Thermopower enhancement by encapsulating cerium in clathrate cages

Clathrate materials have been the subject of intense investigation because of their beneficial properties, in particular their low thermal conductivities. Now, improved thermopower at high temperatures arising from strong electron correlation effects has been achieved in a type-I clathrate containin...

Full description

Saved in:
Bibliographic Details
Published inNature materials Vol. 12; no. 12; pp. 1096 - 1101
Main Authors Prokofiev, A., Sidorenko, A., Hradil, K., Ikeda, M., Svagera, R., Waas, M., Winkler, H., Neumaier, K., Paschen, S.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.12.2013
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Clathrate materials have been the subject of intense investigation because of their beneficial properties, in particular their low thermal conductivities. Now, improved thermopower at high temperatures arising from strong electron correlation effects has been achieved in a type-I clathrate containing cerium guest atoms. The increasing worldwide energy consumption calls for the design of more efficient energy systems. Thermoelectrics could be used to convert waste heat back to useful electric energy if only more efficient materials were available. The ideal thermoelectric material combines high electrical conductivity and thermopower with low thermal conductivity. In this regard, the intermetallic type-I clathrates show promise with their exceedingly low lattice thermal conductivities 1 . Here we report the successful incorporation of cerium as a guest atom into the clathrate crystal structure. In many simpler intermetallic compounds, this rare earth element is known to lead, through the Kondo interaction, to strong correlation phenomena including the occurrence of giant thermopowers at low temperatures 2 . Indeed, we observe a 50% enhancement of the thermopower compared with a rare-earth-free reference material. Importantly, this enhancement occurs at high temperatures and we suggest that a rattling-enhanced Kondo interaction 3 underlies this effect.
AbstractList The increasing worldwide energy consumption calls for the design of more efficient energy systems. Thermoelectrics could be used to convert waste heat back to useful electric energy if only more efficient materials were available. The ideal thermoelectric material combines high electrical conductivity and thermopower with low thermal conductivity. In this regard, the intermetallic type-I clathrates show promise with their exceedingly low lattice thermal conductivities. Here we report the successful incorporation of cerium as a guest atom into the clathrate crystal structure. In many simpler intermetallic compounds, this rare earth element is known to lead, through the Kondo interaction, to strong correlation phenomena including the occurrence of giant thermopowers at low temperatures. Indeed, we observe a 50% enhancement of the thermopower compared with a rare-earth-free reference material. Importantly, this enhancement occurs at high temperatures and we suggest that a rattling-enhanced Kondo interaction underlies this effect.
The increasing worldwide energy consumption calls for the design of more efficient energy systems. Thermoelectrics could be used to convert waste heat back to useful electric energy if only more efficient materials were available. The ideal thermoelectric material combines high electrical conductivity and thermopower with low thermal conductivity. In this regard, the intermetallic type-I clathrates show promise with their exceedingly low lattice thermal conductivities. Here we report the successful incorporation of cerium as a guest atom into the clathrate crystal structure. In many simpler intermetallic compounds, this rare earth element is known to lead, through the Kondo interaction, to strong correlation phenomena including the occurrence of giant thermopowers at low temperatures. Indeed, we observe a 50% enhancement of the thermopower compared with a rare-earth-free reference material. Importantly, this enhancement occurs at high temperatures and we suggest that a rattling-enhanced Kondo interaction underlies this effect.The increasing worldwide energy consumption calls for the design of more efficient energy systems. Thermoelectrics could be used to convert waste heat back to useful electric energy if only more efficient materials were available. The ideal thermoelectric material combines high electrical conductivity and thermopower with low thermal conductivity. In this regard, the intermetallic type-I clathrates show promise with their exceedingly low lattice thermal conductivities. Here we report the successful incorporation of cerium as a guest atom into the clathrate crystal structure. In many simpler intermetallic compounds, this rare earth element is known to lead, through the Kondo interaction, to strong correlation phenomena including the occurrence of giant thermopowers at low temperatures. Indeed, we observe a 50% enhancement of the thermopower compared with a rare-earth-free reference material. Importantly, this enhancement occurs at high temperatures and we suggest that a rattling-enhanced Kondo interaction underlies this effect.
The increasing worldwide energy consumption calls for the design of more efficient energy systems. Thermoelectrics could be used to convert waste heat back to useful electric energy if only more efficient materials were available. The ideal thermoelectric material combines high electrical conductivity and thermopower with low thermal conductivity. In this regard, the intermetallic type-I clathrates show promise with their exceedingly low lattice thermal conductivities. Here we report the successful incorporation of cerium as a guest atom into the clathrate crystal structure. In many simpler intermetallic compounds, this rare earth element is known to lead, through the Kondo interaction, to strong correlation phenomena including the occurrence of giant thermopowers at low temperatures. Indeed, we observe a 50% enhancement of the thermopower compared with a rare-earth-free reference material. Importantly, this enhancement occurs at high temperatures and we suggest that a rattling-enhanced Kondo interaction underlies this effect. [PUBLICATION ABSTRACT]
Clathrate materials have been the subject of intense investigation because of their beneficial properties, in particular their low thermal conductivities. Now, improved thermopower at high temperatures arising from strong electron correlation effects has been achieved in a type-I clathrate containing cerium guest atoms. The increasing worldwide energy consumption calls for the design of more efficient energy systems. Thermoelectrics could be used to convert waste heat back to useful electric energy if only more efficient materials were available. The ideal thermoelectric material combines high electrical conductivity and thermopower with low thermal conductivity. In this regard, the intermetallic type-I clathrates show promise with their exceedingly low lattice thermal conductivities 1 . Here we report the successful incorporation of cerium as a guest atom into the clathrate crystal structure. In many simpler intermetallic compounds, this rare earth element is known to lead, through the Kondo interaction, to strong correlation phenomena including the occurrence of giant thermopowers at low temperatures 2 . Indeed, we observe a 50% enhancement of the thermopower compared with a rare-earth-free reference material. Importantly, this enhancement occurs at high temperatures and we suggest that a rattling-enhanced Kondo interaction 3 underlies this effect.
Author Waas, M.
Hradil, K.
Ikeda, M.
Sidorenko, A.
Winkler, H.
Neumaier, K.
Svagera, R.
Paschen, S.
Prokofiev, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Prokofiev
  fullname: Prokofiev, A.
  email: prokofiev@ifp.tuwien.ac.at
  organization: Institute of Solid State Physics, Vienna University of Technology
– sequence: 2
  givenname: A.
  surname: Sidorenko
  fullname: Sidorenko, A.
  organization: Institute of Solid State Physics, Vienna University of Technology
– sequence: 3
  givenname: K.
  surname: Hradil
  fullname: Hradil, K.
  organization: X-Ray Center, Vienna University of Technology
– sequence: 4
  givenname: M.
  surname: Ikeda
  fullname: Ikeda, M.
  organization: Institute of Solid State Physics, Vienna University of Technology
– sequence: 5
  givenname: R.
  surname: Svagera
  fullname: Svagera, R.
  organization: Institute of Solid State Physics, Vienna University of Technology
– sequence: 6
  givenname: M.
  surname: Waas
  fullname: Waas, M.
  organization: Institute of Solid State Physics, Vienna University of Technology
– sequence: 7
  givenname: H.
  surname: Winkler
  fullname: Winkler, H.
  organization: Institute of Solid State Physics, Vienna University of Technology
– sequence: 8
  givenname: K.
  surname: Neumaier
  fullname: Neumaier, K.
  organization: Walther-Meißner-Institute for Low Temperature Research
– sequence: 9
  givenname: S.
  surname: Paschen
  fullname: Paschen, S.
  email: paschen@ifp.tuwien.ac.at
  organization: Institute of Solid State Physics, Vienna University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24056804$$D View this record in MEDLINE/PubMed
BookMark eNqF0VtLwzAUB_AgE3dR8BNIwRd96EzSXLZHHd5g4Mt8LifZ6dbRpjNpkX17O7apDMGnXPjlcPI_fdJxlUNCLhkdMpqM7lwJdaKlOiE9JrSKhVK0s98zxnmX9ENYUcqZlOqMdLmgUo2o6JGH2RJ9Wa2rT_QRuiU4iyW6OjKb9mhhHZoC6twtIos-b8ood5Ftb5YeaowsLDCck9MMioAX-3VA3p8eZ5OXePr2_Dq5n8ZWCFHHmDEOmUwyJkHjSEjDtUBlMkPHhhpQ2qoM9HyueSYUt9QIkWiQTMsxmDkkA3Kzq7v21UeDoU7LPFgsCnBYNSFlUmkq9VjI_6lQLBF8zFlLr4_oqmq8az-yVduYpEhadbVXjSlxnq59XoLfpIcgWzDcAeurEDxmqc3rNrjK1R7yImU03U4qPUzqp8XvB4eaf9DbHQ0tcQv0v1o8tl8jMKCt
CitedBy_id crossref_primary_10_1016_j_jmmm_2019_165433
crossref_primary_10_1016_j_commatsci_2016_05_013
crossref_primary_10_1007_s11664_014_3139_9
crossref_primary_10_1016_j_jmat_2018_08_003
crossref_primary_10_35848_1347_4065_ab69e1
crossref_primary_10_1016_j_jallcom_2022_167432
crossref_primary_10_1063_5_0119852
crossref_primary_10_1107_S0108270113030011
crossref_primary_10_1021_nl501436w
crossref_primary_10_1088_2515_7655_ac49dc
crossref_primary_10_7567_JJAP_56_05DC01
crossref_primary_10_3390_ma15103439
crossref_primary_10_1021_acs_chemmater_6b01752
crossref_primary_10_1039_C4CE00837E
crossref_primary_10_1007_s11664_016_5013_4
crossref_primary_10_1103_PhysRevB_96_195156
crossref_primary_10_1002_admi_201700517
crossref_primary_10_1039_D4CC02104E
crossref_primary_10_1039_C8QI00366A
crossref_primary_10_1039_C9CE01367A
crossref_primary_10_3390_cryst9060322
crossref_primary_10_1016_j_mtla_2019_100247
crossref_primary_10_1016_j_intermet_2016_11_006
crossref_primary_10_1021_acs_chemmater_4c02098
crossref_primary_10_1021_acs_inorgchem_5b02223
crossref_primary_10_3390_ma9070587
crossref_primary_10_1039_C4TA00539B
crossref_primary_10_1021_jacs_6b08748
crossref_primary_10_1039_C8TC03142H
crossref_primary_10_1016_j_physb_2016_01_017
crossref_primary_10_1038_nmat4461
crossref_primary_10_3390_ma9040236
crossref_primary_10_1107_S205252062101310X
crossref_primary_10_12693_APhysPolA_131_1006
crossref_primary_10_1016_j_cej_2019_123589
crossref_primary_10_1021_acsaem_9b00495
crossref_primary_10_1021_ic503086a
crossref_primary_10_1007_s10854_016_5113_1
crossref_primary_10_1016_j_matpr_2019_02_068
crossref_primary_10_1002_adma_201905703
crossref_primary_10_1557_opl_2015_269
crossref_primary_10_1021_acs_cgd_5b00461
crossref_primary_10_1007_s40843_024_2916_5
crossref_primary_10_1038_s42254_020_00262_6
crossref_primary_10_1063_5_0200462
crossref_primary_10_1002_anie_202011120
crossref_primary_10_1016_j_cryogenics_2022_103550
crossref_primary_10_1021_acs_chemmater_0c02758
crossref_primary_10_3390_cryst13030453
crossref_primary_10_1021_ic5021065
crossref_primary_10_1021_jacs_6b09222
crossref_primary_10_1002_aelm_202000782
crossref_primary_10_1016_j_actamat_2017_02_064
crossref_primary_10_1080_09506608_2016_1183075
crossref_primary_10_1103_PhysRevB_105_214114
crossref_primary_10_1016_j_rinp_2018_10_017
crossref_primary_10_1038_srep07028
crossref_primary_10_1088_1361_648X_ac1d15
crossref_primary_10_1063_1_5021094
crossref_primary_10_1002_aelm_201600312
crossref_primary_10_1007_s11664_015_4259_6
crossref_primary_10_1016_j_spmi_2016_09_034
crossref_primary_10_2497_jjspm_67_529
crossref_primary_10_1557_mre_2015_9
crossref_primary_10_1002_ange_202011120
crossref_primary_10_1016_j_mser_2016_08_001
crossref_primary_10_1021_acs_inorgchem_5b00348
crossref_primary_10_1016_j_ceramint_2022_09_360
crossref_primary_10_1039_C5CE02143J
crossref_primary_10_3390_inorganics2010079
crossref_primary_10_1016_j_chempr_2018_04_001
crossref_primary_10_1016_j_jssc_2016_01_020
crossref_primary_10_3390_inorganics7060074
crossref_primary_10_7567_JJAP_54_091801
crossref_primary_10_1016_j_mser_2018_09_001
Cites_doi 10.1021/ic201474h
10.1103/PhysRevLett.108.036402
10.1143/JPSJ.76.084702
10.1088/0022-3727/35/17/315
10.1146/annurev.ms.15.080185.000245
10.1103/PhysRevB.86.115121
10.1063/1.2951888
10.1016/j.actamat.2011.12.040
10.1103/PhysRevB.50.8207
10.1103/PhysRevLett.85.3189
10.1038/nmat2273
10.1103/PhysRevB.60.13245
10.1063/1.3682585
10.1103/PhysRevB.71.165109
10.1103/PhysRevLett.87.099601
10.1038/nphys892
10.1103/PhysRevB.77.075203
10.1103/PhysRevLett.108.247214
10.1103/PhysRevB.84.195137
10.1143/JPSJ.74.246
10.1103/PhysRevB.36.1907
10.1103/PhysRevLett.87.099602
10.1103/PhysRevB.75.195210
10.1103/PhysRevLett.89.106402
10.1103/PhysRevB.27.1568
10.1103/PhysRevB.84.241107
10.1103/PhysRevB.86.224303
10.1063/1.2163979
10.1039/B919791P
10.1088/0953-8984/14/3/312
ContentType Journal Article
Copyright Springer Nature Limited 2013
Copyright Nature Publishing Group Dec 2013
Copyright_xml – notice: Springer Nature Limited 2013
– notice: Copyright Nature Publishing Group Dec 2013
DBID AAYXX
CITATION
NPM
3V.
7SR
7X7
7XB
88E
88I
8AO
8BQ
8FD
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JG9
K9.
KB.
L6V
M0S
M1P
M2P
M7S
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
7U5
L7M
DOI 10.1038/nmat3756
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Engineered Materials Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Engineered Materials Abstracts
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
Materials Science Database
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
METADEX
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Materials Research Database
MEDLINE - Academic
Materials Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1476-4660
EndPage 1101
ExternalDocumentID 3134420891
24056804
10_1038_nmat3756
Genre Letter
Correspondence
GroupedDBID ---
0R~
29M
39C
3V.
4.4
5BI
70F
7X7
88E
88I
8AO
8FE
8FG
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFS
ACGOD
ACIWK
ACUHS
ADBBV
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BKKNO
BPHCQ
BVXVI
CCPQU
CZ9
D1I
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
KC.
L6V
M1P
M2P
M7S
MK~
NNMJJ
O9-
ODYON
P2P
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RIG
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ACSTC
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
NFIDA
NPM
7SR
7XB
8BQ
8FD
8FK
JG9
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
7U5
L7M
ID FETCH-LOGICAL-c444t-ef12af53f15a7e845b274e6bfb09b0ba67c6fa7dd72f462c0b4437a51759abda3
IEDL.DBID 7X7
ISSN 1476-1122
1476-4660
IngestDate Fri Jul 11 03:50:45 EDT 2025
Fri Jul 11 09:31:59 EDT 2025
Fri Jul 25 09:04:49 EDT 2025
Thu Apr 03 06:49:27 EDT 2025
Thu Apr 24 23:08:43 EDT 2025
Tue Jul 01 02:13:54 EDT 2025
Fri Feb 21 02:40:24 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-ef12af53f15a7e845b274e6bfb09b0ba67c6fa7dd72f462c0b4437a51759abda3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Correspondence-3
content type line 23
ObjectType-Correspondence-1
ObjectType-Article-2
ObjectType-Feature-1
PMID 24056804
PQID 1460568543
PQPubID 27576
PageCount 6
ParticipantIDs proquest_miscellaneous_1567057945
proquest_miscellaneous_1461342921
proquest_journals_1460568543
pubmed_primary_24056804
crossref_citationtrail_10_1038_nmat3756
crossref_primary_10_1038_nmat3756
springer_journals_10_1038_nmat3756
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-12-01
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature materials
PublicationTitleAbbrev Nature Mater
PublicationTitleAlternate Nat Mater
PublicationYear 2013
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Sales (CR10) 1994; 50
Slack (CR6) 1995
Zeiringer (CR25) 2012; 60
Kawaguchi, Tanigaki, Yasukawa (CR14) 2000; 85
Coleman (CR13) 2007
Zlatić, Monnier (CR12) 2005; 71
Schäfer (CR19) 1985; 15
Hewson, Meyer (CR30) 2002; 14
Christensen (CR4) 2008; 7
Gegenwart, Si, Steglich (CR27) 2008; 4
Junod, Jarlborg, Muller (CR28) 1983; 27
Nakatsuji (CR23) 2002; 89
Candolfi (CR24) 2012; 111
Andergassen, Costi, Zlatić (CR34) 2011; 84
Hotta (CR3) 2007; 76
Pacheco, Carrillo-Cabrera, Tran, Paschen, Grin (CR15) 2001; 87
Rowe, Kuznetsov, Kuznetsova, Min (CR9) 2002; 35
Anno, Hokazono, Kawamura, Nagao, Matsubara (CR8) 2002
Fert, Levy (CR21) 1987; 36
Hotta, Ueda (CR33) 2012; 108
Aydemir (CR20) 2011; 84
Kovnir (CR18) 2011; 50
Euchner (CR5) 2012; 86
Mel’nikov (CR26) 1982; 35
Toberer, Christensen, Iversen, Snyder (CR1) 2008; 77
Herrmann, Tanigaki, Kawaguchi, Kuroshima, Zhou (CR35) 1999; 60
Jie (CR11) 2012; 86
Kawaguchi, Tanigaki, Yasukawa (CR16) 2001; 87
Tang, Li, Deng, Zhang (CR17) 2008; 104
Paschen (CR2) 2006
Nguyen (CR22) 2010; 39
Sanada (CR31) 2005; 74
Costi, Zlatić (CR32) 2012; 108
Suekuni, Avila, Umeo, Takabatake (CR29) 2007; 75
Saramat (CR7) 2006; 99
K Suekuni (BFnmat3756_CR29) 2007; 75
H Schäfer (BFnmat3756_CR19) 1985; 15
U Aydemir (BFnmat3756_CR20) 2011; 84
X Tang (BFnmat3756_CR17) 2008; 104
VI Mel’nikov (BFnmat3756_CR26) 1982; 35
P Gegenwart (BFnmat3756_CR27) 2008; 4
T Hotta (BFnmat3756_CR3) 2007; 76
K Kovnir (BFnmat3756_CR18) 2011; 50
S Sanada (BFnmat3756_CR31) 2005; 74
T Hotta (BFnmat3756_CR33) 2012; 108
S Paschen (BFnmat3756_CR2) 2006
A Fert (BFnmat3756_CR21) 1987; 36
S Nakatsuji (BFnmat3756_CR23) 2002; 89
H Anno (BFnmat3756_CR8) 2002
C Candolfi (BFnmat3756_CR24) 2012; 111
T Kawaguchi (BFnmat3756_CR16) 2001; 87
P Coleman (BFnmat3756_CR13) 2007
A Junod (BFnmat3756_CR28) 1983; 27
TA Costi (BFnmat3756_CR32) 2012; 108
H Euchner (BFnmat3756_CR5) 2012; 86
A Saramat (BFnmat3756_CR7) 2006; 99
LTK Nguyen (BFnmat3756_CR22) 2010; 39
M Christensen (BFnmat3756_CR4) 2008; 7
BC Sales (BFnmat3756_CR10) 1994; 50
Q Jie (BFnmat3756_CR11) 2012; 86
V Pacheco (BFnmat3756_CR15) 2001; 87
AC Hewson (BFnmat3756_CR30) 2002; 14
DM Rowe (BFnmat3756_CR9) 2002; 35
S Andergassen (BFnmat3756_CR34) 2011; 84
V Zlatić (BFnmat3756_CR12) 2005; 71
I Zeiringer (BFnmat3756_CR25) 2012; 60
RFW Herrmann (BFnmat3756_CR35) 1999; 60
T Kawaguchi (BFnmat3756_CR14) 2000; 85
ES Toberer (BFnmat3756_CR1) 2008; 77
GA Slack (BFnmat3756_CR6) 1995
12225209 - Phys Rev Lett. 2002 Sep 2;89(10):106402
11531605 - Phys Rev Lett. 2001 Aug 27;87(9):099601
20066193 - Dalton Trans. 2010 Jan 28;39(4):1071-7
23004326 - Phys Rev Lett. 2012 Jun 15;108(24):247214
21905757 - Inorg Chem. 2011 Oct 17;50(20):10387-96
9943035 - Phys Rev B Condens Matter. 1987 Aug 1;36(4):1907-1916
9974837 - Phys Rev B Condens Matter. 1994 Sep 15;50(12):8207-8213
11019298 - Phys Rev Lett. 2000 Oct 9;85(15):3189-92
18758454 - Nat Mater. 2008 Oct;7(10):811-5
22400764 - Phys Rev Lett. 2012 Jan 20;108(3):036402
References_xml – volume: 50
  start-page: 10387
  year: 2011
  end-page: 10396
  ident: CR18
  article-title: Introducing a magnetic guest to a tetrel-free clathrate: Synthesis, structure, and properties of Eu Ba Cu P (0≤ ≤1.5)
  publication-title: Inorg. Chem.
  doi: 10.1021/ic201474h
– volume: 35
  start-page: 511
  year: 1982
  end-page: 515
  ident: CR26
  article-title: Thermodynamics of the Kondo problem
  publication-title: JETP Lett.
– volume: 108
  start-page: 036402
  year: 2012
  ident: CR32
  article-title: Charge Kondo anomalies in PbTe doped with Tl impurities
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.036402
– volume: 76
  start-page: 084702
  year: 2007
  ident: CR3
  article-title: Enhanced Kondo effect in an electron system dynamically coupled with local optical phonons
  publication-title: J. Phys. Soc. Jpn
  doi: 10.1143/JPSJ.76.084702
– volume: 35
  start-page: 2183
  year: 2002
  end-page: 2186
  ident: CR9
  article-title: Electrical and thermal transport properties of intermediate-valence YbAl
  publication-title: J. Phys. D
  doi: 10.1088/0022-3727/35/17/315
– volume: 15
  start-page: 1
  year: 1985
  end-page: 42
  ident: CR19
  article-title: On the problem of polar intermetallic compounds: The stimulation of E. Zintl’s work for the modern chemistry of intermetallics
  publication-title: Ann. Rev. Mater. Sci.
  doi: 10.1146/annurev.ms.15.080185.000245
– volume: 86
  start-page: 115121
  year: 2012
  ident: CR11
  article-title: Electronic thermoelectric power factor and metal-insulator transition in FeSb
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.115121
– volume: 104
  start-page: 013706
  year: 2008
  ident: CR17
  article-title: High temperature thermoelectric transport properties of double-atom-filled clathrate compounds Yb Ba Ga Ge
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2951888
– volume: 60
  start-page: 2324
  year: 2012
  end-page: 2336
  ident: CR25
  article-title: The ternary system Au-Ba-Si: Clathrate solution, electronic structure, physical properties, phase eqilibria and crystal structures
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2011.12.040
– volume: 50
  start-page: 8207
  year: 1994
  end-page: 8213
  ident: CR10
  article-title: Magnetic, transport, and structural properties of Fe Ir Si
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.8207
– year: 2006
  ident: CR2
  publication-title: Thermoelectrics Handbook
– volume: 85
  start-page: 3189
  year: 2000
  end-page: 3192
  ident: CR14
  article-title: Silicon clathrate with an -electron system
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.3189
– volume: 7
  start-page: 811
  year: 2008
  end-page: 815
  ident: CR4
  article-title: Avoided crossing of rattler modes in thermoelectric materials
  publication-title: Nature Mater.
  doi: 10.1038/nmat2273
– volume: 60
  start-page: 13245
  year: 1999
  end-page: 13248
  ident: CR35
  article-title: Electronic structure of Si and Ge gold-doped clathrates
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.60.13245
– volume: 111
  start-page: 043706
  year: 2012
  ident: CR24
  article-title: High temperature thermoelectric properties of the type-I clathrate Ba Au Si
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3682585
– volume: 71
  start-page: 165109
  year: 2005
  ident: CR12
  article-title: Theory of the thermoelectricity of intermetallic compounds with Ce or Yb ions
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.165109
– volume: 87
  start-page: 099601
  year: 2001
  ident: CR15
  article-title: Comment on “silicon clathrate with an -electron system”
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.099601
– volume: 4
  start-page: 186
  year: 2008
  end-page: 197
  ident: CR27
  article-title: Quantum criticality in heavy-fermion metals
  publication-title: Nature Phys.
  doi: 10.1038/nphys892
– volume: 77
  start-page: 075203
  year: 2008
  ident: CR1
  article-title: High temperature thermoelectric efficiency in Ba Ga Ge
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.075203
– year: 1995
  ident: CR6
  publication-title: CRC Handbook of Thermoelectrics
– volume: 108
  start-page: 247214
  year: 2012
  ident: CR33
  article-title: Electric dipolar Kondo effect emerging from a vibrating magnetic ion
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.247214
– volume: 84
  start-page: 195137
  year: 2011
  ident: CR20
  article-title: Low-temperature thermoelectric, galvanomagnetic and thermodynamic properties of the type-I clatharate Ba Au Si
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.195137
– volume: 74
  start-page: 246
  year: 2005
  end-page: 249
  ident: CR31
  article-title: Exotic heavy-fermion state in filled skutterudite SmOs Sb
  publication-title: J. Phys. Soc. Jpn
  doi: 10.1143/JPSJ.74.246
– volume: 36
  start-page: 1907
  year: 1987
  end-page: 1916
  ident: CR21
  article-title: Theory of the Hall effect in heavy-fermion compounds
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.36.1907
– volume: 87
  start-page: 099602
  year: 2001
  ident: CR16
  article-title: Comment on “silicon clathrate with an -electron system”: Reply
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.099602
– volume: 75
  start-page: 195210
  year: 2007
  ident: CR29
  article-title: Cage-size control of guest vibration and thermal conductivity in Sr Ga Si Ge
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.195210
– volume: 89
  start-page: 106402
  year: 2002
  ident: CR23
  article-title: Intersite coupling effects in a Kondo lattice
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.106402
– start-page: 95
  year: 2007
  end-page: 148
  ident: CR13
  publication-title: Fundamentals and Theory
– volume: 27
  start-page: 1568
  year: 1983
  end-page: 1585
  ident: CR28
  article-title: Heat-capacity analysis of a large number of 15-type compounds
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.27.1568
– volume: 84
  start-page: 241107(R)
  year: 2011
  ident: CR34
  article-title: Mechanism for large thermoelectric power in molecular quantum dots described by the negative-U Anderson model
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.241107
– volume: 86
  start-page: 224303
  year: 2012
  ident: CR5
  article-title: Phononic filter effect of rattling phonons in the thermoelectric clathrate Ba Ge Ni
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.224303
– volume: 99
  start-page: 023708
  year: 2006
  ident: CR7
  article-title: Large thermoelectric figure of merit at high temperature in Czochralski-grown clathrate Ba Ga Ge
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2163979
– start-page: 77
  year: 2002
  end-page: 80
  ident: CR8
  article-title: Thermoelectric properties of Ba Ga Ge clathrate compounds
  publication-title: Proc. 21st Int. Conf. on Thermoelectrics
– volume: 39
  start-page: 1071
  year: 2010
  end-page: 1077
  ident: CR22
  article-title: Atomic ordering and thermoelectric properties of the n-type clathrate Ba Ni Ge □
  publication-title: Dalton Trans.
  doi: 10.1039/B919791P
– volume: 14
  start-page: 427
  year: 2002
  end-page: 445
  ident: CR30
  article-title: Numerical renormalization group study of the Anderson-Holstein impurity model
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/14/3/312
– volume: 60
  start-page: 2324
  year: 2012
  ident: BFnmat3756_CR25
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2011.12.040
– volume: 60
  start-page: 13245
  year: 1999
  ident: BFnmat3756_CR35
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.60.13245
– volume: 7
  start-page: 811
  year: 2008
  ident: BFnmat3756_CR4
  publication-title: Nature Mater.
  doi: 10.1038/nmat2273
– volume: 87
  start-page: 099601
  year: 2001
  ident: BFnmat3756_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.099601
– volume: 108
  start-page: 036402
  year: 2012
  ident: BFnmat3756_CR32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.036402
– volume: 99
  start-page: 023708
  year: 2006
  ident: BFnmat3756_CR7
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2163979
– start-page: 95
  volume-title: Fundamentals and Theory
  year: 2007
  ident: BFnmat3756_CR13
– volume: 36
  start-page: 1907
  year: 1987
  ident: BFnmat3756_CR21
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.36.1907
– volume: 74
  start-page: 246
  year: 2005
  ident: BFnmat3756_CR31
  publication-title: J. Phys. Soc. Jpn
  doi: 10.1143/JPSJ.74.246
– volume: 84
  start-page: 241107(R)
  year: 2011
  ident: BFnmat3756_CR34
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.241107
– volume: 111
  start-page: 043706
  year: 2012
  ident: BFnmat3756_CR24
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3682585
– volume: 85
  start-page: 3189
  year: 2000
  ident: BFnmat3756_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.3189
– volume: 14
  start-page: 427
  year: 2002
  ident: BFnmat3756_CR30
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/14/3/312
– volume: 76
  start-page: 084702
  year: 2007
  ident: BFnmat3756_CR3
  publication-title: J. Phys. Soc. Jpn
  doi: 10.1143/JPSJ.76.084702
– volume: 50
  start-page: 8207
  year: 1994
  ident: BFnmat3756_CR10
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.8207
– volume: 4
  start-page: 186
  year: 2008
  ident: BFnmat3756_CR27
  publication-title: Nature Phys.
  doi: 10.1038/nphys892
– volume: 15
  start-page: 1
  year: 1985
  ident: BFnmat3756_CR19
  publication-title: Ann. Rev. Mater. Sci.
  doi: 10.1146/annurev.ms.15.080185.000245
– volume-title: CRC Handbook of Thermoelectrics
  year: 1995
  ident: BFnmat3756_CR6
– volume: 86
  start-page: 115121
  year: 2012
  ident: BFnmat3756_CR11
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.115121
– volume: 35
  start-page: 511
  year: 1982
  ident: BFnmat3756_CR26
  publication-title: JETP Lett.
– volume: 104
  start-page: 013706
  year: 2008
  ident: BFnmat3756_CR17
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2951888
– volume: 77
  start-page: 075203
  year: 2008
  ident: BFnmat3756_CR1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.075203
– volume: 86
  start-page: 224303
  year: 2012
  ident: BFnmat3756_CR5
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.224303
– volume: 39
  start-page: 1071
  year: 2010
  ident: BFnmat3756_CR22
  publication-title: Dalton Trans.
  doi: 10.1039/B919791P
– volume-title: Thermoelectrics Handbook
  year: 2006
  ident: BFnmat3756_CR2
– volume: 84
  start-page: 195137
  year: 2011
  ident: BFnmat3756_CR20
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.195137
– volume: 27
  start-page: 1568
  year: 1983
  ident: BFnmat3756_CR28
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.27.1568
– volume: 50
  start-page: 10387
  year: 2011
  ident: BFnmat3756_CR18
  publication-title: Inorg. Chem.
  doi: 10.1021/ic201474h
– volume: 75
  start-page: 195210
  year: 2007
  ident: BFnmat3756_CR29
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.195210
– volume: 71
  start-page: 165109
  year: 2005
  ident: BFnmat3756_CR12
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.165109
– volume: 87
  start-page: 099602
  year: 2001
  ident: BFnmat3756_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.099602
– volume: 108
  start-page: 247214
  year: 2012
  ident: BFnmat3756_CR33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.247214
– start-page: 77
  volume-title: Proc. 21st Int. Conf. on Thermoelectrics
  year: 2002
  ident: BFnmat3756_CR8
– volume: 35
  start-page: 2183
  year: 2002
  ident: BFnmat3756_CR9
  publication-title: J. Phys. D
  doi: 10.1088/0022-3727/35/17/315
– volume: 89
  start-page: 106402
  year: 2002
  ident: BFnmat3756_CR23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.106402
– reference: 23004326 - Phys Rev Lett. 2012 Jun 15;108(24):247214
– reference: 9974837 - Phys Rev B Condens Matter. 1994 Sep 15;50(12):8207-8213
– reference: 18758454 - Nat Mater. 2008 Oct;7(10):811-5
– reference: 22400764 - Phys Rev Lett. 2012 Jan 20;108(3):036402
– reference: 12225209 - Phys Rev Lett. 2002 Sep 2;89(10):106402
– reference: 9943035 - Phys Rev B Condens Matter. 1987 Aug 1;36(4):1907-1916
– reference: 20066193 - Dalton Trans. 2010 Jan 28;39(4):1071-7
– reference: 21905757 - Inorg Chem. 2011 Oct 17;50(20):10387-96
– reference: 11531605 - Phys Rev Lett. 2001 Aug 27;87(9):099601
– reference: 11019298 - Phys Rev Lett. 2000 Oct 9;85(15):3189-92
SSID ssj0021556
Score 2.4141471
Snippet Clathrate materials have been the subject of intense investigation because of their beneficial properties, in particular their low thermal conductivities. Now,...
The increasing worldwide energy consumption calls for the design of more efficient energy systems. Thermoelectrics could be used to convert waste heat back to...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1096
SubjectTerms 639/301/119/997
639/301/299/2736
639/301/930
Biomaterials
Cerium
Clathrates
Condensed Matter Physics
Conductivity
Crystal structure
Earth
Energy consumption
Energy management
Heat transfer
High temperature
Intermetallics
letter
Low temperature
Materials Science
Nanotechnology
Optical and Electronic Materials
Photovoltaic cells
Rare earth elements
Solar energy
Thermal conductivity
Waste heat
Title Thermopower enhancement by encapsulating cerium in clathrate cages
URI https://link.springer.com/article/10.1038/nmat3756
https://www.ncbi.nlm.nih.gov/pubmed/24056804
https://www.proquest.com/docview/1460568543
https://www.proquest.com/docview/1461342921
https://www.proquest.com/docview/1567057945
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZ4XOCAeDMeU0FInKq1TZq0J8QQA3GYEAJptypJE4YE3WDbgX-P3bXbBIhLpbZuY8VJbMeOP4DzSHHJDGd-Yiz3uWbOT02I80qkLrdpTjWyKNuiK-6e-X0v7lUbbqMqrbJeE8uFOh8Y2iNvhRTAE0nM2eXwwyfUKIquVhAay7BKpcsopUv25g4X6srp6SIpfLQrorr4LEtaBdqDTBJs9aI6-mVj_oqPlmqnswkblb3oXU0FvAVLttiG9YUqgjvQRlF_vg-GhHfm2aJPcqQ9P09_4a1R6AdTwlvx4hn8YvLuvRaewSd9qhLhGVxQRrvw3Ll5ur7zK2gE33DOx751YaRczFwYK2kTHmv0Lq3QTgepDrQS0ginZJ7LyHERmUBzzqSK0VhIlc4V24OVYlDYA_CkQQ2v0Y_SLucBsypyTqvAodZyyrC0ARd1D2WmqhtO8BVvWRm_ZklW92UDTmeUw2mtjD9ojutOzqrZMsrmssVfzF7jOKfghSrsYFLShIywtcJ_aGIh6XAtjxuwPxXgjBG0XLCJgDfgrJboAgM_uDz8n8sjWIsIFaPMajmGlfHnxJ6gbTLWzXIA4jXp3DZhtX3TfXj8BvTu5t8
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGeAAeEJ_jYEBAIJ6qtYmbtA8I8XXc2NjTJu2tJGnCkLbebXcntH-KvxG7vR4nhva2x7Zuazl2bMeJfwCvpEWjPKqk8AETdCompc_IrnQZ61DW3COLd1vs6dEBfj3MD9fgd38WhrdV9nNiO1HXY89r5FsZF_B0kaN6NzlNGDWKq6s9hEanFjvh_BelbNO3259ofF9LOfy8_3GULFAFEo-IsyTETNqYq5jl1oQCc0eJWdAuurR0qbPaeB2tqWsjI2rpU4eojM3Jz5bW1VbRd6_BdVSqZIsqhl-WCR755u40k9EJxTGyb3ariq2G4k9lGCZ71f1diGkv1GNbNze8A7cX8al43ynUXVgLzT24tdK18D58INU6OxlPGF9NhOaI9YbXGIU7p0tvKe_mDXbND-HpjfmJ-NkIT3eOuCuF8DSBTR_AwZUI7SGsN-MmPAJhPEUUjvI2F2tMVbAyRmfTSF4yWq_KAbzpJVT5RZ9yhss4rtp6uSqqXpYDeLGknHS9Of5Ds9kLuVpY57T6q0v0ieVjsisultgmjOctTaYYyyu7hCbXhg_zYj6AjW4Al4xQpES_SHEAL_sRXWHgHy4fX87lc7gx2v-2W-1u7-08gZuSETnaHTWbsD47m4enFBfN3LNWGQV8v2rt_wNy_yKC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLbaIqH2gHiWhQIDAnGKNplnckAIKKuWoooDlfYWZiYzLVKbXbq7Qv1r_DrsPLYrinrrMYmTWB7P2B57_AG85lYa4aVIch9kIp2ISeEznFe6iFUoKuqRRdUWh3rvSH4Zq_Ea_OnPwlBZZb8mNgt1NfG0Rz7MKIGncyXFMHZlEd92R--nvxJCkKJMaw-n0arIQbj4jeHb7N3-Lo71G85Hn79_2ks6hIHESynnSYgZt1GJmClrQi6VwyAtaBddWrjUWW28jtZUleFRau5TJ6UwVqHNLayrrMDvrsMtI1RGc8yML4M9tNPtySajE_RpeN_4VuTDGn1RYQgye9UUXvFvr-RmG5M3ugt3Ol-VfWiV6x6shfo-bK10MHwAH1HNzs8mU8JaY6E-IR2i_UbmLvDSW4zBqdiuPmYe31icsZ8183jnhDpUMI-L2ewhHN2I0B7BRj2pw2NgxqN34TCGc7GSqQiWx-hsGtFiRutFMYC3vYRK3_UsJ-iM07LJnYu87GU5gJdLymnbp-M_NDu9kMtups7KS73CTywf4xyjxImtw2TR0GSCcL2ya2iUNnSwV6oBbLcDuGQEvSb8RSoH8Kof0RUG_uHyyfVcvoDbqPfl1_3Dg6ewyQmcoymu2YGN-fkiPEMXae6eN7rI4MdNK_9fj0Emrw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermopower+enhancement+by+encapsulating+cerium+in+clathrate+cages&rft.jtitle=Nature+materials&rft.au=Prokofiev%2C+A&rft.au=Sidorenko%2C+A&rft.au=Hradil%2C+K&rft.au=Ikeda%2C+M&rft.date=2013-12-01&rft.issn=1476-1122&rft.volume=12&rft.issue=12&rft.spage=1096&rft.epage=1101&rft_id=info:doi/10.1038%2Fnmat3756&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon