An orbital-overlap model for minimal work functions of cesiated metal surfaces

We introduce a model for the effect of cesium adsorbates on the work function of transition metal surfaces. The model builds on the classical point-dipole equation by adding exponential terms that characterize the degree of orbital overlap between the 6s states of neighboring cesium adsorbates and i...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Condensed matter Vol. 24; no. 44; pp. 445007 - 7
Main Authors Chou, Sharon H, Voss, Johannes, Bargatin, Igor, Vojvodic, Aleksandra, Howe, Roger T, Abild-Pedersen, Frank
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 07.11.2012
Institute of Physics
Subjects
Online AccessGet full text
ISSN0953-8984
1361-648X
1361-648X
DOI10.1088/0953-8984/24/44/445007

Cover

Abstract We introduce a model for the effect of cesium adsorbates on the work function of transition metal surfaces. The model builds on the classical point-dipole equation by adding exponential terms that characterize the degree of orbital overlap between the 6s states of neighboring cesium adsorbates and its effect on the strength and orientation of electric dipoles along the adsorbate-substrate interface. The new model improves upon earlier models in terms of agreement with the work function-coverage curves obtained via first-principles calculations based on density functional theory. All the cesiated metal surfaces have optimal coverages between 0.6 and 0.8 monolayers, in accordance with experimental data. Of all the cesiated metal surfaces that we have considered, tungsten has the lowest minimum work function, also in accordance with experiments.
AbstractList We introduce a model for the effect of cesium adsorbates on the work function of transition metal surfaces. The model builds on the classical point-dipole equation by adding exponential terms that characterize the degree of orbital overlap between the 6s states of neighboring cesium adsorbates and its effect on the strength and orientation of electric dipoles along the adsorbate-substrate interface. The new model improves upon earlier models in terms of agreement with the work function-coverage curves obtained via first-principles calculations based on density functional theory. All the cesiated metal surfaces have optimal coverages between 0.6 and 0.8 monolayers, in accordance with experimental data. Of all the cesiated metal surfaces that we have considered, tungsten has the lowest minimum work function, also in accordance with experiments.We introduce a model for the effect of cesium adsorbates on the work function of transition metal surfaces. The model builds on the classical point-dipole equation by adding exponential terms that characterize the degree of orbital overlap between the 6s states of neighboring cesium adsorbates and its effect on the strength and orientation of electric dipoles along the adsorbate-substrate interface. The new model improves upon earlier models in terms of agreement with the work function-coverage curves obtained via first-principles calculations based on density functional theory. All the cesiated metal surfaces have optimal coverages between 0.6 and 0.8 monolayers, in accordance with experimental data. Of all the cesiated metal surfaces that we have considered, tungsten has the lowest minimum work function, also in accordance with experiments.
We introduce a model for the effect of cesium adsorbates on the work function of transition metal surfaces. The model builds on the classical point-dipole equation by adding exponential terms that characterize the degree of orbital overlap between the 6s states of neighboring cesium adsorbates and its effect on the strength and orientation of electric dipoles along the adsorbate-substrate interface. The new model improves upon earlier models in terms of agreement with the work function-coverage curves obtained via first-principles calculations based on density functional theory. All the cesiated metal surfaces have optimal coverages between 0.6 and 0.8 monolayers, in accordance with experimental data. Of all the cesiated metal surfaces that we have considered, tungsten has the lowest minimum work function, also in accordance with experiments.
Author Abild-Pedersen, Frank
Vojvodic, Aleksandra
Voss, Johannes
Bargatin, Igor
Chou, Sharon H
Howe, Roger T
Author_xml – sequence: 1
  givenname: Sharon H
  surname: Chou
  fullname: Chou, Sharon H
  organization: Stanford University Department of Electrical Engineering, Stanford, CA 94035, USA
– sequence: 2
  givenname: Johannes
  surname: Voss
  fullname: Voss, Johannes
  organization: Stanford University Department of Chemical Engineering, Stanford, CA 94035, USA
– sequence: 3
  givenname: Igor
  surname: Bargatin
  fullname: Bargatin, Igor
  organization: University of Pennsylvania Department of Mechanical Engineering and Applied Mechanics, Philadelphia, PA 19104, USA
– sequence: 4
  givenname: Aleksandra
  surname: Vojvodic
  fullname: Vojvodic, Aleksandra
  organization: SLAC National Accelerator Laboratory SUNCAT Center for Interface Science and Catalysis, Menlo Park, CA 94205, USA
– sequence: 5
  givenname: Roger T
  surname: Howe
  fullname: Howe, Roger T
  organization: Stanford University Department of Electrical Engineering, Stanford, CA 94035, USA
– sequence: 6
  givenname: Frank
  surname: Abild-Pedersen
  fullname: Abild-Pedersen, Frank
  email: abild@slac.stanford.edu
  organization: SLAC National Accelerator Laboratory SUNCAT Center for Interface Science and Catalysis, Menlo Park, CA 94205, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26580681$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23018485$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1255875$$D View this record in Osti.gov
BookMark eNqFkdFqFDEUhoNU7Lb6CiUIgjfjJplMkgFvSrFVKHqj4F04mznB1JlkTWYU394Mu1bwZuHAgfD9B_J_F-QspoiEXHH2hjNjtqzv2sb0Rm6F3Mp1Osb0E7LhreKNkubrGdk8QufkopQHxpg0rXxGzkXLuJGm25CP15GmvAszjE36iXmEPZ3SgCP1KdMpxDDBSH-l_J36Jbo5pFho8tRhCTDjQCesUVqW7KG-PSdPPYwFXxz3Jfly--7zzfvm_tPdh5vr-8ZJKefGaSOccaiHVgFHVKCFB9CGud6oDgcx7CQwr4XqBYLumdPaMdEP4Ljyu_aSvDzcTWUOtrgwo_vmUozoZstF1xndVej1Adrn9GPBMtspFIfjCBHTUixXom-1VEafRjmXtczackWvjuiym3Cw-1wryr_t304r8OoIQHEw-gzRhfKPU51hyvDKqQPnciolo39EOLOrZLv6s6s_K6SV66ySa_Dtf8H6f1jVzBnCeDouDvGQ9vYhLTlWU6dCfwAVB7nN
CODEN JCOMEL
CitedBy_id crossref_primary_10_1063_1_5099115
crossref_primary_10_1063_1_4805002
crossref_primary_10_1021_acsenergylett_9b01214
crossref_primary_10_1016_j_ultramic_2022_113547
crossref_primary_10_1116_6_0004354
crossref_primary_10_15407_ujpe68_8_549
crossref_primary_10_1016_j_ijthermalsci_2017_07_018
crossref_primary_10_1021_acs_langmuir_6b01282
crossref_primary_10_1103_PhysRevB_91_035408
crossref_primary_10_1063_5_0054344
crossref_primary_10_1016_j_joule_2017_11_007
crossref_primary_10_1002_adfm_202401764
crossref_primary_10_1021_acsomega_9b02736
crossref_primary_10_1002_cphc_202300950
crossref_primary_10_1016_j_mssp_2021_105996
crossref_primary_10_1103_PhysRevA_89_033416
crossref_primary_10_1002_advs_202003812
crossref_primary_10_1109_JMEMS_2014_2307882
crossref_primary_10_1364_JOSAB_413680
crossref_primary_10_3131_jvsj2_57_27
crossref_primary_10_1002_adma_202104081
crossref_primary_10_1088_1402_4896_acba54
crossref_primary_10_1380_ejssnt_2018_391
crossref_primary_10_18596_jotcsa_1166158
crossref_primary_10_1109_TED_2022_3172052
crossref_primary_10_1140_epjs_s11734_022_00664_w
crossref_primary_10_1063_1_4792270
crossref_primary_10_1038_s41598_017_10685_4
Cites_doi 10.1016/S0039-6028(87)80359-X
10.1103/PhysRevB.4.4234
10.1103/PhysRevB.81.054207
10.1016/0378-5963(83)90064-8
10.1103/PhysRev.60.661
10.1103/PhysRev.136.B864
10.1016/0039-6028(80)90246-0
10.1088/0034-4885/69/1/R04
10.1007/978-1-4684-7293-6
10.1088/1468-6996/12/3/034410
10.1103/PhysRevB.41.7892
10.1063/1.2203720
10.1038/nmat2814
10.1088/0022-3727/44/50/505203
10.1103/PhysRev.47.479
10.1016/j.progsurf.2007.11.001
10.1103/PhysRevB.80.235407
10.1088/0022-3727/9/14/001
10.1021/cm061081m
10.1103/PhysRev.49.78
10.1016/S0169-4332(02)00175-7
10.1103/PhysRev.53.570
10.1103/PhysRevLett.48.1128
10.1063/1.1728530
10.1016/0039-6028(70)90244-X
10.1103/PhysRevB.4.3321
10.1063/1.323539
10.1142/S0218625X95000339
10.1103/PhysRev.140.A1133
10.1088/0022-3727/43/18/185204
10.1016/0039-6028(72)90179-3
10.1063/1.1671392
10.1063/1.1669464
10.1103/PhysRevB.59.7413
10.1063/1.90769
10.1103/PhysRev.44.423
10.1126/science.1218829
10.1063/1.323864
ContentType Journal Article
Copyright 2012 IOP Publishing Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2012 IOP Publishing Ltd
– notice: 2015 INIST-CNRS
CorporateAuthor SLAC National Accelerator Lab., Menlo Park, CA (United States)
CorporateAuthor_xml – name: SLAC National Accelerator Lab., Menlo Park, CA (United States)
DBID AAYXX
CITATION
IQODW
NPM
7X8
7U5
8FD
L7M
OTOTI
DOI 10.1088/0953-8984/24/44/445007
DatabaseName CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList MEDLINE - Academic

PubMed
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate An orbital-overlap model for minimal work functions of cesiated metal surfaces
EISSN 1361-648X
EndPage 7
ExternalDocumentID 1255875
23018485
26580681
10_1088_0953_8984_24_44_445007
cm442376
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
1JI
1WK
4.4
53G
5B3
5GY
5PX
5VS
5ZH
7.M
7.Q
9BW
AAGCD
AAGID
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHWH
ABLJU
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
ACNCT
ADIYS
AEFHF
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
FEDTE
HAK
HVGLF
IHE
IJHAN
IOP
IZVLO
JCGBZ
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
Q02
RIN
RNS
RO9
ROL
RPA
S3P
SY9
TN5
W28
WH7
XPP
YQT
ZMT
~02
AAYXX
ADEQX
AERVB
CITATION
02O
29L
5ZI
6TJ
8WZ
A6W
AAGCF
AAYJJ
ACARI
ACWPO
AETNG
AFFNX
AGQPQ
AHSEE
AI.
ARNYC
BBWZM
CBCFC
CEBXE
H~9
IQODW
MVM
R4D
RKQ
T37
VH1
XOL
NPM
7X8
AEINN
7U5
8FD
L7M
1PV
KNG
OTOTI
RW3
XFK
ID FETCH-LOGICAL-c444t-c782c8ce7d36a1ee6a72faa780c9865ed2db4a0f72692ea790c77c029dac16fb3
IEDL.DBID IOP
ISSN 0953-8984
1361-648X
IngestDate Fri May 19 00:34:48 EDT 2023
Thu Sep 04 17:59:46 EDT 2025
Thu Sep 04 22:55:45 EDT 2025
Mon Jul 21 06:03:28 EDT 2025
Mon Jul 21 09:13:36 EDT 2025
Tue Jul 01 03:38:05 EDT 2025
Thu Apr 24 23:04:07 EDT 2025
Wed Aug 21 03:40:29 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 44
Keywords Ultrathin films
Work functions
Alkali metals
Electrostatic interaction
Surface electron state
Cesium
Coverage rate
Interfaces
Transition elements
Adsorbed state
Chemical bonds
Density functional method
Dipole moments
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-c782c8ce7d36a1ee6a72faa780c9865ed2db4a0f72692ea790c77c029dac16fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
AC02-76SF00515
PMID 23018485
PQID 1114953445
PQPubID 23479
PageCount 7
ParticipantIDs osti_scitechconnect_1255875
crossref_primary_10_1088_0953_8984_24_44_445007
crossref_citationtrail_10_1088_0953_8984_24_44_445007
iop_journals_10_1088_0953_8984_24_44_445007
proquest_miscellaneous_1629374687
pubmed_primary_23018485
pascalfrancis_primary_26580681
proquest_miscellaneous_1114953445
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-11-07
PublicationDateYYYYMMDD 2012-11-07
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-11-07
  day: 07
PublicationDecade 2010
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
– name: England
– name: United States
PublicationTitle Journal of physics. Condensed matter
PublicationTitleAbbrev JPhysCM
PublicationTitleAlternate J. Phys.: Condens. Matter
PublicationYear 2012
Publisher IOP Publishing
Institute of Physics
Publisher_xml – name: IOP Publishing
– name: Institute of Physics
References 22
44
23
45
24
25
Snapp J P Lee J-H Provine J Bargatin I Maboudian R Lee T H Howe R T (6) 2012
26
27
28
Bergner A (13) 2011; 44
Hatsopoulos G N (20) 1973; 1
Wada M (4) 2009; 8
30
Yamamoto S (3) 2006; 69
31
10
32
11
33
34
Longo R T (38) 1984
35
Watanabe S (5) 2011; 12
14
36
37
Lee J-H (7) 2009
16
17
39
18
19
Sillero J A (12) 2010; 43
1
2
Kanitkar P L (15) 2001; 9
8
9
Soukiassian P (29) 2007; 1983
40
41
42
21
43
References_xml – volume: 1
  year: 1973
  ident: 20
  publication-title: Thermionic Energy Conversion
– ident: 21
  doi: 10.1016/S0039-6028(87)80359-X
– ident: 19
  doi: 10.1103/PhysRevB.4.4234
– ident: 22
  doi: 10.1103/PhysRevB.81.054207
– ident: 37
  doi: 10.1016/0378-5963(83)90064-8
– ident: 43
  doi: 10.1103/PhysRev.60.661
– ident: 23
  doi: 10.1103/PhysRev.136.B864
– ident: 42
  doi: 10.1016/0039-6028(80)90246-0
– volume: 69
  start-page: 181
  issn: 0034-4885
  year: 2006
  ident: 3
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/69/1/R04
– ident: 18
  doi: 10.1007/978-1-4684-7293-6
– volume: 12
  issn: 1468-6996
  year: 2011
  ident: 5
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1088/1468-6996/12/3/034410
– volume: 1983
  start-page: 110
  year: 2007
  ident: 29
  publication-title: Phys. Scr.
– year: 2009
  ident: 7
  publication-title: Tech. Dig. Power MEMS
– ident: 24
  doi: 10.1103/PhysRevB.41.7892
– ident: 35
  doi: 10.1063/1.2203720
– ident: 8
  doi: 10.1038/nmat2814
– volume: 44
  issn: 0022-3727
  year: 2011
  ident: 13
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/44/50/505203
– ident: 17
  doi: 10.1103/PhysRev.47.479
– volume: 8
  start-page: 1366
  year: 2009
  ident: 4
  publication-title: J. Plasma Fusion Res. Series
– ident: 34
  doi: 10.1016/j.progsurf.2007.11.001
– ident: 28
  doi: 10.1103/PhysRevB.80.235407
– volume: 9
  start-page: L165
  year: 2001
  ident: 15
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/9/14/001
– ident: 1
  doi: 10.1021/cm061081m
– ident: 10
  doi: 10.1103/PhysRev.49.78
– ident: 44
  doi: 10.1016/S0169-4332(02)00175-7
– ident: 11
  doi: 10.1103/PhysRev.53.570
– ident: 31
  doi: 10.1103/PhysRevLett.48.1128
– start-page: 12.2
  year: 1984
  ident: 38
  publication-title: Tech. Dig.-Int. Electron Devices Meet.
– ident: 32
  doi: 10.1063/1.1728530
– ident: 41
  doi: 10.1016/0039-6028(70)90244-X
– ident: 45
  doi: 10.1103/PhysRevB.4.3321
– ident: 9
  doi: 10.1063/1.323539
– ident: 30
  doi: 10.1142/S0218625X95000339
– ident: 27
  doi: 10.1103/PhysRev.140.A1133
– year: 2012
  ident: 6
  publication-title: Solid-State Sensor and Actuator Workshop
– volume: 43
  issn: 0022-3727
  year: 2010
  ident: 12
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/43/18/185204
– ident: 33
  doi: 10.1016/0039-6028(72)90179-3
– ident: 40
  doi: 10.1063/1.1671392
– ident: 39
  doi: 10.1063/1.1669464
– ident: 26
  doi: 10.1103/PhysRevB.59.7413
– ident: 14
  doi: 10.1063/1.90769
– ident: 16
  doi: 10.1103/PhysRev.44.423
– ident: 25
– ident: 2
  doi: 10.1126/science.1218829
– ident: 36
  doi: 10.1063/1.323864
SSID ssj0004834
Score 2.268375
Snippet We introduce a model for the effect of cesium adsorbates on the work function of transition metal surfaces. The model builds on the classical point-dipole...
SourceID osti
proquest
pubmed
pascalfrancis
crossref
iop
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 445007
SubjectTerms Adsorbates
Cesium
Condensed matter
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Construction
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Exact sciences and technology
Impurity and defect levels; energy states of adsorbed species
Mathematical models
Metal surfaces
Physics
Surface and interface electron states
Surface double layers, schottky barriers, and work functions
Transition metals
Work functions
Title An orbital-overlap model for minimal work functions of cesiated metal surfaces
URI https://iopscience.iop.org/article/10.1088/0953-8984/24/44/445007
https://www.ncbi.nlm.nih.gov/pubmed/23018485
https://www.proquest.com/docview/1114953445
https://www.proquest.com/docview/1629374687
https://www.osti.gov/biblio/1255875
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZpQqGXPtLXNk1QobfiXVsrS_IxlIakhySHBnIT0li6NLGXtffSX98Z2d6QQhpKQQcfPHqMRtIn9M0MY5-1zE1V0gtrrGUmS4CsWnqZKQkIj7Uv8jqxLc7V6ZX8fl1ObMLkC9Ouxq1_jp9DoOBBhSMhziwoQlpmKiMXQi4klTL5k-9R-koy8rOLyzvXSJMelrcyk5Pwg_XcO5-eYB9wr25xtRFp0nWotzgkvHgYkaaT6eQF89OYBkLKz_mm93P49Ue4x_8a9Ev2fMSt_HgQeMV2QrPPnib-KHSv2flxw9u1pwwkGZFCb9yKpyQ7HEExp_gltyhNJDBOJ2kydt5GjrsU2kao-W1AUd5t1pE4Ym_Y1cm3H19PszFVQwZSyj4DBBpgIOh6qVwRgnJaROe0yaHCWQm1qL10edRCVSI4XeWgNeSiqh0UKvrlW7bbtE14z3jtnILCIbCAXAKA9zFi9SUCR-WjMDNWThNkYYxjTuk0bmx6TzfGkq4s6coKaSUV0tWMLbZyqyGSx6MSX3A67Liou0f_PiA7sTiTFH4XiKcEvUUAWeKdcMaO7pnPtgsCIWCuTDFjnyZ7srjC6dnGNaHddHRHIxIwtvKXfxTCNi2VwW68G4zxrgXcw4005Yd_Gs4Be4bYUCS3S_2R7fbrTThE_NX7o7TCfgPGAB6P
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbaIhAX3o-lUIzEDWU3yfqVYwVdtYCWHqjUm2VP7EvbZLXZvfDrmXGyWxWpVAjJhxwysTMejz_L38ww9lGL3FSSblhjLTIhAbJq6kWmBCA81r7I68S2mKvjM_H1XJ7vsKNtLEy7GFz_GB_7RMG9CgdCnJlQhrTMVEZMSjER1CQFwy3quMvuSXTIxOw6-XF6HR5p0uXyVm4TKHzrt27sUbs4DvTXLa44Ik66DnUX-6IXt6PStDvNHvcski4lNSRSysV4vfJj-PVHysf__vEn7NGAX_lhL_SU7YTmGbufeKTQPWfzw4a3S0-VSDIih166BU_FdjiCY055TK5QmshgnHbUZPS8jRy9FdpIqPlVQFHerZeRuGIv2Nns6Ofn42wo2ZCBEGKVAQIOMBB0PVWuCEE5XUbntMmhMkqGuqy9cHnUparK4HSVg9aQl1XtoFDRT1-yvaZtwmvGa-cUFA4BBuQCALyPET8vEUAqH0szYnIzSRaGfOZUVuPSpnt1Yyzpy5K-bCmsoEb6GrHJVm7RZ_S4U-ITTokdFnd359v7ZCsWZ5PS8ALxlWBlEUhKPBuO2MENE9oOoUQomCtTjNiHjU1ZXOl0feOa0K47OqsRGRh7-cs7CuGbFsrgMF71BnndA_pyI4x880-_8549OP0ys99P5t_22UOEi2WKxNRv2d5quQ7vEJKt_EFacL8Btjcj8w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+orbital-overlap+model+for+minimal+work+functions+of+cesiated+metal+surfaces&rft.jtitle=Journal+of+physics.+Condensed+matter&rft.au=CHOU%2C+Sharon+H&rft.au=VOSS%2C+Johannes&rft.au=BARGATIN%2C+Igor&rft.au=VOJVODIC%2C+Aleksandra&rft.date=2012-11-07&rft.pub=Institute+of+Physics&rft.issn=0953-8984&rft.volume=24&rft.issue=44&rft_id=info:doi/10.1088%2F0953-8984%2F24%2F44%2F445007&rft.externalDBID=n%2Fa&rft.externalDocID=26580681
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-8984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-8984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-8984&client=summon