Reducing the Effects of Motion Artifacts in fMRI: A Structured Matrix Completion Approach

Functional MRI (fMRI) is widely used to study the functional organization of normal and pathological brains. However, the fMRI signal may be contaminated by subject motion artifacts that are only partially mitigated by motion correction strategies. These artifacts lead to distance-dependent biases i...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 41; no. 1; pp. 172 - 185
Main Authors Balachandrasekaran, Arvind, Cohen, Alexander L., Afacan, Onur, Warfield, Simon K., Gholipour, Ali
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Functional MRI (fMRI) is widely used to study the functional organization of normal and pathological brains. However, the fMRI signal may be contaminated by subject motion artifacts that are only partially mitigated by motion correction strategies. These artifacts lead to distance-dependent biases in the inferred signal correlations. To mitigate these spurious effects, motion-corrupted volumes are censored from fMRI time series. Censoring can result in discontinuities in the fMRI signal, which may lead to substantial alterations in functional connectivity analysis. We propose a new approach to recover the missing entries from censoring based on structured low rank matrix completion. We formulated the artifact-reduction problem as the recovery of a super-resolved matrix from unprocessed fMRI measurements. We enforced a low rank prior on a large structured matrix, formed from the samples of the time series, to recover the missing entries. The recovered time series, in addition to being motion compensated, are also slice-time corrected at a fine temporal resolution. To achieve a fast and memory-efficient solution for our proposed optimization problem, we employed a variable splitting strategy. We validated the algorithm with simulations, data acquired under different motion conditions, and datasets from the ABCD study. Functional connectivity analysis showed that the proposed reconstruction resulted in connectivity matrices with lower errors in pair-wise correlation than non-censored and censored time series based on a standard processing pipeline. In addition, seed-based correlation analyses showed improved delineation of the default mode network. These demonstrate that the method can effectively reduce the adverse effects of motion in fMRI analysis.
AbstractList Functional MRI (fMRI) is widely used to study the functional organization of normal and pathological brains. However, the fMRI signal may be contaminated by subject motion artifacts that are only partially mitigated by motion correction strategies. These artifacts lead to distance-dependent biases in the inferred signal correlations. To mitigate these spurious effects, motion-corrupted volumes are censored from fMRI time series. Censoring can result in discontinuities in the fMRI signal, which may lead to substantial alterations in functional connectivity analysis. We propose a new approach to recover the missing entries from censoring based on structured low rank matrix completion. We formulated the artifact-reduction problem as the recovery of a super-resolved matrix from unprocessed fMRI measurements. We enforced a low rank prior on a large structured matrix, formed from the samples of the time series, to recover the missing entries. The recovered time series, in addition to being motion compensated, are also slice-time corrected at a fine temporal resolution. To achieve a fast and memory-efficient solution for our proposed optimization problem, we employed a variable splitting strategy. We validated the algorithm with simulations, data acquired under different motion conditions, and datasets from the ABCD study. Functional connectivity analysis showed that the proposed reconstruction resulted in connectivity matrices with lower errors in pair-wise correlation than non-censored and censored time series based on a standard processing pipeline. In addition, seed-based correlation analyses showed improved delineation of the default mode network. These demonstrate that the method can effectively reduce the adverse effects of motion in fMRI analysis.
Functional MRI (fMRI) is widely used to study the functional organization of normal and pathological brains. However, the fMRI signal may be contaminated by subject motion artifacts that are only partially mitigated by motion correction strategies. These artifacts lead to distance-dependent biases in the inferred signal correlations. To mitigate these spurious effects, motion-corrupted volumes are censored from fMRI time series. Censoring can result in discontinuities in the fMRI signal, which may lead to substantial alterations in functional connectivity analysis. We propose a new approach to recover the missing entries from censoring based on structured low rank matrix completion. We formulated the artifact-reduction problem as the recovery of a super-resolved matrix from unprocessed fMRI measurements. We enforced a low rank prior on a large structured matrix, formed from the samples of the time series, to recover the missing entries. The recovered time series, in addition to being motion compensated, are also slice-time corrected at a fine temporal resolution. To achieve a fast and memory-efficient solution for our proposed optimization problem, we employed a variable splitting strategy. We validated the algorithm with simulations, data acquired under different motion conditions, and datasets from the ABCD study. Functional connectivity analysis showed that the proposed reconstruction resulted in connectivity matrices with lower errors in pair-wise correlation than non-censored and censored time series based on a standard processing pipeline. In addition, seed-based correlation analyses showed improved delineation of the default mode network. These demonstrate that the method can effectively reduce the adverse effects of motion in fMRI analysis.Functional MRI (fMRI) is widely used to study the functional organization of normal and pathological brains. However, the fMRI signal may be contaminated by subject motion artifacts that are only partially mitigated by motion correction strategies. These artifacts lead to distance-dependent biases in the inferred signal correlations. To mitigate these spurious effects, motion-corrupted volumes are censored from fMRI time series. Censoring can result in discontinuities in the fMRI signal, which may lead to substantial alterations in functional connectivity analysis. We propose a new approach to recover the missing entries from censoring based on structured low rank matrix completion. We formulated the artifact-reduction problem as the recovery of a super-resolved matrix from unprocessed fMRI measurements. We enforced a low rank prior on a large structured matrix, formed from the samples of the time series, to recover the missing entries. The recovered time series, in addition to being motion compensated, are also slice-time corrected at a fine temporal resolution. To achieve a fast and memory-efficient solution for our proposed optimization problem, we employed a variable splitting strategy. We validated the algorithm with simulations, data acquired under different motion conditions, and datasets from the ABCD study. Functional connectivity analysis showed that the proposed reconstruction resulted in connectivity matrices with lower errors in pair-wise correlation than non-censored and censored time series based on a standard processing pipeline. In addition, seed-based correlation analyses showed improved delineation of the default mode network. These demonstrate that the method can effectively reduce the adverse effects of motion in fMRI analysis.
Author Balachandrasekaran, Arvind
Warfield, Simon K.
Gholipour, Ali
Afacan, Onur
Cohen, Alexander L.
Author_xml – sequence: 1
  givenname: Arvind
  orcidid: 0000-0002-5500-6392
  surname: Balachandrasekaran
  fullname: Balachandrasekaran, Arvind
  email: arvind.balachandrasekaran@childrens.harvard.edu
  organization: Department of Radiology, Boston Children's Hospital, Boston, MA, USA
– sequence: 2
  givenname: Alexander L.
  orcidid: 0000-0001-6557-5866
  surname: Cohen
  fullname: Cohen, Alexander L.
  email: alexander.cohen2@childrens.harvard.edu
  organization: Department of Neurology, Boston Children's Hospital, Boston, MA, USA
– sequence: 3
  givenname: Onur
  surname: Afacan
  fullname: Afacan, Onur
  email: onur.afacan@childrens.harvard.edu
  organization: Department of Radiology, Boston Children's Hospital, Boston, MA, USA
– sequence: 4
  givenname: Simon K.
  orcidid: 0000-0002-7659-3880
  surname: Warfield
  fullname: Warfield, Simon K.
  email: simon.warfield@childrens.harvard.edu
  organization: Department of Radiology, Boston Children's Hospital, Boston, MA, USA
– sequence: 5
  givenname: Ali
  orcidid: 0000-0001-7699-4564
  surname: Gholipour
  fullname: Gholipour, Ali
  email: ali.gholipour@childrens.harvard.edu
  organization: Department of Radiology, Boston Children's Hospital, Boston, MA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34432631$$D View this record in MEDLINE/PubMed
BookMark eNp9UUGLEzEYDbLidlfvgiABL16mJpkkk3gQSlm1sEVYV9BTSDNftlmmkzGTEf33prQW3YOHEEjee9_73rtAZ33sAaHnlMwpJfrN7Xo1Z4TReU1Jo5h-hGZUCFUxwb-eoRlhjaoIkewcXYzjPSGUC6KfoPOa85rJms7QtxtoJxf6O5y3gK-8B5dHHD1exxxijxcpB2_3b6HHfn2zeosX-HNOk8tTghavbU7hJ17G3dDBgTEMKVq3fYoee9uN8Ox4X6Iv769ulx-r608fVsvFdeU457lqN8TVSlvVSMIto61stdWNEq1vBJValeM34KAB5uRGSdf41nPhmfNMaagv0buD7jBtdtA66HOynRlS2Nn0y0QbzL8_fdiau_jDKF1iIKIIvD4KpPh9gjGbXRgddJ3tIU6jYUJyzWVDZIG-egC9j1Pqy3qGyZI8pZzQgnr5t6OTlT-pFwA5AFyK45jAnyCUmH2xphRr9sWaY7GFIh9QXMh2H3jZKXT_I744EAMAnOZowRgtXn4D6qKvgQ
CODEN ITMID4
CitedBy_id crossref_primary_10_1109_TBME_2024_3395154
crossref_primary_10_3390_philosophies8050094
crossref_primary_10_1080_03772063_2025_2469644
crossref_primary_10_1007_s11682_023_00786_2
crossref_primary_10_1109_TSP_2022_3230332
crossref_primary_10_1109_TCYB_2023_3305552
crossref_primary_10_1109_TAI_2024_3396421
Cites_doi 10.1016/S1053-8119(09)70884-5
10.1016/j.neuron.2011.09.006
10.1002/mrm.1910340409
10.1109/MSP.2019.2950432
10.1109/TCI.2017.2721819
10.1148/radiol.14132388
10.1002/hbm.460030306
10.1016/j.neuroimage.2011.12.063
10.1016/j.neuroimage.2011.07.044
10.1109/TMI.2017.2726995
10.1093/cercor/bhq104
10.1109/TMI.2010.2100850
10.1002/mrm.1910350312
10.1016/B978-0-12-801238-3.03981-7
10.1002/mrm.1910340618
10.1016/j.dcn.2018.03.001
10.1016/j.neuroimage.2012.08.052
10.1137/1.9780898718881
10.1016/j.neuroimage.2016.12.018
10.1002/mrm.26083
10.1109/NFSI-ICFBI.2007.4387720
10.1007/s10208-009-9045-5
10.1016/j.neuroimage.2013.04.001
10.1137/15M1042280
10.1073/pnas.0800376105
10.1109/TMI.2003.822821
10.1016/j.neuroimage.2013.03.004
10.1016/j.neuroimage.2011.09.015
10.1016/j.neuroimage.2011.12.061
10.1002/mrm.1910310307
10.1109/MSP.2019.2949570
10.1016/j.neuroimage.2011.10.018
10.1016/j.neuroimage.2013.08.048
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
DOI 10.1109/TMI.2021.3107829
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 185
ExternalDocumentID PMC8934405
34432631
10_1109_TMI_2021_3107829
9522126
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health (NIH)
  grantid: R01 EB018988; R01 NS106030; R01 EB019483; K23 MH120510
  funderid: 10.13039/100000002
– fundername: Technological Innovations in Neuroscience Award from the McKnight Foundation
  funderid: 10.13039/100005270
– fundername: Child Neurology Foundation (CNF)
  funderid: 10.13039/100006457
– fundername: Office of the Director of the NIH
  grantid: S10 OD025111
  funderid: 10.13039/100000052
– fundername: NIH HHS
  grantid: S10 OD025111
– fundername: NIBIB NIH HHS
  grantid: R01 EB018988
– fundername: NIBIB NIH HHS
  grantid: R01 EB019483
– fundername: NINDS NIH HHS
  grantid: R01 NS106030
– fundername: NIMH NIH HHS
  grantid: K23 MH120510
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c444t-db0c389a87604a21d6d9a9785df751698169fbece7e2c6b86c7fdf45f2cf289e3
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Thu Aug 21 18:40:14 EDT 2025
Fri Jul 11 12:41:05 EDT 2025
Sun Jun 29 15:46:29 EDT 2025
Thu Apr 03 06:57:36 EDT 2025
Thu Apr 24 23:02:13 EDT 2025
Tue Jul 01 03:16:04 EDT 2025
Wed Aug 27 05:00:57 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-db0c389a87604a21d6d9a9785df751698169fbece7e2c6b86c7fdf45f2cf289e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5500-6392
0000-0001-7699-4564
0000-0002-7659-3880
0000-0001-6557-5866
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8934405
PMID 34432631
PQID 2615511401
PQPubID 85460
PageCount 14
ParticipantIDs proquest_journals_2615511401
crossref_citationtrail_10_1109_TMI_2021_3107829
ieee_primary_9522126
proquest_miscellaneous_2564946706
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8934405
crossref_primary_10_1109_TMI_2021_3107829
pubmed_primary_34432631
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref14
ref31
ref11
ref33
ref10
ref32
Jenkinson (ref30) 2012; 62
ref2
ref1
ref17
ref16
ref19
ref18
ref24
Mohan (ref26) 2012; 13
ref23
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref31
  doi: 10.1016/S1053-8119(09)70884-5
– ident: ref32
  doi: 10.1016/j.neuron.2011.09.006
– ident: ref4
  doi: 10.1002/mrm.1910340409
– ident: ref18
  doi: 10.1109/MSP.2019.2950432
– ident: ref25
  doi: 10.1109/TCI.2017.2721819
– ident: ref3
  doi: 10.1148/radiol.14132388
– ident: ref9
  doi: 10.1002/hbm.460030306
– ident: ref15
  doi: 10.1016/j.neuroimage.2011.12.063
– ident: ref13
  doi: 10.1016/j.neuroimage.2011.07.044
– ident: ref23
  doi: 10.1109/TMI.2017.2726995
– ident: ref2
  doi: 10.1093/cercor/bhq104
– ident: ref28
  doi: 10.1109/TMI.2010.2100850
– ident: ref7
  doi: 10.1002/mrm.1910350312
– ident: ref33
  doi: 10.1016/B978-0-12-801238-3.03981-7
– ident: ref21
  doi: 10.1002/mrm.1910340618
– ident: ref20
  doi: 10.1016/j.dcn.2018.03.001
– ident: ref10
  doi: 10.1016/j.neuroimage.2012.08.052
– ident: ref34
  doi: 10.1137/1.9780898718881
– ident: ref8
  doi: 10.1016/j.neuroimage.2016.12.018
– ident: ref24
  doi: 10.1002/mrm.26083
– ident: ref27
  doi: 10.1109/NFSI-ICFBI.2007.4387720
– volume: 13
  start-page: 3441
  issue: 1
  year: 2012
  ident: ref26
  article-title: Iterative reweighted algorithms for matrix rank minimization
  publication-title: J. Mach. Learn. Res.
– ident: ref29
  doi: 10.1007/s10208-009-9045-5
– ident: ref5
  doi: 10.1016/j.neuroimage.2013.04.001
– ident: ref22
  doi: 10.1137/15M1042280
– ident: ref1
  doi: 10.1073/pnas.0800376105
– ident: ref12
  doi: 10.1109/TMI.2003.822821
– ident: ref11
  doi: 10.1016/j.neuroimage.2013.03.004
– volume: 62
  start-page: 782
  issue: 2
  year: 2012
  ident: ref30
  article-title: FSL
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.09.015
– ident: ref17
  doi: 10.1016/j.neuroimage.2011.12.061
– ident: ref6
  doi: 10.1002/mrm.1910310307
– ident: ref19
  doi: 10.1109/MSP.2019.2949570
– ident: ref14
  doi: 10.1016/j.neuroimage.2011.10.018
– ident: ref16
  doi: 10.1016/j.neuroimage.2013.08.048
SSID ssj0014509
Score 2.4224706
Snippet Functional MRI (fMRI) is widely used to study the functional organization of normal and pathological brains. However, the fMRI signal may be contaminated by...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 172
SubjectTerms Algorithms
Brain - diagnostic imaging
Brain Mapping
Connectivity analysis
Correlation
Data acquisition
fcMRI
fMRI
Functional magnetic resonance imaging
Functional morphology
Hankel matrix
Head Movements
Image Processing, Computer-Assisted
Magnetic Resonance Imaging
matrix completion
Motion
Motion effects
Motion-compensated recovery
National Institutes of Health
Optimization
Recovery (Medical)
rsfMRI
Signal resolution
Structured matrices
Temporal resolution
Time series
Time series analysis
Transmission line matrix methods
variable splitting
Volume measurement
Title Reducing the Effects of Motion Artifacts in fMRI: A Structured Matrix Completion Approach
URI https://ieeexplore.ieee.org/document/9522126
https://www.ncbi.nlm.nih.gov/pubmed/34432631
https://www.proquest.com/docview/2615511401
https://www.proquest.com/docview/2564946706
https://pubmed.ncbi.nlm.nih.gov/PMC8934405
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6SHEJyaJukD7dpUSGXQHdXkiXZ7i2UhqTgHtIEkpORZYmGFm_p7kLpr--M_CAbQsnBYKwHMjOSvtFovgE4ksLbwFF5bWFrSmHGcR0szKTWQWvLRWMURSOXX83Zlfpyra834MMYC-O9j5fP_JReoy-_mbsVHZXNCgQLQppN2ETDrYvVGj0GSnfXOSQxxnIjB5ckL2aX5TkaglKgfUobIhGFpkohbknF2m4U06s8hDTvX5i8swOdPoVyGHt38eTHdLWsp-7vPVrHx_7cM3jSQ1F20unOHmz4dh927xAU7sN22bveD-Dmgkhe8StDyMg60uMFmwdWxjxAsRuKkliw25aF8uL8Izth3yI77eq3b1hJuQD-MFp_iO-bWvR05s_h6vTz5aezSZ-XYeKUUstJU3OHOMfiQsqVlSjPprBojeomZOR2y_EJqBs-89KZOjcuC01QOkgX0L7z6QvYauetfwXMBmtkY6XJnVXCeivqkEktfZ6KNAt5ArNBPpXrScspd8bPKhovvKhQuBUJt-qFm8Dx2OJXR9jxn7oHJIexXi-CBA4HFaj6Gb2oJDlwBZmjCbwfi3EukoPFtn6-wjraqAJ3Ho5dvOw0Zux70LgEsjVdGisQz_d6SXv7PfJ9I6RUiKtfPzzaN7AjKSQjHgsdwhYK1r9FoLSs38UZ8g--2g1H
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB9qBa0PfrRWo1VX8EXw7jab3U3iWxHLnTZ9qFeoT2Gz2cWi5MS7A-lf35nNB71SxIdAyH6QMLM7v8ns_AbgnYid8RyV1-SmohJmHPfBXI8q5ZUyPK61pGzk4kRPz-SXc3W-BR-GXBjnXDh85sZ0G2L59cKu6VfZJEewEAt9B-6i3VeizdYaYgZStQc6BHHGci36oCTPJ_Nihq6giNFDJZNIVKGJlIhcknjDHoUCK7dhzZtHJq_ZoKNHUPRv3x49-Tler6qxvbxB7Pi_n_cYHnZglB222vMEtlyzCw-uURTuwr2iC77vwfdTonnFpwxBI2tpj5ds4VkRKgGFaShPYskuGuaL09lHdsi-BX7a9R9Xs4KqAfxltAMR4zeN6AjNn8LZ0ef5p-moq8wwslLK1aiuuEWkY3Ar5dIIlGidG_RHVe1TCrxleHnUDpc6YXWVaZv62kvlhfXo4blkH7abReOeAzPeaFEboTNrZGyciSufCiVclsRJ6rMIJr18StvRllP1jF9lcF94XqJwSxJu2Qk3gvfDiN8tZcc_-u6RHIZ-nQgiOOhVoOzW9LIUFMKNySGN4O3QjKuRQiymcYs19lFa5mh7OE7xrNWYYe5e4yJIN3Rp6EBM35stzcWPwPiNoFIisn5x-9u-gfvTeXFcHs9Ovr6EHUEJGuEn0QFso5DdK4RNq-p1WC1X7FMQkQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reducing+the+effects+of+motion+artifacts+in+fMRI%3A+A+structured+matrix+completion+approach&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Balachandrasekaran%2C+Arvind&rft.au=Cohen%2C+Alexander+L.&rft.au=Afacan%2C+Onur&rft.au=Warfield%2C+Simon+K.&rft.date=2022-01-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=41&rft.issue=1&rft.spage=172&rft.epage=185&rft_id=info:doi/10.1109%2FTMI.2021.3107829&rft_id=info%3Apmid%2F34432631&rft.externalDocID=PMC8934405
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon