 72 doi: 10.1093/brain/awh571 – ident: 58 doi: 10.1159/000088654 – year: 2014 ident: 25 publication-title: {CVX}: Matlab Software for Disciplined Convex Programming, Version 2.1 – ident: 94 doi: 10.1109/10.184700 – start-page: 95 year: 2008 ident: 24 publication-title: Recent Advances in Learning and Control, Lecture Notes in Control and Information Sciences doi: 10.1007/978-1-84800-155-8_7 – ident: 48 doi: 10.1109/10.102812 – ident: 60 doi: 10.1007/s11548-009-0391-1 – ident: 35 doi: 10.1159/000108588 – ident: 70 doi: 10.1016/S0306-4522(98)00330-3 – ident: 80 doi: 10.1145/2629697 – ident: 89 doi: 10.1002/mds.10162 – ident: 86 doi: 10.1056/NEJMoa042187 – ident: 78 doi: 10.1109/TBME.2012.2189885 – ident: 83 doi: 10.1212/01.WNL.0000073986.74883.36 – year: 2015 ident: 81 – ident: 77 doi: 10.1016/j.biopsych.2013.01.034 – ident: 5 doi: 10.3171/jns.1996.84.2.0203 – ident: 53 doi: 10.1152/jn.00305.2006 – ident: 45 doi: 10.1016/j.biopsych.2008.08.029 – ident: 92 doi: 10.1016/S1474-4422(04)00934-2 – ident: 64 doi: 10.1093/brain/awu102 – ident: 11 doi: 10.1016/j.clinph.2005.06.023 – ident: 15 doi: 10.1109/TVCG.2012.92 – ident: 75 doi: 10.3389/fnins.2016.00119 – ident: 76 doi: 10.1159/000358014 – ident: 97 doi: 10.1111/ner.12330 – ident: 71 doi: 10.1136/jnnp.71.2.215 – ident: 40 doi: 10.1002/ana.22089 – ident: 19 doi: 10.1212/WNL.0000000000000823 – ident: 33 doi: 10.1016/j.neuroimage.2012.05.055 – ident: 42 doi: 10.1002/mds.20959 – volume: 3 start-page: 1 issn: 1741-2552 year: 2006 ident: 12 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/3/1/001 – year: 2017 ident: 56 publication-title: Neuromodulation Technol. Neural Interface – ident: 98 doi: 10.1136/jnnp.2004.047373 – ident: 38 doi: 10.1016/j.clinph.2004.05.031 – ident: 57 doi: 10.1001/archneur.62.8.noc40425 – volume: 55 start-page: S21 year: 2000 ident: 28 publication-title: Neurology doi: 10.1212/WNL.55.3.A21 – ident: 10 doi: 10.3171/2013.4.JNS122324 – ident: 37 doi: 10.1002/mds.10163 – ident: 20 doi: 10.1007/s00415-003-1109-8 – ident: 43 doi: 10.3174/ajnr.A2906 – ident: 1 doi: 10.1001/archneur.62.4.554 – ident: 61 doi: 10.1159/000068964 – ident: 52 doi: 10.1109/TBME.1976.324593 – ident: 23 doi: 10.1093/brain/awp315 – ident: 74 doi: 10.1016/j.parkreldis.2016.09.014 – ident: 90 doi: 10.1002/mds.20961 – ident: 31 doi: 10.1097/01376517-200508000-00006 – year: 2013 ident: 88 – ident: 3 doi: 10.1093/brain/122.10.1919 – ident: 79 doi: 10.1109/10.126616 – ident: 34 doi: 10.1227/01.NEU.0000170434.44335.19 – ident: 55 doi: 10.1212/WNL.59.5.706 – ident: 9 doi: 10.3389/fneng.2011.00015 – ident: 16 doi: 10.1007/978-3-211-33081-4_66 – ident: 99 doi: 10.1109/TBME.2015.2457873 – volume: 14 issn: 1741-2552 year: 2017 ident: 62 publication-title: J. Neural Eng. – ident: 8 doi: 10.1016/s0140-6736(80)91680-3 – ident: 82 doi: 10.1007/s100720200093 – ident: 67 doi: 10.1109/TNSRE.2014.2308997 – ident: 41 doi: 10.1056/NEJM199810153391603 – ident: 91 doi: 10.1148/radiol.2301021640 – ident: 96 doi: 10.1007/s10544-015-9961-x – ident: 73 doi: 10.1093/brain/124.9.1777 – volume: 13 issn: 1741-2552 year: 2016 ident: 30 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/13/3/036023 – volume: 12 issn: 1741-2552 year: 2015 ident: 85 publication-title: J. Neural Eng. – ident: 32 doi: 10.1159/000235804 |
SSID | ssj0031790 |
Score | 2.4998348 |
Snippet | Objective. Deep brain stimulation (DBS) is a growing treatment option for movement and psychiatric disorders. As DBS technology moves toward directional leads... Deep brain stimulation (DBS) is a growing treatment option for movement and psychiatric disorders. As DBS technology moves toward directional leads with... |
SourceID | proquest pubmed crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 26005 |
SubjectTerms | activating function deep brain stimulation directional electrodes finite element model hessian optimization algorithm Parkinson's disease |
Title | Optimized programming algorithm for cylindrical and directional deep brain stimulation electrodes |
URI | https://iopscience.iop.org/article/10.1088/1741-2552/aaa14b https://www.ncbi.nlm.nih.gov/pubmed/29235446 https://www.proquest.com/docview/1976442174 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-QwDLYYuHBZ8dwdXgrSgsShO2mbSTPihBAIkJbhAFpuVZo4gEQ7IxgO8OtxmsxIKwHi1oNTV3Ydf44dG-C3b1giqkImUmU6EcbIRCHXiR3oiiIQidgm2v9eyrMbcXHbv52Dw9ldmNE4bv1_6DE0Cg4ijAVxqkcYOk0ICWc9rXUqqg4s5Eoqb5XD_N90G85966lwG9JTSx5zlB-94T-f1CG-n8PN1u2cLsGPiBfZUfi6ZZjDZgVWjxqKletXts_aCs72aHwV9JDsv354Q8ti2VVNjonpx7vR08PkvmYEUJl5JWBp28YgTDeWBZ_WHggyizhmlR8awcjy6zjZi8VRORaf1-Dm9OT6-CyJIxQSI4SYJI4XrkjRkjrQcc0HqnBohKO4iUxV8sL07cBxbozIbGZ0QdGHIQQgVJU6wgr5Osw3owZ_AUMpCtt3mLpKCdRugIScJDfkA3ObouhCbyrE0sT-4n7MxWPZ5rmVKr3YSy_2Moi9CwezFePQW-ML2j3SSxkN7PkLut2p5koyFJ_90A2OXmgFAS8hfATWhZ9BpTOuGcHcPgXGG9_ksgmLBJxUqODZgvnJ0wtuEziZVDvQOR9e7bS_4js0Ld6U |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe2TkK8TLAC6_iYkQCJh1AncRznsQKqbsDGAxN7ixz7vE1q0mhtH8pfz_mjk5Bg4i0Pdhzd5Xy_851_R8gbR1jCm1IkQmYq4VqLRAJTialUgxGIAPCJ9m9nYnbBTy-Ly9jn1N-FWfRx6_-Aj4EoOIgwFsTJMWLoNEEknI2VUilvxr2xu2SvyEXhyPPP85_brTh39FPhRqSbIVjMU_7tLX_4pV1c-9-Q07ue6SOyHzEjnYQvfEx2oDsgw0mH8XK7oe-or-L0x-NDos5xD2hvfoGhsfSqRedE1fxqcXuzum4pglSqNwgujScHoaozNPg1fyhIDUBPG9c4gqL1t7G7F43tcgwsn5CL6ecfH2dJbKOQaM75KrGstGUKBlUClilWydKC5hZjJzRXwUpdmMoypjXPTKZViRGIRhTAZZNaxAv5UzLoFh0cEgqCl6awkNpGclC2AkRPgmn0g7lJgY_IeCvEWkeOcdfqYl77XLeUtRN77cReB7GPyPu7GX3g17hn7FvUSx2NbHnPuNdbzdVoLC4DojpYrHEGgi_OXRQ2Is-CSu9WzRDqFhgcH_3nKsfkwfdP0_rrydmX5-Qh4igZCnpekMHqdg0vEausmlf-f_wN0hThgw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+programming+algorithm+for+cylindrical+and+directional+deep+brain+stimulation+electrodes&rft.jtitle=Journal+of+neural+engineering&rft.au=Anderson%2C+Daria+Nesterovich&rft.au=Osting%2C+Braxton&rft.au=Vorwerk%2C+Johannes&rft.au=Dorval%2C+Alan+D&rft.date=2018-04-01&rft.issn=1741-2552&rft.eissn=1741-2552&rft.volume=15&rft.issue=2&rft.spage=026005&rft_id=info:doi/10.1088%2F1741-2552%2Faaa14b&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon |