An orbital-overlap model for minimal work functions of cesiated metal surfaces
We introduce a model for the effect of cesium adsorbates on the work function of transition metal surfaces. The model builds on the classical point-dipole equation by adding exponential terms that characterize the degree of orbital overlap between the 6s states of neighboring cesium adsorbates and i...
Saved in:
Published in | Journal of physics. Condensed matter Vol. 24; no. 44; pp. 445007 - 7 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
07.11.2012
Institute of Physics |
Subjects | |
Online Access | Get full text |
ISSN | 0953-8984 1361-648X 1361-648X |
DOI | 10.1088/0953-8984/24/44/445007 |
Cover
Abstract | We introduce a model for the effect of cesium adsorbates on the work function of transition metal surfaces. The model builds on the classical point-dipole equation by adding exponential terms that characterize the degree of orbital overlap between the 6s states of neighboring cesium adsorbates and its effect on the strength and orientation of electric dipoles along the adsorbate-substrate interface. The new model improves upon earlier models in terms of agreement with the work function-coverage curves obtained via first-principles calculations based on density functional theory. All the cesiated metal surfaces have optimal coverages between 0.6 and 0.8 monolayers, in accordance with experimental data. Of all the cesiated metal surfaces that we have considered, tungsten has the lowest minimum work function, also in accordance with experiments. |
---|---|
AbstractList | We introduce a model for the effect of cesium adsorbates on the work function of transition metal surfaces. The model builds on the classical point-dipole equation by adding exponential terms that characterize the degree of orbital overlap between the 6s states of neighboring cesium adsorbates and its effect on the strength and orientation of electric dipoles along the adsorbate-substrate interface. The new model improves upon earlier models in terms of agreement with the work function-coverage curves obtained via first-principles calculations based on density functional theory. All the cesiated metal surfaces have optimal coverages between 0.6 and 0.8 monolayers, in accordance with experimental data. Of all the cesiated metal surfaces that we have considered, tungsten has the lowest minimum work function, also in accordance with experiments.We introduce a model for the effect of cesium adsorbates on the work function of transition metal surfaces. The model builds on the classical point-dipole equation by adding exponential terms that characterize the degree of orbital overlap between the 6s states of neighboring cesium adsorbates and its effect on the strength and orientation of electric dipoles along the adsorbate-substrate interface. The new model improves upon earlier models in terms of agreement with the work function-coverage curves obtained via first-principles calculations based on density functional theory. All the cesiated metal surfaces have optimal coverages between 0.6 and 0.8 monolayers, in accordance with experimental data. Of all the cesiated metal surfaces that we have considered, tungsten has the lowest minimum work function, also in accordance with experiments. We introduce a model for the effect of cesium adsorbates on the work function of transition metal surfaces. The model builds on the classical point-dipole equation by adding exponential terms that characterize the degree of orbital overlap between the 6s states of neighboring cesium adsorbates and its effect on the strength and orientation of electric dipoles along the adsorbate-substrate interface. The new model improves upon earlier models in terms of agreement with the work function-coverage curves obtained via first-principles calculations based on density functional theory. All the cesiated metal surfaces have optimal coverages between 0.6 and 0.8 monolayers, in accordance with experimental data. Of all the cesiated metal surfaces that we have considered, tungsten has the lowest minimum work function, also in accordance with experiments. |
Author | Abild-Pedersen, Frank Vojvodic, Aleksandra Voss, Johannes Bargatin, Igor Chou, Sharon H Howe, Roger T |
Author_xml | – sequence: 1 givenname: Sharon H surname: Chou fullname: Chou, Sharon H organization: Stanford University Department of Electrical Engineering, Stanford, CA 94035, USA – sequence: 2 givenname: Johannes surname: Voss fullname: Voss, Johannes organization: Stanford University Department of Chemical Engineering, Stanford, CA 94035, USA – sequence: 3 givenname: Igor surname: Bargatin fullname: Bargatin, Igor organization: University of Pennsylvania Department of Mechanical Engineering and Applied Mechanics, Philadelphia, PA 19104, USA – sequence: 4 givenname: Aleksandra surname: Vojvodic fullname: Vojvodic, Aleksandra organization: SLAC National Accelerator Laboratory SUNCAT Center for Interface Science and Catalysis, Menlo Park, CA 94205, USA – sequence: 5 givenname: Roger T surname: Howe fullname: Howe, Roger T organization: Stanford University Department of Electrical Engineering, Stanford, CA 94035, USA – sequence: 6 givenname: Frank surname: Abild-Pedersen fullname: Abild-Pedersen, Frank email: abild@slac.stanford.edu organization: SLAC National Accelerator Laboratory SUNCAT Center for Interface Science and Catalysis, Menlo Park, CA 94205, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26580681$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23018485$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1255875$$D View this record in Osti.gov |
BookMark | eNqFkdFqFDEUhoNU7Lb6CiUIgjfjJplMkgFvSrFVKHqj4F04mznB1JlkTWYU394Mu1bwZuHAgfD9B_J_F-QspoiEXHH2hjNjtqzv2sb0Rm6F3Mp1Osb0E7LhreKNkubrGdk8QufkopQHxpg0rXxGzkXLuJGm25CP15GmvAszjE36iXmEPZ3SgCP1KdMpxDDBSH-l_J36Jbo5pFho8tRhCTDjQCesUVqW7KG-PSdPPYwFXxz3Jfly--7zzfvm_tPdh5vr-8ZJKefGaSOccaiHVgFHVKCFB9CGud6oDgcx7CQwr4XqBYLumdPaMdEP4Ljyu_aSvDzcTWUOtrgwo_vmUozoZstF1xndVej1Adrn9GPBMtspFIfjCBHTUixXom-1VEafRjmXtczackWvjuiym3Cw-1wryr_t304r8OoIQHEw-gzRhfKPU51hyvDKqQPnciolo39EOLOrZLv6s6s_K6SV66ySa_Dtf8H6f1jVzBnCeDouDvGQ9vYhLTlWU6dCfwAVB7nN |
CODEN | JCOMEL |
CitedBy_id | crossref_primary_10_1063_1_5099115 crossref_primary_10_1063_1_4805002 crossref_primary_10_1021_acsenergylett_9b01214 crossref_primary_10_1016_j_ultramic_2022_113547 crossref_primary_10_1116_6_0004354 crossref_primary_10_15407_ujpe68_8_549 crossref_primary_10_1016_j_ijthermalsci_2017_07_018 crossref_primary_10_1021_acs_langmuir_6b01282 crossref_primary_10_1103_PhysRevB_91_035408 crossref_primary_10_1063_5_0054344 crossref_primary_10_1016_j_joule_2017_11_007 crossref_primary_10_1002_adfm_202401764 crossref_primary_10_1021_acsomega_9b02736 crossref_primary_10_1002_cphc_202300950 crossref_primary_10_1016_j_mssp_2021_105996 crossref_primary_10_1103_PhysRevA_89_033416 crossref_primary_10_1002_advs_202003812 crossref_primary_10_1109_JMEMS_2014_2307882 crossref_primary_10_1364_JOSAB_413680 crossref_primary_10_3131_jvsj2_57_27 crossref_primary_10_1002_adma_202104081 crossref_primary_10_1088_1402_4896_acba54 crossref_primary_10_1380_ejssnt_2018_391 crossref_primary_10_18596_jotcsa_1166158 crossref_primary_10_1109_TED_2022_3172052 crossref_primary_10_1140_epjs_s11734_022_00664_w crossref_primary_10_1063_1_4792270 crossref_primary_10_1038_s41598_017_10685_4 |
Cites_doi | 10.1016/S0039-6028(87)80359-X 10.1103/PhysRevB.4.4234 10.1103/PhysRevB.81.054207 10.1016/0378-5963(83)90064-8 10.1103/PhysRev.60.661 10.1103/PhysRev.136.B864 10.1016/0039-6028(80)90246-0 10.1088/0034-4885/69/1/R04 10.1007/978-1-4684-7293-6 10.1088/1468-6996/12/3/034410 10.1103/PhysRevB.41.7892 10.1063/1.2203720 10.1038/nmat2814 10.1088/0022-3727/44/50/505203 10.1103/PhysRev.47.479 10.1016/j.progsurf.2007.11.001 10.1103/PhysRevB.80.235407 10.1088/0022-3727/9/14/001 10.1021/cm061081m 10.1103/PhysRev.49.78 10.1016/S0169-4332(02)00175-7 10.1103/PhysRev.53.570 10.1103/PhysRevLett.48.1128 10.1063/1.1728530 10.1016/0039-6028(70)90244-X 10.1103/PhysRevB.4.3321 10.1063/1.323539 10.1142/S0218625X95000339 10.1103/PhysRev.140.A1133 10.1088/0022-3727/43/18/185204 10.1016/0039-6028(72)90179-3 10.1063/1.1671392 10.1063/1.1669464 10.1103/PhysRevB.59.7413 10.1063/1.90769 10.1103/PhysRev.44.423 10.1126/science.1218829 10.1063/1.323864 |
ContentType | Journal Article |
Copyright | 2012 IOP Publishing Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2012 IOP Publishing Ltd – notice: 2015 INIST-CNRS |
CorporateAuthor | SLAC National Accelerator Lab., Menlo Park, CA (United States) |
CorporateAuthor_xml | – name: SLAC National Accelerator Lab., Menlo Park, CA (United States) |
DBID | AAYXX CITATION IQODW NPM 7X8 7U5 8FD L7M OTOTI |
DOI | 10.1088/0953-8984/24/44/445007 |
DatabaseName | CrossRef Pascal-Francis PubMed MEDLINE - Academic Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | MEDLINE - Academic PubMed Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | An orbital-overlap model for minimal work functions of cesiated metal surfaces |
EISSN | 1361-648X |
EndPage | 7 |
ExternalDocumentID | 1255875 23018485 26580681 10_1088_0953_8984_24_44_445007 cm442376 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X 1JI 1WK 4.4 53G 5B3 5GY 5PX 5VS 5ZH 7.M 7.Q 9BW AAGCD AAGID AAJIO AAJKP AALHV AATNI ABCXL ABHWH ABLJU ABQJV ABVAM ACAFW ACGFS ACHIP ACNCT ADIYS AEFHF AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P FEDTE HAK HVGLF IHE IJHAN IOP IZVLO JCGBZ KOT LAP M45 N5L N9A NT- NT. P2P PJBAE Q02 RIN RNS RO9 ROL RPA S3P SY9 TN5 W28 WH7 XPP YQT ZMT ~02 AAYXX ADEQX AERVB CITATION 02O 29L 5ZI 6TJ 8WZ A6W AAGCF AAYJJ ACARI ACWPO AETNG AFFNX AGQPQ AHSEE AI. ARNYC BBWZM CBCFC CEBXE H~9 IQODW MVM R4D RKQ T37 VH1 XOL NPM 7X8 AEINN 7U5 8FD L7M 1PV KNG OTOTI RW3 XFK |
ID | FETCH-LOGICAL-c444t-c782c8ce7d36a1ee6a72faa780c9865ed2db4a0f72692ea790c77c029dac16fb3 |
IEDL.DBID | IOP |
ISSN | 0953-8984 1361-648X |
IngestDate | Fri May 19 00:34:48 EDT 2023 Thu Sep 04 17:59:46 EDT 2025 Thu Sep 04 22:55:45 EDT 2025 Mon Jul 21 06:03:28 EDT 2025 Mon Jul 21 09:13:36 EDT 2025 Tue Jul 01 03:38:05 EDT 2025 Thu Apr 24 23:04:07 EDT 2025 Wed Aug 21 03:40:29 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Keywords | Ultrathin films Work functions Alkali metals Electrostatic interaction Surface electron state Cesium Coverage rate Interfaces Transition elements Adsorbed state Chemical bonds Density functional method Dipole moments |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c444t-c782c8ce7d36a1ee6a72faa780c9865ed2db4a0f72692ea790c77c029dac16fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE AC02-76SF00515 |
PMID | 23018485 |
PQID | 1114953445 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | osti_scitechconnect_1255875 crossref_primary_10_1088_0953_8984_24_44_445007 crossref_citationtrail_10_1088_0953_8984_24_44_445007 iop_journals_10_1088_0953_8984_24_44_445007 proquest_miscellaneous_1629374687 pubmed_primary_23018485 pascalfrancis_primary_26580681 proquest_miscellaneous_1114953445 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-11-07 |
PublicationDateYYYYMMDD | 2012-11-07 |
PublicationDate_xml | – month: 11 year: 2012 text: 2012-11-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol – name: England – name: United States |
PublicationTitle | Journal of physics. Condensed matter |
PublicationTitleAbbrev | JPhysCM |
PublicationTitleAlternate | J. Phys.: Condens. Matter |
PublicationYear | 2012 |
Publisher | IOP Publishing Institute of Physics |
Publisher_xml | – name: IOP Publishing – name: Institute of Physics |
References | 22 44 23 45 24 25 Snapp J P Lee J-H Provine J Bargatin I Maboudian R Lee T H Howe R T (6) 2012 26 27 28 Bergner A (13) 2011; 44 Hatsopoulos G N (20) 1973; 1 Wada M (4) 2009; 8 30 Yamamoto S (3) 2006; 69 31 10 32 11 33 34 Longo R T (38) 1984 35 Watanabe S (5) 2011; 12 14 36 37 Lee J-H (7) 2009 16 17 39 18 19 Sillero J A (12) 2010; 43 1 2 Kanitkar P L (15) 2001; 9 8 9 Soukiassian P (29) 2007; 1983 40 41 42 21 43 |
References_xml | – volume: 1 year: 1973 ident: 20 publication-title: Thermionic Energy Conversion – ident: 21 doi: 10.1016/S0039-6028(87)80359-X – ident: 19 doi: 10.1103/PhysRevB.4.4234 – ident: 22 doi: 10.1103/PhysRevB.81.054207 – ident: 37 doi: 10.1016/0378-5963(83)90064-8 – ident: 43 doi: 10.1103/PhysRev.60.661 – ident: 23 doi: 10.1103/PhysRev.136.B864 – ident: 42 doi: 10.1016/0039-6028(80)90246-0 – volume: 69 start-page: 181 issn: 0034-4885 year: 2006 ident: 3 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/69/1/R04 – ident: 18 doi: 10.1007/978-1-4684-7293-6 – volume: 12 issn: 1468-6996 year: 2011 ident: 5 publication-title: Sci. Technol. Adv. Mater. doi: 10.1088/1468-6996/12/3/034410 – volume: 1983 start-page: 110 year: 2007 ident: 29 publication-title: Phys. Scr. – year: 2009 ident: 7 publication-title: Tech. Dig. Power MEMS – ident: 24 doi: 10.1103/PhysRevB.41.7892 – ident: 35 doi: 10.1063/1.2203720 – ident: 8 doi: 10.1038/nmat2814 – volume: 44 issn: 0022-3727 year: 2011 ident: 13 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/44/50/505203 – ident: 17 doi: 10.1103/PhysRev.47.479 – volume: 8 start-page: 1366 year: 2009 ident: 4 publication-title: J. Plasma Fusion Res. Series – ident: 34 doi: 10.1016/j.progsurf.2007.11.001 – ident: 28 doi: 10.1103/PhysRevB.80.235407 – volume: 9 start-page: L165 year: 2001 ident: 15 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/9/14/001 – ident: 1 doi: 10.1021/cm061081m – ident: 10 doi: 10.1103/PhysRev.49.78 – ident: 44 doi: 10.1016/S0169-4332(02)00175-7 – ident: 11 doi: 10.1103/PhysRev.53.570 – ident: 31 doi: 10.1103/PhysRevLett.48.1128 – start-page: 12.2 year: 1984 ident: 38 publication-title: Tech. Dig.-Int. Electron Devices Meet. – ident: 32 doi: 10.1063/1.1728530 – ident: 41 doi: 10.1016/0039-6028(70)90244-X – ident: 45 doi: 10.1103/PhysRevB.4.3321 – ident: 9 doi: 10.1063/1.323539 – ident: 30 doi: 10.1142/S0218625X95000339 – ident: 27 doi: 10.1103/PhysRev.140.A1133 – year: 2012 ident: 6 publication-title: Solid-State Sensor and Actuator Workshop – volume: 43 issn: 0022-3727 year: 2010 ident: 12 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/43/18/185204 – ident: 33 doi: 10.1016/0039-6028(72)90179-3 – ident: 40 doi: 10.1063/1.1671392 – ident: 39 doi: 10.1063/1.1669464 – ident: 26 doi: 10.1103/PhysRevB.59.7413 – ident: 14 doi: 10.1063/1.90769 – ident: 16 doi: 10.1103/PhysRev.44.423 – ident: 25 – ident: 2 doi: 10.1126/science.1218829 – ident: 36 doi: 10.1063/1.323864 |
SSID | ssj0004834 |
Score | 2.268375 |
Snippet | We introduce a model for the effect of cesium adsorbates on the work function of transition metal surfaces. The model builds on the classical point-dipole... |
SourceID | osti proquest pubmed pascalfrancis crossref iop |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 445007 |
SubjectTerms | Adsorbates Cesium Condensed matter Condensed matter: electronic structure, electrical, magnetic, and optical properties Construction Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Exact sciences and technology Impurity and defect levels; energy states of adsorbed species Mathematical models Metal surfaces Physics Surface and interface electron states Surface double layers, schottky barriers, and work functions Transition metals Work functions |
Title | An orbital-overlap model for minimal work functions of cesiated metal surfaces |
URI | https://iopscience.iop.org/article/10.1088/0953-8984/24/44/445007 https://www.ncbi.nlm.nih.gov/pubmed/23018485 https://www.proquest.com/docview/1114953445 https://www.proquest.com/docview/1629374687 https://www.osti.gov/biblio/1255875 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZpQqGXPtLXNk1QobfiXVsrS_IxlIakhySHBnIT0li6NLGXtffSX98Z2d6QQhpKQQcfPHqMRtIn9M0MY5-1zE1V0gtrrGUmS4CsWnqZKQkIj7Uv8jqxLc7V6ZX8fl1ObMLkC9Ouxq1_jp9DoOBBhSMhziwoQlpmKiMXQi4klTL5k-9R-koy8rOLyzvXSJMelrcyk5Pwg_XcO5-eYB9wr25xtRFp0nWotzgkvHgYkaaT6eQF89OYBkLKz_mm93P49Ue4x_8a9Ev2fMSt_HgQeMV2QrPPnib-KHSv2flxw9u1pwwkGZFCb9yKpyQ7HEExp_gltyhNJDBOJ2kydt5GjrsU2kao-W1AUd5t1pE4Ym_Y1cm3H19PszFVQwZSyj4DBBpgIOh6qVwRgnJaROe0yaHCWQm1qL10edRCVSI4XeWgNeSiqh0UKvrlW7bbtE14z3jtnILCIbCAXAKA9zFi9SUCR-WjMDNWThNkYYxjTuk0bmx6TzfGkq4s6coKaSUV0tWMLbZyqyGSx6MSX3A67Liou0f_PiA7sTiTFH4XiKcEvUUAWeKdcMaO7pnPtgsCIWCuTDFjnyZ7srjC6dnGNaHddHRHIxIwtvKXfxTCNi2VwW68G4zxrgXcw4005Yd_Gs4Be4bYUCS3S_2R7fbrTThE_NX7o7TCfgPGAB6P |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbaIhAX3o-lUIzEDWU3yfqVYwVdtYCWHqjUm2VP7EvbZLXZvfDrmXGyWxWpVAjJhxwysTMejz_L38ww9lGL3FSSblhjLTIhAbJq6kWmBCA81r7I68S2mKvjM_H1XJ7vsKNtLEy7GFz_GB_7RMG9CgdCnJlQhrTMVEZMSjER1CQFwy3quMvuSXTIxOw6-XF6HR5p0uXyVm4TKHzrt27sUbs4DvTXLa44Ik66DnUX-6IXt6PStDvNHvcski4lNSRSysV4vfJj-PVHysf__vEn7NGAX_lhL_SU7YTmGbufeKTQPWfzw4a3S0-VSDIih166BU_FdjiCY055TK5QmshgnHbUZPS8jRy9FdpIqPlVQFHerZeRuGIv2Nns6Ofn42wo2ZCBEGKVAQIOMBB0PVWuCEE5XUbntMmhMkqGuqy9cHnUparK4HSVg9aQl1XtoFDRT1-yvaZtwmvGa-cUFA4BBuQCALyPET8vEUAqH0szYnIzSRaGfOZUVuPSpnt1Yyzpy5K-bCmsoEb6GrHJVm7RZ_S4U-ITTokdFnd359v7ZCsWZ5PS8ALxlWBlEUhKPBuO2MENE9oOoUQomCtTjNiHjU1ZXOl0feOa0K47OqsRGRh7-cs7CuGbFsrgMF71BnndA_pyI4x880-_8549OP0ys99P5t_22UOEi2WKxNRv2d5quQ7vEJKt_EFacL8Btjcj8w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+orbital-overlap+model+for+minimal+work+functions+of+cesiated+metal+surfaces&rft.jtitle=Journal+of+physics.+Condensed+matter&rft.au=CHOU%2C+Sharon+H&rft.au=VOSS%2C+Johannes&rft.au=BARGATIN%2C+Igor&rft.au=VOJVODIC%2C+Aleksandra&rft.date=2012-11-07&rft.pub=Institute+of+Physics&rft.issn=0953-8984&rft.volume=24&rft.issue=44&rft_id=info:doi/10.1088%2F0953-8984%2F24%2F44%2F445007&rft.externalDBID=n%2Fa&rft.externalDocID=26580681 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-8984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-8984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-8984&client=summon |