Short-term forecasting of passenger demand under on-demand ride services: A spatio-temporal deep learning approach
•Propose the fusion convolutional long short-term memory network (FCL-Net).•Fusion of convolutional LSTM layers, standard LSTM layers and convolutional layers.•Better capture spatio-temporal correlations of explanatory variables.•A tailored spatially aggregated random forest is used to rank feature...
Saved in:
Published in | Transportation research. Part C, Emerging technologies Vol. 85; pp. 591 - 608 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Propose the fusion convolutional long short-term memory network (FCL-Net).•Fusion of convolutional LSTM layers, standard LSTM layers and convolutional layers.•Better capture spatio-temporal correlations of explanatory variables.•A tailored spatially aggregated random forest is used to rank feature importance.•Applied to real-world on-demand ride service data provided by DiDi.
Short-term passenger demand forecasting is of great importance to the on-demand ride service platform, which can incentivize vacant cars moving from over-supply regions to over-demand regions. The spatial dependencies, temporal dependencies, and exogenous dependencies need to be considered simultaneously, however, which makes short-term passenger demand forecasting challenging. We propose a novel deep learning (DL) approach, named the fusion convolutional long short-term memory network (FCL-Net), to address these three dependencies within one end-to-end learning architecture. The model is stacked and fused by multiple convolutional long short-term memory (LSTM) layers, standard LSTM layers, and convolutional layers. The fusion of convolutional techniques and the LSTM network enables the proposed DL approach to better capture the spatio-temporal characteristics and correlations of explanatory variables. A tailored spatially aggregated random forest is employed to rank the importance of the explanatory variables. The ranking is then used for feature selection. The proposed DL approach is applied to the short-term forecasting of passenger demand under an on-demand ride service platform in Hangzhou, China. The experimental results, validated on the real-world data provided by DiDi Chuxing, show that the FCL-Net achieves the better predictive performance than traditional approaches including both classical time-series prediction models and state-of-art machine learning algorithms (e.g., artificial neural network, XGBoost, LSTM and CNN). Furthermore, the consideration of exogenous variables in addition to the passenger demand itself, such as the travel time rate, time-of-day, day-of-week, and weather conditions, is proven to be promising, since they reduce the root mean squared error (RMSE) by 48.3%. It is also interesting to find that the feature selection reduces 24.4% in the training time and leads to only the 1.8% loss in the forecasting accuracy measured by RMSE in the proposed model. This paper is one of the first DL studies to forecast the short-term passenger demand of an on-demand ride service platform by examining the spatio-temporal correlations. |
---|---|
AbstractList | •Propose the fusion convolutional long short-term memory network (FCL-Net).•Fusion of convolutional LSTM layers, standard LSTM layers and convolutional layers.•Better capture spatio-temporal correlations of explanatory variables.•A tailored spatially aggregated random forest is used to rank feature importance.•Applied to real-world on-demand ride service data provided by DiDi.
Short-term passenger demand forecasting is of great importance to the on-demand ride service platform, which can incentivize vacant cars moving from over-supply regions to over-demand regions. The spatial dependencies, temporal dependencies, and exogenous dependencies need to be considered simultaneously, however, which makes short-term passenger demand forecasting challenging. We propose a novel deep learning (DL) approach, named the fusion convolutional long short-term memory network (FCL-Net), to address these three dependencies within one end-to-end learning architecture. The model is stacked and fused by multiple convolutional long short-term memory (LSTM) layers, standard LSTM layers, and convolutional layers. The fusion of convolutional techniques and the LSTM network enables the proposed DL approach to better capture the spatio-temporal characteristics and correlations of explanatory variables. A tailored spatially aggregated random forest is employed to rank the importance of the explanatory variables. The ranking is then used for feature selection. The proposed DL approach is applied to the short-term forecasting of passenger demand under an on-demand ride service platform in Hangzhou, China. The experimental results, validated on the real-world data provided by DiDi Chuxing, show that the FCL-Net achieves the better predictive performance than traditional approaches including both classical time-series prediction models and state-of-art machine learning algorithms (e.g., artificial neural network, XGBoost, LSTM and CNN). Furthermore, the consideration of exogenous variables in addition to the passenger demand itself, such as the travel time rate, time-of-day, day-of-week, and weather conditions, is proven to be promising, since they reduce the root mean squared error (RMSE) by 48.3%. It is also interesting to find that the feature selection reduces 24.4% in the training time and leads to only the 1.8% loss in the forecasting accuracy measured by RMSE in the proposed model. This paper is one of the first DL studies to forecast the short-term passenger demand of an on-demand ride service platform by examining the spatio-temporal correlations. |
Author | Ke, Jintao Chen, Xiqun (Michael) Yang, Hai Zheng, Hongyu |
Author_xml | – sequence: 1 givenname: Jintao orcidid: 0000-0001-9778-3387 surname: Ke fullname: Ke, Jintao organization: Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China – sequence: 2 givenname: Hongyu surname: Zheng fullname: Zheng, Hongyu organization: College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China – sequence: 3 givenname: Hai surname: Yang fullname: Yang, Hai organization: Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China – sequence: 4 givenname: Xiqun (Michael) orcidid: 0000-0001-8285-084X surname: Chen fullname: Chen, Xiqun (Michael) email: chenxiqun@zju.edu.cn organization: College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China |
BookMark | eNp9kM1KAzEUhYNUsK0-gLu8wNSk89fRVSn-QcGFCu6GO8mdNmUmGW5iwbc3g1256OpyDnwH7jdjE-ssMnYrxUIKWdwdFoHUYilkGfMiNhdsKldllSzTvJqwqaiKVSIq8XXFZt4fhBCyysspo_e9o5AEpJ63jlCBD8buuGv5AN6j3SFxjT1Yzb-tjsHZ5JTJaOQe6WgU-nu-5n6AYFwc6wdH0EUOB94hkB0nYRjIgdpfs8sWOo83pztnn0-PH5uXZPv2_LpZbxOVZVlIdJtr1ZSFTIWUaqmroklT0KnWKhXVskEQOTSlklA0baFyjXqVQ4Ygs6JdlWk6Z_JvV5HznrCtBzI90E8tRT1Kqw91lFaP0sYqNpEp_zHKhPEpGwhMd5Z8-CMxvnQ0SLVXBq1CbaLVUGtnztC_mbSMiA |
CitedBy_id | crossref_primary_10_3233_JIFS_222115 crossref_primary_10_1016_j_physa_2020_124503 crossref_primary_10_1016_j_jrtpm_2022_100320 crossref_primary_10_20965_jaciii_2020_p0900 crossref_primary_10_1186_s13635_019_0090_6 crossref_primary_10_2139_ssrn_3186125 crossref_primary_10_1016_j_tra_2024_104344 crossref_primary_10_1002_for_3073 crossref_primary_10_1109_TII_2020_3003133 crossref_primary_10_1016_j_trc_2022_103709 crossref_primary_10_1049_iet_its_2019_0552 crossref_primary_10_1016_j_aei_2022_101678 crossref_primary_10_1155_2020_8935857 crossref_primary_10_1016_j_engappai_2025_110074 crossref_primary_10_1016_j_trc_2018_12_004 crossref_primary_10_1080_08839514_2020_1771522 crossref_primary_10_1080_13658816_2019_1652303 crossref_primary_10_1080_19427867_2023_2175420 crossref_primary_10_1063_5_0152728 crossref_primary_10_1109_ACCESS_2021_3093987 crossref_primary_10_1109_TKDE_2021_3135898 crossref_primary_10_3390_su16135725 crossref_primary_10_1016_j_trc_2017_11_003 crossref_primary_10_1109_ACCESS_2020_3020861 crossref_primary_10_1109_TITS_2019_2932038 crossref_primary_10_1080_21680566_2021_1922320 crossref_primary_10_1109_TITS_2023_3327266 crossref_primary_10_15446_innovar_v32n85_100979 crossref_primary_10_1016_j_tre_2020_102148 crossref_primary_10_1016_j_tre_2019_06_016 crossref_primary_10_1016_j_ijtst_2021_11_001 crossref_primary_10_1109_JAS_2021_1003976 crossref_primary_10_3390_app14198847 crossref_primary_10_1109_ACCESS_2018_2885821 crossref_primary_10_1016_j_asoc_2018_08_024 crossref_primary_10_1016_j_jum_2022_05_002 crossref_primary_10_1016_j_comnet_2020_107530 crossref_primary_10_1016_j_compenvurbsys_2019_101403 crossref_primary_10_1016_j_trpro_2024_02_069 crossref_primary_10_1016_j_trc_2023_104397 crossref_primary_10_1007_s10479_024_05990_x crossref_primary_10_1109_TMLCN_2025_3545777 crossref_primary_10_1016_j_trc_2023_104159 crossref_primary_10_1109_ACCESS_2021_3123255 crossref_primary_10_1016_j_tbs_2023_100713 crossref_primary_10_1080_19427867_2021_1988439 crossref_primary_10_26599_HTRD_2024_9480015 crossref_primary_10_1186_s12911_023_02140_4 crossref_primary_10_1109_OJITS_2023_3297517 crossref_primary_10_2197_ipsjjip_30_888 crossref_primary_10_1016_j_trc_2024_104661 crossref_primary_10_1016_j_trc_2022_103731 crossref_primary_10_1109_TVT_2021_3090042 crossref_primary_10_3390_ijgi10070455 crossref_primary_10_1109_TITS_2024_3447282 crossref_primary_10_1177_0361198119838508 crossref_primary_10_2139_ssrn_4169580 crossref_primary_10_1007_s13177_024_00456_7 crossref_primary_10_1080_19427867_2024_2440211 crossref_primary_10_1111_mice_13131 crossref_primary_10_3389_fpubh_2021_804298 crossref_primary_10_1016_j_trc_2018_05_008 crossref_primary_10_7769_gesec_v14i7_1670 crossref_primary_10_1515_chem_2022_0124 crossref_primary_10_1016_j_tre_2021_102236 crossref_primary_10_1109_TITS_2019_2909571 crossref_primary_10_1109_TITS_2021_3128494 crossref_primary_10_1016_j_trc_2022_103621 crossref_primary_10_1061_JTEPBS_TEENG_8137 crossref_primary_10_3390_app12094763 crossref_primary_10_1007_s42421_024_00113_1 crossref_primary_10_1007_s12145_023_01075_8 crossref_primary_10_1016_j_tre_2020_102090 crossref_primary_10_1177_03611981211044727 crossref_primary_10_1016_j_trc_2019_07_023 crossref_primary_10_1109_TVT_2020_2978450 crossref_primary_10_1016_j_commtr_2021_100012 crossref_primary_10_2208_jscejipm_76_5_I_1389 crossref_primary_10_1016_j_apenergy_2023_121032 crossref_primary_10_1061_JTEPBS_0000653 crossref_primary_10_1007_s00521_021_06092_6 crossref_primary_10_1016_j_knosys_2025_113115 crossref_primary_10_1016_j_trc_2023_104244 crossref_primary_10_1016_j_trc_2019_07_018 crossref_primary_10_1109_TITS_2024_3359763 crossref_primary_10_1109_TITS_2020_3011700 crossref_primary_10_3389_ffutr_2021_681451 crossref_primary_10_1016_j_tbs_2023_100627 crossref_primary_10_1016_j_trc_2021_103352 crossref_primary_10_3390_ijgi11010042 crossref_primary_10_1007_s12652_020_02507_9 crossref_primary_10_1016_j_tre_2024_103551 crossref_primary_10_1016_j_trd_2020_102359 crossref_primary_10_1109_TIM_2021_3122173 crossref_primary_10_1007_s10479_022_04560_3 crossref_primary_10_1016_j_tre_2023_103027 crossref_primary_10_1155_2020_7917353 crossref_primary_10_1016_j_knosys_2022_109028 crossref_primary_10_1007_s11116_023_10385_1 crossref_primary_10_1016_j_trc_2019_05_039 crossref_primary_10_1155_2019_4392785 crossref_primary_10_33042_2522_1809_2023_4_178_141_146 crossref_primary_10_3390_w14152377 crossref_primary_10_1109_ACCESS_2019_2937114 crossref_primary_10_1016_j_trb_2021_06_014 crossref_primary_10_1007_s12469_024_00365_8 crossref_primary_10_1109_TKDE_2021_3118389 crossref_primary_10_3390_su15107903 crossref_primary_10_1109_OJITS_2023_3334393 crossref_primary_10_1016_j_ipm_2024_103778 crossref_primary_10_1080_13658816_2019_1599895 crossref_primary_10_1016_j_jece_2024_113011 crossref_primary_10_1016_j_jclepro_2020_123273 crossref_primary_10_1093_tse_tdad026 crossref_primary_10_1088_1674_1056_ad3349 crossref_primary_10_1016_j_engappai_2019_103405 crossref_primary_10_1016_j_physa_2021_125838 crossref_primary_10_1016_j_cosrev_2021_100379 crossref_primary_10_1109_TITS_2019_2915525 crossref_primary_10_1155_2021_6654909 crossref_primary_10_3390_electronics13030574 crossref_primary_10_1016_j_tre_2022_102694 crossref_primary_10_1109_ACCESS_2020_2974885 crossref_primary_10_1140_epjs_s11734_022_00551_4 crossref_primary_10_1142_S0129183121501588 crossref_primary_10_1080_23249935_2024_2335244 crossref_primary_10_1007_s40747_024_01391_6 crossref_primary_10_1007_s42044_019_00052_z crossref_primary_10_1109_JAS_2023_123744 crossref_primary_10_18267_j_aip_196 crossref_primary_10_1016_j_physa_2022_127079 crossref_primary_10_1109_ACCESS_2020_2987934 crossref_primary_10_1016_j_trc_2020_102786 crossref_primary_10_1109_TITS_2019_2900481 crossref_primary_10_1109_TITS_2020_2983651 crossref_primary_10_1007_s10489_021_03047_1 crossref_primary_10_1109_TITS_2019_2935152 crossref_primary_10_3390_su16229772 crossref_primary_10_1109_MITS_2023_3244935 crossref_primary_10_3390_ijgi8090414 crossref_primary_10_4018_IJoSE_2019070105 crossref_primary_10_4018_IRMJ_291692 crossref_primary_10_1109_TITS_2020_3019509 crossref_primary_10_1016_j_knosys_2020_105592 crossref_primary_10_3390_su141912397 crossref_primary_10_1109_MITS_2023_3309653 crossref_primary_10_1109_MITS_2021_3119869 crossref_primary_10_3390_s20164574 crossref_primary_10_1016_j_asoc_2023_110740 crossref_primary_10_3233_JIFS_210872 crossref_primary_10_1109_TITS_2020_3004254 crossref_primary_10_1016_j_jpubtr_2024_100103 crossref_primary_10_1016_j_tws_2024_112892 crossref_primary_10_1016_j_scs_2020_102594 crossref_primary_10_3390_math11163446 crossref_primary_10_1109_TITS_2020_2993798 crossref_primary_10_1080_15568318_2020_1795760 crossref_primary_10_1109_ACCESS_2019_2907739 crossref_primary_10_1007_s42421_023_00075_w crossref_primary_10_1109_TITS_2022_3231959 crossref_primary_10_1016_j_cie_2019_06_002 crossref_primary_10_1002_int_22906 crossref_primary_10_1016_j_jclepro_2022_132337 crossref_primary_10_1080_01441647_2020_1866096 crossref_primary_10_3390_app14020863 crossref_primary_10_1016_j_commtr_2022_100075 crossref_primary_10_1016_j_physa_2021_126603 crossref_primary_10_1109_ACCESS_2022_3211518 crossref_primary_10_1016_j_tra_2024_103975 crossref_primary_10_1016_j_tranpol_2021_03_004 crossref_primary_10_1080_00207543_2023_2247092 crossref_primary_10_1109_TITS_2021_3122541 crossref_primary_10_1016_j_ijpe_2020_107828 crossref_primary_10_1016_j_ins_2020_01_043 crossref_primary_10_1109_ACCESS_2021_3075494 crossref_primary_10_1016_j_inffus_2020_11_010 crossref_primary_10_1049_iet_its_2018_0064 crossref_primary_10_1109_TITS_2020_2983763 crossref_primary_10_1111_tgis_12644 crossref_primary_10_1016_j_trc_2018_10_011 crossref_primary_10_1007_s10479_023_05223_7 crossref_primary_10_1109_TITS_2024_3390185 crossref_primary_10_3390_s19040861 crossref_primary_10_1155_2020_6625435 crossref_primary_10_1080_21680566_2020_1722766 crossref_primary_10_1016_j_knosys_2023_110676 crossref_primary_10_1016_j_trc_2019_11_001 crossref_primary_10_1109_TITS_2022_3150600 crossref_primary_10_1109_TKDE_2020_3025580 crossref_primary_10_1016_j_eswa_2024_123833 crossref_primary_10_3233_JIFS_179185 crossref_primary_10_1016_j_jtte_2022_05_004 crossref_primary_10_1016_j_tre_2024_103600 crossref_primary_10_1109_ACCESS_2024_3425634 crossref_primary_10_1016_j_commtr_2022_100058 crossref_primary_10_1007_s11749_023_00852_3 crossref_primary_10_2139_ssrn_4054273 crossref_primary_10_1016_j_dss_2018_08_010 crossref_primary_10_1177_1471082X221083343 crossref_primary_10_1016_j_trb_2020_10_003 crossref_primary_10_1109_TITS_2023_3235805 crossref_primary_10_1109_TITS_2022_3216016 crossref_primary_10_1155_2022_3096901 crossref_primary_10_1155_2022_6078223 crossref_primary_10_1109_TITS_2021_3054840 crossref_primary_10_1016_j_compenvurbsys_2020_101521 crossref_primary_10_1016_j_eswa_2023_121468 crossref_primary_10_1016_j_tranpol_2025_02_019 crossref_primary_10_3390_ai2040039 crossref_primary_10_1155_2022_5356069 crossref_primary_10_1016_j_jrtpm_2022_100311 crossref_primary_10_1007_s00477_023_02564_4 crossref_primary_10_1109_TITS_2020_3038457 crossref_primary_10_3390_rs13101919 crossref_primary_10_1007_s00500_022_07025_8 crossref_primary_10_1007_s00521_018_3470_9 crossref_primary_10_1016_j_tre_2024_103822 crossref_primary_10_1007_s11042_022_12077_x crossref_primary_10_1007_s40314_019_1006_2 crossref_primary_10_1109_TKDE_2020_3006084 crossref_primary_10_1016_j_jpubtr_2024_100092 crossref_primary_10_1155_adce_2551687 crossref_primary_10_1109_MITS_2021_3137224 crossref_primary_10_1016_j_trc_2020_102851 crossref_primary_10_1108_JES_12_2021_0617 crossref_primary_10_1109_ACCESS_2021_3063881 crossref_primary_10_1016_j_omega_2023_102947 crossref_primary_10_1016_j_ins_2022_11_138 crossref_primary_10_1109_TITS_2023_3257759 crossref_primary_10_1016_j_trc_2020_102858 crossref_primary_10_1016_j_trc_2020_102619 crossref_primary_10_3390_su14127371 crossref_primary_10_1007_s13177_020_00248_9 crossref_primary_10_1016_j_tranpol_2023_10_025 crossref_primary_10_1088_1742_6596_1670_1_012034 crossref_primary_10_1016_j_physa_2018_05_005 crossref_primary_10_1007_s00521_021_06861_3 crossref_primary_10_1088_1742_6596_1700_1_012104 crossref_primary_10_1109_TITS_2023_3312224 crossref_primary_10_1109_TITS_2024_3364759 crossref_primary_10_1007_s11116_022_10349_x crossref_primary_10_1016_j_apenergy_2022_119533 crossref_primary_10_1109_ACCESS_2020_3036652 crossref_primary_10_1109_TITS_2021_3122114 crossref_primary_10_1016_j_trb_2024_102943 crossref_primary_10_1109_TKDE_2021_3130762 crossref_primary_10_1049_itr2_12238 crossref_primary_10_1016_j_tre_2025_104055 crossref_primary_10_1016_j_trc_2020_102826 crossref_primary_10_1371_journal_pone_0248064 crossref_primary_10_1049_itr2_12596 crossref_primary_10_1109_TITS_2019_2891167 crossref_primary_10_3390_su11195338 crossref_primary_10_2139_ssrn_3986719 crossref_primary_10_1016_j_ins_2022_04_024 crossref_primary_10_1007_s00500_022_07691_8 crossref_primary_10_3390_s24175543 crossref_primary_10_3390_app10082962 crossref_primary_10_1109_TITS_2020_3015542 crossref_primary_10_1109_ACCESS_2019_2950956 crossref_primary_10_3390_app11209675 crossref_primary_10_1016_j_trc_2020_102951 crossref_primary_10_1109_TCSS_2024_3372856 crossref_primary_10_1109_TITS_2020_3026025 crossref_primary_10_1007_s11067_022_09582_9 crossref_primary_10_1109_TITS_2021_3080511 crossref_primary_10_1016_j_multra_2024_100166 crossref_primary_10_1155_2023_7407748 crossref_primary_10_1016_j_trc_2019_10_011 crossref_primary_10_2139_ssrn_3986723 crossref_primary_10_3390_ijgi8090366 crossref_primary_10_1016_j_eswa_2023_122281 crossref_primary_10_1061_JTEPBS_TEENG_7729 crossref_primary_10_1049_itr2_12016 crossref_primary_10_1080_19427867_2024_2372944 crossref_primary_10_1038_s41598_024_64483_w crossref_primary_10_1109_ACCESS_2021_3127584 crossref_primary_10_1109_TITS_2021_3056415 crossref_primary_10_1007_s42421_020_00032_x crossref_primary_10_1109_ACCESS_2019_2935121 crossref_primary_10_3934_mbe_2024112 crossref_primary_10_1109_ACCESS_2023_3297143 crossref_primary_10_1016_j_neunet_2022_05_013 crossref_primary_10_1177_03611981211059769 crossref_primary_10_1109_TITS_2019_2947145 crossref_primary_10_1155_2021_6645214 crossref_primary_10_3390_ijgi7050177 crossref_primary_10_1080_13658816_2023_2203218 crossref_primary_10_1109_TITS_2021_3097240 crossref_primary_10_1155_2023_4427638 crossref_primary_10_1016_j_ins_2024_121142 crossref_primary_10_1109_TVT_2024_3355971 crossref_primary_10_1155_2022_5934670 crossref_primary_10_1016_j_retrec_2019_06_001 crossref_primary_10_1109_ACCESS_2021_3071174 crossref_primary_10_3390_s19092063 crossref_primary_10_1007_s42421_020_00020_1 crossref_primary_10_1016_j_trb_2019_11_005 crossref_primary_10_3390_ijgi12010025 crossref_primary_10_1007_s10479_021_04429_x crossref_primary_10_1007_s10479_022_04842_w crossref_primary_10_1109_ACCESS_2020_3034551 crossref_primary_10_1016_j_tre_2025_104011 crossref_primary_10_2139_ssrn_3157378 crossref_primary_10_1155_2020_4656435 crossref_primary_10_1016_j_eswa_2021_116102 crossref_primary_10_1007_s41324_023_00526_0 crossref_primary_10_1109_ACCESS_2021_3056926 crossref_primary_10_1109_ACCESS_2022_3150852 crossref_primary_10_1016_j_scs_2020_102419 crossref_primary_10_1016_j_trc_2020_102877 crossref_primary_10_1016_j_oceaneng_2020_108182 crossref_primary_10_1016_j_trc_2020_102636 crossref_primary_10_1109_JIOT_2023_3243122 crossref_primary_10_1016_j_cities_2023_104758 crossref_primary_10_3390_su12083103 crossref_primary_10_1016_j_trc_2020_102639 crossref_primary_10_1155_2019_8503252 crossref_primary_10_1016_j_jtte_2019_07_002 crossref_primary_10_1016_j_tra_2021_01_017 crossref_primary_10_1007_s42421_021_00041_4 crossref_primary_10_1016_j_trc_2020_102870 crossref_primary_10_1007_s10489_022_03966_7 crossref_primary_10_1016_j_omega_2024_103077 crossref_primary_10_1158_1078_0432_CCR_18_3908 crossref_primary_10_1007_s00521_021_06669_1 crossref_primary_10_1016_j_tust_2022_104486 crossref_primary_10_1109_TEM_2023_3274544 crossref_primary_10_1016_j_trc_2019_08_005 crossref_primary_10_1109_TITS_2023_3297948 crossref_primary_10_1109_TITS_2024_3367754 crossref_primary_10_1155_2021_9134942 crossref_primary_10_1016_j_rtbm_2022_100827 crossref_primary_10_1007_s42421_020_00030_z crossref_primary_10_1145_3627825 crossref_primary_10_1016_j_tbs_2024_100845 crossref_primary_10_1109_TVT_2023_3287221 crossref_primary_10_1016_j_jclepro_2020_123706 crossref_primary_10_1049_iet_its_2020_0486 crossref_primary_10_1145_3385414 crossref_primary_10_1016_j_trc_2021_103372 crossref_primary_10_1109_OJITS_2022_3163180 crossref_primary_10_1016_j_neucom_2020_06_001 crossref_primary_10_1016_j_eswa_2024_123207 crossref_primary_10_1080_15568318_2022_2054390 crossref_primary_10_1016_j_trc_2019_08_014 crossref_primary_10_1016_j_trc_2019_08_019 crossref_primary_10_1016_j_knosys_2023_111184 crossref_primary_10_1109_TITS_2018_2878068 crossref_primary_10_1016_j_neucom_2020_11_038 crossref_primary_10_1109_MITS_2019_2919503 crossref_primary_10_1016_j_trc_2021_103361 crossref_primary_10_3390_s22031060 crossref_primary_10_1109_ACCESS_2019_2957612 crossref_primary_10_1016_j_neucom_2022_08_060 crossref_primary_10_1109_TITS_2019_2929020 crossref_primary_10_1016_j_eswa_2022_116585 crossref_primary_10_1016_j_commtr_2023_100099 crossref_primary_10_1007_s10109_020_00345_z crossref_primary_10_1016_j_trc_2024_104842 crossref_primary_10_1016_j_trd_2022_103431 crossref_primary_10_3390_su16052065 crossref_primary_10_1016_j_inffus_2024_102845 crossref_primary_10_1016_j_trc_2021_103156 crossref_primary_10_3390_su152115409 crossref_primary_10_1016_j_trc_2018_07_013 crossref_primary_10_1142_S021819402250005X crossref_primary_10_1109_TITS_2020_3041234 crossref_primary_10_1109_TITS_2019_2932785 crossref_primary_10_1038_s41598_024_84581_z crossref_primary_10_1080_13658816_2019_1697879 crossref_primary_10_1109_ACCESS_2020_3000242 crossref_primary_10_1109_TCSS_2021_3057332 crossref_primary_10_1016_j_engappai_2023_107297 crossref_primary_10_1016_j_future_2021_03_003 crossref_primary_10_1049_itr2_12073 crossref_primary_10_1007_s00779_019_01333_x crossref_primary_10_1109_TITS_2019_2923964 crossref_primary_10_1016_j_trb_2020_07_001 crossref_primary_10_1016_j_trc_2022_103562 crossref_primary_10_1016_j_trc_2020_102921 crossref_primary_10_1016_j_trc_2025_105081 crossref_primary_10_1016_j_trc_2020_102922 crossref_primary_10_1109_ACCESS_2024_3522107 crossref_primary_10_1109_TCYB_2020_3000929 crossref_primary_10_3390_app13084910 crossref_primary_10_1109_TITS_2021_3067675 crossref_primary_10_1016_j_eswa_2023_123091 crossref_primary_10_1016_j_trc_2023_104427 crossref_primary_10_3390_app11209680 crossref_primary_10_54097_hset_v70i_12176 crossref_primary_10_1007_s11227_021_04237_x crossref_primary_10_1016_j_trc_2023_104428 crossref_primary_10_3390_s23020594 crossref_primary_10_1109_TVT_2019_2949603 crossref_primary_10_1016_j_eswa_2022_119311 crossref_primary_10_1109_TMC_2020_3005240 crossref_primary_10_1109_TITS_2022_3155753 crossref_primary_10_3390_logistics7040079 crossref_primary_10_1142_S0218126622501122 crossref_primary_10_1016_j_trc_2019_09_007 crossref_primary_10_1109_TITS_2024_3450846 crossref_primary_10_3390_app12031161 crossref_primary_10_1016_j_neucom_2018_10_097 crossref_primary_10_1007_s42486_020_00039_x crossref_primary_10_1109_JSYST_2023_3257886 crossref_primary_10_1109_TITS_2023_3248580 crossref_primary_10_1016_j_trc_2020_102817 crossref_primary_10_1109_ACCESS_2019_2939902 crossref_primary_10_1016_j_petrol_2021_108975 crossref_primary_10_1016_j_trc_2023_104410 crossref_primary_10_1109_TITS_2024_3450610 crossref_primary_10_3390_electronics13244889 crossref_primary_10_1016_j_tbs_2024_100878 crossref_primary_10_1016_j_trc_2019_09_011 crossref_primary_10_1016_j_amar_2021_100157 crossref_primary_10_3390_app11010017 crossref_primary_10_4236_ars_2024_133004 crossref_primary_10_1109_ACCESS_2020_3015752 crossref_primary_10_1109_TITS_2020_3002718 crossref_primary_10_1155_2022_7690309 crossref_primary_10_1371_journal_pone_0311987 crossref_primary_10_3390_ijgi8060243 crossref_primary_10_1016_j_trd_2023_103716 crossref_primary_10_1049_iet_its_2019_0008 crossref_primary_10_1016_j_tre_2020_102106 crossref_primary_10_1088_1742_6596_2033_1_012167 crossref_primary_10_1016_j_trc_2020_02_010 crossref_primary_10_1016_j_enconman_2018_04_021 crossref_primary_10_1109_ACCESS_2020_3024224 crossref_primary_10_1109_TITS_2018_2882861 crossref_primary_10_1016_j_trc_2020_02_013 crossref_primary_10_1016_j_inffus_2020_01_002 crossref_primary_10_1109_ACCESS_2024_3437172 crossref_primary_10_1109_TITS_2024_3367779 crossref_primary_10_3390_ijgi10110773 crossref_primary_10_1080_00207543_2021_1871675 crossref_primary_10_1016_j_trb_2018_12_013 crossref_primary_10_1016_j_trc_2020_102912 crossref_primary_10_3390_w10101389 crossref_primary_10_1080_23249935_2022_2109774 crossref_primary_10_2139_ssrn_3994301 crossref_primary_10_1080_03081079_2023_2203922 crossref_primary_10_1016_j_heliyon_2025_e41904 crossref_primary_10_1016_j_physa_2022_127789 crossref_primary_10_1016_j_trc_2020_102916 crossref_primary_10_1109_TITS_2021_3060959 crossref_primary_10_1109_TITS_2022_3148085 crossref_primary_10_1007_s11042_018_6374_x crossref_primary_10_1080_15472450_2021_1904921 crossref_primary_10_1109_TITS_2023_3249409 crossref_primary_10_1016_j_asoc_2022_109700 crossref_primary_10_1016_j_trb_2019_07_009 crossref_primary_10_1007_s00521_022_07681_9 crossref_primary_10_1016_j_trc_2021_103063 |
Cites_doi | 10.1016/j.trc.2015.06.023 10.1080/01621459.1970.10481180 10.1016/j.trc.2017.02.024 10.1609/aaai.v31i1.10735 10.1016/j.trc.2014.06.011 10.1016/j.trc.2016.07.010 10.1145/2939672.2939785 10.1023/A:1010933404324 10.3390/s17071501 10.1109/TBDATA.2016.2627224 10.1609/aaai.v30i1.10011 10.1109/TITS.2014.2311123 10.1109/TITS.2013.2262376 10.1111/j.1467-8667.2010.00668.x 10.21236/ADA164453 10.1109/TITS.2011.2174051 10.1016/j.trc.2010.10.005 10.1016/j.trb.2011.01.002 10.1016/j.cie.2012.01.017 10.1016/j.trc.2011.01.003 10.1109/TITS.2009.2021448 10.3141/2215-09 10.1016/j.trc.2009.04.006 10.32614/RJ-2015-018 10.1016/j.trc.2015.03.014 10.1016/j.trc.2014.02.005 10.1016/j.trc.2011.06.009 10.1109/TITS.2017.2706963 10.1109/GeoInformatics.2011.5981129 10.1109/ICDM.2016.0061 10.1162/neco.1989.1.2.270 10.1049/iet-its.2016.0208 10.1016/j.trc.2012.08.004 10.1016/j.trb.2009.12.010 10.1016/j.trc.2014.03.016 10.1016/j.tre.2016.05.011 10.1016/j.trc.2016.12.018 10.1109/BigData.2016.7840676 10.1061/(ASCE)TE.1943-5436.0000435 10.1016/j.trc.2010.04.004 10.1016/j.trc.2014.01.005 10.1016/j.trc.2012.09.002 10.1016/j.trc.2012.07.003 10.1016/j.apgeog.2015.02.011 10.1109/ITSC.2016.7795689 10.1109/ITSC.2012.6338680 10.1016/j.trc.2014.02.006 10.1371/journal.pone.0119044 10.1162/neco.1997.9.8.1735 10.1109/TITS.2013.2276089 10.1287/opre.1040.0181 10.1016/j.trc.2013.05.012 10.3390/s17040818 10.1016/S0191-2615(01)00031-5 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd |
Copyright_xml | – notice: 2017 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.trc.2017.10.016 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EISSN | 1879-2359 |
EndPage | 608 |
ExternalDocumentID | 10_1016_j_trc_2017_10_016 S0968090X17302899 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABLJU ABMAC ABMMH ABUCO ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD APLSM ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HMY HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY1 LY7 M3Y M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SDS SES SET SEW SPC SPCBC SSB SSD SSO SSS SST SSV SSZ T5K TN5 WUQ XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c444t-df5dcb7613011c2d96b33ad3ddc3092bea05ab7c1a6bf6c5ded85a4ea146f8733 |
IEDL.DBID | .~1 |
ISSN | 0968-090X |
IngestDate | Thu Apr 24 22:59:55 EDT 2025 Tue Jul 01 01:45:08 EDT 2025 Fri Feb 23 02:16:17 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fusion convolutional long short-term memory network (FCL-Net) On-demand ride services Short-term demand forecasting Convolutional neural network (CNN) Deep learning (DL) Long short-term memory (LSTM) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c444t-df5dcb7613011c2d96b33ad3ddc3092bea05ab7c1a6bf6c5ded85a4ea146f8733 |
ORCID | 0000-0001-9778-3387 0000-0001-8285-084X |
PageCount | 18 |
ParticipantIDs | crossref_primary_10_1016_j_trc_2017_10_016 crossref_citationtrail_10_1016_j_trc_2017_10_016 elsevier_sciencedirect_doi_10_1016_j_trc_2017_10_016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-01 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Transportation research. Part C, Emerging technologies |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Moreira-Matias, Gama, Ferreira, Mendes-Moreira, Damas (b0170) 2013; 14 He, Shen (b0100) 2015; 58 Genuer, Poggi, Tuleau-Malot (b0085) 2015; 7 Zhu, Cao, Zhu (b0335) 2014; 47 Zha, Yin, Yang (b0305) 2016; 71 Alonso-Mora, Samaranayake, Wallar, Frazzoli, Rus (b0015) 2017 Bachmann, Abdulhai, Roorda, Moshiri (b0025) 2013; 26 Cheng, Q., Liu, Y., Wei, W., Liu, Z., 2016. Analysis and forecasting of the day-to-day travel demand variations for large-scale transportation networks: a deep learning approach. doi Wang, Deng, Guo (b0230) 2014; 43 Hochreiter, S., 1991. Untersuchungen zu dynamischen neuronalen Netzen ( Ph.D. thesis). diploma thesis, institut für informatik, lehrstuhl prof. brauer, technische universität münchen. Lv, Duan, Kang, Li, Wang (b0145) 2015; 16 Chen, Q., Song, X., Yamada, H., Shibasaki, R., 2016. Learning deep representation from big and heterogeneous data for traffic accident inference. In: Thirtieth AAAI Conference on Artificial Intelligence. Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1985. Learning internal representations by error propagation. Technical Report. California Univ San Diego La Jolla Inst for Cognitive Science. Sutskever, I., Hinton, G.E., Taylor, G.W., 2009. The recurrent temporal restricted boltzmann machine. In: Advances in Neural Information Processing Systems, pp. 1601–1608. Guo, Huang, Williams (b0095) 2014; 43 Ma, Tao, Wang, Yu, Wang (b0155) 2015; 54 Hochreiter, Schmidhuber (b0110) 1997; 9 Boto-Giralda, Díaz-Pernas, González-Ortega, Díez-Higuera, Antón-Rodríguez, Martínez-Zarzuela, Torre-Díez (b0030) 2010; 25 Fei, Lu, Liu (b0080) 2011; 19 Ma, Dai, He, Ma, Wang, Wang (b0150) 2017; 17 Soriguera, Robusté (b0205) 2011; 19 Zhang, He, Lin, Munir, Stankovic (b9000) 2017; 3 Wang, X., Jiang, R., Li, L., Lin, Y., Zheng, X., Wang, F.Y., 2017. Capturing car-following behaviors by deep learning. IEEE Trans. Intell. Transp. Syst., in press Zhao, Chen, Wu, Chen, Liu (b0330) 2017; 11 . Moreira-Matias, L., Gama, J., Ferreira, M., Damas, L., 2012. A predictive model for the passenger demand on a taxi network. In: The 15th IEEE International Conference on Intelligent Transportation Systems, pp. 1014–1019. Ma, X., Yu, H., Wang, Y., Wang, Y., 2015b. Large-scale transportation network congestion evolution prediction using deep learning theory. PloS one 10, e0119044. Yang, Fung, Wong, Wong (b0265) 2010; 44 Zhang, J., Zheng, Y., Qi, D., 2017b. Deep spatio-temporal residual networks for citywide crowd flows prediction. In: AAAI, pp. 1655–1661. Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.c., 2015. Convolutional lstm network: A machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810. Chen, Zahiri, Zhang (b0060) 2017; 76 Vlahogianni, Karlaftis, Golias (b0225) 2014; 43 Ghosh, Basu, O’Mahony (b0090) 2009; 10 Qian, Ukkusuri (b0185) 2015; 59 Box, Pierce (b0035) 1970; 65 Wei, Chen (b0255) 2012; 21 Antoniou, Koutsopoulos, Yannis (b0020) 2013; 34 Polson, Sokolov (b0180) 2017; 79 Yu, Lam, Tam (b0290) 2011; 19 Huang, Sadek (b0115) 2009; 17 Wang, Shi (b0240) 2013; 27 Rumelhart, Hinton, Williams (b0195) 1988; 5 Chen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, ACM. pp. 785–794. Huang, Song, Hong, Xie (b0120) 2014; 15 Khashei, Bijari, Ardali (b0130) 2012; 63 Zhang, Zhang, Lu (b0320) 2011; 2215 Yang, Leung, Wong, Bell (b0270) 2010; 44 Ahmed, Abdel-Aty (b0010) 2013; 26 Yang, Ye, Tang, Wong (b0285) 2005; 53 Breiman (b0040) 2001; 45 Toqué, F., Côme, E., El Mahrsi, M.K., Oukhellou, L., 2016. Forecasting dynamic public transport origin-destination matrices with long-short term memory recurrent neural networks. In: The 19th IEEE International Conference on Intelligent Transportation Systems, pp. 1071–1076. LeCun, Haffner, Bottou, Bengio (b0140) 1999; 1681 Zhao, K., Khryashchev, D., Freire, J., Silva, C., Vo, H., 2016. Predicting taxi demand at high spatial resolution: approaching the limit of predictability. In: IEEE International Conference on Big Data. Yang, Wong, Wong (b0275) 2002; 36 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from Jiang, Zhang, Chen (b0125) 2014; 44 Williams, Zipser (b0260) 1989; 1 Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105. Deng, Z., Ji, M., 2011. Spatiotemporal structure of taxi services in shanghai: Using exploratory spatial data analysis. In: The 19th IEEE International Conference on Geoinformatics, pp. 1–5. Yu, Abdel-Aty, Ahmed, Wang (b0300) 2014; 15 Yu, Wu, Wang, Wang, Ma (b0295) 2017; 17 Wang, He, Yang, Gao (b0245) 2016; 93 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (b0175) 2011; 12 Yang, Yang (b0280) 2011; 45 Chan, Dillon, Singh, Chang (b0045) 2012; 13 Chollet, F., et al., 2015. Keras. Wang, J., Gu, Q., Wu, J., Liu, G., Xiong, Z., 2016a. Traffic speed prediction and congestion source exploration: a deep learning method. In: The 16th IEEE International Conference on Data Mining, pp. 499–508. Sun, Huang, Gao (b0210) 2012; 138 He (10.1016/j.trc.2017.10.016_b0100) 2015; 58 10.1016/j.trc.2017.10.016_b0160 LeCun (10.1016/j.trc.2017.10.016_b0140) 1999; 1681 Ghosh (10.1016/j.trc.2017.10.016_b0090) 2009; 10 10.1016/j.trc.2017.10.016_b0165 Polson (10.1016/j.trc.2017.10.016_b0180) 2017; 79 10.1016/j.trc.2017.10.016_b0200 Yang (10.1016/j.trc.2017.10.016_b0285) 2005; 53 10.1016/j.trc.2017.10.016_b0005 Williams (10.1016/j.trc.2017.10.016_b0260) 1989; 1 10.1016/j.trc.2017.10.016_b0325 Alonso-Mora (10.1016/j.trc.2017.10.016_b0015) 2017 Yu (10.1016/j.trc.2017.10.016_b0290) 2011; 19 Bachmann (10.1016/j.trc.2017.10.016_b0025) 2013; 26 Lv (10.1016/j.trc.2017.10.016_b0145) 2015; 16 Sun (10.1016/j.trc.2017.10.016_b0210) 2012; 138 10.1016/j.trc.2017.10.016_b0050 10.1016/j.trc.2017.10.016_b0250 Yu (10.1016/j.trc.2017.10.016_b0295) 2017; 17 Wang (10.1016/j.trc.2017.10.016_b0240) 2013; 27 10.1016/j.trc.2017.10.016_b0055 10.1016/j.trc.2017.10.016_b0135 Boto-Giralda (10.1016/j.trc.2017.10.016_b0030) 2010; 25 Chan (10.1016/j.trc.2017.10.016_b0045) 2012; 13 Zha (10.1016/j.trc.2017.10.016_b0305) 2016; 71 Rumelhart (10.1016/j.trc.2017.10.016_b0195) 1988; 5 10.1016/j.trc.2017.10.016_b0215 Zhang (10.1016/j.trc.2017.10.016_b0320) 2011; 2215 Huang (10.1016/j.trc.2017.10.016_b0120) 2014; 15 Yu (10.1016/j.trc.2017.10.016_b0300) 2014; 15 Ma (10.1016/j.trc.2017.10.016_b0150) 2017; 17 Fei (10.1016/j.trc.2017.10.016_b0080) 2011; 19 Pedregosa (10.1016/j.trc.2017.10.016_b0175) 2011; 12 Yang (10.1016/j.trc.2017.10.016_b0280) 2011; 45 Box (10.1016/j.trc.2017.10.016_b0035) 1970; 65 Qian (10.1016/j.trc.2017.10.016_b0185) 2015; 59 Yang (10.1016/j.trc.2017.10.016_b0265) 2010; 44 Zhao (10.1016/j.trc.2017.10.016_b0330) 2017; 11 10.1016/j.trc.2017.10.016_b0065 Ma (10.1016/j.trc.2017.10.016_b0155) 2015; 54 10.1016/j.trc.2017.10.016_b0220 10.1016/j.trc.2017.10.016_b0105 Chen (10.1016/j.trc.2017.10.016_b0060) 2017; 76 Soriguera (10.1016/j.trc.2017.10.016_b0205) 2011; 19 Breiman (10.1016/j.trc.2017.10.016_b0040) 2001; 45 Hochreiter (10.1016/j.trc.2017.10.016_b0110) 1997; 9 10.1016/j.trc.2017.10.016_b0190 Wang (10.1016/j.trc.2017.10.016_b0245) 2016; 93 10.1016/j.trc.2017.10.016_b0070 Yang (10.1016/j.trc.2017.10.016_b0270) 2010; 44 Ahmed (10.1016/j.trc.2017.10.016_b0010) 2013; 26 Huang (10.1016/j.trc.2017.10.016_b0115) 2009; 17 10.1016/j.trc.2017.10.016_b0075 Jiang (10.1016/j.trc.2017.10.016_b0125) 2014; 44 Guo (10.1016/j.trc.2017.10.016_b0095) 2014; 43 Moreira-Matias (10.1016/j.trc.2017.10.016_b0170) 2013; 14 Zhang (10.1016/j.trc.2017.10.016_b9000) 2017; 3 Wang (10.1016/j.trc.2017.10.016_b0230) 2014; 43 10.1016/j.trc.2017.10.016_b0235 Vlahogianni (10.1016/j.trc.2017.10.016_b0225) 2014; 43 Zhu (10.1016/j.trc.2017.10.016_b0335) 2014; 47 10.1016/j.trc.2017.10.016_b0315 Khashei (10.1016/j.trc.2017.10.016_b0130) 2012; 63 Antoniou (10.1016/j.trc.2017.10.016_b0020) 2013; 34 Wei (10.1016/j.trc.2017.10.016_b0255) 2012; 21 Yang (10.1016/j.trc.2017.10.016_b0275) 2002; 36 Genuer (10.1016/j.trc.2017.10.016_b0085) 2015; 7 |
References_xml | – reference: Chen, Q., Song, X., Yamada, H., Shibasaki, R., 2016. Learning deep representation from big and heterogeneous data for traffic accident inference. In: Thirtieth AAAI Conference on Artificial Intelligence. – volume: 79 start-page: 1 year: 2017 end-page: 17 ident: b0180 article-title: Deep learning for short-term traffic flow prediction publication-title: Transp. Res. Part C: Emerg. Technol. – volume: 16 start-page: 865 year: 2015 end-page: 873 ident: b0145 article-title: Traffic flow prediction with big data: a deep learning approach publication-title: IEEE Trans. Intell. Transp. Syst. – reference: Chen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, ACM. pp. 785–794. – reference: Sutskever, I., Hinton, G.E., Taylor, G.W., 2009. The recurrent temporal restricted boltzmann machine. In: Advances in Neural Information Processing Systems, pp. 1601–1608. – volume: 138 start-page: 1358 year: 2012 end-page: 1367 ident: b0210 article-title: Network-scale traffic modeling and forecasting with graphical lasso and neural networks publication-title: J. Transp. Eng. – volume: 27 start-page: 219 year: 2013 end-page: 232 ident: b0240 article-title: Short-term traffic speed forecasting hybrid model based on chaos–wavelet analysis-support vector machine theory publication-title: Transp. Res. Part C: Emerg. Technol. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b0040 article-title: Random forests publication-title: Mach. Learn. – volume: 5 start-page: 1 year: 1988 ident: b0195 article-title: Learning representations by back-propagating errors publication-title: Cogn. Model. – volume: 34 start-page: 89 year: 2013 end-page: 107 ident: b0020 article-title: Dynamic data-driven local traffic state estimation and prediction publication-title: Transp. Res. Part C: Emerg. Technol. – volume: 54 start-page: 187 year: 2015 end-page: 197 ident: b0155 article-title: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data publication-title: Transp. Res. Part C: Emerg. Technol. – reference: Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105. – volume: 93 start-page: 212 year: 2016 end-page: 231 ident: b0245 article-title: Pricing strategies for a taxi-hailing platform publication-title: Transp. Res. Part E: Logist. Transp. Rev. – volume: 36 start-page: 799 year: 2002 end-page: 819 ident: b0275 article-title: Demand–supply equilibrium of taxi services in a network under competition and regulation publication-title: Transp. Res. Part B: Methodol. – volume: 10 start-page: 246 year: 2009 end-page: 254 ident: b0090 article-title: Multivariate short-term traffic flow forecasting using time-series analysis publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 44 start-page: 1067 year: 2010 end-page: 1083 ident: b0270 article-title: Equilibria of bilateral taxi–customer searching and meeting on networks publication-title: Transp. Res. Part B: Methodol. – volume: 26 start-page: 203 year: 2013 end-page: 213 ident: b0010 article-title: A data fusion framework for real-time risk assessment on freeways publication-title: Transp. Res. Part C: Emerg. Technol. – reference: Ma, X., Yu, H., Wang, Y., Wang, Y., 2015b. Large-scale transportation network congestion evolution prediction using deep learning theory. PloS one 10, e0119044. – volume: 17 start-page: 818 year: 2017 ident: b0150 article-title: Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction publication-title: Sensors – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: b0175 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 7 start-page: 19 year: 2015 end-page: 33 ident: b0085 article-title: Vsurf: An R package for variable selection using random forests publication-title: The R Journal – volume: 43 start-page: 79 year: 2014 end-page: 94 ident: b0230 article-title: New Bayesian combination method for short-term traffic flow forecasting publication-title: Transp. Res. Part C: Emerg. Technol. – volume: 21 start-page: 148 year: 2012 end-page: 162 ident: b0255 article-title: Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks publication-title: Transp. Res. Part C: Emerg. Technol. – reference: Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1985. Learning internal representations by error propagation. Technical Report. California Univ San Diego La Jolla Inst for Cognitive Science. – volume: 45 start-page: 696 year: 2011 end-page: 713 ident: b0280 article-title: Equilibrium properties of taxi markets with search frictions publication-title: Transp. Res. Part B: Methodol. – reference: Cheng, Q., Liu, Y., Wei, W., Liu, Z., 2016. Analysis and forecasting of the day-to-day travel demand variations for large-scale transportation networks: a deep learning approach. doi: – reference: Wang, X., Jiang, R., Li, L., Lin, Y., Zheng, X., Wang, F.Y., 2017. Capturing car-following behaviors by deep learning. IEEE Trans. Intell. Transp. Syst., in press, – reference: Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from – volume: 19 start-page: 1157 year: 2011 end-page: 1170 ident: b0290 article-title: Bus arrival time prediction at bus stop with multiple routes publication-title: Transp. Res. Part C: Emerg. Technol. – volume: 1681 start-page: 823 year: 1999 ident: b0140 article-title: Object recognition with gradient-based learning publication-title: Shape Contour Group. Comput. Vision – reference: Deng, Z., Ji, M., 2011. Spatiotemporal structure of taxi services in shanghai: Using exploratory spatial data analysis. In: The 19th IEEE International Conference on Geoinformatics, pp. 1–5. – volume: 13 start-page: 644 year: 2012 end-page: 654 ident: b0045 article-title: Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and levenberg–marquardt algorithm publication-title: IEEE Trans. Intell. Transp. Syst. – reference: Zhao, K., Khryashchev, D., Freire, J., Silva, C., Vo, H., 2016. Predicting taxi demand at high spatial resolution: approaching the limit of predictability. In: IEEE International Conference on Big Data. – volume: 17 start-page: 1501 year: 2017 ident: b0295 article-title: Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks publication-title: Sensors – volume: 59 start-page: 31 year: 2015 end-page: 42 ident: b0185 article-title: Spatial variation of the urban taxi ridership using GPS data publication-title: Appl. Geography – volume: 53 start-page: 501 year: 2005 end-page: 515 ident: b0285 article-title: A multiperiod dynamic model of taxi services with endogenous service intensity publication-title: Oper. Res. – reference: Wang, J., Gu, Q., Wu, J., Liu, G., Xiong, Z., 2016a. Traffic speed prediction and congestion source exploration: a deep learning method. In: The 16th IEEE International Conference on Data Mining, pp. 499–508. – volume: 58 start-page: 93 year: 2015 end-page: 106 ident: b0100 article-title: Modeling taxi services with smartphone-based e-hailing applications publication-title: Transp. Res. Part C: Emerg. Technol. – volume: 17 start-page: 510 year: 2009 end-page: 525 ident: b0115 article-title: A novel forecasting approach inspired by human memory: the example of short-term traffic volume forecasting publication-title: Transp. Res. Part C: Emerg. Technol. – start-page: 201611675 year: 2017 ident: b0015 article-title: On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment publication-title: Proc. Nat. Acad. Sci. – reference: Chollet, F., et al., 2015. Keras. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b0110 article-title: Long short-term memory publication-title: Neural Comput. – volume: 11 start-page: 68 year: 2017 end-page: 75 ident: b0330 article-title: Lstm network: a deep learning approach for short-term traffic forecast publication-title: IET Intel. Transp. Syst. – volume: 65 start-page: 1509 year: 1970 end-page: 1526 ident: b0035 article-title: Distribution of residual autocorrelations in autoregressive-integrated moving average time series models publication-title: J. Am. Stat. Assoc. – volume: 15 start-page: 2191 year: 2014 end-page: 2201 ident: b0120 article-title: Deep architecture for traffic flow prediction: deep belief networks with multitask learning publication-title: IEEE Trans. Intell. Transp. Syst. – reference: Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.c., 2015. Convolutional lstm network: A machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810. – reference: Zhang, J., Zheng, Y., Qi, D., 2017b. Deep spatio-temporal residual networks for citywide crowd flows prediction. In: AAAI, pp. 1655–1661. – volume: 63 start-page: 37 year: 2012 end-page: 45 ident: b0130 article-title: Hybridization of autoregressive integrated moving average (ARIMA) with probabilistic neural networks (PNNs) publication-title: Comput. Ind. Eng. – volume: 26 start-page: 33 year: 2013 end-page: 48 ident: b0025 article-title: A comparative assessment of multi-sensor data fusion techniques for freeway traffic speed estimation using microsimulation modeling publication-title: Transp. Res. Part C: Emerg. Technol. – volume: 43 start-page: 3 year: 2014 end-page: 19 ident: b0225 article-title: Short-term traffic forecasting: where we are and where we’re going publication-title: Transp. Res. Part C: Emerg. Technol. – reference: Hochreiter, S., 1991. Untersuchungen zu dynamischen neuronalen Netzen ( Ph.D. thesis). diploma thesis, institut für informatik, lehrstuhl prof. brauer, technische universität münchen. – reference: Moreira-Matias, L., Gama, J., Ferreira, M., Damas, L., 2012. A predictive model for the passenger demand on a taxi network. In: The 15th IEEE International Conference on Intelligent Transportation Systems, pp. 1014–1019. – volume: 19 start-page: 115 year: 2011 end-page: 129 ident: b0205 article-title: Estimation of traffic stream space mean speed from time aggregations of double loop detector data publication-title: Transp. Res. Part C: Emerg. Technol. – volume: 2215 start-page: 85 year: 2011 end-page: 92 ident: b0320 article-title: Seasonal autoregressive integrated moving average and support vector machine models: prediction of short-term traffic flow on freeways publication-title: Transp. Res. Rec.: J. Transp. Res. Board – volume: 44 start-page: 337 year: 2010 end-page: 348 ident: b0265 article-title: Nonlinear pricing of taxi services publication-title: Transp. Res. Part A: Policy Pract. – volume: 19 start-page: 1306 year: 2011 end-page: 1318 ident: b0080 article-title: A Bayesian dynamic linear model approach for real-time short-term freeway travel time prediction publication-title: Transp. Res. Part C: Emerg. Technol. – volume: 47 start-page: 139 year: 2014 end-page: 154 ident: b0335 article-title: Traffic volume forecasting based on radial basis function neural network with the consideration of traffic flows at the adjacent intersections publication-title: Transp. Res. Part C: Emerg. Technol. – volume: 76 start-page: 51 year: 2017 end-page: 70 ident: b0060 article-title: Understanding ridesplitting behavior of on-demand ride services: an ensemble learning approach publication-title: Transp. Res. Part C: Emerg. Technol. – reference: . – volume: 44 start-page: 110 year: 2014 end-page: 127 ident: b0125 article-title: Short-term forecasting of high-speed rail demand: a hybrid approach combining ensemble empirical mode decomposition and gray support vector machine with real-world applications in china publication-title: Transp. Res. Part C: Emerg. Technol. – reference: Toqué, F., Côme, E., El Mahrsi, M.K., Oukhellou, L., 2016. Forecasting dynamic public transport origin-destination matrices with long-short term memory recurrent neural networks. In: The 19th IEEE International Conference on Intelligent Transportation Systems, pp. 1071–1076. – volume: 15 start-page: 205 year: 2014 end-page: 213 ident: b0300 article-title: Utilizing microscopic traffic and weather data to analyze real-time crash patterns in the context of active traffic management publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 71 start-page: 249 year: 2016 end-page: 266 ident: b0305 article-title: Economic analysis of ride-sourcing markets publication-title: Transp. Res. Part C: Emerg. Technol. – volume: 14 start-page: 1393 year: 2013 end-page: 1402 ident: b0170 article-title: Predicting taxi–passenger demand using streaming data publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 1 start-page: 270 year: 1989 end-page: 280 ident: b0260 article-title: A learning algorithm for continually running fully recurrent neural networks publication-title: Neural Comput. – volume: 3 start-page: 362 year: 2017 end-page: 374 ident: b9000 article-title: Taxi-passenger-demand modeling based on big data from a roving sensor network publication-title: IEEE Trans. Big Data – volume: 25 start-page: 530 year: 2010 end-page: 545 ident: b0030 article-title: Wavelet-based denoising for traffic volume time series forecasting with self-organizing neural networks publication-title: Comput.-Aided Civil Infrastruct. Eng. – volume: 43 start-page: 50 year: 2014 end-page: 64 ident: b0095 article-title: Adaptive kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification publication-title: Transp. Res. Part C: Emerg. Technol. – volume: 58 start-page: 93 year: 2015 ident: 10.1016/j.trc.2017.10.016_b0100 article-title: Modeling taxi services with smartphone-based e-hailing applications publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2015.06.023 – volume: 65 start-page: 1509 year: 1970 ident: 10.1016/j.trc.2017.10.016_b0035 article-title: Distribution of residual autocorrelations in autoregressive-integrated moving average time series models publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1970.10481180 – volume: 79 start-page: 1 year: 2017 ident: 10.1016/j.trc.2017.10.016_b0180 article-title: Deep learning for short-term traffic flow prediction publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2017.02.024 – ident: 10.1016/j.trc.2017.10.016_b0105 – ident: 10.1016/j.trc.2017.10.016_b0315 doi: 10.1609/aaai.v31i1.10735 – volume: 47 start-page: 139 year: 2014 ident: 10.1016/j.trc.2017.10.016_b0335 article-title: Traffic volume forecasting based on radial basis function neural network with the consideration of traffic flows at the adjacent intersections publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2014.06.011 – volume: 71 start-page: 249 year: 2016 ident: 10.1016/j.trc.2017.10.016_b0305 article-title: Economic analysis of ride-sourcing markets publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2016.07.010 – volume: 16 start-page: 865 year: 2015 ident: 10.1016/j.trc.2017.10.016_b0145 article-title: Traffic flow prediction with big data: a deep learning approach publication-title: IEEE Trans. Intell. Transp. Syst. – ident: 10.1016/j.trc.2017.10.016_b0055 doi: 10.1145/2939672.2939785 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.trc.2017.10.016_b0040 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 17 start-page: 1501 year: 2017 ident: 10.1016/j.trc.2017.10.016_b0295 article-title: Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks publication-title: Sensors doi: 10.3390/s17071501 – volume: 3 start-page: 362 issue: 3 year: 2017 ident: 10.1016/j.trc.2017.10.016_b9000 article-title: Taxi-passenger-demand modeling based on big data from a roving sensor network publication-title: IEEE Trans. Big Data doi: 10.1109/TBDATA.2016.2627224 – ident: 10.1016/j.trc.2017.10.016_b0050 doi: 10.1609/aaai.v30i1.10011 – volume: 15 start-page: 2191 year: 2014 ident: 10.1016/j.trc.2017.10.016_b0120 article-title: Deep architecture for traffic flow prediction: deep belief networks with multitask learning publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2014.2311123 – volume: 14 start-page: 1393 year: 2013 ident: 10.1016/j.trc.2017.10.016_b0170 article-title: Predicting taxi–passenger demand using streaming data publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2013.2262376 – volume: 25 start-page: 530 year: 2010 ident: 10.1016/j.trc.2017.10.016_b0030 article-title: Wavelet-based denoising for traffic volume time series forecasting with self-organizing neural networks publication-title: Comput.-Aided Civil Infrastruct. Eng. doi: 10.1111/j.1467-8667.2010.00668.x – ident: 10.1016/j.trc.2017.10.016_b0190 doi: 10.21236/ADA164453 – volume: 13 start-page: 644 year: 2012 ident: 10.1016/j.trc.2017.10.016_b0045 article-title: Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and levenberg–marquardt algorithm publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2011.2174051 – volume: 19 start-page: 1306 year: 2011 ident: 10.1016/j.trc.2017.10.016_b0080 article-title: A Bayesian dynamic linear model approach for real-time short-term freeway travel time prediction publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2010.10.005 – volume: 45 start-page: 696 year: 2011 ident: 10.1016/j.trc.2017.10.016_b0280 article-title: Equilibrium properties of taxi markets with search frictions publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2011.01.002 – volume: 63 start-page: 37 year: 2012 ident: 10.1016/j.trc.2017.10.016_b0130 article-title: Hybridization of autoregressive integrated moving average (ARIMA) with probabilistic neural networks (PNNs) publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2012.01.017 – volume: 19 start-page: 1157 year: 2011 ident: 10.1016/j.trc.2017.10.016_b0290 article-title: Bus arrival time prediction at bus stop with multiple routes publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2011.01.003 – volume: 10 start-page: 246 year: 2009 ident: 10.1016/j.trc.2017.10.016_b0090 article-title: Multivariate short-term traffic flow forecasting using time-series analysis publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2009.2021448 – volume: 2215 start-page: 85 year: 2011 ident: 10.1016/j.trc.2017.10.016_b0320 article-title: Seasonal autoregressive integrated moving average and support vector machine models: prediction of short-term traffic flow on freeways publication-title: Transp. Res. Rec.: J. Transp. Res. Board doi: 10.3141/2215-09 – volume: 17 start-page: 510 year: 2009 ident: 10.1016/j.trc.2017.10.016_b0115 article-title: A novel forecasting approach inspired by human memory: the example of short-term traffic volume forecasting publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2009.04.006 – ident: 10.1016/j.trc.2017.10.016_b0215 – volume: 7 start-page: 19 year: 2015 ident: 10.1016/j.trc.2017.10.016_b0085 article-title: Vsurf: An R package for variable selection using random forests publication-title: The R Journal doi: 10.32614/RJ-2015-018 – volume: 54 start-page: 187 year: 2015 ident: 10.1016/j.trc.2017.10.016_b0155 article-title: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2015.03.014 – ident: 10.1016/j.trc.2017.10.016_b0200 – volume: 43 start-page: 79 year: 2014 ident: 10.1016/j.trc.2017.10.016_b0230 article-title: New Bayesian combination method for short-term traffic flow forecasting publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2014.02.005 – volume: 21 start-page: 148 year: 2012 ident: 10.1016/j.trc.2017.10.016_b0255 article-title: Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2011.06.009 – ident: 10.1016/j.trc.2017.10.016_b0250 doi: 10.1109/TITS.2017.2706963 – ident: 10.1016/j.trc.2017.10.016_b0075 doi: 10.1109/GeoInformatics.2011.5981129 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.trc.2017.10.016_b0175 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.trc.2017.10.016_b0235 doi: 10.1109/ICDM.2016.0061 – volume: 1 start-page: 270 year: 1989 ident: 10.1016/j.trc.2017.10.016_b0260 article-title: A learning algorithm for continually running fully recurrent neural networks publication-title: Neural Comput. doi: 10.1162/neco.1989.1.2.270 – volume: 11 start-page: 68 year: 2017 ident: 10.1016/j.trc.2017.10.016_b0330 article-title: Lstm network: a deep learning approach for short-term traffic forecast publication-title: IET Intel. Transp. Syst. doi: 10.1049/iet-its.2016.0208 – volume: 27 start-page: 219 year: 2013 ident: 10.1016/j.trc.2017.10.016_b0240 article-title: Short-term traffic speed forecasting hybrid model based on chaos–wavelet analysis-support vector machine theory publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2012.08.004 – volume: 44 start-page: 1067 year: 2010 ident: 10.1016/j.trc.2017.10.016_b0270 article-title: Equilibria of bilateral taxi–customer searching and meeting on networks publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2009.12.010 – volume: 44 start-page: 110 year: 2014 ident: 10.1016/j.trc.2017.10.016_b0125 article-title: Short-term forecasting of high-speed rail demand: a hybrid approach combining ensemble empirical mode decomposition and gray support vector machine with real-world applications in china publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2014.03.016 – ident: 10.1016/j.trc.2017.10.016_b0065 – volume: 93 start-page: 212 year: 2016 ident: 10.1016/j.trc.2017.10.016_b0245 article-title: Pricing strategies for a taxi-hailing platform publication-title: Transp. Res. Part E: Logist. Transp. Rev. doi: 10.1016/j.tre.2016.05.011 – volume: 76 start-page: 51 year: 2017 ident: 10.1016/j.trc.2017.10.016_b0060 article-title: Understanding ridesplitting behavior of on-demand ride services: an ensemble learning approach publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2016.12.018 – ident: 10.1016/j.trc.2017.10.016_b0325 doi: 10.1109/BigData.2016.7840676 – volume: 138 start-page: 1358 year: 2012 ident: 10.1016/j.trc.2017.10.016_b0210 article-title: Network-scale traffic modeling and forecasting with graphical lasso and neural networks publication-title: J. Transp. Eng. doi: 10.1061/(ASCE)TE.1943-5436.0000435 – volume: 1681 start-page: 823 year: 1999 ident: 10.1016/j.trc.2017.10.016_b0140 article-title: Object recognition with gradient-based learning publication-title: Shape Contour Group. Comput. Vision – volume: 44 start-page: 337 year: 2010 ident: 10.1016/j.trc.2017.10.016_b0265 article-title: Nonlinear pricing of taxi services publication-title: Transp. Res. Part A: Policy Pract. – volume: 5 start-page: 1 year: 1988 ident: 10.1016/j.trc.2017.10.016_b0195 article-title: Learning representations by back-propagating errors publication-title: Cogn. Model. – volume: 19 start-page: 115 year: 2011 ident: 10.1016/j.trc.2017.10.016_b0205 article-title: Estimation of traffic stream space mean speed from time aggregations of double loop detector data publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2010.04.004 – volume: 43 start-page: 3 year: 2014 ident: 10.1016/j.trc.2017.10.016_b0225 article-title: Short-term traffic forecasting: where we are and where we’re going publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2014.01.005 – volume: 26 start-page: 203 year: 2013 ident: 10.1016/j.trc.2017.10.016_b0010 article-title: A data fusion framework for real-time risk assessment on freeways publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2012.09.002 – start-page: 201611675 year: 2017 ident: 10.1016/j.trc.2017.10.016_b0015 article-title: On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment publication-title: Proc. Nat. Acad. Sci. – ident: 10.1016/j.trc.2017.10.016_b0070 – volume: 26 start-page: 33 year: 2013 ident: 10.1016/j.trc.2017.10.016_b0025 article-title: A comparative assessment of multi-sensor data fusion techniques for freeway traffic speed estimation using microsimulation modeling publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2012.07.003 – volume: 59 start-page: 31 year: 2015 ident: 10.1016/j.trc.2017.10.016_b0185 article-title: Spatial variation of the urban taxi ridership using GPS data publication-title: Appl. Geography doi: 10.1016/j.apgeog.2015.02.011 – ident: 10.1016/j.trc.2017.10.016_b0220 doi: 10.1109/ITSC.2016.7795689 – ident: 10.1016/j.trc.2017.10.016_b0165 doi: 10.1109/ITSC.2012.6338680 – volume: 43 start-page: 50 year: 2014 ident: 10.1016/j.trc.2017.10.016_b0095 article-title: Adaptive kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2014.02.006 – ident: 10.1016/j.trc.2017.10.016_b0005 – ident: 10.1016/j.trc.2017.10.016_b0160 doi: 10.1371/journal.pone.0119044 – volume: 9 start-page: 1735 year: 1997 ident: 10.1016/j.trc.2017.10.016_b0110 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 15 start-page: 205 year: 2014 ident: 10.1016/j.trc.2017.10.016_b0300 article-title: Utilizing microscopic traffic and weather data to analyze real-time crash patterns in the context of active traffic management publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2013.2276089 – volume: 53 start-page: 501 year: 2005 ident: 10.1016/j.trc.2017.10.016_b0285 article-title: A multiperiod dynamic model of taxi services with endogenous service intensity publication-title: Oper. Res. doi: 10.1287/opre.1040.0181 – volume: 34 start-page: 89 year: 2013 ident: 10.1016/j.trc.2017.10.016_b0020 article-title: Dynamic data-driven local traffic state estimation and prediction publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2013.05.012 – volume: 17 start-page: 818 year: 2017 ident: 10.1016/j.trc.2017.10.016_b0150 article-title: Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction publication-title: Sensors doi: 10.3390/s17040818 – volume: 36 start-page: 799 year: 2002 ident: 10.1016/j.trc.2017.10.016_b0275 article-title: Demand–supply equilibrium of taxi services in a network under competition and regulation publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/S0191-2615(01)00031-5 – ident: 10.1016/j.trc.2017.10.016_b0135 |
SSID | ssj0001957 |
Score | 2.6471448 |
Snippet | •Propose the fusion convolutional long short-term memory network (FCL-Net).•Fusion of convolutional LSTM layers, standard LSTM layers and convolutional... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 591 |
SubjectTerms | Convolutional neural network (CNN) Deep learning (DL) Fusion convolutional long short-term memory network (FCL-Net) Long short-term memory (LSTM) On-demand ride services Short-term demand forecasting |
Title | Short-term forecasting of passenger demand under on-demand ride services: A spatio-temporal deep learning approach |
URI | https://dx.doi.org/10.1016/j.trc.2017.10.016 |
Volume | 85 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQGYAB8RTlUXlgQnKbxE4cs1UVVQHBApW6RX4FikpapWXlt-NrHCgSMDDa8knR5XT3OfnuO4TObSpNlGhBOI0UYYobklKakEjEucqVtMxA7_DdfTIYsptRPFpDvboXBmiVPvdXOX2Zrf1Ox3uzMxuPOw8OfKeBCEahC1K4NkAHO-MQ5e33L5pHKCq1T3cYvkmM6j-bS47XogQVw5C3geAFI89_qk0r9aa_g7Y9UMTd6ll20Zot9tBG3Uc830NbK1KC-6h8eHZAmkCixQ6HWi3nQGjG0xzPHD4G7mqJjX2VhcHQN1biaUH8uhwbi-c-aVziLp4vadbEy1ZNnJ2dYT9f4gnXMuQHaNi_euwNiJ-nQDRjbEFMHhutONwYwlBHRiSKUmmoMZoGIlJWBrFUXIcyUXmiY2NNGktmpcumecopPUSNYlrYI4SZYEwkXCeMU-fzNGXaUBcPsbCcCWuaKKg9mWkvNg4zLyZZzSp7yZzzM3A-bLmdJrr4NJlVSht_HWb168m-hUvmKsHvZsf_MztBm7CqWCynqLEo3-yZwyIL1VoGWwutd69vB_cfcH_gbw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT-wwDLZYDsABsYqdHDghhWmbtGm4IQQa1gsgza3KVt48QWfUGa78duJpyiIBB451Y6lyXdtpPn8GOHC5sklmJBUs0ZRrYWnOWEYTmZa61Mpxi73DN7dZ94Ff9tLeFJy2vTAIqwyxv4npk2gdJJ1gzc6w3-_c-eI7j2TUi72T4rZhGma5_3xxjMHR6wfOI5YN3adfjT8leu3R5gTkNa6RxjAWR4jwwpnn3yWnTwnnfAkWQ6VITpqHWYYpV63AXNtIPFqBhU9cgqtQ3_3zlTTFSEt8IeqMGiGimQxKMvQFMoJXa2Lds6oswcaxmgwqGq7rvnVkFKLGMTkhownOmgbeqiev54YkDJh4JC0P-Ro8nJ_dn3ZpGKhADed8TG2ZWqMFbhni2CRWZpoxZZm1hkUy0U5FqdLCxCrTZWZS62yeKu6UD6dlLhhbh5lqULkNIFxyLjNhMi4Y91uWnBvLvEOk0gkund2EqLVkYQLbOA69eCpaWNn_whu_QOOjyEs24fBdZdhQbfy2mLevp_jiL4VPBT-rbf1NbR_muvc318X1xe3VNszjnQbSsgMz4_rF7frCZKz3Jo73Bqm14f0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-term+forecasting+of+passenger+demand+under+on-demand+ride+services%3A+A+spatio-temporal+deep+learning+approach&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Ke%2C+Jintao&rft.au=Zheng%2C+Hongyu&rft.au=Yang%2C+Hai&rft.au=Chen%2C+Xiqun+%28Michael%29&rft.date=2017-12-01&rft.pub=Elsevier+Ltd&rft.issn=0968-090X&rft.eissn=1879-2359&rft.volume=85&rft.spage=591&rft.epage=608&rft_id=info:doi/10.1016%2Fj.trc.2017.10.016&rft.externalDocID=S0968090X17302899 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon |