Inositol pyrophosphates impact phosphate homeostasis via modulation of RNA 3′ processing and transcription termination

Fission yeast phosphate acquisition genes pho1, pho84, and tgp1 are repressed in phosphate-rich medium by transcription of upstream lncRNAs. Here, we show that phosphate homeostasis is subject to metabolite control by inositol pyrophosphates (IPPs), exerted through the 3′-processing/termination mach...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 47; no. 16; pp. 8452 - 8469
Main Authors Sanchez, Ana M, Garg, Angad, Shuman, Stewart, Schwer, Beate
Format Journal Article
LanguageEnglish
Published England Oxford University Press 19.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fission yeast phosphate acquisition genes pho1, pho84, and tgp1 are repressed in phosphate-rich medium by transcription of upstream lncRNAs. Here, we show that phosphate homeostasis is subject to metabolite control by inositol pyrophosphates (IPPs), exerted through the 3′-processing/termination machinery and the Pol2 CTD code. Increasing IP8 (via Asp1 IPP pyrophosphatase mutation) de-represses the PHO regulon and leads to precocious termination of prt lncRNA synthesis. pho1 de-repression by IP8 depends on cleavage-polyadenylation factor (CPF) subunits, termination factor Rhn1, and the Thr4 letter of the CTD code. pho1 de-repression by mutation of the Ser7 CTD letter depends on IP8. Simultaneous inactivation of the Asp1 and Aps1 IPP pyrophosphatases is lethal, but this lethality is suppressed by mutations of CPF subunits Ppn1, Swd22, Ssu72, and Ctf1 and CTD mutation T4A. Failure to synthesize IP8 (via Asp1 IPP kinase mutation) results in pho1 hyper-repression. Synthetic lethality of asp1Δ with Ppn1, Swd22, and Ssu72 mutations argues that IP8 plays an important role in essential 3′-processing/termination events, albeit in a manner genetically redundant to CPF. Transcriptional profiling delineates an IPP-responsive regulon composed of genes overexpressed when IP8 levels are increased. Our results establish a novel role for IPPs in cell physiology.
AbstractList Fission yeast phosphate acquisition genes pho1, pho84, and tgp1 are repressed in phosphate-rich medium by transcription of upstream lncRNAs. Here, we show that phosphate homeostasis is subject to metabolite control by inositol pyrophosphates (IPPs), exerted through the 3'-processing/termination machinery and the Pol2 CTD code. Increasing IP8 (via Asp1 IPP pyrophosphatase mutation) de-represses the PHO regulon and leads to precocious termination of prt lncRNA synthesis. pho1 de-repression by IP8 depends on cleavage-polyadenylation factor (CPF) subunits, termination factor Rhn1, and the Thr4 letter of the CTD code. pho1 de-repression by mutation of the Ser7 CTD letter depends on IP8. Simultaneous inactivation of the Asp1 and Aps1 IPP pyrophosphatases is lethal, but this lethality is suppressed by mutations of CPF subunits Ppn1, Swd22, Ssu72, and Ctf1 and CTD mutation T4A. Failure to synthesize IP8 (via Asp1 IPP kinase mutation) results in pho1 hyper-repression. Synthetic lethality of asp1Δ with Ppn1, Swd22, and Ssu72 mutations argues that IP8 plays an important role in essential 3'-processing/termination events, albeit in a manner genetically redundant to CPF. Transcriptional profiling delineates an IPP-responsive regulon composed of genes overexpressed when IP8 levels are increased. Our results establish a novel role for IPPs in cell physiology.
Fission yeast phosphate acquisition genes pho1, pho84 , and tgp1 are repressed in phosphate-rich medium by transcription of upstream lncRNAs. Here, we show that phosphate homeostasis is subject to metabolite control by inositol pyrophosphates (IPPs), exerted through the 3′-processing/termination machinery and the Pol2 CTD code. Increasing IP8 (via Asp1 IPP pyrophosphatase mutation) de-represses the PHO regulon and leads to precocious termination of prt lncRNA synthesis. pho1 de-repression by IP8 depends on cleavage-polyadenylation factor (CPF) subunits, termination factor Rhn1, and the Thr4 letter of the CTD code. pho1 de-repression by mutation of the Ser7 CTD letter depends on IP8. Simultaneous inactivation of the Asp1 and Aps1 IPP pyrophosphatases is lethal, but this lethality is suppressed by mutations of CPF subunits Ppn1, Swd22, Ssu72, and Ctf1 and CTD mutation T4A. Failure to synthesize IP8 (via Asp1 IPP kinase mutation) results in pho1 hyper-repression. Synthetic lethality of asp1 Δ with Ppn1, Swd22, and Ssu72 mutations argues that IP8 plays an important role in essential 3′-processing/termination events, albeit in a manner genetically redundant to CPF. Transcriptional profiling delineates an IPP-responsive regulon composed of genes overexpressed when IP8 levels are increased. Our results establish a novel role for IPPs in cell physiology.
Fission yeast phosphate acquisition genes pho1, pho84, and tgp1 are repressed in phosphate-rich medium by transcription of upstream lncRNAs. Here, we show that phosphate homeostasis is subject to metabolite control by inositol pyrophosphates (IPPs), exerted through the 3'-processing/termination machinery and the Pol2 CTD code. Increasing IP8 (via Asp1 IPP pyrophosphatase mutation) de-represses the PHO regulon and leads to precocious termination of prt lncRNA synthesis. pho1 de-repression by IP8 depends on cleavage-polyadenylation factor (CPF) subunits, termination factor Rhn1, and the Thr4 letter of the CTD code. pho1 de-repression by mutation of the Ser7 CTD letter depends on IP8. Simultaneous inactivation of the Asp1 and Aps1 IPP pyrophosphatases is lethal, but this lethality is suppressed by mutations of CPF subunits Ppn1, Swd22, Ssu72, and Ctf1 and CTD mutation T4A. Failure to synthesize IP8 (via Asp1 IPP kinase mutation) results in pho1 hyper-repression. Synthetic lethality of asp1Δ with Ppn1, Swd22, and Ssu72 mutations argues that IP8 plays an important role in essential 3'-processing/termination events, albeit in a manner genetically redundant to CPF. Transcriptional profiling delineates an IPP-responsive regulon composed of genes overexpressed when IP8 levels are increased. Our results establish a novel role for IPPs in cell physiology.Fission yeast phosphate acquisition genes pho1, pho84, and tgp1 are repressed in phosphate-rich medium by transcription of upstream lncRNAs. Here, we show that phosphate homeostasis is subject to metabolite control by inositol pyrophosphates (IPPs), exerted through the 3'-processing/termination machinery and the Pol2 CTD code. Increasing IP8 (via Asp1 IPP pyrophosphatase mutation) de-represses the PHO regulon and leads to precocious termination of prt lncRNA synthesis. pho1 de-repression by IP8 depends on cleavage-polyadenylation factor (CPF) subunits, termination factor Rhn1, and the Thr4 letter of the CTD code. pho1 de-repression by mutation of the Ser7 CTD letter depends on IP8. Simultaneous inactivation of the Asp1 and Aps1 IPP pyrophosphatases is lethal, but this lethality is suppressed by mutations of CPF subunits Ppn1, Swd22, Ssu72, and Ctf1 and CTD mutation T4A. Failure to synthesize IP8 (via Asp1 IPP kinase mutation) results in pho1 hyper-repression. Synthetic lethality of asp1Δ with Ppn1, Swd22, and Ssu72 mutations argues that IP8 plays an important role in essential 3'-processing/termination events, albeit in a manner genetically redundant to CPF. Transcriptional profiling delineates an IPP-responsive regulon composed of genes overexpressed when IP8 levels are increased. Our results establish a novel role for IPPs in cell physiology.
Author Schwer, Beate
Garg, Angad
Shuman, Stewart
Sanchez, Ana M
AuthorAffiliation 1 Department of Microbiology and Immunology, Weill Cornell Medical College , New York, NY 10065, USA
2 Molecular Biology Program, Sloan-Kettering Institute , New York, NY 10065, USA
AuthorAffiliation_xml – name: 2 Molecular Biology Program, Sloan-Kettering Institute , New York, NY 10065, USA
– name: 1 Department of Microbiology and Immunology, Weill Cornell Medical College , New York, NY 10065, USA
Author_xml – sequence: 1
  givenname: Ana M
  surname: Sanchez
  fullname: Sanchez, Ana M
  organization: Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
– sequence: 2
  givenname: Angad
  surname: Garg
  fullname: Garg, Angad
  organization: Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
– sequence: 3
  givenname: Stewart
  surname: Shuman
  fullname: Shuman, Stewart
  organization: Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
– sequence: 4
  givenname: Beate
  surname: Schwer
  fullname: Schwer, Beate
  organization: Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31276588$$D View this record in MEDLINE/PubMed
BookMark eNptkdtqFEEQhhuJmE30xgeQvhRhTB_ncCOE4CEQFESvm5rumt3Wme6xuzckXvlMPpJP4rgbFxWvCqq--uun_hNyFGJAQh5z9pyzTp4FSGfrz1913dwjKy5rUamuFkdkxSTTFWeqPSYnOX9ijCuu1QNyLLloat22K3JzGWL2JY50vk1x3sQ8b6Bgpn6awRZ66NBNnDDmAtlneu2BTtFtRyg-BhoH-v7tOZU_vn2nc4oWc_ZhTSE4WhKEbJOfd2DBNPmwW3pI7g8wZnx0V0_Jx1cvP1y8qa7evb68OL-qrFKqVE410urBOcV61YJ1DlzP-DCgarpedNj29dAgghOqQ4m1AyGQM6t72zEO8pS82OvO235CZzEslkYzJz9BujURvPl7EvzGrOO1qdtOi0YuAk_vBFL8ssVczOSzxXGEgHGbjRBailYLKRb0yZ-3Dkd-v3sBnu0Bm2LOCYcDwpn5laVZsjT7LBeY_QNbX3a_W3z68X8rPwEGU6pq
CitedBy_id crossref_primary_10_1111_ppl_70089
crossref_primary_10_1128_mbio_01252_24
crossref_primary_10_1128_mbio_02056_23
crossref_primary_10_1261_rna_079722_123
crossref_primary_10_1016_j_celrep_2021_109671
crossref_primary_10_1016_j_jbc_2024_108056
crossref_primary_10_1128_mbio_01084_24
crossref_primary_10_1261_rna_079595_123
crossref_primary_10_3390_toxins12110717
crossref_primary_10_3390_ijms23020968
crossref_primary_10_1038_s41467_020_16280_y
crossref_primary_10_1128_mbio_03087_22
crossref_primary_10_1093_nar_gkab1263
crossref_primary_10_1371_journal_pgen_1010182
crossref_primary_10_7554_eLife_87956_3
crossref_primary_10_3389_fmolb_2024_1332878
crossref_primary_10_1128_mbio_03062_23
crossref_primary_10_1242_jcs_260759
crossref_primary_10_1128_mbio_01034_22
crossref_primary_10_1261_rna_076463_120
crossref_primary_10_1093_nar_gkaa212
crossref_primary_10_1093_nar_gkaa630
crossref_primary_10_1039_D0SC02144J
crossref_primary_10_1093_nar_gkaa776
crossref_primary_10_1261_rna_078682_121
crossref_primary_10_7554_eLife_87956
crossref_primary_10_1016_j_jbior_2023_101002
crossref_primary_10_1371_journal_pgen_1009452
crossref_primary_10_3390_jof8090933
crossref_primary_10_1371_journal_pgen_1011468
crossref_primary_10_1101_gad_348315_121
crossref_primary_10_3390_ijms25031362
crossref_primary_10_1007_s00294_020_01132_5
crossref_primary_10_1073_pnas_2108105118
crossref_primary_10_1016_j_jbc_2024_105718
crossref_primary_10_1128_mbio_03476_21
crossref_primary_10_3390_jof7080626
crossref_primary_10_1016_j_jbc_2023_105454
crossref_primary_10_1016_j_jbc_2022_101851
Cites_doi 10.1128/MCB.00330-16
10.1038/nchembio.2007.52
10.1074/jbc.RA117.001352
10.1128/EC.00216-10
10.1007/978-94-007-3015-1_14
10.1073/pnas.1321842111
10.1002/jcp.26017
10.1016/S0014-5793(01)03306-3
10.1016/j.cell.2013.10.027
10.1128/mBio.01218-17
10.1093/bioinformatics/btp352
10.1101/gad.230177.113
10.1261/rna.052555.115
10.1093/nar/26.9.2050
10.1042/bj20020733
10.1038/ncomms6576
10.1073/pnas.1606853113
10.1186/1471-2164-13-697
10.1016/j.copbio.2017.08.012
10.1038/ncomms14861
10.1007/s12038-014-9435-y
10.1271/bbb.80804
10.1007/s00294-014-0466-6
10.1261/rna.056515.116
10.1128/MCB.10.5.2269
10.1126/science.aad9858
10.1002/yea.1291
10.1261/rna.063966.117
10.1073/pnas.1810711115
10.1007/s00018-012-1090-6
10.1038/nmeth.3317
10.1002/(SICI)1097-0061(199807)14:10<943::AID-YEA292>3.0.CO;2-Y
10.1126/science.291.5506.1051
10.1016/j.tibs.2016.10.008
10.1371/journal.pgen.1003104
10.1074/jbc.274.31.21735
10.1128/EC.05276-11
10.1021/acs.biochem.5b00532
10.1128/MCB.00472-10
10.1021/cr400158h
10.1186/s13059-014-0550-8
ContentType Journal Article
Copyright The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.
The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. 2019
Copyright_xml – notice: The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.
– notice: The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/nar/gkz567
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 8469
ExternalDocumentID PMC6895273
31276588
10_1093_nar_gkz567
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM126945
– fundername: NCI NIH HHS
  grantid: P30 CA008748
– fundername: NIGMS NIH HHS
  grantid: R01 GM052470
– fundername: ; ;
  grantid: R01-GM52470; R35-GM126945
GroupedDBID ---
-DZ
-~X
.I3
0R~
123
18M
1TH
29N
2WC
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAUQX
AAVAP
AAYXX
ABEJV
ABGNP
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACUTJ
ADBBV
ADHZD
AEGXH
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFYAG
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AOIJS
BAWUL
BAYMD
BCNDV
CAG
CIDKT
CITATION
CS3
CZ4
DIK
DU5
D~K
E3Z
EBD
EBS
EMOBN
F5P
GROUPED_DOAJ
GX1
H13
HH5
HYE
HZ~
IH2
KAQDR
KQ8
KSI
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVT
P2P
PEELM
PQQKQ
R44
RD5
RNS
ROL
ROZ
RPM
RXO
SV3
TN5
TOX
TR2
WG7
WOQ
X7H
XSB
YSK
ZKX
~91
~D7
~KM
CGR
CUY
CVF
ECM
EIF
M49
NPM
7X8
5PM
ID FETCH-LOGICAL-c444t-d473c5fdd40b48acddadb01ffe479b29e8b6f7eead249e3e6da22e10c5bc901a3
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 18:24:11 EDT 2025
Thu Jul 10 18:21:55 EDT 2025
Thu Apr 03 07:08:17 EDT 2025
Tue Jul 01 02:07:22 EDT 2025
Thu Apr 24 23:01:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License http://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c444t-d473c5fdd40b48acddadb01ffe479b29e8b6f7eead249e3e6da22e10c5bc901a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1093/nar/gkz567
PMID 31276588
PQID 2253285232
PQPubID 23479
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6895273
proquest_miscellaneous_2253285232
pubmed_primary_31276588
crossref_primary_10_1093_nar_gkz567
crossref_citationtrail_10_1093_nar_gkz567
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-19
PublicationDateYYYYMMDD 2019-09-19
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-19
  day: 19
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2019
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Wang (2019120523332496100_B20) 2015; 54
De Camilli (2019120523332496100_B41) 2002; 513
Hentges (2019120523332496100_B22) 2005; 22
Topolski (2019120523332496100_B18) 2016; 36
Kim (2019120523332496100_B25) 2015; 12
Kwon (2019120523332496100_B33) 2012; 8
Ohtsuka (2019120523332496100_B31) 2009; 73
Chatterjee (2019120523332496100_B8) 2016; 22
Garg (2019120523332496100_B10) 2018; 293
Schwer (2019120523332496100_B24) 1998; 26
Pascula-Ortiz (2019120523332496100_B19) 2018; 38
Wu (2019120523332496100_B37) 2016; 113
Wild (2019120523332496100_B38) 2016; 352
Corden (2019120523332496100_B42) 2013; 113
Matsuzawa (2019120523332496100_B32) 2012; 11
Saiardi (2019120523332496100_B34) 2012; 59
Tomar (2019120523332496100_B1) 2014; 39
Sanchez (2019120523332496100_B12) 2018; 115
Li (2019120523332496100_B26) 2009; 25
Carter-O’Connell (2019120523332496100_B3) 2012; 13
Henry (2019120523332496100_B15) 2011; 10
Pöhlmann (2019120523332496100_B17) 2010; 30
Wittmann (2019120523332496100_B43) 2017; 8
Sanchez (2019120523332496100_B9) 2018; 24
Safrany (2019120523332496100_B29) 1999; 274
Lee (2019120523332496100_B5) 2013; 155
Schwer (2019120523332496100_B11) 2017; 8
Schwer (2019120523332496100_B7) 2015; 21
Ford (2019120523332496100_B40) 2001; 291
Jung (2019120523332496100_B39) 2018; 49
Pyl (2019120523332496100_B27) 2014; 31
Schwer (2019120523332496100_B13) 2014; 111
Ard (2019120523332496100_B6) 2014; 5
Herrick (2019120523332496100_B23) 1990; 10
Shears (2019120523332496100_B35) 2018; 233
Ingraham (2019120523332496100_B30) 2003; 369
Lee (2019120523332496100_B36) 2008; 4
Azevedo (2019120523332496100_B14) 2017; 42
Jain (2019120523332496100_B2) 2012; 69
Estill (2019120523332496100_B16) 2015; 61
Bähler (2019120523332496100_B21) 1998; 14
Shah (2019120523332496100_B4) 2014; 28
Love (2019120523332496100_B28) 2014; 15
References_xml – volume: 36
  start-page: 3128
  year: 2016
  ident: 2019120523332496100_B18
  article-title: Inositol pyrophoshate kinase Asp1 modulate chromosome segregation fidelity and spindle function in Schizosaccharomyces pombe
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.00330-16
– volume: 4
  start-page: 25
  year: 2008
  ident: 2019120523332496100_B36
  article-title: Molecular basis of cyclin-CDK-CKI regulation by reversible binding of an inositol pyrophosphate
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2007.52
– volume: 293
  start-page: 4465
  year: 2018
  ident: 2019120523332496100_B10
  article-title: A long noncoding (lnc) RNA governs expression of the phosphate transporter Pho84 in fission yeast and has cascading effects on the flanking prt lncRNA and pho1 genes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA117.001352
– volume: 10
  start-page: 198
  year: 2011
  ident: 2019120523332496100_B15
  article-title: Systematic screen of Schizosaccharomyces pombe deletion collection uncovers parallel evolution of the phosphate signal pathways in yeasts
  publication-title: Euk. Cell
  doi: 10.1128/EC.00216-10
– volume: 59
  start-page: 413
  year: 2012
  ident: 2019120523332496100_B34
  article-title: Cell signalling by inositol pyrophosphates
  publication-title: Subcell. Biochem.
  doi: 10.1007/978-94-007-3015-1_14
– volume: 111
  start-page: 4185
  year: 2014
  ident: 2019120523332496100_B13
  article-title: Individual letters of the RNA polymerase II CTD code govern distinct gene expression programs in fission yeast
  publication-title: Proc. Natl Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1321842111
– volume: 233
  start-page: 1897
  year: 2018
  ident: 2019120523332496100_B35
  article-title: Intimate connections: inositol pyrophosphates at the interface of metabolic regulation and cell signaling
  publication-title: J. Cell Physiol.
  doi: 10.1002/jcp.26017
– volume: 513
  start-page: 11
  year: 2002
  ident: 2019120523332496100_B41
  article-title: The ENTH domain
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(01)03306-3
– volume: 155
  start-page: 1061
  year: 2013
  ident: 2019120523332496100_B5
  article-title: Mtr4-like protein coordinates nuclear RNA processing for heterochromatin assembly and for telomere maintenance
  publication-title: Cell
  doi: 10.1016/j.cell.2013.10.027
– volume: 8
  start-page: e01218-17
  year: 2017
  ident: 2019120523332496100_B11
  article-title: Defining the DNA binding site recognized by the fission yeast Zn2Cys6 transcription factor Pho7 and its role in phosphate homeostasis
  publication-title: mBio.
  doi: 10.1128/mBio.01218-17
– volume: 25
  start-page: 2078
  year: 2009
  ident: 2019120523332496100_B26
  article-title: The Sequence Alignment/Map format and SAMtools
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume: 31
  start-page: 166
  year: 2014
  ident: 2019120523332496100_B27
  article-title: HTSeq—a Python framework to work with high-throughput sequencing data
  publication-title: Bioinformatics
– volume: 28
  start-page: 231
  year: 2014
  ident: 2019120523332496100_B4
  article-title: lncRNA recruits RNAi and the exosome to dynamically regulate pho1 expression in response to phosphate levels in fission yeast
  publication-title: Genes Dev.
  doi: 10.1101/gad.230177.113
– volume: 21
  start-page: 1770
  year: 2015
  ident: 2019120523332496100_B7
  article-title: RNA polymerase II CTD phospho-sites Ser5 and Ser7 govern phosphate homeostasis in fission yeast
  publication-title: RNA
  doi: 10.1261/rna.052555.115
– volume: 38
  start-page: e00047-17
  year: 2018
  ident: 2019120523332496100_B19
  article-title: Asp1 bifunctional activity modulates spindle function via controlling cellular inositol pyrophosphate levels in Schizosaccharomyces pombe
  publication-title: Mol. Cell Biol.
– volume: 26
  start-page: 2050
  year: 1998
  ident: 2019120523332496100_B24
  article-title: Accelerated mRNA decay in conditional mutants of yeast mRNA capping enzyme
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/26.9.2050
– volume: 369
  start-page: 519
  year: 2003
  ident: 2019120523332496100_B30
  article-title: Disruption and overexpression of the Schizosaccharomyces pombe aps1 gene, and effect on growth rate, morphology and intracellular diadenosine 5′,5‴-P1,P5-pentaphosphate and diphosphoinositol polyphosphate concentrations
  publication-title: Biochem. J.
  doi: 10.1042/bj20020733
– volume: 5
  start-page: 5576
  year: 2014
  ident: 2019120523332496100_B6
  article-title: Long non-coding RNA-mediate transcriptional interference of a permease gene confers drug tolerance in fission yeast
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6576
– volume: 113
  start-page: E6757
  year: 2016
  ident: 2019120523332496100_B37
  article-title: Inositol polyphosphates intersect with signaling and metabolic networks via two distinct mechanisms
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1606853113
– volume: 13
  start-page: 697
  year: 2012
  ident: 2019120523332496100_B3
  article-title: Genome-wide characterization of the phosphate starvation response in Schizosaccharomyces pombe
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-13-697
– volume: 49
  start-page: 156
  year: 2018
  ident: 2019120523332496100_B39
  article-title: Control of plant phosphate homeostasis by inositol pyrophosphates and the SPX domain
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2017.08.012
– volume: 8
  start-page: 14861
  year: 2017
  ident: 2019120523332496100_B43
  article-title: The conserved protein Seb1 drives transcription termination by binding RNA polymerase II and nascent RNA
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14861
– volume: 39
  start-page: 525
  year: 2014
  ident: 2019120523332496100_B1
  article-title: Conservation of PHO pathway in ascomycetes and the role of Pho84
  publication-title: J. Biosci.
  doi: 10.1007/s12038-014-9435-y
– volume: 73
  start-page: 885
  year: 2009
  ident: 2019120523332496100_B31
  article-title: Identification of Ecl family genes that extend chronological lifespan in fission yeast
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1271/bbb.80804
– volume: 61
  start-page: 175
  year: 2015
  ident: 2019120523332496100_B16
  article-title: Dissection of the PHO pathway in Schizosaccharomyces pombe using epistasis and the alternative repressor adenine
  publication-title: Curr. Genet.
  doi: 10.1007/s00294-014-0466-6
– volume: 22
  start-page: 1011
  year: 2016
  ident: 2019120523332496100_B8
  article-title: Transcription of lncRNA prt, clustered prt RNA sites for Mmi1 binding, and RNA polymerase II CTD phospho-sites govern the repression of pho1 gene expression under phosphate-replete conditions in fission yeast
  publication-title: RNA
  doi: 10.1261/rna.056515.116
– volume: 10
  start-page: 2269
  year: 1990
  ident: 2019120523332496100_B23
  article-title: Identification and comparison of stable and unstable RNAs in Saccharomyces cerevisiae
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.10.5.2269
– volume: 352
  start-page: 986
  year: 2016
  ident: 2019120523332496100_B38
  article-title: Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains
  publication-title: Science
  doi: 10.1126/science.aad9858
– volume: 22
  start-page: 1013
  year: 2005
  ident: 2019120523332496100_B22
  article-title: Three novel antibiotic marker cassettes for gene disruption and marker switching in Schizosaccharomyces pombe
  publication-title: Yeast
  doi: 10.1002/yea.1291
– volume: 24
  start-page: 237
  year: 2018
  ident: 2019120523332496100_B9
  article-title: Poly(A) site choice and Pol2 CTD Serine-5 status govern lncRNA control of phosphate-responsive tgp1 gene expression in fission yeast
  publication-title: RNA
  doi: 10.1261/rna.063966.117
– volume: 115
  start-page: E10652
  year: 2018
  ident: 2019120523332496100_B12
  article-title: An RNA polymerase II CTD genetic interaction network with 3′-processing and termination factors in fission yeast and its impact on phosphate homeostasis
  publication-title: Proc. Natl Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1810711115
– volume: 69
  start-page: 3207
  year: 2012
  ident: 2019120523332496100_B2
  article-title: Transcriptional regulation of phosphate acquisition by higher plants
  publication-title: Cell Mol. Life Sci.
  doi: 10.1007/s00018-012-1090-6
– volume: 12
  start-page: 357
  year: 2015
  ident: 2019120523332496100_B25
  article-title: HISAT: a fast spliced aligner with low memory requirements
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3317
– volume: 14
  start-page: 943
  year: 1998
  ident: 2019120523332496100_B21
  article-title: Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe
  publication-title: Yeast
  doi: 10.1002/(SICI)1097-0061(199807)14:10<943::AID-YEA292>3.0.CO;2-Y
– volume: 291
  start-page: 1051
  year: 2001
  ident: 2019120523332496100_B40
  article-title: Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes
  publication-title: Science
  doi: 10.1126/science.291.5506.1051
– volume: 42
  start-page: 219
  year: 2017
  ident: 2019120523332496100_B14
  article-title: Eukaryotic phosphate homeostasis: the inositol pyrophosphate perspective
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2016.10.008
– volume: 8
  start-page: e1003104
  year: 2012
  ident: 2019120523332496100_B33
  article-title: Deciphering the transcriptional-regulatory network of flocculation in Schizosaccharomyces pombe
  publication-title: PLos Genet.
  doi: 10.1371/journal.pgen.1003104
– volume: 274
  start-page: 21735
  year: 1999
  ident: 2019120523332496100_B29
  article-title: The diadenosine hexaphosphate hydrolase from Schizosaccharomyces pombe and Saccharomyces cerevisiae are homologues of the human disphoshoinositol polyphosphate phosphohydrolase: overlapping substrate specificities in a MutT-type protein
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.31.21735
– volume: 11
  start-page: 151
  year: 2012
  ident: 2019120523332496100_B32
  article-title: MADS box transcription factor Mbx2/Pvg4 regulates invasive growth and flocculation by inducing gsf2+ expression in fission yeast
  publication-title: Eukaryot. Cell
  doi: 10.1128/EC.05276-11
– volume: 54
  start-page: 6462
  year: 2015
  ident: 2019120523332496100_B20
  article-title: Asp1 from Schizosaccharomyces pombe binds a [2Fe-2S]2+ cluster which inhibits inositol pyrophosphate 1-phosphatase activity
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.5b00532
– volume: 30
  start-page: 4535
  year: 2010
  ident: 2019120523332496100_B17
  article-title: Asp1, a conserved 1/3 inositol polyphosphate kinase, regulates the dimorphic switch in Schizosaccharomyces pombe
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.00472-10
– volume: 113
  start-page: 8423
  year: 2013
  ident: 2019120523332496100_B42
  article-title: RNA polymerase II C-terminal domain: tethering transcription to transcript and template
  publication-title: Chem. Rev.
  doi: 10.1021/cr400158h
– volume: 15
  start-page: 550
  year: 2014
  ident: 2019120523332496100_B28
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0550-8
SSID ssj0014154
Score 2.479849
Snippet Fission yeast phosphate acquisition genes pho1, pho84, and tgp1 are repressed in phosphate-rich medium by transcription of upstream lncRNAs. Here, we show that...
Fission yeast phosphate acquisition genes pho1, pho84 , and tgp1 are repressed in phosphate-rich medium by transcription of upstream lncRNAs. Here, we show...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 8452
SubjectTerms Acid Phosphatase - genetics
Acid Phosphatase - metabolism
Cleavage And Polyadenylation Specificity Factor - genetics
Cleavage And Polyadenylation Specificity Factor - metabolism
Cytoskeletal Proteins - deficiency
Cytoskeletal Proteins - genetics
Gene Deletion
Gene Expression Regulation, Fungal
Gene regulation, Chromatin and Epigenetics
Inositol Phosphates - metabolism
Membrane Transport Proteins - genetics
Membrane Transport Proteins - metabolism
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Protein Isoforms - genetics
Protein Isoforms - metabolism
Pyrophosphatases - deficiency
Pyrophosphatases - genetics
Regulon
RNA, Long Noncoding - genetics
RNA, Long Noncoding - metabolism
Schizosaccharomyces - genetics
Schizosaccharomyces - metabolism
Schizosaccharomyces pombe Proteins - genetics
Schizosaccharomyces pombe Proteins - metabolism
Transcription Termination, Genetic
Title Inositol pyrophosphates impact phosphate homeostasis via modulation of RNA 3′ processing and transcription termination
URI https://www.ncbi.nlm.nih.gov/pubmed/31276588
https://www.proquest.com/docview/2253285232
https://pubmed.ncbi.nlm.nih.gov/PMC6895273
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIkEvCFoey6MyAoHQKjSJncQ5LlVLQaKnVuotshOnWegmUZttaX89YzvOgxYJuFgrx5us8n07Htsz3yD0Vh39iDz2nIhBQ0UWOILE3BHCzSlzfUE8le_87SDcP6Jfj4PjyeTnIGpp1YiP6fWteSX_gyr0Aa4qS_YfkO1uCh3wGfCFFhCG9q8w_lKqkKvqdFZfnVV1UZ3XhXIdbepj1zMrqqWswA9U6iMXC67q37Rlu7QYycF8RlQwRW2yBmzeYqPmsc6qtGEzHZDfbeIu_Cgl-pouMnUEMdgdUxs3QKrCbFLPS95vvX7mJqpsXp7wrBusCwa2sWeXVn1JnxIVl4Zan2DqkMOdCk-HYrX2UBrrqlO04rH5NYKblmZDY8qoEbe9YeWNAlapItD3Tn5cB6agxwDweqkRJ54fgYfF-rmui0C0l-6guz4sMFTti8jd7c6fwK2hVsw2JtvwqG3zoHV0z3517MncWJ78HmU7cFsOH6IH7XoDzw15HqGJLDfQJmDRVMsr_A7rCGB9tLKB7u_Y6n-b6MJyC4-5hQ23cNeDB9zCwC3ccwtXOQZuYfIe98zCwCw8YhYeMOsxOtrbPdzZd9oaHU5KKW2cjEYkDfIso66gjKdZxjPhenkuaRQLP5ZMhHkkwV7BOl8SGWbc96XnpoFIwRXl5AlaK6tSPkM4YHmQ5ywUKaFUsJDHPBKxCKgE7yrl0RR9sO87SVsBe1VH5TQxgRQkAZgSA9MUvenG1ka25dZRry1sCbxedVTGS1mtzhOY5YjPAlhuTNFTA2N3H4v_FEUjgLsBSrF9fKVcFFq5PWSxEjx8_sd7vkDr_T_nJVprzlbyFXi9jdjSBN3Se0a_ANudurI
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inositol+pyrophosphates+impact+phosphate+homeostasis+via+modulation+of+RNA+3%27+processing+and+transcription+termination&rft.jtitle=Nucleic+acids+research&rft.au=Sanchez%2C+Ana+M&rft.au=Garg%2C+Angad&rft.au=Shuman%2C+Stewart&rft.au=Schwer%2C+Beate&rft.date=2019-09-19&rft.eissn=1362-4962&rft.volume=47&rft.issue=16&rft.spage=8452&rft_id=info:doi/10.1093%2Fnar%2Fgkz567&rft_id=info%3Apmid%2F31276588&rft.externalDocID=31276588
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon