Inositol pyrophosphates impact phosphate homeostasis via modulation of RNA 3′ processing and transcription termination
Fission yeast phosphate acquisition genes pho1, pho84, and tgp1 are repressed in phosphate-rich medium by transcription of upstream lncRNAs. Here, we show that phosphate homeostasis is subject to metabolite control by inositol pyrophosphates (IPPs), exerted through the 3′-processing/termination mach...
Saved in:
Published in | Nucleic acids research Vol. 47; no. 16; pp. 8452 - 8469 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
19.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fission yeast phosphate acquisition genes pho1, pho84, and tgp1 are repressed in phosphate-rich medium by transcription of upstream lncRNAs. Here, we show that phosphate homeostasis is subject to metabolite control by inositol pyrophosphates (IPPs), exerted through the 3′-processing/termination machinery and the Pol2 CTD code. Increasing IP8 (via Asp1 IPP pyrophosphatase mutation) de-represses the PHO regulon and leads to precocious termination of prt lncRNA synthesis. pho1 de-repression by IP8 depends on cleavage-polyadenylation factor (CPF) subunits, termination factor Rhn1, and the Thr4 letter of the CTD code. pho1 de-repression by mutation of the Ser7 CTD letter depends on IP8. Simultaneous inactivation of the Asp1 and Aps1 IPP pyrophosphatases is lethal, but this lethality is suppressed by mutations of CPF subunits Ppn1, Swd22, Ssu72, and Ctf1 and CTD mutation T4A. Failure to synthesize IP8 (via Asp1 IPP kinase mutation) results in pho1 hyper-repression. Synthetic lethality of asp1Δ with Ppn1, Swd22, and Ssu72 mutations argues that IP8 plays an important role in essential 3′-processing/termination events, albeit in a manner genetically redundant to CPF. Transcriptional profiling delineates an IPP-responsive regulon composed of genes overexpressed when IP8 levels are increased. Our results establish a novel role for IPPs in cell physiology. |
---|---|
AbstractList | Fission yeast phosphate acquisition genes pho1, pho84, and tgp1 are repressed in phosphate-rich medium by transcription of upstream lncRNAs. Here, we show that phosphate homeostasis is subject to metabolite control by inositol pyrophosphates (IPPs), exerted through the 3'-processing/termination machinery and the Pol2 CTD code. Increasing IP8 (via Asp1 IPP pyrophosphatase mutation) de-represses the PHO regulon and leads to precocious termination of prt lncRNA synthesis. pho1 de-repression by IP8 depends on cleavage-polyadenylation factor (CPF) subunits, termination factor Rhn1, and the Thr4 letter of the CTD code. pho1 de-repression by mutation of the Ser7 CTD letter depends on IP8. Simultaneous inactivation of the Asp1 and Aps1 IPP pyrophosphatases is lethal, but this lethality is suppressed by mutations of CPF subunits Ppn1, Swd22, Ssu72, and Ctf1 and CTD mutation T4A. Failure to synthesize IP8 (via Asp1 IPP kinase mutation) results in pho1 hyper-repression. Synthetic lethality of asp1Δ with Ppn1, Swd22, and Ssu72 mutations argues that IP8 plays an important role in essential 3'-processing/termination events, albeit in a manner genetically redundant to CPF. Transcriptional profiling delineates an IPP-responsive regulon composed of genes overexpressed when IP8 levels are increased. Our results establish a novel role for IPPs in cell physiology. Fission yeast phosphate acquisition genes pho1, pho84 , and tgp1 are repressed in phosphate-rich medium by transcription of upstream lncRNAs. Here, we show that phosphate homeostasis is subject to metabolite control by inositol pyrophosphates (IPPs), exerted through the 3′-processing/termination machinery and the Pol2 CTD code. Increasing IP8 (via Asp1 IPP pyrophosphatase mutation) de-represses the PHO regulon and leads to precocious termination of prt lncRNA synthesis. pho1 de-repression by IP8 depends on cleavage-polyadenylation factor (CPF) subunits, termination factor Rhn1, and the Thr4 letter of the CTD code. pho1 de-repression by mutation of the Ser7 CTD letter depends on IP8. Simultaneous inactivation of the Asp1 and Aps1 IPP pyrophosphatases is lethal, but this lethality is suppressed by mutations of CPF subunits Ppn1, Swd22, Ssu72, and Ctf1 and CTD mutation T4A. Failure to synthesize IP8 (via Asp1 IPP kinase mutation) results in pho1 hyper-repression. Synthetic lethality of asp1 Δ with Ppn1, Swd22, and Ssu72 mutations argues that IP8 plays an important role in essential 3′-processing/termination events, albeit in a manner genetically redundant to CPF. Transcriptional profiling delineates an IPP-responsive regulon composed of genes overexpressed when IP8 levels are increased. Our results establish a novel role for IPPs in cell physiology. Fission yeast phosphate acquisition genes pho1, pho84, and tgp1 are repressed in phosphate-rich medium by transcription of upstream lncRNAs. Here, we show that phosphate homeostasis is subject to metabolite control by inositol pyrophosphates (IPPs), exerted through the 3'-processing/termination machinery and the Pol2 CTD code. Increasing IP8 (via Asp1 IPP pyrophosphatase mutation) de-represses the PHO regulon and leads to precocious termination of prt lncRNA synthesis. pho1 de-repression by IP8 depends on cleavage-polyadenylation factor (CPF) subunits, termination factor Rhn1, and the Thr4 letter of the CTD code. pho1 de-repression by mutation of the Ser7 CTD letter depends on IP8. Simultaneous inactivation of the Asp1 and Aps1 IPP pyrophosphatases is lethal, but this lethality is suppressed by mutations of CPF subunits Ppn1, Swd22, Ssu72, and Ctf1 and CTD mutation T4A. Failure to synthesize IP8 (via Asp1 IPP kinase mutation) results in pho1 hyper-repression. Synthetic lethality of asp1Δ with Ppn1, Swd22, and Ssu72 mutations argues that IP8 plays an important role in essential 3'-processing/termination events, albeit in a manner genetically redundant to CPF. Transcriptional profiling delineates an IPP-responsive regulon composed of genes overexpressed when IP8 levels are increased. Our results establish a novel role for IPPs in cell physiology.Fission yeast phosphate acquisition genes pho1, pho84, and tgp1 are repressed in phosphate-rich medium by transcription of upstream lncRNAs. Here, we show that phosphate homeostasis is subject to metabolite control by inositol pyrophosphates (IPPs), exerted through the 3'-processing/termination machinery and the Pol2 CTD code. Increasing IP8 (via Asp1 IPP pyrophosphatase mutation) de-represses the PHO regulon and leads to precocious termination of prt lncRNA synthesis. pho1 de-repression by IP8 depends on cleavage-polyadenylation factor (CPF) subunits, termination factor Rhn1, and the Thr4 letter of the CTD code. pho1 de-repression by mutation of the Ser7 CTD letter depends on IP8. Simultaneous inactivation of the Asp1 and Aps1 IPP pyrophosphatases is lethal, but this lethality is suppressed by mutations of CPF subunits Ppn1, Swd22, Ssu72, and Ctf1 and CTD mutation T4A. Failure to synthesize IP8 (via Asp1 IPP kinase mutation) results in pho1 hyper-repression. Synthetic lethality of asp1Δ with Ppn1, Swd22, and Ssu72 mutations argues that IP8 plays an important role in essential 3'-processing/termination events, albeit in a manner genetically redundant to CPF. Transcriptional profiling delineates an IPP-responsive regulon composed of genes overexpressed when IP8 levels are increased. Our results establish a novel role for IPPs in cell physiology. |
Author | Schwer, Beate Garg, Angad Shuman, Stewart Sanchez, Ana M |
AuthorAffiliation | 1 Department of Microbiology and Immunology, Weill Cornell Medical College , New York, NY 10065, USA 2 Molecular Biology Program, Sloan-Kettering Institute , New York, NY 10065, USA |
AuthorAffiliation_xml | – name: 2 Molecular Biology Program, Sloan-Kettering Institute , New York, NY 10065, USA – name: 1 Department of Microbiology and Immunology, Weill Cornell Medical College , New York, NY 10065, USA |
Author_xml | – sequence: 1 givenname: Ana M surname: Sanchez fullname: Sanchez, Ana M organization: Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA – sequence: 2 givenname: Angad surname: Garg fullname: Garg, Angad organization: Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA – sequence: 3 givenname: Stewart surname: Shuman fullname: Shuman, Stewart organization: Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA – sequence: 4 givenname: Beate surname: Schwer fullname: Schwer, Beate organization: Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31276588$$D View this record in MEDLINE/PubMed |
BookMark | eNptkdtqFEEQhhuJmE30xgeQvhRhTB_ncCOE4CEQFESvm5rumt3Wme6xuzckXvlMPpJP4rgbFxWvCqq--uun_hNyFGJAQh5z9pyzTp4FSGfrz1913dwjKy5rUamuFkdkxSTTFWeqPSYnOX9ijCuu1QNyLLloat22K3JzGWL2JY50vk1x3sQ8b6Bgpn6awRZ66NBNnDDmAtlneu2BTtFtRyg-BhoH-v7tOZU_vn2nc4oWc_ZhTSE4WhKEbJOfd2DBNPmwW3pI7g8wZnx0V0_Jx1cvP1y8qa7evb68OL-qrFKqVE410urBOcV61YJ1DlzP-DCgarpedNj29dAgghOqQ4m1AyGQM6t72zEO8pS82OvO235CZzEslkYzJz9BujURvPl7EvzGrOO1qdtOi0YuAk_vBFL8ssVczOSzxXGEgHGbjRBailYLKRb0yZ-3Dkd-v3sBnu0Bm2LOCYcDwpn5laVZsjT7LBeY_QNbX3a_W3z68X8rPwEGU6pq |
CitedBy_id | crossref_primary_10_1111_ppl_70089 crossref_primary_10_1128_mbio_01252_24 crossref_primary_10_1128_mbio_02056_23 crossref_primary_10_1261_rna_079722_123 crossref_primary_10_1016_j_celrep_2021_109671 crossref_primary_10_1016_j_jbc_2024_108056 crossref_primary_10_1128_mbio_01084_24 crossref_primary_10_1261_rna_079595_123 crossref_primary_10_3390_toxins12110717 crossref_primary_10_3390_ijms23020968 crossref_primary_10_1038_s41467_020_16280_y crossref_primary_10_1128_mbio_03087_22 crossref_primary_10_1093_nar_gkab1263 crossref_primary_10_1371_journal_pgen_1010182 crossref_primary_10_7554_eLife_87956_3 crossref_primary_10_3389_fmolb_2024_1332878 crossref_primary_10_1128_mbio_03062_23 crossref_primary_10_1242_jcs_260759 crossref_primary_10_1128_mbio_01034_22 crossref_primary_10_1261_rna_076463_120 crossref_primary_10_1093_nar_gkaa212 crossref_primary_10_1093_nar_gkaa630 crossref_primary_10_1039_D0SC02144J crossref_primary_10_1093_nar_gkaa776 crossref_primary_10_1261_rna_078682_121 crossref_primary_10_7554_eLife_87956 crossref_primary_10_1016_j_jbior_2023_101002 crossref_primary_10_1371_journal_pgen_1009452 crossref_primary_10_3390_jof8090933 crossref_primary_10_1371_journal_pgen_1011468 crossref_primary_10_1101_gad_348315_121 crossref_primary_10_3390_ijms25031362 crossref_primary_10_1007_s00294_020_01132_5 crossref_primary_10_1073_pnas_2108105118 crossref_primary_10_1016_j_jbc_2024_105718 crossref_primary_10_1128_mbio_03476_21 crossref_primary_10_3390_jof7080626 crossref_primary_10_1016_j_jbc_2023_105454 crossref_primary_10_1016_j_jbc_2022_101851 |
Cites_doi | 10.1128/MCB.00330-16 10.1038/nchembio.2007.52 10.1074/jbc.RA117.001352 10.1128/EC.00216-10 10.1007/978-94-007-3015-1_14 10.1073/pnas.1321842111 10.1002/jcp.26017 10.1016/S0014-5793(01)03306-3 10.1016/j.cell.2013.10.027 10.1128/mBio.01218-17 10.1093/bioinformatics/btp352 10.1101/gad.230177.113 10.1261/rna.052555.115 10.1093/nar/26.9.2050 10.1042/bj20020733 10.1038/ncomms6576 10.1073/pnas.1606853113 10.1186/1471-2164-13-697 10.1016/j.copbio.2017.08.012 10.1038/ncomms14861 10.1007/s12038-014-9435-y 10.1271/bbb.80804 10.1007/s00294-014-0466-6 10.1261/rna.056515.116 10.1128/MCB.10.5.2269 10.1126/science.aad9858 10.1002/yea.1291 10.1261/rna.063966.117 10.1073/pnas.1810711115 10.1007/s00018-012-1090-6 10.1038/nmeth.3317 10.1002/(SICI)1097-0061(199807)14:10<943::AID-YEA292>3.0.CO;2-Y 10.1126/science.291.5506.1051 10.1016/j.tibs.2016.10.008 10.1371/journal.pgen.1003104 10.1074/jbc.274.31.21735 10.1128/EC.05276-11 10.1021/acs.biochem.5b00532 10.1128/MCB.00472-10 10.1021/cr400158h 10.1186/s13059-014-0550-8 |
ContentType | Journal Article |
Copyright | The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. 2019 |
Copyright_xml | – notice: The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. – notice: The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/nar/gkz567 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 8469 |
ExternalDocumentID | PMC6895273 31276588 10_1093_nar_gkz567 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM126945 – fundername: NCI NIH HHS grantid: P30 CA008748 – fundername: NIGMS NIH HHS grantid: R01 GM052470 – fundername: ; ; grantid: R01-GM52470; R35-GM126945 |
GroupedDBID | --- -DZ -~X .I3 0R~ 123 18M 1TH 29N 2WC 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPXW AAUQX AAVAP AAYXX ABEJV ABGNP ABPTD ABQLI ABXVV ACGFO ACGFS ACIWK ACNCT ACPRK ACUTJ ADBBV ADHZD AEGXH AENEX AENZO AFFNX AFPKN AFRAH AFYAG AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL AOIJS BAWUL BAYMD BCNDV CAG CIDKT CITATION CS3 CZ4 DIK DU5 D~K E3Z EBD EBS EMOBN F5P GROUPED_DOAJ GX1 H13 HH5 HYE HZ~ IH2 KAQDR KQ8 KSI OAWHX OBC OBS OEB OES OJQWA OVT P2P PEELM PQQKQ R44 RD5 RNS ROL ROZ RPM RXO SV3 TN5 TOX TR2 WG7 WOQ X7H XSB YSK ZKX ~91 ~D7 ~KM CGR CUY CVF ECM EIF M49 NPM 7X8 5PM |
ID | FETCH-LOGICAL-c444t-d473c5fdd40b48acddadb01ffe479b29e8b6f7eead249e3e6da22e10c5bc901a3 |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 18:24:11 EDT 2025 Thu Jul 10 18:21:55 EDT 2025 Thu Apr 03 07:08:17 EDT 2025 Tue Jul 01 02:07:22 EDT 2025 Thu Apr 24 23:01:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | http://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c444t-d473c5fdd40b48acddadb01ffe479b29e8b6f7eead249e3e6da22e10c5bc901a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1093/nar/gkz567 |
PMID | 31276588 |
PQID | 2253285232 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6895273 proquest_miscellaneous_2253285232 pubmed_primary_31276588 crossref_primary_10_1093_nar_gkz567 crossref_citationtrail_10_1093_nar_gkz567 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-19 |
PublicationDateYYYYMMDD | 2019-09-19 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2019 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Wang (2019120523332496100_B20) 2015; 54 De Camilli (2019120523332496100_B41) 2002; 513 Hentges (2019120523332496100_B22) 2005; 22 Topolski (2019120523332496100_B18) 2016; 36 Kim (2019120523332496100_B25) 2015; 12 Kwon (2019120523332496100_B33) 2012; 8 Ohtsuka (2019120523332496100_B31) 2009; 73 Chatterjee (2019120523332496100_B8) 2016; 22 Garg (2019120523332496100_B10) 2018; 293 Schwer (2019120523332496100_B24) 1998; 26 Pascula-Ortiz (2019120523332496100_B19) 2018; 38 Wu (2019120523332496100_B37) 2016; 113 Wild (2019120523332496100_B38) 2016; 352 Corden (2019120523332496100_B42) 2013; 113 Matsuzawa (2019120523332496100_B32) 2012; 11 Saiardi (2019120523332496100_B34) 2012; 59 Tomar (2019120523332496100_B1) 2014; 39 Sanchez (2019120523332496100_B12) 2018; 115 Li (2019120523332496100_B26) 2009; 25 Carter-O’Connell (2019120523332496100_B3) 2012; 13 Henry (2019120523332496100_B15) 2011; 10 Pöhlmann (2019120523332496100_B17) 2010; 30 Wittmann (2019120523332496100_B43) 2017; 8 Sanchez (2019120523332496100_B9) 2018; 24 Safrany (2019120523332496100_B29) 1999; 274 Lee (2019120523332496100_B5) 2013; 155 Schwer (2019120523332496100_B11) 2017; 8 Schwer (2019120523332496100_B7) 2015; 21 Ford (2019120523332496100_B40) 2001; 291 Jung (2019120523332496100_B39) 2018; 49 Pyl (2019120523332496100_B27) 2014; 31 Schwer (2019120523332496100_B13) 2014; 111 Ard (2019120523332496100_B6) 2014; 5 Herrick (2019120523332496100_B23) 1990; 10 Shears (2019120523332496100_B35) 2018; 233 Ingraham (2019120523332496100_B30) 2003; 369 Lee (2019120523332496100_B36) 2008; 4 Azevedo (2019120523332496100_B14) 2017; 42 Jain (2019120523332496100_B2) 2012; 69 Estill (2019120523332496100_B16) 2015; 61 Bähler (2019120523332496100_B21) 1998; 14 Shah (2019120523332496100_B4) 2014; 28 Love (2019120523332496100_B28) 2014; 15 |
References_xml | – volume: 36 start-page: 3128 year: 2016 ident: 2019120523332496100_B18 article-title: Inositol pyrophoshate kinase Asp1 modulate chromosome segregation fidelity and spindle function in Schizosaccharomyces pombe publication-title: Mol. Cell Biol. doi: 10.1128/MCB.00330-16 – volume: 4 start-page: 25 year: 2008 ident: 2019120523332496100_B36 article-title: Molecular basis of cyclin-CDK-CKI regulation by reversible binding of an inositol pyrophosphate publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2007.52 – volume: 293 start-page: 4465 year: 2018 ident: 2019120523332496100_B10 article-title: A long noncoding (lnc) RNA governs expression of the phosphate transporter Pho84 in fission yeast and has cascading effects on the flanking prt lncRNA and pho1 genes publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA117.001352 – volume: 10 start-page: 198 year: 2011 ident: 2019120523332496100_B15 article-title: Systematic screen of Schizosaccharomyces pombe deletion collection uncovers parallel evolution of the phosphate signal pathways in yeasts publication-title: Euk. Cell doi: 10.1128/EC.00216-10 – volume: 59 start-page: 413 year: 2012 ident: 2019120523332496100_B34 article-title: Cell signalling by inositol pyrophosphates publication-title: Subcell. Biochem. doi: 10.1007/978-94-007-3015-1_14 – volume: 111 start-page: 4185 year: 2014 ident: 2019120523332496100_B13 article-title: Individual letters of the RNA polymerase II CTD code govern distinct gene expression programs in fission yeast publication-title: Proc. Natl Acad. Sci. U.S.A. doi: 10.1073/pnas.1321842111 – volume: 233 start-page: 1897 year: 2018 ident: 2019120523332496100_B35 article-title: Intimate connections: inositol pyrophosphates at the interface of metabolic regulation and cell signaling publication-title: J. Cell Physiol. doi: 10.1002/jcp.26017 – volume: 513 start-page: 11 year: 2002 ident: 2019120523332496100_B41 article-title: The ENTH domain publication-title: FEBS Lett. doi: 10.1016/S0014-5793(01)03306-3 – volume: 155 start-page: 1061 year: 2013 ident: 2019120523332496100_B5 article-title: Mtr4-like protein coordinates nuclear RNA processing for heterochromatin assembly and for telomere maintenance publication-title: Cell doi: 10.1016/j.cell.2013.10.027 – volume: 8 start-page: e01218-17 year: 2017 ident: 2019120523332496100_B11 article-title: Defining the DNA binding site recognized by the fission yeast Zn2Cys6 transcription factor Pho7 and its role in phosphate homeostasis publication-title: mBio. doi: 10.1128/mBio.01218-17 – volume: 25 start-page: 2078 year: 2009 ident: 2019120523332496100_B26 article-title: The Sequence Alignment/Map format and SAMtools publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 31 start-page: 166 year: 2014 ident: 2019120523332496100_B27 article-title: HTSeq—a Python framework to work with high-throughput sequencing data publication-title: Bioinformatics – volume: 28 start-page: 231 year: 2014 ident: 2019120523332496100_B4 article-title: lncRNA recruits RNAi and the exosome to dynamically regulate pho1 expression in response to phosphate levels in fission yeast publication-title: Genes Dev. doi: 10.1101/gad.230177.113 – volume: 21 start-page: 1770 year: 2015 ident: 2019120523332496100_B7 article-title: RNA polymerase II CTD phospho-sites Ser5 and Ser7 govern phosphate homeostasis in fission yeast publication-title: RNA doi: 10.1261/rna.052555.115 – volume: 38 start-page: e00047-17 year: 2018 ident: 2019120523332496100_B19 article-title: Asp1 bifunctional activity modulates spindle function via controlling cellular inositol pyrophosphate levels in Schizosaccharomyces pombe publication-title: Mol. Cell Biol. – volume: 26 start-page: 2050 year: 1998 ident: 2019120523332496100_B24 article-title: Accelerated mRNA decay in conditional mutants of yeast mRNA capping enzyme publication-title: Nucleic Acids Res. doi: 10.1093/nar/26.9.2050 – volume: 369 start-page: 519 year: 2003 ident: 2019120523332496100_B30 article-title: Disruption and overexpression of the Schizosaccharomyces pombe aps1 gene, and effect on growth rate, morphology and intracellular diadenosine 5′,5‴-P1,P5-pentaphosphate and diphosphoinositol polyphosphate concentrations publication-title: Biochem. J. doi: 10.1042/bj20020733 – volume: 5 start-page: 5576 year: 2014 ident: 2019120523332496100_B6 article-title: Long non-coding RNA-mediate transcriptional interference of a permease gene confers drug tolerance in fission yeast publication-title: Nat. Commun. doi: 10.1038/ncomms6576 – volume: 113 start-page: E6757 year: 2016 ident: 2019120523332496100_B37 article-title: Inositol polyphosphates intersect with signaling and metabolic networks via two distinct mechanisms publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1606853113 – volume: 13 start-page: 697 year: 2012 ident: 2019120523332496100_B3 article-title: Genome-wide characterization of the phosphate starvation response in Schizosaccharomyces pombe publication-title: BMC Genomics doi: 10.1186/1471-2164-13-697 – volume: 49 start-page: 156 year: 2018 ident: 2019120523332496100_B39 article-title: Control of plant phosphate homeostasis by inositol pyrophosphates and the SPX domain publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2017.08.012 – volume: 8 start-page: 14861 year: 2017 ident: 2019120523332496100_B43 article-title: The conserved protein Seb1 drives transcription termination by binding RNA polymerase II and nascent RNA publication-title: Nat. Commun. doi: 10.1038/ncomms14861 – volume: 39 start-page: 525 year: 2014 ident: 2019120523332496100_B1 article-title: Conservation of PHO pathway in ascomycetes and the role of Pho84 publication-title: J. Biosci. doi: 10.1007/s12038-014-9435-y – volume: 73 start-page: 885 year: 2009 ident: 2019120523332496100_B31 article-title: Identification of Ecl family genes that extend chronological lifespan in fission yeast publication-title: Biosci. Biotechnol. Biochem. doi: 10.1271/bbb.80804 – volume: 61 start-page: 175 year: 2015 ident: 2019120523332496100_B16 article-title: Dissection of the PHO pathway in Schizosaccharomyces pombe using epistasis and the alternative repressor adenine publication-title: Curr. Genet. doi: 10.1007/s00294-014-0466-6 – volume: 22 start-page: 1011 year: 2016 ident: 2019120523332496100_B8 article-title: Transcription of lncRNA prt, clustered prt RNA sites for Mmi1 binding, and RNA polymerase II CTD phospho-sites govern the repression of pho1 gene expression under phosphate-replete conditions in fission yeast publication-title: RNA doi: 10.1261/rna.056515.116 – volume: 10 start-page: 2269 year: 1990 ident: 2019120523332496100_B23 article-title: Identification and comparison of stable and unstable RNAs in Saccharomyces cerevisiae publication-title: Mol. Cell Biol. doi: 10.1128/MCB.10.5.2269 – volume: 352 start-page: 986 year: 2016 ident: 2019120523332496100_B38 article-title: Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains publication-title: Science doi: 10.1126/science.aad9858 – volume: 22 start-page: 1013 year: 2005 ident: 2019120523332496100_B22 article-title: Three novel antibiotic marker cassettes for gene disruption and marker switching in Schizosaccharomyces pombe publication-title: Yeast doi: 10.1002/yea.1291 – volume: 24 start-page: 237 year: 2018 ident: 2019120523332496100_B9 article-title: Poly(A) site choice and Pol2 CTD Serine-5 status govern lncRNA control of phosphate-responsive tgp1 gene expression in fission yeast publication-title: RNA doi: 10.1261/rna.063966.117 – volume: 115 start-page: E10652 year: 2018 ident: 2019120523332496100_B12 article-title: An RNA polymerase II CTD genetic interaction network with 3′-processing and termination factors in fission yeast and its impact on phosphate homeostasis publication-title: Proc. Natl Acad. Sci. U.S.A. doi: 10.1073/pnas.1810711115 – volume: 69 start-page: 3207 year: 2012 ident: 2019120523332496100_B2 article-title: Transcriptional regulation of phosphate acquisition by higher plants publication-title: Cell Mol. Life Sci. doi: 10.1007/s00018-012-1090-6 – volume: 12 start-page: 357 year: 2015 ident: 2019120523332496100_B25 article-title: HISAT: a fast spliced aligner with low memory requirements publication-title: Nat. Methods doi: 10.1038/nmeth.3317 – volume: 14 start-page: 943 year: 1998 ident: 2019120523332496100_B21 article-title: Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe publication-title: Yeast doi: 10.1002/(SICI)1097-0061(199807)14:10<943::AID-YEA292>3.0.CO;2-Y – volume: 291 start-page: 1051 year: 2001 ident: 2019120523332496100_B40 article-title: Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes publication-title: Science doi: 10.1126/science.291.5506.1051 – volume: 42 start-page: 219 year: 2017 ident: 2019120523332496100_B14 article-title: Eukaryotic phosphate homeostasis: the inositol pyrophosphate perspective publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2016.10.008 – volume: 8 start-page: e1003104 year: 2012 ident: 2019120523332496100_B33 article-title: Deciphering the transcriptional-regulatory network of flocculation in Schizosaccharomyces pombe publication-title: PLos Genet. doi: 10.1371/journal.pgen.1003104 – volume: 274 start-page: 21735 year: 1999 ident: 2019120523332496100_B29 article-title: The diadenosine hexaphosphate hydrolase from Schizosaccharomyces pombe and Saccharomyces cerevisiae are homologues of the human disphoshoinositol polyphosphate phosphohydrolase: overlapping substrate specificities in a MutT-type protein publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.31.21735 – volume: 11 start-page: 151 year: 2012 ident: 2019120523332496100_B32 article-title: MADS box transcription factor Mbx2/Pvg4 regulates invasive growth and flocculation by inducing gsf2+ expression in fission yeast publication-title: Eukaryot. Cell doi: 10.1128/EC.05276-11 – volume: 54 start-page: 6462 year: 2015 ident: 2019120523332496100_B20 article-title: Asp1 from Schizosaccharomyces pombe binds a [2Fe-2S]2+ cluster which inhibits inositol pyrophosphate 1-phosphatase activity publication-title: Biochemistry doi: 10.1021/acs.biochem.5b00532 – volume: 30 start-page: 4535 year: 2010 ident: 2019120523332496100_B17 article-title: Asp1, a conserved 1/3 inositol polyphosphate kinase, regulates the dimorphic switch in Schizosaccharomyces pombe publication-title: Mol. Cell Biol. doi: 10.1128/MCB.00472-10 – volume: 113 start-page: 8423 year: 2013 ident: 2019120523332496100_B42 article-title: RNA polymerase II C-terminal domain: tethering transcription to transcript and template publication-title: Chem. Rev. doi: 10.1021/cr400158h – volume: 15 start-page: 550 year: 2014 ident: 2019120523332496100_B28 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 |
SSID | ssj0014154 |
Score | 2.479849 |
Snippet | Fission yeast phosphate acquisition genes pho1, pho84, and tgp1 are repressed in phosphate-rich medium by transcription of upstream lncRNAs. Here, we show that... Fission yeast phosphate acquisition genes pho1, pho84 , and tgp1 are repressed in phosphate-rich medium by transcription of upstream lncRNAs. Here, we show... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 8452 |
SubjectTerms | Acid Phosphatase - genetics Acid Phosphatase - metabolism Cleavage And Polyadenylation Specificity Factor - genetics Cleavage And Polyadenylation Specificity Factor - metabolism Cytoskeletal Proteins - deficiency Cytoskeletal Proteins - genetics Gene Deletion Gene Expression Regulation, Fungal Gene regulation, Chromatin and Epigenetics Inositol Phosphates - metabolism Membrane Transport Proteins - genetics Membrane Transport Proteins - metabolism Nuclear Proteins - genetics Nuclear Proteins - metabolism Protein Isoforms - genetics Protein Isoforms - metabolism Pyrophosphatases - deficiency Pyrophosphatases - genetics Regulon RNA, Long Noncoding - genetics RNA, Long Noncoding - metabolism Schizosaccharomyces - genetics Schizosaccharomyces - metabolism Schizosaccharomyces pombe Proteins - genetics Schizosaccharomyces pombe Proteins - metabolism Transcription Termination, Genetic |
Title | Inositol pyrophosphates impact phosphate homeostasis via modulation of RNA 3′ processing and transcription termination |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31276588 https://www.proquest.com/docview/2253285232 https://pubmed.ncbi.nlm.nih.gov/PMC6895273 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIkEvCFoey6MyAoHQKjSJncQ5LlVLQaKnVuotshOnWegmUZttaX89YzvOgxYJuFgrx5us8n07Htsz3yD0Vh39iDz2nIhBQ0UWOILE3BHCzSlzfUE8le_87SDcP6Jfj4PjyeTnIGpp1YiP6fWteSX_gyr0Aa4qS_YfkO1uCh3wGfCFFhCG9q8w_lKqkKvqdFZfnVV1UZ3XhXIdbepj1zMrqqWswA9U6iMXC67q37Rlu7QYycF8RlQwRW2yBmzeYqPmsc6qtGEzHZDfbeIu_Cgl-pouMnUEMdgdUxs3QKrCbFLPS95vvX7mJqpsXp7wrBusCwa2sWeXVn1JnxIVl4Zan2DqkMOdCk-HYrX2UBrrqlO04rH5NYKblmZDY8qoEbe9YeWNAlapItD3Tn5cB6agxwDweqkRJ54fgYfF-rmui0C0l-6guz4sMFTti8jd7c6fwK2hVsw2JtvwqG3zoHV0z3517MncWJ78HmU7cFsOH6IH7XoDzw15HqGJLDfQJmDRVMsr_A7rCGB9tLKB7u_Y6n-b6MJyC4-5hQ23cNeDB9zCwC3ccwtXOQZuYfIe98zCwCw8YhYeMOsxOtrbPdzZd9oaHU5KKW2cjEYkDfIso66gjKdZxjPhenkuaRQLP5ZMhHkkwV7BOl8SGWbc96XnpoFIwRXl5AlaK6tSPkM4YHmQ5ywUKaFUsJDHPBKxCKgE7yrl0RR9sO87SVsBe1VH5TQxgRQkAZgSA9MUvenG1ka25dZRry1sCbxedVTGS1mtzhOY5YjPAlhuTNFTA2N3H4v_FEUjgLsBSrF9fKVcFFq5PWSxEjx8_sd7vkDr_T_nJVprzlbyFXi9jdjSBN3Se0a_ANudurI |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inositol+pyrophosphates+impact+phosphate+homeostasis+via+modulation+of+RNA+3%27+processing+and+transcription+termination&rft.jtitle=Nucleic+acids+research&rft.au=Sanchez%2C+Ana+M&rft.au=Garg%2C+Angad&rft.au=Shuman%2C+Stewart&rft.au=Schwer%2C+Beate&rft.date=2019-09-19&rft.eissn=1362-4962&rft.volume=47&rft.issue=16&rft.spage=8452&rft_id=info:doi/10.1093%2Fnar%2Fgkz567&rft_id=info%3Apmid%2F31276588&rft.externalDocID=31276588 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |