Latent Representation Learning for Alzheimer's Disease Diagnosis With Incomplete Multi-Modality Neuroimaging and Genetic Data
The fusion of complementary information contained in multi-modality data [e.g., magnetic resonance imaging (MRI), positron emission tomography (PET), and genetic data] has advanced the progress of automated Alzheimer's disease (AD) diagnosis. However, multi-modality based AD diagnostic models a...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 38; no. 10; pp. 2411 - 2422 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0278-0062 1558-254X 1558-254X |
DOI | 10.1109/TMI.2019.2913158 |
Cover
Loading…
Abstract | The fusion of complementary information contained in multi-modality data [e.g., magnetic resonance imaging (MRI), positron emission tomography (PET), and genetic data] has advanced the progress of automated Alzheimer's disease (AD) diagnosis. However, multi-modality based AD diagnostic models are often hindered by the missing data, i.e., not all the subjects have complete multi-modality data. One simple solution used by many previous studies is to discard samples with missing modalities. However, this significantly reduces the number of training samples, thus leading to a sub-optimal classification model. Furthermore, when building the classification model, most existing methods simply concatenate features from different modalities into a single feature vector without considering their underlying associations. As features from different modalities are often closely related (e.g., MRI and PET features are extracted from the same brain region), utilizing their inter-modality associations may improve the robustness of the diagnostic model. To this end, we propose a novel latent representation learning method for multi-modality based AD diagnosis. Specifically, we use all the available samples (including samples with incomplete modality data) to learn a latent representation space. Within this space, we not only use samples with complete multi-modality data to learn a common latent representation, but also use samples with incomplete multi-modality data to learn independent modality-specific latent representations. We then project the latent representations to the label space for AD diagnosis. We perform experiments using 737 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, and the experimental results verify the effectiveness of our proposed method. |
---|---|
AbstractList | The fusion of complementary information contained in multi-modality data [ e.g. , magnetic resonance imaging (MRI), positron emission tomography (PET), and genetic data] has advanced the progress of automated Alzheimer’s disease (AD) diagnosis. However, multi-modality based AD diagnostic models are often hindered by the missing data, i.e. , not all the subjects have complete multi-modality data. One simple solution used by many previous studies is to discard samples with missing modalities. However, this significantly reduces the number of training samples, thus leading to a sub-optimal classification model. Furthermore, when building the classification model, most existing methods simply concatenate features from different modalities into a single feature vector without considering their underlying associations. As features from different modalities are often closely related ( e.g. , MRI and PET features are extracted from the same brain region), utilizing their inter-modality associations may improve the robustness of the diagnostic model. To this end, we propose a novel latent representation learning method for multi-modality based AD diagnosis. Specifically, we use all the available samples (including samples with incomplete modality data) to learn a latent representation space. Within this space, we not only use samples with complete multi-modality data to learn a common latent representation, but also use samples with incomplete multi-modality data to learn independent modality-specific latent representations. We then project the latent representations to the label space for AD diagnosis. We perform experiments using 737 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, and the experimental results verify the effectiveness of our proposed method. The fusion of complementary information contained in multi-modality data [e.g., magnetic resonance imaging (MRI), positron emission tomography (PET), and genetic data] has advanced the progress of automated Alzheimer's disease (AD) diagnosis. However, multi-modality based AD diagnostic models are often hindered by the missing data, i.e., not all the subjects have complete multi-modality data. One simple solution used by many previous studies is to discard samples with missing modalities. However, this significantly reduces the number of training samples, thus leading to a sub-optimal classification model. Furthermore, when building the classification model, most existing methods simply concatenate features from different modalities into a single feature vector without considering their underlying associations. As features from different modalities are often closely related (e.g., MRI and PET features are extracted from the same brain region), utilizing their inter-modality associations may improve the robustness of the diagnostic model. To this end, we propose a novel latent representation learning method for multi-modality based AD diagnosis. Specifically, we use all the available samples (including samples with incomplete modality data) to learn a latent representation space. Within this space, we not only use samples with complete multi-modality data to learn a common latent representation, but also use samples with incomplete multi-modality data to learn independent modality-specific latent representations. We then project the latent representations to the label space for AD diagnosis. We perform experiments using 737 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, and the experimental results verify the effectiveness of our proposed method.The fusion of complementary information contained in multi-modality data [e.g., magnetic resonance imaging (MRI), positron emission tomography (PET), and genetic data] has advanced the progress of automated Alzheimer's disease (AD) diagnosis. However, multi-modality based AD diagnostic models are often hindered by the missing data, i.e., not all the subjects have complete multi-modality data. One simple solution used by many previous studies is to discard samples with missing modalities. However, this significantly reduces the number of training samples, thus leading to a sub-optimal classification model. Furthermore, when building the classification model, most existing methods simply concatenate features from different modalities into a single feature vector without considering their underlying associations. As features from different modalities are often closely related (e.g., MRI and PET features are extracted from the same brain region), utilizing their inter-modality associations may improve the robustness of the diagnostic model. To this end, we propose a novel latent representation learning method for multi-modality based AD diagnosis. Specifically, we use all the available samples (including samples with incomplete modality data) to learn a latent representation space. Within this space, we not only use samples with complete multi-modality data to learn a common latent representation, but also use samples with incomplete multi-modality data to learn independent modality-specific latent representations. We then project the latent representations to the label space for AD diagnosis. We perform experiments using 737 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, and the experimental results verify the effectiveness of our proposed method. The fusion of complementary information contained in multi-modality data ( e.g. , Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET) and genetic data) has advanced the progress of automated Alzheimer’s disease (AD) diagnosis. However, multi-modality based AD diagnostic models are often hindered by the missing data, i.e. , not all the subjects have complete multi-modality data. One simple solution used by many previous studies is to discard samples with missing modalities. However, this significantly reduces the number of training samples, thus leading to a sub-optimal classification model. Furthermore, when building the classification model, most existing methods simply concatenate features from different modalities into a single feature vector without considering their underlying associations. As features from different modalities are often closely related ( e.g. , MRI and PET features are extracted from the same brain region), utilizing their inter-modality associations may improve the robustness of the diagnostic model. To this end, we propose a novel latent representation learning method for multi-modality based AD diagnosis. Specifically, we use all the available samples (including samples with incomplete modality data) to learn a latent representation space. Within this space, we not only use samples with complete multi-modality data to learn a common latent representation, but also use samples with incomplete multi-modality data to learn independent modality-specific latent representations. We then project the latent representations to the label space for AD diagnosis. We perform experiments using 737 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, and the experimental results verify the effectiveness of our proposed method. |
Author | Liu, Mingxia Thung, Kim-Han Shen, Dinggang Zhou, Tao |
Author_xml | – sequence: 1 givenname: Tao orcidid: 0000-0002-2592-1688 surname: Zhou fullname: Zhou, Tao email: taozhou.dreams@gmail.com organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 2 givenname: Mingxia surname: Liu fullname: Liu, Mingxia email: mxliu@med.unc.edu organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 3 givenname: Kim-Han surname: Thung fullname: Thung, Kim-Han email: henrythung@gmail.com organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 4 givenname: Dinggang orcidid: 0000-0002-7934-5698 surname: Shen fullname: Shen, Dinggang email: dgshen@med.unc.edu organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31021792$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc2LUzEUxYOMOJ3RvSBIwIVuXr35eB_ZCMOMjoVWQQq6C-l797UZXpOa5Akj-L-b0lp0Fq5uIL9zcm7OBTlz3iEhzxlMGQP1drmYTTkwNeWKCVY2j8iElWVT8FJ-OyMT4HVTAFT8nFzEeAfAZAnqCTkXDDirFZ-QX3OT0CX6BXcBYz6ZZL2jczTBWbemvQ_0avi5QbvF8DrSGxvRRMzTrJ2PNtKvNm3ozLV-uxswIV2MQ7LFwndmsOmefsIxeLs1672bcR29RYfJtvTGJPOUPO7NEPHZcV6S5Yf3y-uPxfzz7ez6al60UspUdMzUinXYlk0nux6Q874tuTI9V41UUokVQ1kL4AJVhfkrVqzn3CjWVKCUuCTvDra7cbXFrs1rBjPoXci5wr32xup_b5zd6LX_oRsQsgKWDd4cDYL_PmJMemtji8NgHPoxas5ZxRtZ1pDRVw_QOz8Gl7fTXAAIARXbUy__TnSK8qeYDMABaIOPMWB_Qhjoffc6d6_33etj91lSPZC09lBn3skO_xO-OAgtIp7eaSrVNLISvwFvlbxl |
CODEN | ITMID4 |
CitedBy_id | crossref_primary_10_1016_j_media_2022_102419 crossref_primary_10_1007_s11682_019_00255_9 crossref_primary_10_1093_cercor_bhad381 crossref_primary_10_1016_j_jbi_2023_104512 crossref_primary_10_1109_JBHI_2020_3010946 crossref_primary_10_1109_TMI_2022_3152157 crossref_primary_10_1007_s41095_020_0199_z crossref_primary_10_1002_ima_22531 crossref_primary_10_1016_j_engappai_2025_110194 crossref_primary_10_3390_biomimetics9020120 crossref_primary_10_1109_JBHI_2023_3262948 crossref_primary_10_1016_j_compbiomed_2022_106116 crossref_primary_10_1145_3664290 crossref_primary_10_3233_JIFS_232312 crossref_primary_10_3390_brainsci12060751 crossref_primary_10_1109_TMI_2022_3162870 crossref_primary_10_1016_j_patcog_2020_107247 crossref_primary_10_1016_j_compbiomed_2023_107684 crossref_primary_10_1109_TMI_2020_3008871 crossref_primary_10_1007_s13042_023_01883_w crossref_primary_10_1109_TMI_2021_3108802 crossref_primary_10_1016_j_eswa_2024_124780 crossref_primary_10_1109_ACCESS_2022_3221089 crossref_primary_10_3389_fnins_2021_634124 crossref_primary_10_1016_j_media_2020_101953 crossref_primary_10_1109_JBHI_2020_2973324 crossref_primary_10_1109_TMI_2024_3368664 crossref_primary_10_1088_1361_6560_accac8 crossref_primary_10_1109_ACCESS_2020_3046309 crossref_primary_10_1038_s42256_023_00633_5 crossref_primary_10_1016_j_inffus_2024_102361 crossref_primary_10_1007_s42979_024_03441_9 crossref_primary_10_3389_fnagi_2022_812870 crossref_primary_10_1016_j_media_2022_102643 crossref_primary_10_1007_s11042_020_08711_1 crossref_primary_10_1093_braincomms_fcab246 crossref_primary_10_1016_j_jbi_2023_104415 crossref_primary_10_1016_j_patcog_2024_110993 crossref_primary_10_1109_TCBB_2022_3204619 crossref_primary_10_1109_TFUZZ_2024_3371678 crossref_primary_10_1007_s10044_024_01268_x crossref_primary_10_1016_j_bspc_2024_107085 crossref_primary_10_1109_TMI_2024_3355142 crossref_primary_10_3233_JAD_220021 crossref_primary_10_1109_TIP_2022_3147046 crossref_primary_10_1016_j_bspc_2024_105986 crossref_primary_10_1109_TASE_2024_3350894 crossref_primary_10_1186_s13195_021_00900_w crossref_primary_10_1016_j_asoc_2022_109351 crossref_primary_10_1016_j_knosys_2021_106849 crossref_primary_10_1080_24725579_2023_2227197 crossref_primary_10_1088_2057_1976_abaf5e crossref_primary_10_1007_s00521_023_08508_x crossref_primary_10_1109_TCCN_2022_3164880 crossref_primary_10_1007_s11042_020_09103_1 crossref_primary_10_1007_s12065_021_00564_3 crossref_primary_10_1016_j_eswa_2023_121013 crossref_primary_10_1016_j_asoc_2022_108660 crossref_primary_10_1155_2022_6825576 crossref_primary_10_1109_JBHI_2021_3097721 crossref_primary_10_7717_peerj_13425 crossref_primary_10_1007_s13755_023_00231_0 crossref_primary_10_1016_j_media_2021_102248 crossref_primary_10_1111_exsy_13569 crossref_primary_10_1109_TMI_2021_3063150 crossref_primary_10_1016_j_patcog_2025_111597 crossref_primary_10_1016_j_bspc_2024_106568 crossref_primary_10_1109_JBHI_2024_3355111 crossref_primary_10_1109_TMI_2023_3288001 crossref_primary_10_1007_s11042_023_16023_3 crossref_primary_10_1109_JBHI_2023_3290006 crossref_primary_10_1016_j_inffus_2023_102040 crossref_primary_10_3233_JAD_190715 crossref_primary_10_1016_j_neucom_2024_127520 crossref_primary_10_1109_TMI_2024_3464861 crossref_primary_10_1109_TII_2022_3225028 crossref_primary_10_1016_j_jbi_2021_103863 crossref_primary_10_1016_j_compbiomed_2024_108740 crossref_primary_10_3390_ijms22157911 crossref_primary_10_1080_24725579_2023_2249487 crossref_primary_10_1016_j_inffus_2024_102546 crossref_primary_10_1016_j_media_2022_102698 crossref_primary_10_1016_j_media_2022_102571 crossref_primary_10_1007_s11042_020_09543_9 crossref_primary_10_3390_bioengineering11030219 crossref_primary_10_1016_j_media_2023_102869 crossref_primary_10_1142_S0219720021500128 crossref_primary_10_1007_s11042_023_16486_4 crossref_primary_10_1186_s12877_025_05771_6 crossref_primary_10_1109_TMI_2024_3389747 crossref_primary_10_1016_j_patcog_2022_108825 crossref_primary_10_1088_1741_2552_ac8450 crossref_primary_10_1007_s10489_021_02365_8 crossref_primary_10_1016_j_bspc_2023_105669 crossref_primary_10_1016_j_eswa_2023_119965 crossref_primary_10_1016_j_asej_2022_101986 crossref_primary_10_1109_JBHI_2024_3472462 crossref_primary_10_1016_j_artmed_2021_102097 crossref_primary_10_1016_j_media_2019_101630 crossref_primary_10_1109_TMI_2022_3218720 crossref_primary_10_1016_j_media_2024_103133 crossref_primary_10_1016_j_neulet_2021_136147 crossref_primary_10_1109_TMI_2023_3300725 crossref_primary_10_1016_j_ipm_2022_103113 crossref_primary_10_3389_fnagi_2023_1212275 crossref_primary_10_1016_j_eswa_2022_118165 crossref_primary_10_1109_TPAMI_2023_3330795 crossref_primary_10_1109_TMI_2024_3385756 crossref_primary_10_1002_hbm_26581 crossref_primary_10_1016_j_adhoc_2021_102581 crossref_primary_10_1109_TMM_2020_3020695 crossref_primary_10_1007_s11042_020_10473_9 crossref_primary_10_1007_s11042_021_11279_z crossref_primary_10_1109_JBHI_2024_3472011 crossref_primary_10_1109_TCSS_2022_3216483 crossref_primary_10_1109_TMI_2023_3295489 crossref_primary_10_1109_JBHI_2020_2985907 crossref_primary_10_1109_TNNLS_2021_3112194 crossref_primary_10_1109_TCBB_2022_3143900 crossref_primary_10_1093_braincomms_fcae010 crossref_primary_10_1109_ACCESS_2023_3243854 crossref_primary_10_1016_j_bspc_2022_103571 crossref_primary_10_1109_JBHI_2024_3442468 crossref_primary_10_1109_TNNLS_2021_3053576 crossref_primary_10_1016_j_bspc_2025_107514 crossref_primary_10_1016_j_neucom_2020_07_008 crossref_primary_10_1109_TMI_2022_3166131 crossref_primary_10_1109_JBHI_2022_3219123 crossref_primary_10_1126_sciadv_adp6040 crossref_primary_10_1016_j_compmedimag_2023_102303 crossref_primary_10_1016_j_isci_2024_110509 crossref_primary_10_1007_s11042_020_08712_0 |
Cites_doi | 10.1016/j.biopsych.2007.03.015 10.1093/bioinformatics/btv521 10.1016/j.media.2016.11.002 10.1109/JBHI.2013.2285378 10.1016/j.jalz.2015.06.246 10.1109/TBME.2015.2466616 10.1007/s10107-009-0306-5 10.1109/TMI.2017.2681966 10.1109/TBME.2018.2824725 10.1016/j.neuroimage.2012.04.056 10.1016/S1053-8119(18)31550-7 10.1109/TVCG.2017.2722414 10.1016/j.neucom.2015.07.155 10.1002/jmri.21049 10.1002/hbm.23575 10.1023/A:1010920819831 10.1118/1.3488894 10.1038/srep45269 10.1145/1961189.1961199 10.1016/j.neuroimage.2012.09.065 10.1093/bioinformatics/17.6.520 10.1109/42.668698 10.1109/TBME.2016.2553663 10.1016/j.neuroimage.2012.03.059 10.1016/j.jalz.2013.02.003 10.1016/S0197-4580(03)00084-8 10.1016/j.media.2019.03.006 10.1002/hbm.22254 10.1007/978-3-030-00928-1_83 10.1109/TPAMI.2015.2430325 10.1016/j.neuroimage.2010.01.041 10.1145/2488608.2488693 10.1016/j.patcog.2017.07.018 10.1038/ng1934 10.24963/ijcai.2018/313 10.1016/j.media.2018.02.009 10.1155/2015/647389 10.1371/journal.pone.0077810 10.1016/S0197-4580(99)00107-4 10.1016/j.nicl.2013.07.006 10.1212/01.WNL.0000055847.17752.E6 10.1162/0899766042321814 10.1007/978-3-030-00320-3_10 10.1109/TMI.2016.2538465 10.1176/appi.ajp.163.9.1603 10.1016/j.neuroimage.2005.09.054 10.1109/42.906424 10.1109/TMI.2002.803111 10.1016/j.neuroimage.2013.08.015 10.1007/978-3-319-24888-2_31 10.1007/s00429-013-0687-3 10.1016/j.neuroimage.2013.03.073 10.1016/j.neuroimage.2011.11.066 10.1016/j.media.2018.01.002 10.1016/j.neuroimage.2014.01.033 10.1109/TCYB.2018.2841847 10.1007/978-3-030-00320-3_7 10.1109/TMI.2016.2515021 10.1002/hbm.24428 10.1109/TCYB.2017.2747998 10.1016/j.jalz.2010.03.013 10.1038/nature08538 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
DOI | 10.1109/TMI.2019.2913158 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-254X |
EndPage | 2422 |
ExternalDocumentID | PMC8034601 31021792 10_1109_TMI_2019_2913158 8698846 |
Genre | orig-research Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health grantid: EB006733; EB008374; EB009634; MH100217; AG041721; AG042599 funderid: 10.13039/100000002 – fundername: NIBIB NIH HHS grantid: R01 EB006733 – fundername: NIBIB NIH HHS grantid: R01 EB009634 – fundername: NIA NIH HHS grantid: R01 AG042599 – fundername: NIBIB NIH HHS grantid: R01 EB008374 – fundername: NIA NIH HHS grantid: R01 AG041721 – fundername: NIMH NIH HHS grantid: R01 MH100217 |
GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
ID | FETCH-LOGICAL-c444t-d1a791dec58d4df0e22fc529af29849493b1e473023e96e131b1f22a91860993 |
IEDL.DBID | RIE |
ISSN | 0278-0062 1558-254X |
IngestDate | Thu Aug 21 18:43:00 EDT 2025 Fri Jul 11 02:28:57 EDT 2025 Mon Jun 30 05:34:27 EDT 2025 Thu Apr 03 06:53:04 EDT 2025 Thu Apr 24 23:02:25 EDT 2025 Tue Jul 01 03:16:02 EDT 2025 Wed Aug 27 02:30:47 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c444t-d1a791dec58d4df0e22fc529af29849493b1e473023e96e131b1f22a91860993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2592-1688 0000-0002-7934-5698 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8034601 |
PMID | 31021792 |
PQID | 2300330610 |
PQPubID | 85460 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_TMI_2019_2913158 pubmed_primary_31021792 proquest_miscellaneous_2216284570 crossref_citationtrail_10_1109_TMI_2019_2913158 ieee_primary_8698846 proquest_journals_2300330610 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8034601 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on medical imaging |
PublicationTitleAbbrev | TMI |
PublicationTitleAlternate | IEEE Trans Med Imaging |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 peng (ref20) 2016 ref52 ref55 ref11 ref10 association (ref1) 2013; 9 ref17 ref16 ref19 ref18 he (ref27) 2005 ref51 ref50 zhao (ref65) 2016 ref46 ref45 wang (ref42) 2013 ref48 wen (ref66) 2018 ref47 ref41 ref44 ref49 ref8 li (ref64) 2014 ref7 ref9 ref4 ref3 lin (ref43) 2010 ref6 jolliffe (ref25) 2002 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref39 ref38 ref71 ref70 ref72 ref68 ref24 ref67 ref23 ref69 ref63 ref22 ref21 ref28 ref29 duda (ref26) 2012 ref60 liu (ref54) 2009; 6 ref62 ref61 |
References_xml | – ident: ref72 doi: 10.1016/j.biopsych.2007.03.015 – ident: ref71 doi: 10.1093/bioinformatics/btv521 – ident: ref12 doi: 10.1016/j.media.2016.11.002 – ident: ref28 doi: 10.1109/JBHI.2013.2285378 – ident: ref18 doi: 10.1016/j.jalz.2015.06.246 – year: 2010 ident: ref43 publication-title: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices – ident: ref44 doi: 10.1109/TBME.2015.2466616 – start-page: 70 year: 2016 ident: ref20 article-title: Structured sparse kernel learning for imaging genetics based Alzheimer's disease diagnosis publication-title: Proc Int Conf Med Image Comput Comput Assisted Intervent – ident: ref51 doi: 10.1007/s10107-009-0306-5 – ident: ref16 doi: 10.1109/TMI.2017.2681966 – ident: ref60 doi: 10.1109/TBME.2018.2824725 – ident: ref62 doi: 10.1016/j.neuroimage.2012.04.056 – start-page: 2392 year: 2016 ident: ref65 article-title: Incomplete multi-modal visual data grouping publication-title: Proc Int Joint Conf Artif Intell – ident: ref37 doi: 10.1016/S1053-8119(18)31550-7 – ident: ref48 doi: 10.1109/TVCG.2017.2722414 – ident: ref70 doi: 10.1016/j.neucom.2015.07.155 – year: 2012 ident: ref26 publication-title: Pattern Classification – year: 2018 ident: ref66 publication-title: Incomplete multi-view clustering via graph regularized matrix factorization – ident: ref32 doi: 10.1002/jmri.21049 – ident: ref41 doi: 10.1002/hbm.23575 – ident: ref53 doi: 10.1023/A:1010920819831 – ident: ref22 doi: 10.1118/1.3488894 – ident: ref17 doi: 10.1038/srep45269 – ident: ref52 doi: 10.1145/1961189.1961199 – ident: ref15 doi: 10.1016/j.neuroimage.2012.09.065 – ident: ref47 doi: 10.1093/bioinformatics/17.6.520 – ident: ref34 doi: 10.1109/42.668698 – ident: ref68 doi: 10.1109/TBME.2016.2553663 – year: 2002 ident: ref25 publication-title: Principal Components Analysis – ident: ref30 doi: 10.1016/j.neuroimage.2012.03.059 – volume: 9 start-page: 208 year: 2013 ident: ref1 article-title: 2013 Alzheimer's disease facts and figure publication-title: Alzheimer's & Dementia doi: 10.1016/j.jalz.2013.02.003 – ident: ref5 doi: 10.1016/S0197-4580(03)00084-8 – ident: ref10 doi: 10.1016/j.media.2019.03.006 – ident: ref63 doi: 10.1002/hbm.22254 – ident: ref8 doi: 10.1007/978-3-030-00928-1_83 – start-page: 352 year: 2013 ident: ref42 article-title: Multi-view clustering and feature learning via structured sparsity publication-title: Proc Int Conf Mach Learn – ident: ref57 doi: 10.1109/TPAMI.2015.2430325 – ident: ref29 doi: 10.1016/j.neuroimage.2010.01.041 – ident: ref49 doi: 10.1145/2488608.2488693 – ident: ref24 doi: 10.1016/j.patcog.2017.07.018 – ident: ref39 doi: 10.1038/ng1934 – volume: 6 start-page: 7 year: 2009 ident: ref54 article-title: SLEP: Sparse learning with efficient projections publication-title: Arizona State Univ – ident: ref50 doi: 10.24963/ijcai.2018/313 – ident: ref9 doi: 10.1016/j.media.2018.02.009 – ident: ref19 doi: 10.1155/2015/647389 – ident: ref35 doi: 10.1371/journal.pone.0077810 – ident: ref56 doi: 10.1016/S0197-4580(99)00107-4 – ident: ref55 doi: 10.1016/j.nicl.2013.07.006 – ident: ref11 doi: 10.1212/01.WNL.0000055847.17752.E6 – ident: ref45 doi: 10.1162/0899766042321814 – start-page: 1968 year: 2014 ident: ref64 article-title: Partial multi-view clustering publication-title: Proc AAAI – ident: ref14 doi: 10.1007/978-3-030-00320-3_10 – ident: ref6 doi: 10.1109/TMI.2016.2538465 – ident: ref59 doi: 10.1176/appi.ajp.163.9.1603 – ident: ref33 doi: 10.1016/j.neuroimage.2005.09.054 – ident: ref36 doi: 10.1109/42.906424 – ident: ref38 doi: 10.1109/TMI.2002.803111 – start-page: 507 year: 2005 ident: ref27 article-title: Laplacian score for feature selection publication-title: Proc Adv Neural Inf Process Syst – ident: ref31 doi: 10.1016/j.neuroimage.2013.08.015 – ident: ref61 doi: 10.1007/978-3-319-24888-2_31 – ident: ref46 doi: 10.1007/s00429-013-0687-3 – ident: ref23 doi: 10.1016/j.neuroimage.2013.03.073 – ident: ref21 doi: 10.1016/j.neuroimage.2011.11.066 – ident: ref4 doi: 10.1016/j.media.2018.01.002 – ident: ref7 doi: 10.1016/j.neuroimage.2014.01.033 – ident: ref40 doi: 10.1109/TCYB.2018.2841847 – ident: ref67 doi: 10.1007/978-3-030-00320-3_7 – ident: ref2 doi: 10.1109/TMI.2016.2515021 – ident: ref3 doi: 10.1002/hbm.24428 – ident: ref69 doi: 10.1109/TCYB.2017.2747998 – ident: ref58 doi: 10.1016/j.jalz.2010.03.013 – ident: ref13 doi: 10.1038/nature08538 |
SSID | ssj0014509 |
Score | 2.6179419 |
Snippet | The fusion of complementary information contained in multi-modality data [e.g., magnetic resonance imaging (MRI), positron emission tomography (PET), and... The fusion of complementary information contained in multi-modality data [ e.g. , magnetic resonance imaging (MRI), positron emission tomography (PET), and... The fusion of complementary information contained in multi-modality data ( e.g. , Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET) and... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2411 |
SubjectTerms | Aged Aged, 80 and over Algorithms Alzheimer Disease - diagnostic imaging Alzheimer Disease - genetics Alzheimer's disease Brain - diagnostic imaging Classification Databases, Factual Diagnosis Diagnosis, Computer-Assisted - methods Diagnostic systems Feature extraction Female Genetic Association Studies Genetics Humans incomplete multi-modality data latent representation space Learning Machine Learning Magnetic resonance imaging Male Medical diagnosis Medical imaging Missing data multi-modality data Multimodal Imaging - methods Neuroimaging Neuroimaging - methods Neurology NMR Nuclear magnetic resonance Polymorphism, Single Nucleotide - genetics Positron emission Positron emission tomography Representations Tomography |
Title | Latent Representation Learning for Alzheimer's Disease Diagnosis With Incomplete Multi-Modality Neuroimaging and Genetic Data |
URI | https://ieeexplore.ieee.org/document/8698846 https://www.ncbi.nlm.nih.gov/pubmed/31021792 https://www.proquest.com/docview/2300330610 https://www.proquest.com/docview/2216284570 https://pubmed.ncbi.nlm.nih.gov/PMC8034601 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6SHEp76CPpY9ukqFAohXrXkiVbOoY8SEvdQ9nS3IytR9c08Zas9xLof-9IfpANoeRkg8dGYkbSjOebbwDeK-dkUlU6EiIREddaRNLwFEMVI51UTujQOiH_lp794F_OxfkWfBprYay1AXxmp_425PLNUq_9r7KZTJXE83IbtjFw62q1xowBFx2cg3nG2DhlQ0oyVrN5_tljuNSUKZpQ4Vv0Jb6jdabYxmkU2qvc5WneBkzeOIFOn0A-jL0Dnvyerttqqq9v0Tred3JP4XHvipLDznaewZZtduHRDYLCXXiQ96n3Pfj7Fb3SpiXfA3S2r1hqSM_P-oug80sOL64Xtr60Vx9W5LjL_OA1YPnqFflZtwuC-5EHsaOrTkLtb5QvTQgFSKAJqS9D1yRSNoZ4RmwcGjku2_I5zE9P5kdnUd-7IdKc8zYytMwUNVYLVL1xsWXMacFU6ZiSnhEnqajlmW9ZZFVqUS8VdYyVisoUndbkBew0y8a-AoKbkKs0q2xsLBeGK0-4YwyNrdSZ0vEEZoMKC93zmvv2GhdFiG9iVaD-C6__otf_BD6Ob_zpOD3-I7vnVTXK9VqawP5gJUW_6FcFRnNxgiEYxTG9Gx_jcvU5mLKxyzXKMJqiRyAylHnZGdX47cEoJ5BtmNso4KnAN5809SJQgss44Rhav757tG_goZ9Th0Hch532am0P0Jdqq7dhEf0DBhQakQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIkE58Gh5LBQwEhJCIruxYyf2saJUW9j0gBbRW5TYDhu1zaJu9lKJ_87YeahbVYhTImUS2ZqxPZP55huA96osZVQUOhAiEgHXWgTS8BhDFSNLqUqhfeuE9CSe_uBfT8XpFnwaamGstR58Zsfu1ufyzVKv3a-yiYyVxPPyDtwVrhi3rdYacgZctIAO5jhjw5j1SclQTebpsUNxqTFTNKLCNemLXE_rRLGN88g3WLnN17wJmbx2Bh09grQffQs9ORuvm2Ksr24QO_7v9B7Dw84ZJQet9TyBLVvvwoNrFIW7cC_tku978GeGfmndkO8ePNvVLNWkY2j9RdD9JQfnVwtbXdjLDyty2OZ-8OrRfNWK_KyaBcEdycHY0Vknvvo3SJfGBwPEE4VUF75vEslrQxwnNg6NHOZN_hTmR1_mn6dB170h0JzzJjA0TxQ1VgtUvilDy1ipBVN5yZR0nDhRQS1PXNMiq2KLeiloyViuqIzRbY2ewXa9rO0LILgNlYVmhQ2N5cJw5Sh3jKGhlTpROhzBpFdhpjtmc9dg4zzzEU6oMtR_5vSfdfofwcfhjd8tq8c_ZPecqga5Tksj2O-tJOuW_SrDeC6MMAijOKZ3w2NcsC4Lk9d2uUYZRmP0CUSCMs9boxq-3RvlCJINcxsEHBn45pO6WnhScBlGHIPrl7eP9i3cn87TWTY7Pvn2Cnbc_FpE4j5sN5dr-xo9q6Z44xfUX9ntHdk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Latent+Representation+Learning+for+Alzheimer%E2%80%99s+Disease+Diagnosis+With+Incomplete+Multi-Modality+Neuroimaging+and+Genetic+Data&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Zhou%2C+Tao&rft.au=Liu%2C+Mingxia&rft.au=Thung%2C+Kim-Han&rft.au=Shen%2C+Dinggang&rft.date=2019-10-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=38&rft.issue=10&rft.spage=2411&rft.epage=2422&rft_id=info:doi/10.1109%2FTMI.2019.2913158&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMI_2019_2913158 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |