Optimized programming algorithm for cylindrical and directional deep brain stimulation electrodes

Objective. Deep brain stimulation (DBS) is a growing treatment option for movement and psychiatric disorders. As DBS technology moves toward directional leads with increased numbers of smaller electrode contacts, trial-and-error methods of manual DBS programming are becoming too time-consuming for c...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 15; no. 2; pp. 26005 - 26022
Main Authors Anderson, Daria Nesterovich, Osting, Braxton, Vorwerk, Johannes, Dorval, Alan D, Butson, Christopher R
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.04.2018
Subjects
Online AccessGet full text
ISSN1741-2560
1741-2552
1741-2552
DOI10.1088/1741-2552/aaa14b

Cover

Abstract Objective. Deep brain stimulation (DBS) is a growing treatment option for movement and psychiatric disorders. As DBS technology moves toward directional leads with increased numbers of smaller electrode contacts, trial-and-error methods of manual DBS programming are becoming too time-consuming for clinical feasibility. We propose an algorithm to automate DBS programming in near real-time for a wide range of DBS lead designs. Approach. Magnetic resonance imaging and diffusion tensor imaging are used to build finite element models that include anisotropic conductivity. The algorithm maximizes activation of target tissue and utilizes the Hessian matrix of the electric potential to approximate activation of neurons in all directions. We demonstrate our algorithm's ability in an example programming case that targets the subthalamic nucleus (STN) for the treatment of Parkinson's disease for three lead designs: the Medtronic 3389 (four cylindrical contacts), the direct STNAcute (two cylindrical contacts, six directional contacts), and the Medtronic-Sapiens lead (40 directional contacts). Main results. The optimization algorithm returns patient-specific contact configurations in near real-time-less than 10 s for even the most complex leads. When the lead was placed centrally in the target STN, the directional leads were able to activate over 50% of the region, whereas the Medtronic 3389 could activate only 40%. When the lead was placed 2 mm lateral to the target, the directional leads performed as well as they did in the central position, but the Medtronic 3389 activated only 2.9% of the STN. Significance. This DBS programming algorithm can be applied to cylindrical electrodes as well as novel directional leads that are too complex with modern technology to be manually programmed. This algorithm may reduce clinical programming time and encourage the use of directional leads, since they activate a larger volume of the target area than cylindrical electrodes in central and off-target lead placements.
AbstractList Deep brain stimulation (DBS) is a growing treatment option for movement and psychiatric disorders. As DBS technology moves toward directional leads with increased numbers of smaller electrode contacts, trial-and-error methods of manual DBS programming are becoming too time-consuming for clinical feasibility. We propose an algorithm to automate DBS programming in near real-time for a wide range of DBS lead designs.OBJECTIVEDeep brain stimulation (DBS) is a growing treatment option for movement and psychiatric disorders. As DBS technology moves toward directional leads with increased numbers of smaller electrode contacts, trial-and-error methods of manual DBS programming are becoming too time-consuming for clinical feasibility. We propose an algorithm to automate DBS programming in near real-time for a wide range of DBS lead designs.Magnetic resonance imaging and diffusion tensor imaging are used to build finite element models that include anisotropic conductivity. The algorithm maximizes activation of target tissue and utilizes the Hessian matrix of the electric potential to approximate activation of neurons in all directions. We demonstrate our algorithm's ability in an example programming case that targets the subthalamic nucleus (STN) for the treatment of Parkinson's disease for three lead designs: the Medtronic 3389 (four cylindrical contacts), the direct STNAcute (two cylindrical contacts, six directional contacts), and the Medtronic-Sapiens lead (40 directional contacts).APPROACHMagnetic resonance imaging and diffusion tensor imaging are used to build finite element models that include anisotropic conductivity. The algorithm maximizes activation of target tissue and utilizes the Hessian matrix of the electric potential to approximate activation of neurons in all directions. We demonstrate our algorithm's ability in an example programming case that targets the subthalamic nucleus (STN) for the treatment of Parkinson's disease for three lead designs: the Medtronic 3389 (four cylindrical contacts), the direct STNAcute (two cylindrical contacts, six directional contacts), and the Medtronic-Sapiens lead (40 directional contacts).The optimization algorithm returns patient-specific contact configurations in near real-time-less than 10 s for even the most complex leads. When the lead was placed centrally in the target STN, the directional leads were able to activate over 50% of the region, whereas the Medtronic 3389 could activate only 40%. When the lead was placed 2 mm lateral to the target, the directional leads performed as well as they did in the central position, but the Medtronic 3389 activated only 2.9% of the STN.MAIN RESULTSThe optimization algorithm returns patient-specific contact configurations in near real-time-less than 10 s for even the most complex leads. When the lead was placed centrally in the target STN, the directional leads were able to activate over 50% of the region, whereas the Medtronic 3389 could activate only 40%. When the lead was placed 2 mm lateral to the target, the directional leads performed as well as they did in the central position, but the Medtronic 3389 activated only 2.9% of the STN.This DBS programming algorithm can be applied to cylindrical electrodes as well as novel directional leads that are too complex with modern technology to be manually programmed. This algorithm may reduce clinical programming time and encourage the use of directional leads, since they activate a larger volume of the target area than cylindrical electrodes in central and off-target lead placements.SIGNIFICANCEThis DBS programming algorithm can be applied to cylindrical electrodes as well as novel directional leads that are too complex with modern technology to be manually programmed. This algorithm may reduce clinical programming time and encourage the use of directional leads, since they activate a larger volume of the target area than cylindrical electrodes in central and off-target lead placements.
Objective. Deep brain stimulation (DBS) is a growing treatment option for movement and psychiatric disorders. As DBS technology moves toward directional leads with increased numbers of smaller electrode contacts, trial-and-error methods of manual DBS programming are becoming too time-consuming for clinical feasibility. We propose an algorithm to automate DBS programming in near real-time for a wide range of DBS lead designs. Approach. Magnetic resonance imaging and diffusion tensor imaging are used to build finite element models that include anisotropic conductivity. The algorithm maximizes activation of target tissue and utilizes the Hessian matrix of the electric potential to approximate activation of neurons in all directions. We demonstrate our algorithm's ability in an example programming case that targets the subthalamic nucleus (STN) for the treatment of Parkinson's disease for three lead designs: the Medtronic 3389 (four cylindrical contacts), the direct STNAcute (two cylindrical contacts, six directional contacts), and the Medtronic-Sapiens lead (40 directional contacts). Main results. The optimization algorithm returns patient-specific contact configurations in near real-time-less than 10 s for even the most complex leads. When the lead was placed centrally in the target STN, the directional leads were able to activate over 50% of the region, whereas the Medtronic 3389 could activate only 40%. When the lead was placed 2 mm lateral to the target, the directional leads performed as well as they did in the central position, but the Medtronic 3389 activated only 2.9% of the STN. Significance. This DBS programming algorithm can be applied to cylindrical electrodes as well as novel directional leads that are too complex with modern technology to be manually programmed. This algorithm may reduce clinical programming time and encourage the use of directional leads, since they activate a larger volume of the target area than cylindrical electrodes in central and off-target lead placements.
Deep brain stimulation (DBS) is a growing treatment option for movement and psychiatric disorders. As DBS technology moves toward directional leads with increased numbers of smaller electrode contacts, trial-and-error methods of manual DBS programming are becoming too time-consuming for clinical feasibility. We propose an algorithm to automate DBS programming in near real-time for a wide range of DBS lead designs. Magnetic resonance imaging and diffusion tensor imaging are used to build finite element models that include anisotropic conductivity. The algorithm maximizes activation of target tissue and utilizes the Hessian matrix of the electric potential to approximate activation of neurons in all directions. We demonstrate our algorithm's ability in an example programming case that targets the subthalamic nucleus (STN) for the treatment of Parkinson's disease for three lead designs: the Medtronic 3389 (four cylindrical contacts), the direct STNAcute (two cylindrical contacts, six directional contacts), and the Medtronic-Sapiens lead (40 directional contacts). The optimization algorithm returns patient-specific contact configurations in near real-time-less than 10 s for even the most complex leads. When the lead was placed centrally in the target STN, the directional leads were able to activate over 50% of the region, whereas the Medtronic 3389 could activate only 40%. When the lead was placed 2 mm lateral to the target, the directional leads performed as well as they did in the central position, but the Medtronic 3389 activated only 2.9% of the STN. This DBS programming algorithm can be applied to cylindrical electrodes as well as novel directional leads that are too complex with modern technology to be manually programmed. This algorithm may reduce clinical programming time and encourage the use of directional leads, since they activate a larger volume of the target area than cylindrical electrodes in central and off-target lead placements.
Author Butson, Christopher R
Anderson, Daria Nesterovich
Vorwerk, Johannes
Dorval, Alan D
Osting, Braxton
Author_xml – sequence: 1
  givenname: Daria Nesterovich
  orcidid: 0000-0002-9093-7504
  surname: Anderson
  fullname: Anderson, Daria Nesterovich
  organization: University of Utah Scientific Computing & Imaging (SCI) Institute, Salt Lake City, UT, United States of America
– sequence: 2
  givenname: Braxton
  orcidid: 0000-0002-4123-9048
  surname: Osting
  fullname: Osting, Braxton
  organization: University of Utah Department of Mathematics, Salt Lake City, UT, United States of America
– sequence: 3
  givenname: Johannes
  orcidid: 0000-0003-3597-4203
  surname: Vorwerk
  fullname: Vorwerk, Johannes
  organization: University of Utah Scientific Computing & Imaging (SCI) Institute, Salt Lake City, UT, United States of America
– sequence: 4
  givenname: Alan D
  orcidid: 0000-0002-3789-1818
  surname: Dorval
  fullname: Dorval, Alan D
  organization: University of Utah Department of Bioengineering, Salt Lake City, UT, United States of America
– sequence: 5
  givenname: Christopher R
  orcidid: 0000-0002-2319-1263
  surname: Butson
  fullname: Butson, Christopher R
  email: butson@sci.utah.edu
  organization: University of Utah Departments of Neurology and Neurosurgery, Salt Lake City, UT, United States of America
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29235446$$D View this record in MEDLINE/PubMed
BookMark eNp9kDtPwzAURi1URB-wMyGPDJTarhMnI6p4SZW6wGw5fhRXThzsZCi_Hpc-BiSYbF-f70rfGYNB4xsNwDVG9xgVxQwziqcky8hMCIFpdQZGp9HgdM_REIxj3CA0x6xEF2BISjLPKM1HQKzaztb2SyvYBr8Ooq5ts4bCrX2w3UcNjQ9Qbp1tVLBSOCgaBZUNWnbWN-mttG5hFYRtYEybeid2H1C7RASvdLwE50a4qK8O5wS8Pz2-LV6my9Xz6-JhOZWU0m5qEDMMa0Urpg0SqCyY0ZIakuOMFTliMlOlQUhKShSRgrG8kKSc06LCBpdoPgG3-72px2evY8drG6V2TjTa95HjkuWUkuQkoTcHtK9qrXgbbC3Clh-1JCDfAzL4GIM2XNrup1iXmjqOEd_55zvBfCeb7_2nIPoVPO7-J3K3j1jf8o3vQ7Ia_8a_Aa-Nl1g
CODEN JNEIEZ
CitedBy_id crossref_primary_10_2176_nmc_ra_2021_0214
crossref_primary_10_3389_fnins_2019_01152
crossref_primary_10_1002_mp_14496
crossref_primary_10_1080_02688697_2024_2311128
crossref_primary_10_1371_journal_pone_0217985
crossref_primary_10_3390_polym15224439
crossref_primary_10_2139_ssrn_4010997
crossref_primary_10_3389_fnins_2021_680938
crossref_primary_10_1002_mds_28878
crossref_primary_10_1016_j_brs_2022_02_017
crossref_primary_10_1088_1741_2552_ac17d7
crossref_primary_10_1016_j_brs_2019_11_013
crossref_primary_10_1111_ner_13120
crossref_primary_10_1186_s12984_021_00873_9
crossref_primary_10_3389_fnhum_2024_1201574
crossref_primary_10_1080_21681163_2018_1484817
crossref_primary_10_1088_1741_2552_aae590
crossref_primary_10_23736_S0390_5616_19_04827_6
crossref_primary_10_1088_1741_2552_ac7e6c
crossref_primary_10_1109_TBME_2020_2974102
crossref_primary_10_1007_s12028_021_01227_y
crossref_primary_10_1088_1741_2552_ab7b1d
crossref_primary_10_54101_ACEN_2022_2_10
crossref_primary_10_1007_s11571_024_10210_0
crossref_primary_10_1016_j_brs_2020_03_017
crossref_primary_10_1016_j_ncl_2020_01_001
crossref_primary_10_1088_1741_2552_acf522
crossref_primary_10_1088_1741_2552_ad0e7c
crossref_primary_10_1093_nsr_nwac212
crossref_primary_10_3389_fnhum_2020_00145
crossref_primary_10_1109_JSSC_2022_3204508
crossref_primary_10_1016_j_neurol_2020_02_009
crossref_primary_10_1016_j_parkreldis_2023_105346
crossref_primary_10_1093_braincomms_fcad025
crossref_primary_10_1016_j_neuroimage_2020_117330
crossref_primary_10_1159_000509781
crossref_primary_10_1088_1741_2552_ab3c95
crossref_primary_10_1111_ner_13356
crossref_primary_10_1016_j_brs_2024_11_002
crossref_primary_10_1088_1741_2552_abb581
crossref_primary_10_1016_j_bspc_2022_104253
crossref_primary_10_1016_j_brs_2021_03_009
crossref_primary_10_1088_1741_2552_abf066
crossref_primary_10_3389_fnhum_2021_749567
crossref_primary_10_1080_14737175_2023_2208749
crossref_primary_10_1007_s00415_024_12751_0
crossref_primary_10_1088_1741_2552_aaeeb7
crossref_primary_10_1016_j_parkreldis_2019_01_009
crossref_primary_10_3389_fnhum_2020_00055
crossref_primary_10_1088_1741_2552_ace5de
crossref_primary_10_3389_fneur_2022_825178
crossref_primary_10_3389_fnhum_2022_925283
crossref_primary_10_1111_ner_13508
crossref_primary_10_1515_bmt_2020_0210
crossref_primary_10_1001_jamaneurol_2021_1910
crossref_primary_10_1088_1361_6560_ab5229
crossref_primary_10_1371_journal_pone_0316002
crossref_primary_10_1002_ana_25567
crossref_primary_10_1016_j_brs_2019_05_001
crossref_primary_10_1016_j_wneu_2022_11_085
crossref_primary_10_3389_fnhum_2021_644593
crossref_primary_10_14802_jmd_20052
crossref_primary_10_1088_1741_2552_abf8ca
crossref_primary_10_1097_WCO_0000000000000999
crossref_primary_10_1038_s41551_023_01021_5
crossref_primary_10_1097_WNP_0000000000000892
crossref_primary_10_1109_TBCAS_2021_3112756
crossref_primary_10_1007_s13311_018_0667_7
crossref_primary_10_1111_ner_12929
crossref_primary_10_1002_hbm_26097
crossref_primary_10_1016_j_copbio_2021_10_012
crossref_primary_10_3389_fnins_2019_00804
crossref_primary_10_1089_bioe_2020_0034
crossref_primary_10_1088_1741_2552_ab35b1
crossref_primary_10_3389_fnins_2022_834026
crossref_primary_10_1080_17434440_2021_1962286
crossref_primary_10_1007_s11910_019_0961_8
crossref_primary_10_1093_brain_awaa188
crossref_primary_10_1371_journal_pcbi_1009281
crossref_primary_10_1016_j_neurom_2023_04_471
crossref_primary_10_3389_fnhum_2024_1333183
Cites_doi 10.1016/j.wneu.2012.06.028
10.1016/j.neuroimage.2014.12.002
10.1038/mp.2008.55
10.1002/mds.22663
10.1088/1741-2560/8/4/046030
10.1016/j.neuroimage.2010.02.014
10.1016/j.mri.2012.05.001
10.1212/WNL.0b013e3181bd809b
10.1159/000375172
10.1152/jn.00353.2001
10.1016/j.clinph.2003.10.033
10.1002/mds.21551
10.1016/j.neuron.2005.02.014
10.1016/j.jns.2009.08.003
10.1088/1741-2560/10/5/056023
10.1007/s11682-016-9589-3
10.1016/j.neuroimage.2006.09.034
10.1056/NEJMoa035275
10.1159/000029730
10.1227/01.NEU.0000325492.58799.35
10.1212/WNL.60.1.78
10.1088/1741-2560/2/4/010
10.1109/TBME.1986.325670
10.1152/jn.01129.2015
10.1016/j.brs.2010.01.003
10.1016/j.biopsych.2009.09.013
10.1016/j.clinph.2005.10.007
10.1016/j.neuroimage.2011.06.069
10.1016/S0014-4886(63)80005-9
10.1016/S1474-4422(07)70035-2
10.1109/IEMBS.2006.260844
10.1016/j.clinph.2010.07.026
10.1093/brain/awh571
10.1159/000088654
10.1109/10.184700
10.1007/978-1-84800-155-8_7
10.1109/10.102812
10.1007/s11548-009-0391-1
10.1159/000108588
10.1016/S0306-4522(98)00330-3
10.1145/2629697
10.1002/mds.10162
10.1056/NEJMoa042187
10.1109/TBME.2012.2189885
10.1212/01.WNL.0000073986.74883.36
10.1016/j.biopsych.2013.01.034
10.3171/jns.1996.84.2.0203
10.1152/jn.00305.2006
10.1016/j.biopsych.2008.08.029
10.1016/S1474-4422(04)00934-2
10.1093/brain/awu102
10.1016/j.clinph.2005.06.023
10.1109/TVCG.2012.92
10.3389/fnins.2016.00119
10.1159/000358014
10.1111/ner.12330
10.1136/jnnp.71.2.215
10.1002/ana.22089
10.1212/WNL.0000000000000823
10.1016/j.neuroimage.2012.05.055
10.1002/mds.20959
10.1088/1741-2560/3/1/001
10.1136/jnnp.2004.047373
10.1016/j.clinph.2004.05.031
10.1001/archneur.62.8.noc40425
10.1212/WNL.55.3.A21
10.3171/2013.4.JNS122324
10.1002/mds.10163
10.1007/s00415-003-1109-8
10.3174/ajnr.A2906
10.1001/archneur.62.4.554
10.1159/000068964
10.1109/TBME.1976.324593
10.1093/brain/awp315
10.1016/j.parkreldis.2016.09.014
10.1002/mds.20961
10.1097/01376517-200508000-00006
10.1093/brain/122.10.1919
10.1109/10.126616
10.1227/01.NEU.0000170434.44335.19
10.1212/WNL.59.5.706
10.3389/fneng.2011.00015
10.1007/978-3-211-33081-4_66
10.1109/TBME.2015.2457873
10.1016/s0140-6736(80)91680-3
10.1007/s100720200093
10.1109/TNSRE.2014.2308997
10.1056/NEJM199810153391603
10.1148/radiol.2301021640
10.1007/s10544-015-9961-x
10.1093/brain/124.9.1777
10.1088/1741-2560/13/3/036023
10.1159/000235804
ContentType Journal Article
Copyright 2018 IOP Publishing Ltd
Copyright_xml – notice: 2018 IOP Publishing Ltd
DBID O3W
TSCCA
AAYXX
CITATION
NPM
7X8
DOI 10.1088/1741-2552/aaa14b
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate Optimized programming algorithm for cylindrical and directional deep brain stimulation electrodes
EISSN 1741-2552
ExternalDocumentID 29235446
10_1088_1741_2552_aaa14b
jneaaa14b
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: 10037840; 1256065; 1351112
  funderid: https://doi.org/10.13039/100000001
GroupedDBID ---
1JI
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
O3W
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
TSCCA
W28
XPP
AAYXX
ADEQX
CITATION
02O
1WK
AERVB
AHSEE
ARNYC
BBWZM
FEDTE
HVGLF
JCGBZ
NPM
Q02
RNS
S3P
7X8
AEINN
ID FETCH-LOGICAL-c444t-f07f71ed4b7ef0a0987fec4f261578607c5d9f00cc42d2ca7768c29348b1f1903
IEDL.DBID O3W
ISSN 1741-2560
1741-2552
IngestDate Fri Sep 05 07:20:22 EDT 2025
Wed Feb 19 02:32:46 EST 2025
Tue Jul 01 01:58:38 EDT 2025
Thu Apr 24 22:52:52 EDT 2025
Wed Aug 21 03:33:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-f07f71ed4b7ef0a0987fec4f261578607c5d9f00cc42d2ca7768c29348b1f1903
Notes JNE-101872.R3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4123-9048
0000-0002-9093-7504
0000-0002-3789-1818
0000-0003-3597-4203
0000-0002-2319-1263
OpenAccessLink https://iopscience.iop.org/article/10.1088/1741-2552/aaa14b
PMID 29235446
PQID 1976442174
PQPubID 23479
PageCount 18
ParticipantIDs crossref_primary_10_1088_1741_2552_aaa14b
iop_journals_10_1088_1741_2552_aaa14b
crossref_citationtrail_10_1088_1741_2552_aaa14b
proquest_miscellaneous_1976442174
pubmed_primary_29235446
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAbbrev JNE
PublicationTitleAlternate J. Neural Eng
PublicationYear 2018
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 89
van Dijkand K J (85) 2015; 12
90
91
92
93
94
96
97
10
98
11
99
13
14
15
16
17
19
Butson C R (12) 2006; 3
1
2
3
4
5
6
8
9
20
21
22
23
26
27
29
Grant M (25) 2014
Grant M (24) 2008
31
32
33
34
35
36
37
38
39
Noecker A M (56) 2017
40
41
42
43
44
45
46
47
Chaturvedi A (18) 2013; 10
48
49
Zhang T C (101) 2010; 7
50
51
52
53
54
55
57
58
59
Wei X F (95) 2005; 2
Guridi J (28) 2000; 55
Vitek J L (88) 2013
60
61
64
65
66
67
68
69
Peterson E (63) 2011; 8
Howell B (30) 2016; 13
70
71
Peña E (62) 2017; 14
72
73
74
75
76
77
78
79
Boston Scientific Corportation (7) 2015
100
80
St. Jude Medical Infinity™ IPG Clinician’s Manual. Plano (81) 2015
82
83
84
86
87
References_xml – ident: 39
  doi: 10.1016/j.wneu.2012.06.028
– ident: 29
  doi: 10.1016/j.neuroimage.2014.12.002
– ident: 26
  doi: 10.1038/mp.2008.55
– ident: 93
  doi: 10.1002/mds.22663
– year: 2015
  ident: 7
  publication-title: Exhibit C—Boston Scientific Products
– volume: 8
  issn: 1741-2552
  year: 2011
  ident: 63
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/4/046030
– ident: 27
  doi: 10.1016/j.neuroimage.2010.02.014
– ident: 22
  doi: 10.1016/j.mri.2012.05.001
– ident: 65
  doi: 10.1212/WNL.0b013e3181bd809b
– ident: 66
  doi: 10.1159/000375172
– ident: 51
  doi: 10.1152/jn.00353.2001
– ident: 50
  doi: 10.1016/j.clinph.2003.10.033
– ident: 2
  doi: 10.1002/mds.21551
– ident: 47
  doi: 10.1016/j.neuron.2005.02.014
– ident: 100
  doi: 10.1016/j.jns.2009.08.003
– volume: 10
  issn: 1741-2552
  year: 2013
  ident: 18
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/10/5/056023
– ident: 44
  doi: 10.1007/s11682-016-9589-3
– ident: 13
  doi: 10.1016/j.neuroimage.2006.09.034
– ident: 36
  doi: 10.1056/NEJMoa035275
– ident: 54
  doi: 10.1159/000029730
– ident: 21
  doi: 10.1227/01.NEU.0000325492.58799.35
– ident: 84
  doi: 10.1212/WNL.60.1.78
– volume: 2
  start-page: 139
  issn: 1741-2552
  year: 2005
  ident: 95
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/2/4/010
– ident: 69
  doi: 10.1109/TBME.1986.325670
– ident: 4
  doi: 10.1152/jn.01129.2015
– ident: 17
  doi: 10.1016/j.brs.2010.01.003
– ident: 6
  doi: 10.1016/j.biopsych.2009.09.013
– ident: 14
  doi: 10.1016/j.clinph.2005.10.007
– ident: 59
  doi: 10.1016/j.neuroimage.2011.06.069
– volume: 7
  issn: 1741-2552
  year: 2010
  ident: 101
  publication-title: J. Neural Eng.
– ident: 68
  doi: 10.1016/S0014-4886(63)80005-9
– ident: 87
  doi: 10.1016/S1474-4422(07)70035-2
– ident: 49
  doi: 10.1109/IEMBS.2006.260844
– ident: 46
  doi: 10.1016/j.clinph.2010.07.026
– ident: 72
  doi: 10.1093/brain/awh571
– ident: 58
  doi: 10.1159/000088654
– year: 2014
  ident: 25
  publication-title: {CVX}: Matlab Software for Disciplined Convex Programming, Version 2.1
– ident: 94
  doi: 10.1109/10.184700
– start-page: 95
  year: 2008
  ident: 24
  publication-title: Recent Advances in Learning and Control, Lecture Notes in Control and Information Sciences
  doi: 10.1007/978-1-84800-155-8_7
– ident: 48
  doi: 10.1109/10.102812
– ident: 60
  doi: 10.1007/s11548-009-0391-1
– ident: 35
  doi: 10.1159/000108588
– ident: 70
  doi: 10.1016/S0306-4522(98)00330-3
– ident: 80
  doi: 10.1145/2629697
– ident: 89
  doi: 10.1002/mds.10162
– ident: 86
  doi: 10.1056/NEJMoa042187
– ident: 78
  doi: 10.1109/TBME.2012.2189885
– ident: 83
  doi: 10.1212/01.WNL.0000073986.74883.36
– year: 2015
  ident: 81
– ident: 77
  doi: 10.1016/j.biopsych.2013.01.034
– ident: 5
  doi: 10.3171/jns.1996.84.2.0203
– ident: 53
  doi: 10.1152/jn.00305.2006
– ident: 45
  doi: 10.1016/j.biopsych.2008.08.029
– ident: 92
  doi: 10.1016/S1474-4422(04)00934-2
– ident: 64
  doi: 10.1093/brain/awu102
– ident: 11
  doi: 10.1016/j.clinph.2005.06.023
– ident: 15
  doi: 10.1109/TVCG.2012.92
– ident: 75
  doi: 10.3389/fnins.2016.00119
– ident: 76
  doi: 10.1159/000358014
– ident: 97
  doi: 10.1111/ner.12330
– ident: 71
  doi: 10.1136/jnnp.71.2.215
– ident: 40
  doi: 10.1002/ana.22089
– ident: 19
  doi: 10.1212/WNL.0000000000000823
– ident: 33
  doi: 10.1016/j.neuroimage.2012.05.055
– ident: 42
  doi: 10.1002/mds.20959
– volume: 3
  start-page: 1
  issn: 1741-2552
  year: 2006
  ident: 12
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/3/1/001
– year: 2017
  ident: 56
  publication-title: Neuromodulation Technol. Neural Interface
– ident: 98
  doi: 10.1136/jnnp.2004.047373
– ident: 38
  doi: 10.1016/j.clinph.2004.05.031
– ident: 57
  doi: 10.1001/archneur.62.8.noc40425
– volume: 55
  start-page: S21
  year: 2000
  ident: 28
  publication-title: Neurology
  doi: 10.1212/WNL.55.3.A21
– ident: 10
  doi: 10.3171/2013.4.JNS122324
– ident: 37
  doi: 10.1002/mds.10163
– ident: 20
  doi: 10.1007/s00415-003-1109-8
– ident: 43
  doi: 10.3174/ajnr.A2906
– ident: 1
  doi: 10.1001/archneur.62.4.554
– ident: 61
  doi: 10.1159/000068964
– ident: 52
  doi: 10.1109/TBME.1976.324593
– ident: 23
  doi: 10.1093/brain/awp315
– ident: 74
  doi: 10.1016/j.parkreldis.2016.09.014
– ident: 90
  doi: 10.1002/mds.20961
– ident: 31
  doi: 10.1097/01376517-200508000-00006
– year: 2013
  ident: 88
– ident: 3
  doi: 10.1093/brain/122.10.1919
– ident: 79
  doi: 10.1109/10.126616
– ident: 34
  doi: 10.1227/01.NEU.0000170434.44335.19
– ident: 55
  doi: 10.1212/WNL.59.5.706
– ident: 9
  doi: 10.3389/fneng.2011.00015
– ident: 16
  doi: 10.1007/978-3-211-33081-4_66
– ident: 99
  doi: 10.1109/TBME.2015.2457873
– volume: 14
  issn: 1741-2552
  year: 2017
  ident: 62
  publication-title: J. Neural Eng.
– ident: 8
  doi: 10.1016/s0140-6736(80)91680-3
– ident: 82
  doi: 10.1007/s100720200093
– ident: 67
  doi: 10.1109/TNSRE.2014.2308997
– ident: 41
  doi: 10.1056/NEJM199810153391603
– ident: 91
  doi: 10.1148/radiol.2301021640
– ident: 96
  doi: 10.1007/s10544-015-9961-x
– ident: 73
  doi: 10.1093/brain/124.9.1777
– volume: 13
  issn: 1741-2552
  year: 2016
  ident: 30
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/13/3/036023
– volume: 12
  issn: 1741-2552
  year: 2015
  ident: 85
  publication-title: J. Neural Eng.
– ident: 32
  doi: 10.1159/000235804
SSID ssj0031790
Score 2.4998348
Snippet Objective. Deep brain stimulation (DBS) is a growing treatment option for movement and psychiatric disorders. As DBS technology moves toward directional leads...
Deep brain stimulation (DBS) is a growing treatment option for movement and psychiatric disorders. As DBS technology moves toward directional leads with...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 26005
SubjectTerms activating function
deep brain stimulation
directional electrodes
finite element model
hessian
optimization algorithm
Parkinson's disease
Title Optimized programming algorithm for cylindrical and directional deep brain stimulation electrodes
URI https://iopscience.iop.org/article/10.1088/1741-2552/aaa14b
https://www.ncbi.nlm.nih.gov/pubmed/29235446
https://www.proquest.com/docview/1976442174
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-QwDLYYuHBZ8dwdXgrSgsShO2mbSTPihBAIkJbhAFpuVZo4gEQ7IxgO8OtxmsxIKwHi1oNTV3Ydf44dG-C3b1giqkImUmU6EcbIRCHXiR3oiiIQidgm2v9eyrMbcXHbv52Dw9ldmNE4bv1_6DE0Cg4ijAVxqkcYOk0ICWc9rXUqqg4s5Eoqb5XD_N90G85966lwG9JTSx5zlB-94T-f1CG-n8PN1u2cLsGPiBfZUfi6ZZjDZgVWjxqKletXts_aCs72aHwV9JDsv354Q8ti2VVNjonpx7vR08PkvmYEUJl5JWBp28YgTDeWBZ_WHggyizhmlR8awcjy6zjZi8VRORaf1-Dm9OT6-CyJIxQSI4SYJI4XrkjRkjrQcc0HqnBohKO4iUxV8sL07cBxbozIbGZ0QdGHIQQgVJU6wgr5Osw3owZ_AUMpCtt3mLpKCdRugIScJDfkA3ObouhCbyrE0sT-4n7MxWPZ5rmVKr3YSy_2Moi9CwezFePQW-ML2j3SSxkN7PkLut2p5koyFJ_90A2OXmgFAS8hfATWhZ9BpTOuGcHcPgXGG9_ksgmLBJxUqODZgvnJ0wtuEziZVDvQOR9e7bS_4js0Ld6U
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe2TkK8TLAC6_iYkQCJh1AncRznsQKqbsDGAxN7ixz7vE1q0mhtH8pfz_mjk5Bg4i0Pdhzd5Xy_851_R8gbR1jCm1IkQmYq4VqLRAJTialUgxGIAPCJ9m9nYnbBTy-Ly9jn1N-FWfRx6_-Aj4EoOIgwFsTJMWLoNEEknI2VUilvxr2xu2SvyEXhyPPP85_brTh39FPhRqSbIVjMU_7tLX_4pV1c-9-Q07ue6SOyHzEjnYQvfEx2oDsgw0mH8XK7oe-or-L0x-NDos5xD2hvfoGhsfSqRedE1fxqcXuzum4pglSqNwgujScHoaozNPg1fyhIDUBPG9c4gqL1t7G7F43tcgwsn5CL6ecfH2dJbKOQaM75KrGstGUKBlUClilWydKC5hZjJzRXwUpdmMoypjXPTKZViRGIRhTAZZNaxAv5UzLoFh0cEgqCl6awkNpGclC2AkRPgmn0g7lJgY_IeCvEWkeOcdfqYl77XLeUtRN77cReB7GPyPu7GX3g17hn7FvUSx2NbHnPuNdbzdVoLC4DojpYrHEGgi_OXRQ2Is-CSu9WzRDqFhgcH_3nKsfkwfdP0_rrydmX5-Qh4igZCnpekMHqdg0vEausmlf-f_wN0hThgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+programming+algorithm+for+cylindrical+and+directional+deep+brain+stimulation+electrodes&rft.jtitle=Journal+of+neural+engineering&rft.au=Anderson%2C+Daria+Nesterovich&rft.au=Osting%2C+Braxton&rft.au=Vorwerk%2C+Johannes&rft.au=Dorval%2C+Alan+D&rft.date=2018-04-01&rft.issn=1741-2552&rft.eissn=1741-2552&rft.volume=15&rft.issue=2&rft.spage=026005&rft_id=info:doi/10.1088%2F1741-2552%2Faaa14b&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon