Thermopower enhancement by encapsulating cerium in clathrate cages
Clathrate materials have been the subject of intense investigation because of their beneficial properties, in particular their low thermal conductivities. Now, improved thermopower at high temperatures arising from strong electron correlation effects has been achieved in a type-I clathrate containin...
Saved in:
Published in | Nature materials Vol. 12; no. 12; pp. 1096 - 1101 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.12.2013
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Clathrate materials have been the subject of intense investigation because of their beneficial properties, in particular their low thermal conductivities. Now, improved thermopower at high temperatures arising from strong electron correlation effects has been achieved in a type-I clathrate containing cerium guest atoms.
The increasing worldwide energy consumption calls for the design of more efficient energy systems. Thermoelectrics could be used to convert waste heat back to useful electric energy if only more efficient materials were available. The ideal thermoelectric material combines high electrical conductivity and thermopower with low thermal conductivity. In this regard, the intermetallic type-I clathrates show promise with their exceedingly low lattice thermal conductivities
1
. Here we report the successful incorporation of cerium as a guest atom into the clathrate crystal structure. In many simpler intermetallic compounds, this rare earth element is known to lead, through the Kondo interaction, to strong correlation phenomena including the occurrence of giant thermopowers at low temperatures
2
. Indeed, we observe a 50% enhancement of the thermopower compared with a rare-earth-free reference material. Importantly, this enhancement occurs at high temperatures and we suggest that a rattling-enhanced Kondo interaction
3
underlies this effect. |
---|---|
AbstractList | The increasing worldwide energy consumption calls for the design of more efficient energy systems. Thermoelectrics could be used to convert waste heat back to useful electric energy if only more efficient materials were available. The ideal thermoelectric material combines high electrical conductivity and thermopower with low thermal conductivity. In this regard, the intermetallic type-I clathrates show promise with their exceedingly low lattice thermal conductivities. Here we report the successful incorporation of cerium as a guest atom into the clathrate crystal structure. In many simpler intermetallic compounds, this rare earth element is known to lead, through the Kondo interaction, to strong correlation phenomena including the occurrence of giant thermopowers at low temperatures. Indeed, we observe a 50% enhancement of the thermopower compared with a rare-earth-free reference material. Importantly, this enhancement occurs at high temperatures and we suggest that a rattling-enhanced Kondo interaction underlies this effect. The increasing worldwide energy consumption calls for the design of more efficient energy systems. Thermoelectrics could be used to convert waste heat back to useful electric energy if only more efficient materials were available. The ideal thermoelectric material combines high electrical conductivity and thermopower with low thermal conductivity. In this regard, the intermetallic type-I clathrates show promise with their exceedingly low lattice thermal conductivities. Here we report the successful incorporation of cerium as a guest atom into the clathrate crystal structure. In many simpler intermetallic compounds, this rare earth element is known to lead, through the Kondo interaction, to strong correlation phenomena including the occurrence of giant thermopowers at low temperatures. Indeed, we observe a 50% enhancement of the thermopower compared with a rare-earth-free reference material. Importantly, this enhancement occurs at high temperatures and we suggest that a rattling-enhanced Kondo interaction underlies this effect.The increasing worldwide energy consumption calls for the design of more efficient energy systems. Thermoelectrics could be used to convert waste heat back to useful electric energy if only more efficient materials were available. The ideal thermoelectric material combines high electrical conductivity and thermopower with low thermal conductivity. In this regard, the intermetallic type-I clathrates show promise with their exceedingly low lattice thermal conductivities. Here we report the successful incorporation of cerium as a guest atom into the clathrate crystal structure. In many simpler intermetallic compounds, this rare earth element is known to lead, through the Kondo interaction, to strong correlation phenomena including the occurrence of giant thermopowers at low temperatures. Indeed, we observe a 50% enhancement of the thermopower compared with a rare-earth-free reference material. Importantly, this enhancement occurs at high temperatures and we suggest that a rattling-enhanced Kondo interaction underlies this effect. The increasing worldwide energy consumption calls for the design of more efficient energy systems. Thermoelectrics could be used to convert waste heat back to useful electric energy if only more efficient materials were available. The ideal thermoelectric material combines high electrical conductivity and thermopower with low thermal conductivity. In this regard, the intermetallic type-I clathrates show promise with their exceedingly low lattice thermal conductivities. Here we report the successful incorporation of cerium as a guest atom into the clathrate crystal structure. In many simpler intermetallic compounds, this rare earth element is known to lead, through the Kondo interaction, to strong correlation phenomena including the occurrence of giant thermopowers at low temperatures. Indeed, we observe a 50% enhancement of the thermopower compared with a rare-earth-free reference material. Importantly, this enhancement occurs at high temperatures and we suggest that a rattling-enhanced Kondo interaction underlies this effect. [PUBLICATION ABSTRACT] Clathrate materials have been the subject of intense investigation because of their beneficial properties, in particular their low thermal conductivities. Now, improved thermopower at high temperatures arising from strong electron correlation effects has been achieved in a type-I clathrate containing cerium guest atoms. The increasing worldwide energy consumption calls for the design of more efficient energy systems. Thermoelectrics could be used to convert waste heat back to useful electric energy if only more efficient materials were available. The ideal thermoelectric material combines high electrical conductivity and thermopower with low thermal conductivity. In this regard, the intermetallic type-I clathrates show promise with their exceedingly low lattice thermal conductivities 1 . Here we report the successful incorporation of cerium as a guest atom into the clathrate crystal structure. In many simpler intermetallic compounds, this rare earth element is known to lead, through the Kondo interaction, to strong correlation phenomena including the occurrence of giant thermopowers at low temperatures 2 . Indeed, we observe a 50% enhancement of the thermopower compared with a rare-earth-free reference material. Importantly, this enhancement occurs at high temperatures and we suggest that a rattling-enhanced Kondo interaction 3 underlies this effect. |
Author | Waas, M. Hradil, K. Ikeda, M. Sidorenko, A. Winkler, H. Neumaier, K. Svagera, R. Paschen, S. Prokofiev, A. |
Author_xml | – sequence: 1 givenname: A. surname: Prokofiev fullname: Prokofiev, A. email: prokofiev@ifp.tuwien.ac.at organization: Institute of Solid State Physics, Vienna University of Technology – sequence: 2 givenname: A. surname: Sidorenko fullname: Sidorenko, A. organization: Institute of Solid State Physics, Vienna University of Technology – sequence: 3 givenname: K. surname: Hradil fullname: Hradil, K. organization: X-Ray Center, Vienna University of Technology – sequence: 4 givenname: M. surname: Ikeda fullname: Ikeda, M. organization: Institute of Solid State Physics, Vienna University of Technology – sequence: 5 givenname: R. surname: Svagera fullname: Svagera, R. organization: Institute of Solid State Physics, Vienna University of Technology – sequence: 6 givenname: M. surname: Waas fullname: Waas, M. organization: Institute of Solid State Physics, Vienna University of Technology – sequence: 7 givenname: H. surname: Winkler fullname: Winkler, H. organization: Institute of Solid State Physics, Vienna University of Technology – sequence: 8 givenname: K. surname: Neumaier fullname: Neumaier, K. organization: Walther-Meißner-Institute for Low Temperature Research – sequence: 9 givenname: S. surname: Paschen fullname: Paschen, S. email: paschen@ifp.tuwien.ac.at organization: Institute of Solid State Physics, Vienna University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24056804$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0VtLwzAUB_AgE3dR8BNIwRd96EzSXLZHHd5g4Mt8LifZ6dbRpjNpkX17O7apDMGnXPjlcPI_fdJxlUNCLhkdMpqM7lwJdaKlOiE9JrSKhVK0s98zxnmX9ENYUcqZlOqMdLmgUo2o6JGH2RJ9Wa2rT_QRuiU4iyW6OjKb9mhhHZoC6twtIos-b8ood5Ftb5YeaowsLDCck9MMioAX-3VA3p8eZ5OXePr2_Dq5n8ZWCFHHmDEOmUwyJkHjSEjDtUBlMkPHhhpQ2qoM9HyueSYUt9QIkWiQTMsxmDkkA3Kzq7v21UeDoU7LPFgsCnBYNSFlUmkq9VjI_6lQLBF8zFlLr4_oqmq8az-yVduYpEhadbVXjSlxnq59XoLfpIcgWzDcAeurEDxmqc3rNrjK1R7yImU03U4qPUzqp8XvB4eaf9DbHQ0tcQv0v1o8tl8jMKCt |
CitedBy_id | crossref_primary_10_1016_j_jmmm_2019_165433 crossref_primary_10_1016_j_commatsci_2016_05_013 crossref_primary_10_1007_s11664_014_3139_9 crossref_primary_10_1016_j_jmat_2018_08_003 crossref_primary_10_35848_1347_4065_ab69e1 crossref_primary_10_1016_j_jallcom_2022_167432 crossref_primary_10_1063_5_0119852 crossref_primary_10_1107_S0108270113030011 crossref_primary_10_1021_nl501436w crossref_primary_10_1088_2515_7655_ac49dc crossref_primary_10_7567_JJAP_56_05DC01 crossref_primary_10_3390_ma15103439 crossref_primary_10_1021_acs_chemmater_6b01752 crossref_primary_10_1039_C4CE00837E crossref_primary_10_1007_s11664_016_5013_4 crossref_primary_10_1103_PhysRevB_96_195156 crossref_primary_10_1002_admi_201700517 crossref_primary_10_1039_D4CC02104E crossref_primary_10_1039_C8QI00366A crossref_primary_10_1039_C9CE01367A crossref_primary_10_3390_cryst9060322 crossref_primary_10_1016_j_mtla_2019_100247 crossref_primary_10_1016_j_intermet_2016_11_006 crossref_primary_10_1021_acs_chemmater_4c02098 crossref_primary_10_1021_acs_inorgchem_5b02223 crossref_primary_10_3390_ma9070587 crossref_primary_10_1039_C4TA00539B crossref_primary_10_1021_jacs_6b08748 crossref_primary_10_1039_C8TC03142H crossref_primary_10_1016_j_physb_2016_01_017 crossref_primary_10_1038_nmat4461 crossref_primary_10_3390_ma9040236 crossref_primary_10_1107_S205252062101310X crossref_primary_10_12693_APhysPolA_131_1006 crossref_primary_10_1016_j_cej_2019_123589 crossref_primary_10_1021_acsaem_9b00495 crossref_primary_10_1021_ic503086a crossref_primary_10_1007_s10854_016_5113_1 crossref_primary_10_1016_j_matpr_2019_02_068 crossref_primary_10_1002_adma_201905703 crossref_primary_10_1557_opl_2015_269 crossref_primary_10_1021_acs_cgd_5b00461 crossref_primary_10_1007_s40843_024_2916_5 crossref_primary_10_1038_s42254_020_00262_6 crossref_primary_10_1063_5_0200462 crossref_primary_10_1002_anie_202011120 crossref_primary_10_1016_j_cryogenics_2022_103550 crossref_primary_10_1021_acs_chemmater_0c02758 crossref_primary_10_3390_cryst13030453 crossref_primary_10_1021_ic5021065 crossref_primary_10_1021_jacs_6b09222 crossref_primary_10_1002_aelm_202000782 crossref_primary_10_1016_j_actamat_2017_02_064 crossref_primary_10_1080_09506608_2016_1183075 crossref_primary_10_1103_PhysRevB_105_214114 crossref_primary_10_1016_j_rinp_2018_10_017 crossref_primary_10_1038_srep07028 crossref_primary_10_1088_1361_648X_ac1d15 crossref_primary_10_1063_1_5021094 crossref_primary_10_1002_aelm_201600312 crossref_primary_10_1007_s11664_015_4259_6 crossref_primary_10_1016_j_spmi_2016_09_034 crossref_primary_10_2497_jjspm_67_529 crossref_primary_10_1557_mre_2015_9 crossref_primary_10_1002_ange_202011120 crossref_primary_10_1016_j_mser_2016_08_001 crossref_primary_10_1021_acs_inorgchem_5b00348 crossref_primary_10_1016_j_ceramint_2022_09_360 crossref_primary_10_1039_C5CE02143J crossref_primary_10_3390_inorganics2010079 crossref_primary_10_1016_j_chempr_2018_04_001 crossref_primary_10_1016_j_jssc_2016_01_020 crossref_primary_10_3390_inorganics7060074 crossref_primary_10_7567_JJAP_54_091801 crossref_primary_10_1016_j_mser_2018_09_001 |
Cites_doi | 10.1021/ic201474h 10.1103/PhysRevLett.108.036402 10.1143/JPSJ.76.084702 10.1088/0022-3727/35/17/315 10.1146/annurev.ms.15.080185.000245 10.1103/PhysRevB.86.115121 10.1063/1.2951888 10.1016/j.actamat.2011.12.040 10.1103/PhysRevB.50.8207 10.1103/PhysRevLett.85.3189 10.1038/nmat2273 10.1103/PhysRevB.60.13245 10.1063/1.3682585 10.1103/PhysRevB.71.165109 10.1103/PhysRevLett.87.099601 10.1038/nphys892 10.1103/PhysRevB.77.075203 10.1103/PhysRevLett.108.247214 10.1103/PhysRevB.84.195137 10.1143/JPSJ.74.246 10.1103/PhysRevB.36.1907 10.1103/PhysRevLett.87.099602 10.1103/PhysRevB.75.195210 10.1103/PhysRevLett.89.106402 10.1103/PhysRevB.27.1568 10.1103/PhysRevB.84.241107 10.1103/PhysRevB.86.224303 10.1063/1.2163979 10.1039/B919791P 10.1088/0953-8984/14/3/312 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2013 Copyright Nature Publishing Group Dec 2013 |
Copyright_xml | – notice: Springer Nature Limited 2013 – notice: Copyright Nature Publishing Group Dec 2013 |
DBID | AAYXX CITATION NPM 3V. 7SR 7X7 7XB 88E 88I 8AO 8BQ 8FD 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ JG9 K9. KB. L6V M0S M1P M2P M7S PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 7U5 L7M |
DOI | 10.1038/nmat3756 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Engineered Materials Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection ProQuest Health & Medical Collection Medical Database Science Database Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic MEDLINE - Academic Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Engineered Materials Abstracts ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection Materials Science Database ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) METADEX ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Materials Research Database MEDLINE - Academic Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1476-4660 |
EndPage | 1101 |
ExternalDocumentID | 3134420891 24056804 10_1038_nmat3756 |
Genre | Letter Correspondence |
GroupedDBID | --- 0R~ 29M 39C 3V. 4.4 5BI 70F 7X7 88E 88I 8AO 8FE 8FG 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFS ACGOD ACIWK ACUHS ADBBV AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BKKNO BPHCQ BVXVI CCPQU CZ9 D1I DB5 DU5 DWQXO EBS EE. EJD EMOBN ESN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ I-F KB. KC. L6V M1P M2P M7S MK~ NNMJJ O9- ODYON P2P PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RIG RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ACSTC AFANA ALPWD ATHPR CITATION PHGZM PHGZT NFIDA NPM 7SR 7XB 8BQ 8FD 8FK JG9 K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 7U5 L7M |
ID | FETCH-LOGICAL-c444t-ef12af53f15a7e845b274e6bfb09b0ba67c6fa7dd72f462c0b4437a51759abda3 |
IEDL.DBID | 7X7 |
ISSN | 1476-1122 1476-4660 |
IngestDate | Fri Jul 11 03:50:45 EDT 2025 Fri Jul 11 09:31:59 EDT 2025 Fri Jul 25 09:04:49 EDT 2025 Thu Apr 03 06:49:27 EDT 2025 Thu Apr 24 23:08:43 EDT 2025 Tue Jul 01 02:13:54 EDT 2025 Fri Feb 21 02:40:24 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c444t-ef12af53f15a7e845b274e6bfb09b0ba67c6fa7dd72f462c0b4437a51759abda3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Correspondence-3 content type line 23 ObjectType-Correspondence-1 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 24056804 |
PQID | 1460568543 |
PQPubID | 27576 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1567057945 proquest_miscellaneous_1461342921 proquest_journals_1460568543 pubmed_primary_24056804 crossref_citationtrail_10_1038_nmat3756 crossref_primary_10_1038_nmat3756 springer_journals_10_1038_nmat3756 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-12-01 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature materials |
PublicationTitleAbbrev | Nature Mater |
PublicationTitleAlternate | Nat Mater |
PublicationYear | 2013 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Sales (CR10) 1994; 50 Slack (CR6) 1995 Zeiringer (CR25) 2012; 60 Kawaguchi, Tanigaki, Yasukawa (CR14) 2000; 85 Coleman (CR13) 2007 Zlatić, Monnier (CR12) 2005; 71 Schäfer (CR19) 1985; 15 Hewson, Meyer (CR30) 2002; 14 Christensen (CR4) 2008; 7 Gegenwart, Si, Steglich (CR27) 2008; 4 Junod, Jarlborg, Muller (CR28) 1983; 27 Nakatsuji (CR23) 2002; 89 Candolfi (CR24) 2012; 111 Andergassen, Costi, Zlatić (CR34) 2011; 84 Hotta (CR3) 2007; 76 Pacheco, Carrillo-Cabrera, Tran, Paschen, Grin (CR15) 2001; 87 Rowe, Kuznetsov, Kuznetsova, Min (CR9) 2002; 35 Anno, Hokazono, Kawamura, Nagao, Matsubara (CR8) 2002 Fert, Levy (CR21) 1987; 36 Hotta, Ueda (CR33) 2012; 108 Aydemir (CR20) 2011; 84 Kovnir (CR18) 2011; 50 Euchner (CR5) 2012; 86 Mel’nikov (CR26) 1982; 35 Toberer, Christensen, Iversen, Snyder (CR1) 2008; 77 Herrmann, Tanigaki, Kawaguchi, Kuroshima, Zhou (CR35) 1999; 60 Jie (CR11) 2012; 86 Kawaguchi, Tanigaki, Yasukawa (CR16) 2001; 87 Tang, Li, Deng, Zhang (CR17) 2008; 104 Paschen (CR2) 2006 Nguyen (CR22) 2010; 39 Sanada (CR31) 2005; 74 Costi, Zlatić (CR32) 2012; 108 Suekuni, Avila, Umeo, Takabatake (CR29) 2007; 75 Saramat (CR7) 2006; 99 K Suekuni (BFnmat3756_CR29) 2007; 75 H Schäfer (BFnmat3756_CR19) 1985; 15 U Aydemir (BFnmat3756_CR20) 2011; 84 X Tang (BFnmat3756_CR17) 2008; 104 VI Mel’nikov (BFnmat3756_CR26) 1982; 35 P Gegenwart (BFnmat3756_CR27) 2008; 4 T Hotta (BFnmat3756_CR3) 2007; 76 K Kovnir (BFnmat3756_CR18) 2011; 50 S Sanada (BFnmat3756_CR31) 2005; 74 T Hotta (BFnmat3756_CR33) 2012; 108 S Paschen (BFnmat3756_CR2) 2006 A Fert (BFnmat3756_CR21) 1987; 36 S Nakatsuji (BFnmat3756_CR23) 2002; 89 H Anno (BFnmat3756_CR8) 2002 C Candolfi (BFnmat3756_CR24) 2012; 111 T Kawaguchi (BFnmat3756_CR16) 2001; 87 P Coleman (BFnmat3756_CR13) 2007 A Junod (BFnmat3756_CR28) 1983; 27 TA Costi (BFnmat3756_CR32) 2012; 108 H Euchner (BFnmat3756_CR5) 2012; 86 A Saramat (BFnmat3756_CR7) 2006; 99 LTK Nguyen (BFnmat3756_CR22) 2010; 39 M Christensen (BFnmat3756_CR4) 2008; 7 BC Sales (BFnmat3756_CR10) 1994; 50 Q Jie (BFnmat3756_CR11) 2012; 86 V Pacheco (BFnmat3756_CR15) 2001; 87 AC Hewson (BFnmat3756_CR30) 2002; 14 DM Rowe (BFnmat3756_CR9) 2002; 35 S Andergassen (BFnmat3756_CR34) 2011; 84 V Zlatić (BFnmat3756_CR12) 2005; 71 I Zeiringer (BFnmat3756_CR25) 2012; 60 RFW Herrmann (BFnmat3756_CR35) 1999; 60 T Kawaguchi (BFnmat3756_CR14) 2000; 85 ES Toberer (BFnmat3756_CR1) 2008; 77 GA Slack (BFnmat3756_CR6) 1995 12225209 - Phys Rev Lett. 2002 Sep 2;89(10):106402 11531605 - Phys Rev Lett. 2001 Aug 27;87(9):099601 20066193 - Dalton Trans. 2010 Jan 28;39(4):1071-7 23004326 - Phys Rev Lett. 2012 Jun 15;108(24):247214 21905757 - Inorg Chem. 2011 Oct 17;50(20):10387-96 9943035 - Phys Rev B Condens Matter. 1987 Aug 1;36(4):1907-1916 9974837 - Phys Rev B Condens Matter. 1994 Sep 15;50(12):8207-8213 11019298 - Phys Rev Lett. 2000 Oct 9;85(15):3189-92 18758454 - Nat Mater. 2008 Oct;7(10):811-5 22400764 - Phys Rev Lett. 2012 Jan 20;108(3):036402 |
References_xml | – volume: 50 start-page: 10387 year: 2011 end-page: 10396 ident: CR18 article-title: Introducing a magnetic guest to a tetrel-free clathrate: Synthesis, structure, and properties of Eu Ba Cu P (0≤ ≤1.5) publication-title: Inorg. Chem. doi: 10.1021/ic201474h – volume: 35 start-page: 511 year: 1982 end-page: 515 ident: CR26 article-title: Thermodynamics of the Kondo problem publication-title: JETP Lett. – volume: 108 start-page: 036402 year: 2012 ident: CR32 article-title: Charge Kondo anomalies in PbTe doped with Tl impurities publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.036402 – volume: 76 start-page: 084702 year: 2007 ident: CR3 article-title: Enhanced Kondo effect in an electron system dynamically coupled with local optical phonons publication-title: J. Phys. Soc. Jpn doi: 10.1143/JPSJ.76.084702 – volume: 35 start-page: 2183 year: 2002 end-page: 2186 ident: CR9 article-title: Electrical and thermal transport properties of intermediate-valence YbAl publication-title: J. Phys. D doi: 10.1088/0022-3727/35/17/315 – volume: 15 start-page: 1 year: 1985 end-page: 42 ident: CR19 article-title: On the problem of polar intermetallic compounds: The stimulation of E. Zintl’s work for the modern chemistry of intermetallics publication-title: Ann. Rev. Mater. Sci. doi: 10.1146/annurev.ms.15.080185.000245 – volume: 86 start-page: 115121 year: 2012 ident: CR11 article-title: Electronic thermoelectric power factor and metal-insulator transition in FeSb publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.115121 – volume: 104 start-page: 013706 year: 2008 ident: CR17 article-title: High temperature thermoelectric transport properties of double-atom-filled clathrate compounds Yb Ba Ga Ge publication-title: J. Appl. Phys. doi: 10.1063/1.2951888 – volume: 60 start-page: 2324 year: 2012 end-page: 2336 ident: CR25 article-title: The ternary system Au-Ba-Si: Clathrate solution, electronic structure, physical properties, phase eqilibria and crystal structures publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.12.040 – volume: 50 start-page: 8207 year: 1994 end-page: 8213 ident: CR10 article-title: Magnetic, transport, and structural properties of Fe Ir Si publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.8207 – year: 2006 ident: CR2 publication-title: Thermoelectrics Handbook – volume: 85 start-page: 3189 year: 2000 end-page: 3192 ident: CR14 article-title: Silicon clathrate with an -electron system publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.3189 – volume: 7 start-page: 811 year: 2008 end-page: 815 ident: CR4 article-title: Avoided crossing of rattler modes in thermoelectric materials publication-title: Nature Mater. doi: 10.1038/nmat2273 – volume: 60 start-page: 13245 year: 1999 end-page: 13248 ident: CR35 article-title: Electronic structure of Si and Ge gold-doped clathrates publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.60.13245 – volume: 111 start-page: 043706 year: 2012 ident: CR24 article-title: High temperature thermoelectric properties of the type-I clathrate Ba Au Si publication-title: J. Appl. Phys. doi: 10.1063/1.3682585 – volume: 71 start-page: 165109 year: 2005 ident: CR12 article-title: Theory of the thermoelectricity of intermetallic compounds with Ce or Yb ions publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.165109 – volume: 87 start-page: 099601 year: 2001 ident: CR15 article-title: Comment on “silicon clathrate with an -electron system” publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.099601 – volume: 4 start-page: 186 year: 2008 end-page: 197 ident: CR27 article-title: Quantum criticality in heavy-fermion metals publication-title: Nature Phys. doi: 10.1038/nphys892 – volume: 77 start-page: 075203 year: 2008 ident: CR1 article-title: High temperature thermoelectric efficiency in Ba Ga Ge publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.075203 – year: 1995 ident: CR6 publication-title: CRC Handbook of Thermoelectrics – volume: 108 start-page: 247214 year: 2012 ident: CR33 article-title: Electric dipolar Kondo effect emerging from a vibrating magnetic ion publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.247214 – volume: 84 start-page: 195137 year: 2011 ident: CR20 article-title: Low-temperature thermoelectric, galvanomagnetic and thermodynamic properties of the type-I clatharate Ba Au Si publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.195137 – volume: 74 start-page: 246 year: 2005 end-page: 249 ident: CR31 article-title: Exotic heavy-fermion state in filled skutterudite SmOs Sb publication-title: J. Phys. Soc. Jpn doi: 10.1143/JPSJ.74.246 – volume: 36 start-page: 1907 year: 1987 end-page: 1916 ident: CR21 article-title: Theory of the Hall effect in heavy-fermion compounds publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.36.1907 – volume: 87 start-page: 099602 year: 2001 ident: CR16 article-title: Comment on “silicon clathrate with an -electron system”: Reply publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.099602 – volume: 75 start-page: 195210 year: 2007 ident: CR29 article-title: Cage-size control of guest vibration and thermal conductivity in Sr Ga Si Ge publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.195210 – volume: 89 start-page: 106402 year: 2002 ident: CR23 article-title: Intersite coupling effects in a Kondo lattice publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.106402 – start-page: 95 year: 2007 end-page: 148 ident: CR13 publication-title: Fundamentals and Theory – volume: 27 start-page: 1568 year: 1983 end-page: 1585 ident: CR28 article-title: Heat-capacity analysis of a large number of 15-type compounds publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.27.1568 – volume: 84 start-page: 241107(R) year: 2011 ident: CR34 article-title: Mechanism for large thermoelectric power in molecular quantum dots described by the negative-U Anderson model publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.241107 – volume: 86 start-page: 224303 year: 2012 ident: CR5 article-title: Phononic filter effect of rattling phonons in the thermoelectric clathrate Ba Ge Ni publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.224303 – volume: 99 start-page: 023708 year: 2006 ident: CR7 article-title: Large thermoelectric figure of merit at high temperature in Czochralski-grown clathrate Ba Ga Ge publication-title: J. Appl. Phys. doi: 10.1063/1.2163979 – start-page: 77 year: 2002 end-page: 80 ident: CR8 article-title: Thermoelectric properties of Ba Ga Ge clathrate compounds publication-title: Proc. 21st Int. Conf. on Thermoelectrics – volume: 39 start-page: 1071 year: 2010 end-page: 1077 ident: CR22 article-title: Atomic ordering and thermoelectric properties of the n-type clathrate Ba Ni Ge □ publication-title: Dalton Trans. doi: 10.1039/B919791P – volume: 14 start-page: 427 year: 2002 end-page: 445 ident: CR30 article-title: Numerical renormalization group study of the Anderson-Holstein impurity model publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/14/3/312 – volume: 60 start-page: 2324 year: 2012 ident: BFnmat3756_CR25 publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.12.040 – volume: 60 start-page: 13245 year: 1999 ident: BFnmat3756_CR35 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.60.13245 – volume: 7 start-page: 811 year: 2008 ident: BFnmat3756_CR4 publication-title: Nature Mater. doi: 10.1038/nmat2273 – volume: 87 start-page: 099601 year: 2001 ident: BFnmat3756_CR15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.099601 – volume: 108 start-page: 036402 year: 2012 ident: BFnmat3756_CR32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.036402 – volume: 99 start-page: 023708 year: 2006 ident: BFnmat3756_CR7 publication-title: J. Appl. Phys. doi: 10.1063/1.2163979 – start-page: 95 volume-title: Fundamentals and Theory year: 2007 ident: BFnmat3756_CR13 – volume: 36 start-page: 1907 year: 1987 ident: BFnmat3756_CR21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.36.1907 – volume: 74 start-page: 246 year: 2005 ident: BFnmat3756_CR31 publication-title: J. Phys. Soc. Jpn doi: 10.1143/JPSJ.74.246 – volume: 84 start-page: 241107(R) year: 2011 ident: BFnmat3756_CR34 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.241107 – volume: 111 start-page: 043706 year: 2012 ident: BFnmat3756_CR24 publication-title: J. Appl. Phys. doi: 10.1063/1.3682585 – volume: 85 start-page: 3189 year: 2000 ident: BFnmat3756_CR14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.3189 – volume: 14 start-page: 427 year: 2002 ident: BFnmat3756_CR30 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/14/3/312 – volume: 76 start-page: 084702 year: 2007 ident: BFnmat3756_CR3 publication-title: J. Phys. Soc. Jpn doi: 10.1143/JPSJ.76.084702 – volume: 50 start-page: 8207 year: 1994 ident: BFnmat3756_CR10 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.8207 – volume: 4 start-page: 186 year: 2008 ident: BFnmat3756_CR27 publication-title: Nature Phys. doi: 10.1038/nphys892 – volume: 15 start-page: 1 year: 1985 ident: BFnmat3756_CR19 publication-title: Ann. Rev. Mater. Sci. doi: 10.1146/annurev.ms.15.080185.000245 – volume-title: CRC Handbook of Thermoelectrics year: 1995 ident: BFnmat3756_CR6 – volume: 86 start-page: 115121 year: 2012 ident: BFnmat3756_CR11 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.115121 – volume: 35 start-page: 511 year: 1982 ident: BFnmat3756_CR26 publication-title: JETP Lett. – volume: 104 start-page: 013706 year: 2008 ident: BFnmat3756_CR17 publication-title: J. Appl. Phys. doi: 10.1063/1.2951888 – volume: 77 start-page: 075203 year: 2008 ident: BFnmat3756_CR1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.075203 – volume: 86 start-page: 224303 year: 2012 ident: BFnmat3756_CR5 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.224303 – volume: 39 start-page: 1071 year: 2010 ident: BFnmat3756_CR22 publication-title: Dalton Trans. doi: 10.1039/B919791P – volume-title: Thermoelectrics Handbook year: 2006 ident: BFnmat3756_CR2 – volume: 84 start-page: 195137 year: 2011 ident: BFnmat3756_CR20 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.195137 – volume: 27 start-page: 1568 year: 1983 ident: BFnmat3756_CR28 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.27.1568 – volume: 50 start-page: 10387 year: 2011 ident: BFnmat3756_CR18 publication-title: Inorg. Chem. doi: 10.1021/ic201474h – volume: 75 start-page: 195210 year: 2007 ident: BFnmat3756_CR29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.195210 – volume: 71 start-page: 165109 year: 2005 ident: BFnmat3756_CR12 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.165109 – volume: 87 start-page: 099602 year: 2001 ident: BFnmat3756_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.099602 – volume: 108 start-page: 247214 year: 2012 ident: BFnmat3756_CR33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.247214 – start-page: 77 volume-title: Proc. 21st Int. Conf. on Thermoelectrics year: 2002 ident: BFnmat3756_CR8 – volume: 35 start-page: 2183 year: 2002 ident: BFnmat3756_CR9 publication-title: J. Phys. D doi: 10.1088/0022-3727/35/17/315 – volume: 89 start-page: 106402 year: 2002 ident: BFnmat3756_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.106402 – reference: 23004326 - Phys Rev Lett. 2012 Jun 15;108(24):247214 – reference: 9974837 - Phys Rev B Condens Matter. 1994 Sep 15;50(12):8207-8213 – reference: 18758454 - Nat Mater. 2008 Oct;7(10):811-5 – reference: 22400764 - Phys Rev Lett. 2012 Jan 20;108(3):036402 – reference: 12225209 - Phys Rev Lett. 2002 Sep 2;89(10):106402 – reference: 9943035 - Phys Rev B Condens Matter. 1987 Aug 1;36(4):1907-1916 – reference: 20066193 - Dalton Trans. 2010 Jan 28;39(4):1071-7 – reference: 21905757 - Inorg Chem. 2011 Oct 17;50(20):10387-96 – reference: 11531605 - Phys Rev Lett. 2001 Aug 27;87(9):099601 – reference: 11019298 - Phys Rev Lett. 2000 Oct 9;85(15):3189-92 |
SSID | ssj0021556 |
Score | 2.4141471 |
Snippet | Clathrate materials have been the subject of intense investigation because of their beneficial properties, in particular their low thermal conductivities. Now,... The increasing worldwide energy consumption calls for the design of more efficient energy systems. Thermoelectrics could be used to convert waste heat back to... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1096 |
SubjectTerms | 639/301/119/997 639/301/299/2736 639/301/930 Biomaterials Cerium Clathrates Condensed Matter Physics Conductivity Crystal structure Earth Energy consumption Energy management Heat transfer High temperature Intermetallics letter Low temperature Materials Science Nanotechnology Optical and Electronic Materials Photovoltaic cells Rare earth elements Solar energy Thermal conductivity Waste heat |
Title | Thermopower enhancement by encapsulating cerium in clathrate cages |
URI | https://link.springer.com/article/10.1038/nmat3756 https://www.ncbi.nlm.nih.gov/pubmed/24056804 https://www.proquest.com/docview/1460568543 https://www.proquest.com/docview/1461342921 https://www.proquest.com/docview/1567057945 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZ4XOCAeDMeU0FInKq1TZq0J8QQA3GYEAJptypJE4YE3WDbgX-P3bXbBIhLpbZuY8VJbMeOP4DzSHHJDGd-Yiz3uWbOT02I80qkLrdpTjWyKNuiK-6e-X0v7lUbbqMqrbJeE8uFOh8Y2iNvhRTAE0nM2eXwwyfUKIquVhAay7BKpcsopUv25g4X6srp6SIpfLQrorr4LEtaBdqDTBJs9aI6-mVj_oqPlmqnswkblb3oXU0FvAVLttiG9YUqgjvQRlF_vg-GhHfm2aJPcqQ9P09_4a1R6AdTwlvx4hn8YvLuvRaewSd9qhLhGVxQRrvw3Ll5ur7zK2gE33DOx751YaRczFwYK2kTHmv0Lq3QTgepDrQS0ginZJ7LyHERmUBzzqSK0VhIlc4V24OVYlDYA_CkQQ2v0Y_SLucBsypyTqvAodZyyrC0ARd1D2WmqhtO8BVvWRm_ZklW92UDTmeUw2mtjD9ojutOzqrZMsrmssVfzF7jOKfghSrsYFLShIywtcJ_aGIh6XAtjxuwPxXgjBG0XLCJgDfgrJboAgM_uDz8n8sjWIsIFaPMajmGlfHnxJ6gbTLWzXIA4jXp3DZhtX3TfXj8BvTu5t8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGeAAeEJ_jYEBAIJ6qtYmbtA8I8XXc2NjTJu2tJGnCkLbebXcntH-KvxG7vR4nhva2x7Zuazl2bMeJfwCvpEWjPKqk8AETdCompc_IrnQZ61DW3COLd1vs6dEBfj3MD9fgd38WhrdV9nNiO1HXY89r5FsZF_B0kaN6NzlNGDWKq6s9hEanFjvh_BelbNO3259ofF9LOfy8_3GULFAFEo-IsyTETNqYq5jl1oQCc0eJWdAuurR0qbPaeB2tqWsjI2rpU4eojM3Jz5bW1VbRd6_BdVSqZIsqhl-WCR755u40k9EJxTGyb3ariq2G4k9lGCZ71f1diGkv1GNbNze8A7cX8al43ynUXVgLzT24tdK18D58INU6OxlPGF9NhOaI9YbXGIU7p0tvKe_mDXbND-HpjfmJ-NkIT3eOuCuF8DSBTR_AwZUI7SGsN-MmPAJhPEUUjvI2F2tMVbAyRmfTSF4yWq_KAbzpJVT5RZ9yhss4rtp6uSqqXpYDeLGknHS9Of5Ds9kLuVpY57T6q0v0ieVjsisultgmjOctTaYYyyu7hCbXhg_zYj6AjW4Al4xQpES_SHEAL_sRXWHgHy4fX87lc7gx2v-2W-1u7-08gZuSETnaHTWbsD47m4enFBfN3LNWGQV8v2rt_wNy_yKC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLbaIqH2gHiWhQIDAnGKNplnckAIKKuWoooDlfYWZiYzLVKbXbq7Qv1r_DrsPLYrinrrMYmTWB7P2B57_AG85lYa4aVIch9kIp2ISeEznFe6iFUoKuqRRdUWh3rvSH4Zq_Ea_OnPwlBZZb8mNgt1NfG0Rz7MKIGncyXFMHZlEd92R--nvxJCkKJMaw-n0arIQbj4jeHb7N3-Lo71G85Hn79_2ks6hIHESynnSYgZt1GJmClrQi6VwyAtaBddWrjUWW28jtZUleFRau5TJ6UwVqHNLayrrMDvrsMtI1RGc8yML4M9tNPtySajE_RpeN_4VuTDGn1RYQgye9UUXvFvr-RmG5M3ugt3Ol-VfWiV6x6shfo-bK10MHwAH1HNzs8mU8JaY6E-IR2i_UbmLvDSW4zBqdiuPmYe31icsZ8183jnhDpUMI-L2ewhHN2I0B7BRj2pw2NgxqN34TCGc7GSqQiWx-hsGtFiRutFMYC3vYRK3_UsJ-iM07LJnYu87GU5gJdLymnbp-M_NDu9kMtups7KS73CTywf4xyjxImtw2TR0GSCcL2ya2iUNnSwV6oBbLcDuGQEvSb8RSoH8Kof0RUG_uHyyfVcvoDbqPfl1_3Dg6ewyQmcoymu2YGN-fkiPEMXae6eN7rI4MdNK_9fj0Emrw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermopower+enhancement+by+encapsulating+cerium+in+clathrate+cages&rft.jtitle=Nature+materials&rft.au=Prokofiev%2C+A&rft.au=Sidorenko%2C+A&rft.au=Hradil%2C+K&rft.au=Ikeda%2C+M&rft.date=2013-12-01&rft.issn=1476-1122&rft.volume=12&rft.issue=12&rft.spage=1096&rft.epage=1101&rft_id=info:doi/10.1038%2Fnmat3756&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon |