Short-term forecasting of passenger demand under on-demand ride services: A spatio-temporal deep learning approach

•Propose the fusion convolutional long short-term memory network (FCL-Net).•Fusion of convolutional LSTM layers, standard LSTM layers and convolutional layers.•Better capture spatio-temporal correlations of explanatory variables.•A tailored spatially aggregated random forest is used to rank feature...

Full description

Saved in:
Bibliographic Details
Published inTransportation research. Part C, Emerging technologies Vol. 85; pp. 591 - 608
Main Authors Ke, Jintao, Zheng, Hongyu, Yang, Hai, Chen, Xiqun (Michael)
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Propose the fusion convolutional long short-term memory network (FCL-Net).•Fusion of convolutional LSTM layers, standard LSTM layers and convolutional layers.•Better capture spatio-temporal correlations of explanatory variables.•A tailored spatially aggregated random forest is used to rank feature importance.•Applied to real-world on-demand ride service data provided by DiDi. Short-term passenger demand forecasting is of great importance to the on-demand ride service platform, which can incentivize vacant cars moving from over-supply regions to over-demand regions. The spatial dependencies, temporal dependencies, and exogenous dependencies need to be considered simultaneously, however, which makes short-term passenger demand forecasting challenging. We propose a novel deep learning (DL) approach, named the fusion convolutional long short-term memory network (FCL-Net), to address these three dependencies within one end-to-end learning architecture. The model is stacked and fused by multiple convolutional long short-term memory (LSTM) layers, standard LSTM layers, and convolutional layers. The fusion of convolutional techniques and the LSTM network enables the proposed DL approach to better capture the spatio-temporal characteristics and correlations of explanatory variables. A tailored spatially aggregated random forest is employed to rank the importance of the explanatory variables. The ranking is then used for feature selection. The proposed DL approach is applied to the short-term forecasting of passenger demand under an on-demand ride service platform in Hangzhou, China. The experimental results, validated on the real-world data provided by DiDi Chuxing, show that the FCL-Net achieves the better predictive performance than traditional approaches including both classical time-series prediction models and state-of-art machine learning algorithms (e.g., artificial neural network, XGBoost, LSTM and CNN). Furthermore, the consideration of exogenous variables in addition to the passenger demand itself, such as the travel time rate, time-of-day, day-of-week, and weather conditions, is proven to be promising, since they reduce the root mean squared error (RMSE) by 48.3%. It is also interesting to find that the feature selection reduces 24.4% in the training time and leads to only the 1.8% loss in the forecasting accuracy measured by RMSE in the proposed model. This paper is one of the first DL studies to forecast the short-term passenger demand of an on-demand ride service platform by examining the spatio-temporal correlations.
AbstractList •Propose the fusion convolutional long short-term memory network (FCL-Net).•Fusion of convolutional LSTM layers, standard LSTM layers and convolutional layers.•Better capture spatio-temporal correlations of explanatory variables.•A tailored spatially aggregated random forest is used to rank feature importance.•Applied to real-world on-demand ride service data provided by DiDi. Short-term passenger demand forecasting is of great importance to the on-demand ride service platform, which can incentivize vacant cars moving from over-supply regions to over-demand regions. The spatial dependencies, temporal dependencies, and exogenous dependencies need to be considered simultaneously, however, which makes short-term passenger demand forecasting challenging. We propose a novel deep learning (DL) approach, named the fusion convolutional long short-term memory network (FCL-Net), to address these three dependencies within one end-to-end learning architecture. The model is stacked and fused by multiple convolutional long short-term memory (LSTM) layers, standard LSTM layers, and convolutional layers. The fusion of convolutional techniques and the LSTM network enables the proposed DL approach to better capture the spatio-temporal characteristics and correlations of explanatory variables. A tailored spatially aggregated random forest is employed to rank the importance of the explanatory variables. The ranking is then used for feature selection. The proposed DL approach is applied to the short-term forecasting of passenger demand under an on-demand ride service platform in Hangzhou, China. The experimental results, validated on the real-world data provided by DiDi Chuxing, show that the FCL-Net achieves the better predictive performance than traditional approaches including both classical time-series prediction models and state-of-art machine learning algorithms (e.g., artificial neural network, XGBoost, LSTM and CNN). Furthermore, the consideration of exogenous variables in addition to the passenger demand itself, such as the travel time rate, time-of-day, day-of-week, and weather conditions, is proven to be promising, since they reduce the root mean squared error (RMSE) by 48.3%. It is also interesting to find that the feature selection reduces 24.4% in the training time and leads to only the 1.8% loss in the forecasting accuracy measured by RMSE in the proposed model. This paper is one of the first DL studies to forecast the short-term passenger demand of an on-demand ride service platform by examining the spatio-temporal correlations.
Author Ke, Jintao
Chen, Xiqun (Michael)
Yang, Hai
Zheng, Hongyu
Author_xml – sequence: 1
  givenname: Jintao
  orcidid: 0000-0001-9778-3387
  surname: Ke
  fullname: Ke, Jintao
  organization: Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
– sequence: 2
  givenname: Hongyu
  surname: Zheng
  fullname: Zheng, Hongyu
  organization: College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China
– sequence: 3
  givenname: Hai
  surname: Yang
  fullname: Yang, Hai
  organization: Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
– sequence: 4
  givenname: Xiqun (Michael)
  orcidid: 0000-0001-8285-084X
  surname: Chen
  fullname: Chen, Xiqun (Michael)
  email: chenxiqun@zju.edu.cn
  organization: College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China
BookMark eNp9kM1KAzEUhYNUsK0-gLu8wNSk89fRVSn-QcGFCu6GO8mdNmUmGW5iwbc3g1256OpyDnwH7jdjE-ssMnYrxUIKWdwdFoHUYilkGfMiNhdsKldllSzTvJqwqaiKVSIq8XXFZt4fhBCyysspo_e9o5AEpJ63jlCBD8buuGv5AN6j3SFxjT1Yzb-tjsHZ5JTJaOQe6WgU-nu-5n6AYFwc6wdH0EUOB94hkB0nYRjIgdpfs8sWOo83pztnn0-PH5uXZPv2_LpZbxOVZVlIdJtr1ZSFTIWUaqmroklT0KnWKhXVskEQOTSlklA0baFyjXqVQ4Ygs6JdlWk6Z_JvV5HznrCtBzI90E8tRT1Kqw91lFaP0sYqNpEp_zHKhPEpGwhMd5Z8-CMxvnQ0SLVXBq1CbaLVUGtnztC_mbSMiA
CitedBy_id crossref_primary_10_3233_JIFS_222115
crossref_primary_10_1016_j_physa_2020_124503
crossref_primary_10_1016_j_jrtpm_2022_100320
crossref_primary_10_20965_jaciii_2020_p0900
crossref_primary_10_1186_s13635_019_0090_6
crossref_primary_10_2139_ssrn_3186125
crossref_primary_10_1016_j_tra_2024_104344
crossref_primary_10_1002_for_3073
crossref_primary_10_1109_TII_2020_3003133
crossref_primary_10_1016_j_trc_2022_103709
crossref_primary_10_1049_iet_its_2019_0552
crossref_primary_10_1016_j_aei_2022_101678
crossref_primary_10_1155_2020_8935857
crossref_primary_10_1016_j_engappai_2025_110074
crossref_primary_10_1016_j_trc_2018_12_004
crossref_primary_10_1080_08839514_2020_1771522
crossref_primary_10_1080_13658816_2019_1652303
crossref_primary_10_1080_19427867_2023_2175420
crossref_primary_10_1063_5_0152728
crossref_primary_10_1109_ACCESS_2021_3093987
crossref_primary_10_1109_TKDE_2021_3135898
crossref_primary_10_3390_su16135725
crossref_primary_10_1016_j_trc_2017_11_003
crossref_primary_10_1109_ACCESS_2020_3020861
crossref_primary_10_1109_TITS_2019_2932038
crossref_primary_10_1080_21680566_2021_1922320
crossref_primary_10_1109_TITS_2023_3327266
crossref_primary_10_15446_innovar_v32n85_100979
crossref_primary_10_1016_j_tre_2020_102148
crossref_primary_10_1016_j_tre_2019_06_016
crossref_primary_10_1016_j_ijtst_2021_11_001
crossref_primary_10_1109_JAS_2021_1003976
crossref_primary_10_3390_app14198847
crossref_primary_10_1109_ACCESS_2018_2885821
crossref_primary_10_1016_j_asoc_2018_08_024
crossref_primary_10_1016_j_jum_2022_05_002
crossref_primary_10_1016_j_comnet_2020_107530
crossref_primary_10_1016_j_compenvurbsys_2019_101403
crossref_primary_10_1016_j_trpro_2024_02_069
crossref_primary_10_1016_j_trc_2023_104397
crossref_primary_10_1007_s10479_024_05990_x
crossref_primary_10_1109_TMLCN_2025_3545777
crossref_primary_10_1016_j_trc_2023_104159
crossref_primary_10_1109_ACCESS_2021_3123255
crossref_primary_10_1016_j_tbs_2023_100713
crossref_primary_10_1080_19427867_2021_1988439
crossref_primary_10_26599_HTRD_2024_9480015
crossref_primary_10_1186_s12911_023_02140_4
crossref_primary_10_1109_OJITS_2023_3297517
crossref_primary_10_2197_ipsjjip_30_888
crossref_primary_10_1016_j_trc_2024_104661
crossref_primary_10_1016_j_trc_2022_103731
crossref_primary_10_1109_TVT_2021_3090042
crossref_primary_10_3390_ijgi10070455
crossref_primary_10_1109_TITS_2024_3447282
crossref_primary_10_1177_0361198119838508
crossref_primary_10_2139_ssrn_4169580
crossref_primary_10_1007_s13177_024_00456_7
crossref_primary_10_1080_19427867_2024_2440211
crossref_primary_10_1111_mice_13131
crossref_primary_10_3389_fpubh_2021_804298
crossref_primary_10_1016_j_trc_2018_05_008
crossref_primary_10_7769_gesec_v14i7_1670
crossref_primary_10_1515_chem_2022_0124
crossref_primary_10_1016_j_tre_2021_102236
crossref_primary_10_1109_TITS_2019_2909571
crossref_primary_10_1109_TITS_2021_3128494
crossref_primary_10_1016_j_trc_2022_103621
crossref_primary_10_1061_JTEPBS_TEENG_8137
crossref_primary_10_3390_app12094763
crossref_primary_10_1007_s42421_024_00113_1
crossref_primary_10_1007_s12145_023_01075_8
crossref_primary_10_1016_j_tre_2020_102090
crossref_primary_10_1177_03611981211044727
crossref_primary_10_1016_j_trc_2019_07_023
crossref_primary_10_1109_TVT_2020_2978450
crossref_primary_10_1016_j_commtr_2021_100012
crossref_primary_10_2208_jscejipm_76_5_I_1389
crossref_primary_10_1016_j_apenergy_2023_121032
crossref_primary_10_1061_JTEPBS_0000653
crossref_primary_10_1007_s00521_021_06092_6
crossref_primary_10_1016_j_knosys_2025_113115
crossref_primary_10_1016_j_trc_2023_104244
crossref_primary_10_1016_j_trc_2019_07_018
crossref_primary_10_1109_TITS_2024_3359763
crossref_primary_10_1109_TITS_2020_3011700
crossref_primary_10_3389_ffutr_2021_681451
crossref_primary_10_1016_j_tbs_2023_100627
crossref_primary_10_1016_j_trc_2021_103352
crossref_primary_10_3390_ijgi11010042
crossref_primary_10_1007_s12652_020_02507_9
crossref_primary_10_1016_j_tre_2024_103551
crossref_primary_10_1016_j_trd_2020_102359
crossref_primary_10_1109_TIM_2021_3122173
crossref_primary_10_1007_s10479_022_04560_3
crossref_primary_10_1016_j_tre_2023_103027
crossref_primary_10_1155_2020_7917353
crossref_primary_10_1016_j_knosys_2022_109028
crossref_primary_10_1007_s11116_023_10385_1
crossref_primary_10_1016_j_trc_2019_05_039
crossref_primary_10_1155_2019_4392785
crossref_primary_10_33042_2522_1809_2023_4_178_141_146
crossref_primary_10_3390_w14152377
crossref_primary_10_1109_ACCESS_2019_2937114
crossref_primary_10_1016_j_trb_2021_06_014
crossref_primary_10_1007_s12469_024_00365_8
crossref_primary_10_1109_TKDE_2021_3118389
crossref_primary_10_3390_su15107903
crossref_primary_10_1109_OJITS_2023_3334393
crossref_primary_10_1016_j_ipm_2024_103778
crossref_primary_10_1080_13658816_2019_1599895
crossref_primary_10_1016_j_jece_2024_113011
crossref_primary_10_1016_j_jclepro_2020_123273
crossref_primary_10_1093_tse_tdad026
crossref_primary_10_1088_1674_1056_ad3349
crossref_primary_10_1016_j_engappai_2019_103405
crossref_primary_10_1016_j_physa_2021_125838
crossref_primary_10_1016_j_cosrev_2021_100379
crossref_primary_10_1109_TITS_2019_2915525
crossref_primary_10_1155_2021_6654909
crossref_primary_10_3390_electronics13030574
crossref_primary_10_1016_j_tre_2022_102694
crossref_primary_10_1109_ACCESS_2020_2974885
crossref_primary_10_1140_epjs_s11734_022_00551_4
crossref_primary_10_1142_S0129183121501588
crossref_primary_10_1080_23249935_2024_2335244
crossref_primary_10_1007_s40747_024_01391_6
crossref_primary_10_1007_s42044_019_00052_z
crossref_primary_10_1109_JAS_2023_123744
crossref_primary_10_18267_j_aip_196
crossref_primary_10_1016_j_physa_2022_127079
crossref_primary_10_1109_ACCESS_2020_2987934
crossref_primary_10_1016_j_trc_2020_102786
crossref_primary_10_1109_TITS_2019_2900481
crossref_primary_10_1109_TITS_2020_2983651
crossref_primary_10_1007_s10489_021_03047_1
crossref_primary_10_1109_TITS_2019_2935152
crossref_primary_10_3390_su16229772
crossref_primary_10_1109_MITS_2023_3244935
crossref_primary_10_3390_ijgi8090414
crossref_primary_10_4018_IJoSE_2019070105
crossref_primary_10_4018_IRMJ_291692
crossref_primary_10_1109_TITS_2020_3019509
crossref_primary_10_1016_j_knosys_2020_105592
crossref_primary_10_3390_su141912397
crossref_primary_10_1109_MITS_2023_3309653
crossref_primary_10_1109_MITS_2021_3119869
crossref_primary_10_3390_s20164574
crossref_primary_10_1016_j_asoc_2023_110740
crossref_primary_10_3233_JIFS_210872
crossref_primary_10_1109_TITS_2020_3004254
crossref_primary_10_1016_j_jpubtr_2024_100103
crossref_primary_10_1016_j_tws_2024_112892
crossref_primary_10_1016_j_scs_2020_102594
crossref_primary_10_3390_math11163446
crossref_primary_10_1109_TITS_2020_2993798
crossref_primary_10_1080_15568318_2020_1795760
crossref_primary_10_1109_ACCESS_2019_2907739
crossref_primary_10_1007_s42421_023_00075_w
crossref_primary_10_1109_TITS_2022_3231959
crossref_primary_10_1016_j_cie_2019_06_002
crossref_primary_10_1002_int_22906
crossref_primary_10_1016_j_jclepro_2022_132337
crossref_primary_10_1080_01441647_2020_1866096
crossref_primary_10_3390_app14020863
crossref_primary_10_1016_j_commtr_2022_100075
crossref_primary_10_1016_j_physa_2021_126603
crossref_primary_10_1109_ACCESS_2022_3211518
crossref_primary_10_1016_j_tra_2024_103975
crossref_primary_10_1016_j_tranpol_2021_03_004
crossref_primary_10_1080_00207543_2023_2247092
crossref_primary_10_1109_TITS_2021_3122541
crossref_primary_10_1016_j_ijpe_2020_107828
crossref_primary_10_1016_j_ins_2020_01_043
crossref_primary_10_1109_ACCESS_2021_3075494
crossref_primary_10_1016_j_inffus_2020_11_010
crossref_primary_10_1049_iet_its_2018_0064
crossref_primary_10_1109_TITS_2020_2983763
crossref_primary_10_1111_tgis_12644
crossref_primary_10_1016_j_trc_2018_10_011
crossref_primary_10_1007_s10479_023_05223_7
crossref_primary_10_1109_TITS_2024_3390185
crossref_primary_10_3390_s19040861
crossref_primary_10_1155_2020_6625435
crossref_primary_10_1080_21680566_2020_1722766
crossref_primary_10_1016_j_knosys_2023_110676
crossref_primary_10_1016_j_trc_2019_11_001
crossref_primary_10_1109_TITS_2022_3150600
crossref_primary_10_1109_TKDE_2020_3025580
crossref_primary_10_1016_j_eswa_2024_123833
crossref_primary_10_3233_JIFS_179185
crossref_primary_10_1016_j_jtte_2022_05_004
crossref_primary_10_1016_j_tre_2024_103600
crossref_primary_10_1109_ACCESS_2024_3425634
crossref_primary_10_1016_j_commtr_2022_100058
crossref_primary_10_1007_s11749_023_00852_3
crossref_primary_10_2139_ssrn_4054273
crossref_primary_10_1016_j_dss_2018_08_010
crossref_primary_10_1177_1471082X221083343
crossref_primary_10_1016_j_trb_2020_10_003
crossref_primary_10_1109_TITS_2023_3235805
crossref_primary_10_1109_TITS_2022_3216016
crossref_primary_10_1155_2022_3096901
crossref_primary_10_1155_2022_6078223
crossref_primary_10_1109_TITS_2021_3054840
crossref_primary_10_1016_j_compenvurbsys_2020_101521
crossref_primary_10_1016_j_eswa_2023_121468
crossref_primary_10_1016_j_tranpol_2025_02_019
crossref_primary_10_3390_ai2040039
crossref_primary_10_1155_2022_5356069
crossref_primary_10_1016_j_jrtpm_2022_100311
crossref_primary_10_1007_s00477_023_02564_4
crossref_primary_10_1109_TITS_2020_3038457
crossref_primary_10_3390_rs13101919
crossref_primary_10_1007_s00500_022_07025_8
crossref_primary_10_1007_s00521_018_3470_9
crossref_primary_10_1016_j_tre_2024_103822
crossref_primary_10_1007_s11042_022_12077_x
crossref_primary_10_1007_s40314_019_1006_2
crossref_primary_10_1109_TKDE_2020_3006084
crossref_primary_10_1016_j_jpubtr_2024_100092
crossref_primary_10_1155_adce_2551687
crossref_primary_10_1109_MITS_2021_3137224
crossref_primary_10_1016_j_trc_2020_102851
crossref_primary_10_1108_JES_12_2021_0617
crossref_primary_10_1109_ACCESS_2021_3063881
crossref_primary_10_1016_j_omega_2023_102947
crossref_primary_10_1016_j_ins_2022_11_138
crossref_primary_10_1109_TITS_2023_3257759
crossref_primary_10_1016_j_trc_2020_102858
crossref_primary_10_1016_j_trc_2020_102619
crossref_primary_10_3390_su14127371
crossref_primary_10_1007_s13177_020_00248_9
crossref_primary_10_1016_j_tranpol_2023_10_025
crossref_primary_10_1088_1742_6596_1670_1_012034
crossref_primary_10_1016_j_physa_2018_05_005
crossref_primary_10_1007_s00521_021_06861_3
crossref_primary_10_1088_1742_6596_1700_1_012104
crossref_primary_10_1109_TITS_2023_3312224
crossref_primary_10_1109_TITS_2024_3364759
crossref_primary_10_1007_s11116_022_10349_x
crossref_primary_10_1016_j_apenergy_2022_119533
crossref_primary_10_1109_ACCESS_2020_3036652
crossref_primary_10_1109_TITS_2021_3122114
crossref_primary_10_1016_j_trb_2024_102943
crossref_primary_10_1109_TKDE_2021_3130762
crossref_primary_10_1049_itr2_12238
crossref_primary_10_1016_j_tre_2025_104055
crossref_primary_10_1016_j_trc_2020_102826
crossref_primary_10_1371_journal_pone_0248064
crossref_primary_10_1049_itr2_12596
crossref_primary_10_1109_TITS_2019_2891167
crossref_primary_10_3390_su11195338
crossref_primary_10_2139_ssrn_3986719
crossref_primary_10_1016_j_ins_2022_04_024
crossref_primary_10_1007_s00500_022_07691_8
crossref_primary_10_3390_s24175543
crossref_primary_10_3390_app10082962
crossref_primary_10_1109_TITS_2020_3015542
crossref_primary_10_1109_ACCESS_2019_2950956
crossref_primary_10_3390_app11209675
crossref_primary_10_1016_j_trc_2020_102951
crossref_primary_10_1109_TCSS_2024_3372856
crossref_primary_10_1109_TITS_2020_3026025
crossref_primary_10_1007_s11067_022_09582_9
crossref_primary_10_1109_TITS_2021_3080511
crossref_primary_10_1016_j_multra_2024_100166
crossref_primary_10_1155_2023_7407748
crossref_primary_10_1016_j_trc_2019_10_011
crossref_primary_10_2139_ssrn_3986723
crossref_primary_10_3390_ijgi8090366
crossref_primary_10_1016_j_eswa_2023_122281
crossref_primary_10_1061_JTEPBS_TEENG_7729
crossref_primary_10_1049_itr2_12016
crossref_primary_10_1080_19427867_2024_2372944
crossref_primary_10_1038_s41598_024_64483_w
crossref_primary_10_1109_ACCESS_2021_3127584
crossref_primary_10_1109_TITS_2021_3056415
crossref_primary_10_1007_s42421_020_00032_x
crossref_primary_10_1109_ACCESS_2019_2935121
crossref_primary_10_3934_mbe_2024112
crossref_primary_10_1109_ACCESS_2023_3297143
crossref_primary_10_1016_j_neunet_2022_05_013
crossref_primary_10_1177_03611981211059769
crossref_primary_10_1109_TITS_2019_2947145
crossref_primary_10_1155_2021_6645214
crossref_primary_10_3390_ijgi7050177
crossref_primary_10_1080_13658816_2023_2203218
crossref_primary_10_1109_TITS_2021_3097240
crossref_primary_10_1155_2023_4427638
crossref_primary_10_1016_j_ins_2024_121142
crossref_primary_10_1109_TVT_2024_3355971
crossref_primary_10_1155_2022_5934670
crossref_primary_10_1016_j_retrec_2019_06_001
crossref_primary_10_1109_ACCESS_2021_3071174
crossref_primary_10_3390_s19092063
crossref_primary_10_1007_s42421_020_00020_1
crossref_primary_10_1016_j_trb_2019_11_005
crossref_primary_10_3390_ijgi12010025
crossref_primary_10_1007_s10479_021_04429_x
crossref_primary_10_1007_s10479_022_04842_w
crossref_primary_10_1109_ACCESS_2020_3034551
crossref_primary_10_1016_j_tre_2025_104011
crossref_primary_10_2139_ssrn_3157378
crossref_primary_10_1155_2020_4656435
crossref_primary_10_1016_j_eswa_2021_116102
crossref_primary_10_1007_s41324_023_00526_0
crossref_primary_10_1109_ACCESS_2021_3056926
crossref_primary_10_1109_ACCESS_2022_3150852
crossref_primary_10_1016_j_scs_2020_102419
crossref_primary_10_1016_j_trc_2020_102877
crossref_primary_10_1016_j_oceaneng_2020_108182
crossref_primary_10_1016_j_trc_2020_102636
crossref_primary_10_1109_JIOT_2023_3243122
crossref_primary_10_1016_j_cities_2023_104758
crossref_primary_10_3390_su12083103
crossref_primary_10_1016_j_trc_2020_102639
crossref_primary_10_1155_2019_8503252
crossref_primary_10_1016_j_jtte_2019_07_002
crossref_primary_10_1016_j_tra_2021_01_017
crossref_primary_10_1007_s42421_021_00041_4
crossref_primary_10_1016_j_trc_2020_102870
crossref_primary_10_1007_s10489_022_03966_7
crossref_primary_10_1016_j_omega_2024_103077
crossref_primary_10_1158_1078_0432_CCR_18_3908
crossref_primary_10_1007_s00521_021_06669_1
crossref_primary_10_1016_j_tust_2022_104486
crossref_primary_10_1109_TEM_2023_3274544
crossref_primary_10_1016_j_trc_2019_08_005
crossref_primary_10_1109_TITS_2023_3297948
crossref_primary_10_1109_TITS_2024_3367754
crossref_primary_10_1155_2021_9134942
crossref_primary_10_1016_j_rtbm_2022_100827
crossref_primary_10_1007_s42421_020_00030_z
crossref_primary_10_1145_3627825
crossref_primary_10_1016_j_tbs_2024_100845
crossref_primary_10_1109_TVT_2023_3287221
crossref_primary_10_1016_j_jclepro_2020_123706
crossref_primary_10_1049_iet_its_2020_0486
crossref_primary_10_1145_3385414
crossref_primary_10_1016_j_trc_2021_103372
crossref_primary_10_1109_OJITS_2022_3163180
crossref_primary_10_1016_j_neucom_2020_06_001
crossref_primary_10_1016_j_eswa_2024_123207
crossref_primary_10_1080_15568318_2022_2054390
crossref_primary_10_1016_j_trc_2019_08_014
crossref_primary_10_1016_j_trc_2019_08_019
crossref_primary_10_1016_j_knosys_2023_111184
crossref_primary_10_1109_TITS_2018_2878068
crossref_primary_10_1016_j_neucom_2020_11_038
crossref_primary_10_1109_MITS_2019_2919503
crossref_primary_10_1016_j_trc_2021_103361
crossref_primary_10_3390_s22031060
crossref_primary_10_1109_ACCESS_2019_2957612
crossref_primary_10_1016_j_neucom_2022_08_060
crossref_primary_10_1109_TITS_2019_2929020
crossref_primary_10_1016_j_eswa_2022_116585
crossref_primary_10_1016_j_commtr_2023_100099
crossref_primary_10_1007_s10109_020_00345_z
crossref_primary_10_1016_j_trc_2024_104842
crossref_primary_10_1016_j_trd_2022_103431
crossref_primary_10_3390_su16052065
crossref_primary_10_1016_j_inffus_2024_102845
crossref_primary_10_1016_j_trc_2021_103156
crossref_primary_10_3390_su152115409
crossref_primary_10_1016_j_trc_2018_07_013
crossref_primary_10_1142_S021819402250005X
crossref_primary_10_1109_TITS_2020_3041234
crossref_primary_10_1109_TITS_2019_2932785
crossref_primary_10_1038_s41598_024_84581_z
crossref_primary_10_1080_13658816_2019_1697879
crossref_primary_10_1109_ACCESS_2020_3000242
crossref_primary_10_1109_TCSS_2021_3057332
crossref_primary_10_1016_j_engappai_2023_107297
crossref_primary_10_1016_j_future_2021_03_003
crossref_primary_10_1049_itr2_12073
crossref_primary_10_1007_s00779_019_01333_x
crossref_primary_10_1109_TITS_2019_2923964
crossref_primary_10_1016_j_trb_2020_07_001
crossref_primary_10_1016_j_trc_2022_103562
crossref_primary_10_1016_j_trc_2020_102921
crossref_primary_10_1016_j_trc_2025_105081
crossref_primary_10_1016_j_trc_2020_102922
crossref_primary_10_1109_ACCESS_2024_3522107
crossref_primary_10_1109_TCYB_2020_3000929
crossref_primary_10_3390_app13084910
crossref_primary_10_1109_TITS_2021_3067675
crossref_primary_10_1016_j_eswa_2023_123091
crossref_primary_10_1016_j_trc_2023_104427
crossref_primary_10_3390_app11209680
crossref_primary_10_54097_hset_v70i_12176
crossref_primary_10_1007_s11227_021_04237_x
crossref_primary_10_1016_j_trc_2023_104428
crossref_primary_10_3390_s23020594
crossref_primary_10_1109_TVT_2019_2949603
crossref_primary_10_1016_j_eswa_2022_119311
crossref_primary_10_1109_TMC_2020_3005240
crossref_primary_10_1109_TITS_2022_3155753
crossref_primary_10_3390_logistics7040079
crossref_primary_10_1142_S0218126622501122
crossref_primary_10_1016_j_trc_2019_09_007
crossref_primary_10_1109_TITS_2024_3450846
crossref_primary_10_3390_app12031161
crossref_primary_10_1016_j_neucom_2018_10_097
crossref_primary_10_1007_s42486_020_00039_x
crossref_primary_10_1109_JSYST_2023_3257886
crossref_primary_10_1109_TITS_2023_3248580
crossref_primary_10_1016_j_trc_2020_102817
crossref_primary_10_1109_ACCESS_2019_2939902
crossref_primary_10_1016_j_petrol_2021_108975
crossref_primary_10_1016_j_trc_2023_104410
crossref_primary_10_1109_TITS_2024_3450610
crossref_primary_10_3390_electronics13244889
crossref_primary_10_1016_j_tbs_2024_100878
crossref_primary_10_1016_j_trc_2019_09_011
crossref_primary_10_1016_j_amar_2021_100157
crossref_primary_10_3390_app11010017
crossref_primary_10_4236_ars_2024_133004
crossref_primary_10_1109_ACCESS_2020_3015752
crossref_primary_10_1109_TITS_2020_3002718
crossref_primary_10_1155_2022_7690309
crossref_primary_10_1371_journal_pone_0311987
crossref_primary_10_3390_ijgi8060243
crossref_primary_10_1016_j_trd_2023_103716
crossref_primary_10_1049_iet_its_2019_0008
crossref_primary_10_1016_j_tre_2020_102106
crossref_primary_10_1088_1742_6596_2033_1_012167
crossref_primary_10_1016_j_trc_2020_02_010
crossref_primary_10_1016_j_enconman_2018_04_021
crossref_primary_10_1109_ACCESS_2020_3024224
crossref_primary_10_1109_TITS_2018_2882861
crossref_primary_10_1016_j_trc_2020_02_013
crossref_primary_10_1016_j_inffus_2020_01_002
crossref_primary_10_1109_ACCESS_2024_3437172
crossref_primary_10_1109_TITS_2024_3367779
crossref_primary_10_3390_ijgi10110773
crossref_primary_10_1080_00207543_2021_1871675
crossref_primary_10_1016_j_trb_2018_12_013
crossref_primary_10_1016_j_trc_2020_102912
crossref_primary_10_3390_w10101389
crossref_primary_10_1080_23249935_2022_2109774
crossref_primary_10_2139_ssrn_3994301
crossref_primary_10_1080_03081079_2023_2203922
crossref_primary_10_1016_j_heliyon_2025_e41904
crossref_primary_10_1016_j_physa_2022_127789
crossref_primary_10_1016_j_trc_2020_102916
crossref_primary_10_1109_TITS_2021_3060959
crossref_primary_10_1109_TITS_2022_3148085
crossref_primary_10_1007_s11042_018_6374_x
crossref_primary_10_1080_15472450_2021_1904921
crossref_primary_10_1109_TITS_2023_3249409
crossref_primary_10_1016_j_asoc_2022_109700
crossref_primary_10_1016_j_trb_2019_07_009
crossref_primary_10_1007_s00521_022_07681_9
crossref_primary_10_1016_j_trc_2021_103063
Cites_doi 10.1016/j.trc.2015.06.023
10.1080/01621459.1970.10481180
10.1016/j.trc.2017.02.024
10.1609/aaai.v31i1.10735
10.1016/j.trc.2014.06.011
10.1016/j.trc.2016.07.010
10.1145/2939672.2939785
10.1023/A:1010933404324
10.3390/s17071501
10.1109/TBDATA.2016.2627224
10.1609/aaai.v30i1.10011
10.1109/TITS.2014.2311123
10.1109/TITS.2013.2262376
10.1111/j.1467-8667.2010.00668.x
10.21236/ADA164453
10.1109/TITS.2011.2174051
10.1016/j.trc.2010.10.005
10.1016/j.trb.2011.01.002
10.1016/j.cie.2012.01.017
10.1016/j.trc.2011.01.003
10.1109/TITS.2009.2021448
10.3141/2215-09
10.1016/j.trc.2009.04.006
10.32614/RJ-2015-018
10.1016/j.trc.2015.03.014
10.1016/j.trc.2014.02.005
10.1016/j.trc.2011.06.009
10.1109/TITS.2017.2706963
10.1109/GeoInformatics.2011.5981129
10.1109/ICDM.2016.0061
10.1162/neco.1989.1.2.270
10.1049/iet-its.2016.0208
10.1016/j.trc.2012.08.004
10.1016/j.trb.2009.12.010
10.1016/j.trc.2014.03.016
10.1016/j.tre.2016.05.011
10.1016/j.trc.2016.12.018
10.1109/BigData.2016.7840676
10.1061/(ASCE)TE.1943-5436.0000435
10.1016/j.trc.2010.04.004
10.1016/j.trc.2014.01.005
10.1016/j.trc.2012.09.002
10.1016/j.trc.2012.07.003
10.1016/j.apgeog.2015.02.011
10.1109/ITSC.2016.7795689
10.1109/ITSC.2012.6338680
10.1016/j.trc.2014.02.006
10.1371/journal.pone.0119044
10.1162/neco.1997.9.8.1735
10.1109/TITS.2013.2276089
10.1287/opre.1040.0181
10.1016/j.trc.2013.05.012
10.3390/s17040818
10.1016/S0191-2615(01)00031-5
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.trc.2017.10.016
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-2359
EndPage 608
ExternalDocumentID 10_1016_j_trc_2017_10_016
S0968090X17302899
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABLJU
ABMAC
ABMMH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HMY
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY1
LY7
M3Y
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSO
SSS
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c444t-df5dcb7613011c2d96b33ad3ddc3092bea05ab7c1a6bf6c5ded85a4ea146f8733
IEDL.DBID .~1
ISSN 0968-090X
IngestDate Thu Apr 24 22:59:55 EDT 2025
Tue Jul 01 01:45:08 EDT 2025
Fri Feb 23 02:16:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fusion convolutional long short-term memory network (FCL-Net)
On-demand ride services
Short-term demand forecasting
Convolutional neural network (CNN)
Deep learning (DL)
Long short-term memory (LSTM)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-df5dcb7613011c2d96b33ad3ddc3092bea05ab7c1a6bf6c5ded85a4ea146f8733
ORCID 0000-0001-9778-3387
0000-0001-8285-084X
PageCount 18
ParticipantIDs crossref_primary_10_1016_j_trc_2017_10_016
crossref_citationtrail_10_1016_j_trc_2017_10_016
elsevier_sciencedirect_doi_10_1016_j_trc_2017_10_016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Transportation research. Part C, Emerging technologies
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Moreira-Matias, Gama, Ferreira, Mendes-Moreira, Damas (b0170) 2013; 14
He, Shen (b0100) 2015; 58
Genuer, Poggi, Tuleau-Malot (b0085) 2015; 7
Zhu, Cao, Zhu (b0335) 2014; 47
Zha, Yin, Yang (b0305) 2016; 71
Alonso-Mora, Samaranayake, Wallar, Frazzoli, Rus (b0015) 2017
Bachmann, Abdulhai, Roorda, Moshiri (b0025) 2013; 26
Cheng, Q., Liu, Y., Wei, W., Liu, Z., 2016. Analysis and forecasting of the day-to-day travel demand variations for large-scale transportation networks: a deep learning approach. doi
Wang, Deng, Guo (b0230) 2014; 43
Hochreiter, S., 1991. Untersuchungen zu dynamischen neuronalen Netzen ( Ph.D. thesis). diploma thesis, institut für informatik, lehrstuhl prof. brauer, technische universität münchen.
Lv, Duan, Kang, Li, Wang (b0145) 2015; 16
Chen, Q., Song, X., Yamada, H., Shibasaki, R., 2016. Learning deep representation from big and heterogeneous data for traffic accident inference. In: Thirtieth AAAI Conference on Artificial Intelligence.
Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1985. Learning internal representations by error propagation. Technical Report. California Univ San Diego La Jolla Inst for Cognitive Science.
Sutskever, I., Hinton, G.E., Taylor, G.W., 2009. The recurrent temporal restricted boltzmann machine. In: Advances in Neural Information Processing Systems, pp. 1601–1608.
Guo, Huang, Williams (b0095) 2014; 43
Ma, Tao, Wang, Yu, Wang (b0155) 2015; 54
Hochreiter, Schmidhuber (b0110) 1997; 9
Boto-Giralda, Díaz-Pernas, González-Ortega, Díez-Higuera, Antón-Rodríguez, Martínez-Zarzuela, Torre-Díez (b0030) 2010; 25
Fei, Lu, Liu (b0080) 2011; 19
Ma, Dai, He, Ma, Wang, Wang (b0150) 2017; 17
Soriguera, Robusté (b0205) 2011; 19
Zhang, He, Lin, Munir, Stankovic (b9000) 2017; 3
Wang, X., Jiang, R., Li, L., Lin, Y., Zheng, X., Wang, F.Y., 2017. Capturing car-following behaviors by deep learning. IEEE Trans. Intell. Transp. Syst., in press
Zhao, Chen, Wu, Chen, Liu (b0330) 2017; 11
.
Moreira-Matias, L., Gama, J., Ferreira, M., Damas, L., 2012. A predictive model for the passenger demand on a taxi network. In: The 15th IEEE International Conference on Intelligent Transportation Systems, pp. 1014–1019.
Ma, X., Yu, H., Wang, Y., Wang, Y., 2015b. Large-scale transportation network congestion evolution prediction using deep learning theory. PloS one 10, e0119044.
Yang, Fung, Wong, Wong (b0265) 2010; 44
Zhang, J., Zheng, Y., Qi, D., 2017b. Deep spatio-temporal residual networks for citywide crowd flows prediction. In: AAAI, pp. 1655–1661.
Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.c., 2015. Convolutional lstm network: A machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810.
Chen, Zahiri, Zhang (b0060) 2017; 76
Vlahogianni, Karlaftis, Golias (b0225) 2014; 43
Ghosh, Basu, O’Mahony (b0090) 2009; 10
Qian, Ukkusuri (b0185) 2015; 59
Box, Pierce (b0035) 1970; 65
Wei, Chen (b0255) 2012; 21
Antoniou, Koutsopoulos, Yannis (b0020) 2013; 34
Polson, Sokolov (b0180) 2017; 79
Yu, Lam, Tam (b0290) 2011; 19
Huang, Sadek (b0115) 2009; 17
Wang, Shi (b0240) 2013; 27
Rumelhart, Hinton, Williams (b0195) 1988; 5
Chen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, ACM. pp. 785–794.
Huang, Song, Hong, Xie (b0120) 2014; 15
Khashei, Bijari, Ardali (b0130) 2012; 63
Zhang, Zhang, Lu (b0320) 2011; 2215
Yang, Leung, Wong, Bell (b0270) 2010; 44
Ahmed, Abdel-Aty (b0010) 2013; 26
Yang, Ye, Tang, Wong (b0285) 2005; 53
Breiman (b0040) 2001; 45
Toqué, F., Côme, E., El Mahrsi, M.K., Oukhellou, L., 2016. Forecasting dynamic public transport origin-destination matrices with long-short term memory recurrent neural networks. In: The 19th IEEE International Conference on Intelligent Transportation Systems, pp. 1071–1076.
LeCun, Haffner, Bottou, Bengio (b0140) 1999; 1681
Zhao, K., Khryashchev, D., Freire, J., Silva, C., Vo, H., 2016. Predicting taxi demand at high spatial resolution: approaching the limit of predictability. In: IEEE International Conference on Big Data.
Yang, Wong, Wong (b0275) 2002; 36
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from
Jiang, Zhang, Chen (b0125) 2014; 44
Williams, Zipser (b0260) 1989; 1
Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105.
Deng, Z., Ji, M., 2011. Spatiotemporal structure of taxi services in shanghai: Using exploratory spatial data analysis. In: The 19th IEEE International Conference on Geoinformatics, pp. 1–5.
Yu, Abdel-Aty, Ahmed, Wang (b0300) 2014; 15
Yu, Wu, Wang, Wang, Ma (b0295) 2017; 17
Wang, He, Yang, Gao (b0245) 2016; 93
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (b0175) 2011; 12
Yang, Yang (b0280) 2011; 45
Chan, Dillon, Singh, Chang (b0045) 2012; 13
Chollet, F., et al., 2015. Keras.
Wang, J., Gu, Q., Wu, J., Liu, G., Xiong, Z., 2016a. Traffic speed prediction and congestion source exploration: a deep learning method. In: The 16th IEEE International Conference on Data Mining, pp. 499–508.
Sun, Huang, Gao (b0210) 2012; 138
He (10.1016/j.trc.2017.10.016_b0100) 2015; 58
10.1016/j.trc.2017.10.016_b0160
LeCun (10.1016/j.trc.2017.10.016_b0140) 1999; 1681
Ghosh (10.1016/j.trc.2017.10.016_b0090) 2009; 10
10.1016/j.trc.2017.10.016_b0165
Polson (10.1016/j.trc.2017.10.016_b0180) 2017; 79
10.1016/j.trc.2017.10.016_b0200
Yang (10.1016/j.trc.2017.10.016_b0285) 2005; 53
10.1016/j.trc.2017.10.016_b0005
Williams (10.1016/j.trc.2017.10.016_b0260) 1989; 1
10.1016/j.trc.2017.10.016_b0325
Alonso-Mora (10.1016/j.trc.2017.10.016_b0015) 2017
Yu (10.1016/j.trc.2017.10.016_b0290) 2011; 19
Bachmann (10.1016/j.trc.2017.10.016_b0025) 2013; 26
Lv (10.1016/j.trc.2017.10.016_b0145) 2015; 16
Sun (10.1016/j.trc.2017.10.016_b0210) 2012; 138
10.1016/j.trc.2017.10.016_b0050
10.1016/j.trc.2017.10.016_b0250
Yu (10.1016/j.trc.2017.10.016_b0295) 2017; 17
Wang (10.1016/j.trc.2017.10.016_b0240) 2013; 27
10.1016/j.trc.2017.10.016_b0055
10.1016/j.trc.2017.10.016_b0135
Boto-Giralda (10.1016/j.trc.2017.10.016_b0030) 2010; 25
Chan (10.1016/j.trc.2017.10.016_b0045) 2012; 13
Zha (10.1016/j.trc.2017.10.016_b0305) 2016; 71
Rumelhart (10.1016/j.trc.2017.10.016_b0195) 1988; 5
10.1016/j.trc.2017.10.016_b0215
Zhang (10.1016/j.trc.2017.10.016_b0320) 2011; 2215
Huang (10.1016/j.trc.2017.10.016_b0120) 2014; 15
Yu (10.1016/j.trc.2017.10.016_b0300) 2014; 15
Ma (10.1016/j.trc.2017.10.016_b0150) 2017; 17
Fei (10.1016/j.trc.2017.10.016_b0080) 2011; 19
Pedregosa (10.1016/j.trc.2017.10.016_b0175) 2011; 12
Yang (10.1016/j.trc.2017.10.016_b0280) 2011; 45
Box (10.1016/j.trc.2017.10.016_b0035) 1970; 65
Qian (10.1016/j.trc.2017.10.016_b0185) 2015; 59
Yang (10.1016/j.trc.2017.10.016_b0265) 2010; 44
Zhao (10.1016/j.trc.2017.10.016_b0330) 2017; 11
10.1016/j.trc.2017.10.016_b0065
Ma (10.1016/j.trc.2017.10.016_b0155) 2015; 54
10.1016/j.trc.2017.10.016_b0220
10.1016/j.trc.2017.10.016_b0105
Chen (10.1016/j.trc.2017.10.016_b0060) 2017; 76
Soriguera (10.1016/j.trc.2017.10.016_b0205) 2011; 19
Breiman (10.1016/j.trc.2017.10.016_b0040) 2001; 45
Hochreiter (10.1016/j.trc.2017.10.016_b0110) 1997; 9
10.1016/j.trc.2017.10.016_b0190
Wang (10.1016/j.trc.2017.10.016_b0245) 2016; 93
10.1016/j.trc.2017.10.016_b0070
Yang (10.1016/j.trc.2017.10.016_b0270) 2010; 44
Ahmed (10.1016/j.trc.2017.10.016_b0010) 2013; 26
Huang (10.1016/j.trc.2017.10.016_b0115) 2009; 17
10.1016/j.trc.2017.10.016_b0075
Jiang (10.1016/j.trc.2017.10.016_b0125) 2014; 44
Guo (10.1016/j.trc.2017.10.016_b0095) 2014; 43
Moreira-Matias (10.1016/j.trc.2017.10.016_b0170) 2013; 14
Zhang (10.1016/j.trc.2017.10.016_b9000) 2017; 3
Wang (10.1016/j.trc.2017.10.016_b0230) 2014; 43
10.1016/j.trc.2017.10.016_b0235
Vlahogianni (10.1016/j.trc.2017.10.016_b0225) 2014; 43
Zhu (10.1016/j.trc.2017.10.016_b0335) 2014; 47
10.1016/j.trc.2017.10.016_b0315
Khashei (10.1016/j.trc.2017.10.016_b0130) 2012; 63
Antoniou (10.1016/j.trc.2017.10.016_b0020) 2013; 34
Wei (10.1016/j.trc.2017.10.016_b0255) 2012; 21
Yang (10.1016/j.trc.2017.10.016_b0275) 2002; 36
Genuer (10.1016/j.trc.2017.10.016_b0085) 2015; 7
References_xml – reference: Chen, Q., Song, X., Yamada, H., Shibasaki, R., 2016. Learning deep representation from big and heterogeneous data for traffic accident inference. In: Thirtieth AAAI Conference on Artificial Intelligence.
– volume: 79
  start-page: 1
  year: 2017
  end-page: 17
  ident: b0180
  article-title: Deep learning for short-term traffic flow prediction
  publication-title: Transp. Res. Part C: Emerg. Technol.
– volume: 16
  start-page: 865
  year: 2015
  end-page: 873
  ident: b0145
  article-title: Traffic flow prediction with big data: a deep learning approach
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: Chen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, ACM. pp. 785–794.
– reference: Sutskever, I., Hinton, G.E., Taylor, G.W., 2009. The recurrent temporal restricted boltzmann machine. In: Advances in Neural Information Processing Systems, pp. 1601–1608.
– volume: 138
  start-page: 1358
  year: 2012
  end-page: 1367
  ident: b0210
  article-title: Network-scale traffic modeling and forecasting with graphical lasso and neural networks
  publication-title: J. Transp. Eng.
– volume: 27
  start-page: 219
  year: 2013
  end-page: 232
  ident: b0240
  article-title: Short-term traffic speed forecasting hybrid model based on chaos–wavelet analysis-support vector machine theory
  publication-title: Transp. Res. Part C: Emerg. Technol.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0040
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 5
  start-page: 1
  year: 1988
  ident: b0195
  article-title: Learning representations by back-propagating errors
  publication-title: Cogn. Model.
– volume: 34
  start-page: 89
  year: 2013
  end-page: 107
  ident: b0020
  article-title: Dynamic data-driven local traffic state estimation and prediction
  publication-title: Transp. Res. Part C: Emerg. Technol.
– volume: 54
  start-page: 187
  year: 2015
  end-page: 197
  ident: b0155
  article-title: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data
  publication-title: Transp. Res. Part C: Emerg. Technol.
– reference: Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105.
– volume: 93
  start-page: 212
  year: 2016
  end-page: 231
  ident: b0245
  article-title: Pricing strategies for a taxi-hailing platform
  publication-title: Transp. Res. Part E: Logist. Transp. Rev.
– volume: 36
  start-page: 799
  year: 2002
  end-page: 819
  ident: b0275
  article-title: Demand–supply equilibrium of taxi services in a network under competition and regulation
  publication-title: Transp. Res. Part B: Methodol.
– volume: 10
  start-page: 246
  year: 2009
  end-page: 254
  ident: b0090
  article-title: Multivariate short-term traffic flow forecasting using time-series analysis
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 44
  start-page: 1067
  year: 2010
  end-page: 1083
  ident: b0270
  article-title: Equilibria of bilateral taxi–customer searching and meeting on networks
  publication-title: Transp. Res. Part B: Methodol.
– volume: 26
  start-page: 203
  year: 2013
  end-page: 213
  ident: b0010
  article-title: A data fusion framework for real-time risk assessment on freeways
  publication-title: Transp. Res. Part C: Emerg. Technol.
– reference: Ma, X., Yu, H., Wang, Y., Wang, Y., 2015b. Large-scale transportation network congestion evolution prediction using deep learning theory. PloS one 10, e0119044.
– volume: 17
  start-page: 818
  year: 2017
  ident: b0150
  article-title: Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction
  publication-title: Sensors
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b0175
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 7
  start-page: 19
  year: 2015
  end-page: 33
  ident: b0085
  article-title: Vsurf: An R package for variable selection using random forests
  publication-title: The R Journal
– volume: 43
  start-page: 79
  year: 2014
  end-page: 94
  ident: b0230
  article-title: New Bayesian combination method for short-term traffic flow forecasting
  publication-title: Transp. Res. Part C: Emerg. Technol.
– volume: 21
  start-page: 148
  year: 2012
  end-page: 162
  ident: b0255
  article-title: Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks
  publication-title: Transp. Res. Part C: Emerg. Technol.
– reference: Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1985. Learning internal representations by error propagation. Technical Report. California Univ San Diego La Jolla Inst for Cognitive Science.
– volume: 45
  start-page: 696
  year: 2011
  end-page: 713
  ident: b0280
  article-title: Equilibrium properties of taxi markets with search frictions
  publication-title: Transp. Res. Part B: Methodol.
– reference: Cheng, Q., Liu, Y., Wei, W., Liu, Z., 2016. Analysis and forecasting of the day-to-day travel demand variations for large-scale transportation networks: a deep learning approach. doi:
– reference: Wang, X., Jiang, R., Li, L., Lin, Y., Zheng, X., Wang, F.Y., 2017. Capturing car-following behaviors by deep learning. IEEE Trans. Intell. Transp. Syst., in press,
– reference: Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from
– volume: 19
  start-page: 1157
  year: 2011
  end-page: 1170
  ident: b0290
  article-title: Bus arrival time prediction at bus stop with multiple routes
  publication-title: Transp. Res. Part C: Emerg. Technol.
– volume: 1681
  start-page: 823
  year: 1999
  ident: b0140
  article-title: Object recognition with gradient-based learning
  publication-title: Shape Contour Group. Comput. Vision
– reference: Deng, Z., Ji, M., 2011. Spatiotemporal structure of taxi services in shanghai: Using exploratory spatial data analysis. In: The 19th IEEE International Conference on Geoinformatics, pp. 1–5.
– volume: 13
  start-page: 644
  year: 2012
  end-page: 654
  ident: b0045
  article-title: Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and levenberg–marquardt algorithm
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: Zhao, K., Khryashchev, D., Freire, J., Silva, C., Vo, H., 2016. Predicting taxi demand at high spatial resolution: approaching the limit of predictability. In: IEEE International Conference on Big Data.
– volume: 17
  start-page: 1501
  year: 2017
  ident: b0295
  article-title: Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks
  publication-title: Sensors
– volume: 59
  start-page: 31
  year: 2015
  end-page: 42
  ident: b0185
  article-title: Spatial variation of the urban taxi ridership using GPS data
  publication-title: Appl. Geography
– volume: 53
  start-page: 501
  year: 2005
  end-page: 515
  ident: b0285
  article-title: A multiperiod dynamic model of taxi services with endogenous service intensity
  publication-title: Oper. Res.
– reference: Wang, J., Gu, Q., Wu, J., Liu, G., Xiong, Z., 2016a. Traffic speed prediction and congestion source exploration: a deep learning method. In: The 16th IEEE International Conference on Data Mining, pp. 499–508.
– volume: 58
  start-page: 93
  year: 2015
  end-page: 106
  ident: b0100
  article-title: Modeling taxi services with smartphone-based e-hailing applications
  publication-title: Transp. Res. Part C: Emerg. Technol.
– volume: 17
  start-page: 510
  year: 2009
  end-page: 525
  ident: b0115
  article-title: A novel forecasting approach inspired by human memory: the example of short-term traffic volume forecasting
  publication-title: Transp. Res. Part C: Emerg. Technol.
– start-page: 201611675
  year: 2017
  ident: b0015
  article-title: On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment
  publication-title: Proc. Nat. Acad. Sci.
– reference: Chollet, F., et al., 2015. Keras.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0110
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 11
  start-page: 68
  year: 2017
  end-page: 75
  ident: b0330
  article-title: Lstm network: a deep learning approach for short-term traffic forecast
  publication-title: IET Intel. Transp. Syst.
– volume: 65
  start-page: 1509
  year: 1970
  end-page: 1526
  ident: b0035
  article-title: Distribution of residual autocorrelations in autoregressive-integrated moving average time series models
  publication-title: J. Am. Stat. Assoc.
– volume: 15
  start-page: 2191
  year: 2014
  end-page: 2201
  ident: b0120
  article-title: Deep architecture for traffic flow prediction: deep belief networks with multitask learning
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.c., 2015. Convolutional lstm network: A machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810.
– reference: Zhang, J., Zheng, Y., Qi, D., 2017b. Deep spatio-temporal residual networks for citywide crowd flows prediction. In: AAAI, pp. 1655–1661.
– volume: 63
  start-page: 37
  year: 2012
  end-page: 45
  ident: b0130
  article-title: Hybridization of autoregressive integrated moving average (ARIMA) with probabilistic neural networks (PNNs)
  publication-title: Comput. Ind. Eng.
– volume: 26
  start-page: 33
  year: 2013
  end-page: 48
  ident: b0025
  article-title: A comparative assessment of multi-sensor data fusion techniques for freeway traffic speed estimation using microsimulation modeling
  publication-title: Transp. Res. Part C: Emerg. Technol.
– volume: 43
  start-page: 3
  year: 2014
  end-page: 19
  ident: b0225
  article-title: Short-term traffic forecasting: where we are and where we’re going
  publication-title: Transp. Res. Part C: Emerg. Technol.
– reference: Hochreiter, S., 1991. Untersuchungen zu dynamischen neuronalen Netzen ( Ph.D. thesis). diploma thesis, institut für informatik, lehrstuhl prof. brauer, technische universität münchen.
– reference: Moreira-Matias, L., Gama, J., Ferreira, M., Damas, L., 2012. A predictive model for the passenger demand on a taxi network. In: The 15th IEEE International Conference on Intelligent Transportation Systems, pp. 1014–1019.
– volume: 19
  start-page: 115
  year: 2011
  end-page: 129
  ident: b0205
  article-title: Estimation of traffic stream space mean speed from time aggregations of double loop detector data
  publication-title: Transp. Res. Part C: Emerg. Technol.
– volume: 2215
  start-page: 85
  year: 2011
  end-page: 92
  ident: b0320
  article-title: Seasonal autoregressive integrated moving average and support vector machine models: prediction of short-term traffic flow on freeways
  publication-title: Transp. Res. Rec.: J. Transp. Res. Board
– volume: 44
  start-page: 337
  year: 2010
  end-page: 348
  ident: b0265
  article-title: Nonlinear pricing of taxi services
  publication-title: Transp. Res. Part A: Policy Pract.
– volume: 19
  start-page: 1306
  year: 2011
  end-page: 1318
  ident: b0080
  article-title: A Bayesian dynamic linear model approach for real-time short-term freeway travel time prediction
  publication-title: Transp. Res. Part C: Emerg. Technol.
– volume: 47
  start-page: 139
  year: 2014
  end-page: 154
  ident: b0335
  article-title: Traffic volume forecasting based on radial basis function neural network with the consideration of traffic flows at the adjacent intersections
  publication-title: Transp. Res. Part C: Emerg. Technol.
– volume: 76
  start-page: 51
  year: 2017
  end-page: 70
  ident: b0060
  article-title: Understanding ridesplitting behavior of on-demand ride services: an ensemble learning approach
  publication-title: Transp. Res. Part C: Emerg. Technol.
– reference: .
– volume: 44
  start-page: 110
  year: 2014
  end-page: 127
  ident: b0125
  article-title: Short-term forecasting of high-speed rail demand: a hybrid approach combining ensemble empirical mode decomposition and gray support vector machine with real-world applications in china
  publication-title: Transp. Res. Part C: Emerg. Technol.
– reference: Toqué, F., Côme, E., El Mahrsi, M.K., Oukhellou, L., 2016. Forecasting dynamic public transport origin-destination matrices with long-short term memory recurrent neural networks. In: The 19th IEEE International Conference on Intelligent Transportation Systems, pp. 1071–1076.
– volume: 15
  start-page: 205
  year: 2014
  end-page: 213
  ident: b0300
  article-title: Utilizing microscopic traffic and weather data to analyze real-time crash patterns in the context of active traffic management
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 71
  start-page: 249
  year: 2016
  end-page: 266
  ident: b0305
  article-title: Economic analysis of ride-sourcing markets
  publication-title: Transp. Res. Part C: Emerg. Technol.
– volume: 14
  start-page: 1393
  year: 2013
  end-page: 1402
  ident: b0170
  article-title: Predicting taxi–passenger demand using streaming data
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 1
  start-page: 270
  year: 1989
  end-page: 280
  ident: b0260
  article-title: A learning algorithm for continually running fully recurrent neural networks
  publication-title: Neural Comput.
– volume: 3
  start-page: 362
  year: 2017
  end-page: 374
  ident: b9000
  article-title: Taxi-passenger-demand modeling based on big data from a roving sensor network
  publication-title: IEEE Trans. Big Data
– volume: 25
  start-page: 530
  year: 2010
  end-page: 545
  ident: b0030
  article-title: Wavelet-based denoising for traffic volume time series forecasting with self-organizing neural networks
  publication-title: Comput.-Aided Civil Infrastruct. Eng.
– volume: 43
  start-page: 50
  year: 2014
  end-page: 64
  ident: b0095
  article-title: Adaptive kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification
  publication-title: Transp. Res. Part C: Emerg. Technol.
– volume: 58
  start-page: 93
  year: 2015
  ident: 10.1016/j.trc.2017.10.016_b0100
  article-title: Modeling taxi services with smartphone-based e-hailing applications
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2015.06.023
– volume: 65
  start-page: 1509
  year: 1970
  ident: 10.1016/j.trc.2017.10.016_b0035
  article-title: Distribution of residual autocorrelations in autoregressive-integrated moving average time series models
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1970.10481180
– volume: 79
  start-page: 1
  year: 2017
  ident: 10.1016/j.trc.2017.10.016_b0180
  article-title: Deep learning for short-term traffic flow prediction
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2017.02.024
– ident: 10.1016/j.trc.2017.10.016_b0105
– ident: 10.1016/j.trc.2017.10.016_b0315
  doi: 10.1609/aaai.v31i1.10735
– volume: 47
  start-page: 139
  year: 2014
  ident: 10.1016/j.trc.2017.10.016_b0335
  article-title: Traffic volume forecasting based on radial basis function neural network with the consideration of traffic flows at the adjacent intersections
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2014.06.011
– volume: 71
  start-page: 249
  year: 2016
  ident: 10.1016/j.trc.2017.10.016_b0305
  article-title: Economic analysis of ride-sourcing markets
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2016.07.010
– volume: 16
  start-page: 865
  year: 2015
  ident: 10.1016/j.trc.2017.10.016_b0145
  article-title: Traffic flow prediction with big data: a deep learning approach
  publication-title: IEEE Trans. Intell. Transp. Syst.
– ident: 10.1016/j.trc.2017.10.016_b0055
  doi: 10.1145/2939672.2939785
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.trc.2017.10.016_b0040
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 17
  start-page: 1501
  year: 2017
  ident: 10.1016/j.trc.2017.10.016_b0295
  article-title: Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks
  publication-title: Sensors
  doi: 10.3390/s17071501
– volume: 3
  start-page: 362
  issue: 3
  year: 2017
  ident: 10.1016/j.trc.2017.10.016_b9000
  article-title: Taxi-passenger-demand modeling based on big data from a roving sensor network
  publication-title: IEEE Trans. Big Data
  doi: 10.1109/TBDATA.2016.2627224
– ident: 10.1016/j.trc.2017.10.016_b0050
  doi: 10.1609/aaai.v30i1.10011
– volume: 15
  start-page: 2191
  year: 2014
  ident: 10.1016/j.trc.2017.10.016_b0120
  article-title: Deep architecture for traffic flow prediction: deep belief networks with multitask learning
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2014.2311123
– volume: 14
  start-page: 1393
  year: 2013
  ident: 10.1016/j.trc.2017.10.016_b0170
  article-title: Predicting taxi–passenger demand using streaming data
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2013.2262376
– volume: 25
  start-page: 530
  year: 2010
  ident: 10.1016/j.trc.2017.10.016_b0030
  article-title: Wavelet-based denoising for traffic volume time series forecasting with self-organizing neural networks
  publication-title: Comput.-Aided Civil Infrastruct. Eng.
  doi: 10.1111/j.1467-8667.2010.00668.x
– ident: 10.1016/j.trc.2017.10.016_b0190
  doi: 10.21236/ADA164453
– volume: 13
  start-page: 644
  year: 2012
  ident: 10.1016/j.trc.2017.10.016_b0045
  article-title: Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and levenberg–marquardt algorithm
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2011.2174051
– volume: 19
  start-page: 1306
  year: 2011
  ident: 10.1016/j.trc.2017.10.016_b0080
  article-title: A Bayesian dynamic linear model approach for real-time short-term freeway travel time prediction
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2010.10.005
– volume: 45
  start-page: 696
  year: 2011
  ident: 10.1016/j.trc.2017.10.016_b0280
  article-title: Equilibrium properties of taxi markets with search frictions
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2011.01.002
– volume: 63
  start-page: 37
  year: 2012
  ident: 10.1016/j.trc.2017.10.016_b0130
  article-title: Hybridization of autoregressive integrated moving average (ARIMA) with probabilistic neural networks (PNNs)
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2012.01.017
– volume: 19
  start-page: 1157
  year: 2011
  ident: 10.1016/j.trc.2017.10.016_b0290
  article-title: Bus arrival time prediction at bus stop with multiple routes
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2011.01.003
– volume: 10
  start-page: 246
  year: 2009
  ident: 10.1016/j.trc.2017.10.016_b0090
  article-title: Multivariate short-term traffic flow forecasting using time-series analysis
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2009.2021448
– volume: 2215
  start-page: 85
  year: 2011
  ident: 10.1016/j.trc.2017.10.016_b0320
  article-title: Seasonal autoregressive integrated moving average and support vector machine models: prediction of short-term traffic flow on freeways
  publication-title: Transp. Res. Rec.: J. Transp. Res. Board
  doi: 10.3141/2215-09
– volume: 17
  start-page: 510
  year: 2009
  ident: 10.1016/j.trc.2017.10.016_b0115
  article-title: A novel forecasting approach inspired by human memory: the example of short-term traffic volume forecasting
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2009.04.006
– ident: 10.1016/j.trc.2017.10.016_b0215
– volume: 7
  start-page: 19
  year: 2015
  ident: 10.1016/j.trc.2017.10.016_b0085
  article-title: Vsurf: An R package for variable selection using random forests
  publication-title: The R Journal
  doi: 10.32614/RJ-2015-018
– volume: 54
  start-page: 187
  year: 2015
  ident: 10.1016/j.trc.2017.10.016_b0155
  article-title: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2015.03.014
– ident: 10.1016/j.trc.2017.10.016_b0200
– volume: 43
  start-page: 79
  year: 2014
  ident: 10.1016/j.trc.2017.10.016_b0230
  article-title: New Bayesian combination method for short-term traffic flow forecasting
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2014.02.005
– volume: 21
  start-page: 148
  year: 2012
  ident: 10.1016/j.trc.2017.10.016_b0255
  article-title: Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2011.06.009
– ident: 10.1016/j.trc.2017.10.016_b0250
  doi: 10.1109/TITS.2017.2706963
– ident: 10.1016/j.trc.2017.10.016_b0075
  doi: 10.1109/GeoInformatics.2011.5981129
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.trc.2017.10.016_b0175
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.trc.2017.10.016_b0235
  doi: 10.1109/ICDM.2016.0061
– volume: 1
  start-page: 270
  year: 1989
  ident: 10.1016/j.trc.2017.10.016_b0260
  article-title: A learning algorithm for continually running fully recurrent neural networks
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.2.270
– volume: 11
  start-page: 68
  year: 2017
  ident: 10.1016/j.trc.2017.10.016_b0330
  article-title: Lstm network: a deep learning approach for short-term traffic forecast
  publication-title: IET Intel. Transp. Syst.
  doi: 10.1049/iet-its.2016.0208
– volume: 27
  start-page: 219
  year: 2013
  ident: 10.1016/j.trc.2017.10.016_b0240
  article-title: Short-term traffic speed forecasting hybrid model based on chaos–wavelet analysis-support vector machine theory
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2012.08.004
– volume: 44
  start-page: 1067
  year: 2010
  ident: 10.1016/j.trc.2017.10.016_b0270
  article-title: Equilibria of bilateral taxi–customer searching and meeting on networks
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2009.12.010
– volume: 44
  start-page: 110
  year: 2014
  ident: 10.1016/j.trc.2017.10.016_b0125
  article-title: Short-term forecasting of high-speed rail demand: a hybrid approach combining ensemble empirical mode decomposition and gray support vector machine with real-world applications in china
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2014.03.016
– ident: 10.1016/j.trc.2017.10.016_b0065
– volume: 93
  start-page: 212
  year: 2016
  ident: 10.1016/j.trc.2017.10.016_b0245
  article-title: Pricing strategies for a taxi-hailing platform
  publication-title: Transp. Res. Part E: Logist. Transp. Rev.
  doi: 10.1016/j.tre.2016.05.011
– volume: 76
  start-page: 51
  year: 2017
  ident: 10.1016/j.trc.2017.10.016_b0060
  article-title: Understanding ridesplitting behavior of on-demand ride services: an ensemble learning approach
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2016.12.018
– ident: 10.1016/j.trc.2017.10.016_b0325
  doi: 10.1109/BigData.2016.7840676
– volume: 138
  start-page: 1358
  year: 2012
  ident: 10.1016/j.trc.2017.10.016_b0210
  article-title: Network-scale traffic modeling and forecasting with graphical lasso and neural networks
  publication-title: J. Transp. Eng.
  doi: 10.1061/(ASCE)TE.1943-5436.0000435
– volume: 1681
  start-page: 823
  year: 1999
  ident: 10.1016/j.trc.2017.10.016_b0140
  article-title: Object recognition with gradient-based learning
  publication-title: Shape Contour Group. Comput. Vision
– volume: 44
  start-page: 337
  year: 2010
  ident: 10.1016/j.trc.2017.10.016_b0265
  article-title: Nonlinear pricing of taxi services
  publication-title: Transp. Res. Part A: Policy Pract.
– volume: 5
  start-page: 1
  year: 1988
  ident: 10.1016/j.trc.2017.10.016_b0195
  article-title: Learning representations by back-propagating errors
  publication-title: Cogn. Model.
– volume: 19
  start-page: 115
  year: 2011
  ident: 10.1016/j.trc.2017.10.016_b0205
  article-title: Estimation of traffic stream space mean speed from time aggregations of double loop detector data
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2010.04.004
– volume: 43
  start-page: 3
  year: 2014
  ident: 10.1016/j.trc.2017.10.016_b0225
  article-title: Short-term traffic forecasting: where we are and where we’re going
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2014.01.005
– volume: 26
  start-page: 203
  year: 2013
  ident: 10.1016/j.trc.2017.10.016_b0010
  article-title: A data fusion framework for real-time risk assessment on freeways
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2012.09.002
– start-page: 201611675
  year: 2017
  ident: 10.1016/j.trc.2017.10.016_b0015
  article-title: On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment
  publication-title: Proc. Nat. Acad. Sci.
– ident: 10.1016/j.trc.2017.10.016_b0070
– volume: 26
  start-page: 33
  year: 2013
  ident: 10.1016/j.trc.2017.10.016_b0025
  article-title: A comparative assessment of multi-sensor data fusion techniques for freeway traffic speed estimation using microsimulation modeling
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2012.07.003
– volume: 59
  start-page: 31
  year: 2015
  ident: 10.1016/j.trc.2017.10.016_b0185
  article-title: Spatial variation of the urban taxi ridership using GPS data
  publication-title: Appl. Geography
  doi: 10.1016/j.apgeog.2015.02.011
– ident: 10.1016/j.trc.2017.10.016_b0220
  doi: 10.1109/ITSC.2016.7795689
– ident: 10.1016/j.trc.2017.10.016_b0165
  doi: 10.1109/ITSC.2012.6338680
– volume: 43
  start-page: 50
  year: 2014
  ident: 10.1016/j.trc.2017.10.016_b0095
  article-title: Adaptive kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2014.02.006
– ident: 10.1016/j.trc.2017.10.016_b0005
– ident: 10.1016/j.trc.2017.10.016_b0160
  doi: 10.1371/journal.pone.0119044
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.1016/j.trc.2017.10.016_b0110
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 15
  start-page: 205
  year: 2014
  ident: 10.1016/j.trc.2017.10.016_b0300
  article-title: Utilizing microscopic traffic and weather data to analyze real-time crash patterns in the context of active traffic management
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2013.2276089
– volume: 53
  start-page: 501
  year: 2005
  ident: 10.1016/j.trc.2017.10.016_b0285
  article-title: A multiperiod dynamic model of taxi services with endogenous service intensity
  publication-title: Oper. Res.
  doi: 10.1287/opre.1040.0181
– volume: 34
  start-page: 89
  year: 2013
  ident: 10.1016/j.trc.2017.10.016_b0020
  article-title: Dynamic data-driven local traffic state estimation and prediction
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2013.05.012
– volume: 17
  start-page: 818
  year: 2017
  ident: 10.1016/j.trc.2017.10.016_b0150
  article-title: Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction
  publication-title: Sensors
  doi: 10.3390/s17040818
– volume: 36
  start-page: 799
  year: 2002
  ident: 10.1016/j.trc.2017.10.016_b0275
  article-title: Demand–supply equilibrium of taxi services in a network under competition and regulation
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/S0191-2615(01)00031-5
– ident: 10.1016/j.trc.2017.10.016_b0135
SSID ssj0001957
Score 2.6471448
Snippet •Propose the fusion convolutional long short-term memory network (FCL-Net).•Fusion of convolutional LSTM layers, standard LSTM layers and convolutional...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 591
SubjectTerms Convolutional neural network (CNN)
Deep learning (DL)
Fusion convolutional long short-term memory network (FCL-Net)
Long short-term memory (LSTM)
On-demand ride services
Short-term demand forecasting
Title Short-term forecasting of passenger demand under on-demand ride services: A spatio-temporal deep learning approach
URI https://dx.doi.org/10.1016/j.trc.2017.10.016
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQGYAB8RTlUXlgQnKbxE4cs1UVVQHBApW6RX4FikpapWXlt-NrHCgSMDDa8knR5XT3OfnuO4TObSpNlGhBOI0UYYobklKakEjEucqVtMxA7_DdfTIYsptRPFpDvboXBmiVPvdXOX2Zrf1Ox3uzMxuPOw8OfKeBCEahC1K4NkAHO-MQ5e33L5pHKCq1T3cYvkmM6j-bS47XogQVw5C3geAFI89_qk0r9aa_g7Y9UMTd6ll20Zot9tBG3Uc830NbK1KC-6h8eHZAmkCixQ6HWi3nQGjG0xzPHD4G7mqJjX2VhcHQN1biaUH8uhwbi-c-aVziLp4vadbEy1ZNnJ2dYT9f4gnXMuQHaNi_euwNiJ-nQDRjbEFMHhutONwYwlBHRiSKUmmoMZoGIlJWBrFUXIcyUXmiY2NNGktmpcumecopPUSNYlrYI4SZYEwkXCeMU-fzNGXaUBcPsbCcCWuaKKg9mWkvNg4zLyZZzSp7yZzzM3A-bLmdJrr4NJlVSht_HWb168m-hUvmKsHvZsf_MztBm7CqWCynqLEo3-yZwyIL1VoGWwutd69vB_cfcH_gbw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT-wwDLZYDsABsYqdHDghhWmbtGm4IQQa1gsgza3KVt48QWfUGa78duJpyiIBB451Y6lyXdtpPn8GOHC5sklmJBUs0ZRrYWnOWEYTmZa61Mpxi73DN7dZ94Ff9tLeFJy2vTAIqwyxv4npk2gdJJ1gzc6w3-_c-eI7j2TUi72T4rZhGma5_3xxjMHR6wfOI5YN3adfjT8leu3R5gTkNa6RxjAWR4jwwpnn3yWnTwnnfAkWQ6VITpqHWYYpV63AXNtIPFqBhU9cgqtQ3_3zlTTFSEt8IeqMGiGimQxKMvQFMoJXa2Lds6oswcaxmgwqGq7rvnVkFKLGMTkhownOmgbeqiev54YkDJh4JC0P-Ro8nJ_dn3ZpGKhADed8TG2ZWqMFbhni2CRWZpoxZZm1hkUy0U5FqdLCxCrTZWZS62yeKu6UD6dlLhhbh5lqULkNIFxyLjNhMi4Y91uWnBvLvEOk0gkund2EqLVkYQLbOA69eCpaWNn_whu_QOOjyEs24fBdZdhQbfy2mLevp_jiL4VPBT-rbf1NbR_muvc318X1xe3VNszjnQbSsgMz4_rF7frCZKz3Jo73Bqm14f0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-term+forecasting+of+passenger+demand+under+on-demand+ride+services%3A+A+spatio-temporal+deep+learning+approach&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Ke%2C+Jintao&rft.au=Zheng%2C+Hongyu&rft.au=Yang%2C+Hai&rft.au=Chen%2C+Xiqun+%28Michael%29&rft.date=2017-12-01&rft.pub=Elsevier+Ltd&rft.issn=0968-090X&rft.eissn=1879-2359&rft.volume=85&rft.spage=591&rft.epage=608&rft_id=info:doi/10.1016%2Fj.trc.2017.10.016&rft.externalDocID=S0968090X17302899
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon