Dijet impact factor in DIS at next-to-leading order in the Color Glass Condensate
A bstract We compute the next-to-leading order impact factor for inclusive dijet production in deeply inelastic electron-nucleus scattering at small x Bj . Our computation, performed in the framework of the Color Glass Condensate effective field theory, includes all real and virtual contributions in...
Saved in:
Published in | The journal of high energy physics Vol. 2021; no. 11; pp. 1 - 108 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2021
Springer Nature B.V Springer Nature SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
We compute the next-to-leading order impact factor for inclusive dijet production in deeply inelastic electron-nucleus scattering at small
x
Bj
. Our computation, performed in the framework of the Color Glass Condensate effective field theory, includes all real and virtual contributions in the gluon shock wave background of all-twist lightlike Wilson line correlators. We demonstrate explicitly that the rapidity evolution of these correlators, to leading logarithmic accuracy, is described by the JIMWLK Hamiltonian. When combined with the next-to-leading order JIMWLK Hamiltonian, our results for the impact factor improve the accuracy of the inclusive dijet cross-section to
O
(
α
s
2
ln(
x
f
/x
Bj
)), where
x
f
is a rapidity factorization scale. These results are an essential ingredient in assessing the discovery potential of inclusive dijets to uncover the physics of gluon saturation at the Electron-Ion Collider. |
---|---|
AbstractList | We compute the next-to-leading order impact factor for inclusive dijet production in deeply inelastic electron-nucleus scattering at small xBj. Our computation, performed in the framework of the Color Glass Condensate effective field theory, includes all real and virtual contributions in the gluon shock wave background of all-twist lightlike Wilson line correlators. We demonstrate explicitly that the rapidity evolution of these correlators, to leading logarithmic accuracy, is described by the JIMWLK Hamiltonian. When combined with the next-to-leading order JIMWLK Hamiltonian, our results for the impact factor improve the accuracy of the inclusive dijet cross-section to O(αs2ln(xf/xBj)), where xf is a rapidity factorization scale. These results are an essential ingredient in assessing the discovery potential of inclusive dijets to uncover the physics of gluon saturation at the Electron-Ion Collider. In this work, we compute the next-to-leading order impact factor for inclusive dijet production in deeply inelastic electron-nucleus scattering at small xBj. Our computation, performed in the framework of the Color Glass Condensate effective field theory, includes all real and virtual contributions in the gluon shock wave background of all-twist lightlike Wilson line correlators. We demonstrate explicitly that the rapidity evolution of these correlators, to leading logarithmic accuracy, is described by the JIMWLK Hamiltonian. When combined with the next-to-leading order JIMWLK Hamiltonian, our results for the impact factor improve the accuracy of the inclusive dijet cross-section to \( \mathcal{O} \) ( \( {\alpha}_s^2 \) ln(xf /xBj)), where xf is a rapidity factorization scale. These results are an essential ingredient in assessing the discovery potential of inclusive dijets to uncover the physics of gluon saturation at the Electron-Ion Collider. A bstract We compute the next-to-leading order impact factor for inclusive dijet production in deeply inelastic electron-nucleus scattering at small x Bj . Our computation, performed in the framework of the Color Glass Condensate effective field theory, includes all real and virtual contributions in the gluon shock wave background of all-twist lightlike Wilson line correlators. We demonstrate explicitly that the rapidity evolution of these correlators, to leading logarithmic accuracy, is described by the JIMWLK Hamiltonian. When combined with the next-to-leading order JIMWLK Hamiltonian, our results for the impact factor improve the accuracy of the inclusive dijet cross-section to $$ \mathcal{O} $$ O ( $$ {\alpha}_s^2 $$ α s 2 ln( x f /x Bj )), where x f is a rapidity factorization scale. These results are an essential ingredient in assessing the discovery potential of inclusive dijets to uncover the physics of gluon saturation at the Electron-Ion Collider. Abstract We compute the next-to-leading order impact factor for inclusive dijet production in deeply inelastic electron-nucleus scattering at small x Bj. Our computation, performed in the framework of the Color Glass Condensate effective field theory, includes all real and virtual contributions in the gluon shock wave background of all-twist lightlike Wilson line correlators. We demonstrate explicitly that the rapidity evolution of these correlators, to leading logarithmic accuracy, is described by the JIMWLK Hamiltonian. When combined with the next-to-leading order JIMWLK Hamiltonian, our results for the impact factor improve the accuracy of the inclusive dijet cross-section to O $$ \mathcal{O} $$ ( α s 2 $$ {\alpha}_s^2 $$ ln(x f /x Bj)), where x f is a rapidity factorization scale. These results are an essential ingredient in assessing the discovery potential of inclusive dijets to uncover the physics of gluon saturation at the Electron-Ion Collider. A bstract We compute the next-to-leading order impact factor for inclusive dijet production in deeply inelastic electron-nucleus scattering at small x Bj . Our computation, performed in the framework of the Color Glass Condensate effective field theory, includes all real and virtual contributions in the gluon shock wave background of all-twist lightlike Wilson line correlators. We demonstrate explicitly that the rapidity evolution of these correlators, to leading logarithmic accuracy, is described by the JIMWLK Hamiltonian. When combined with the next-to-leading order JIMWLK Hamiltonian, our results for the impact factor improve the accuracy of the inclusive dijet cross-section to O ( α s 2 ln( x f /x Bj )), where x f is a rapidity factorization scale. These results are an essential ingredient in assessing the discovery potential of inclusive dijets to uncover the physics of gluon saturation at the Electron-Ion Collider. |
ArticleNumber | 222 |
Author | Caucal, Paul Salazar, Farid Venugopalan, Raju |
Author_xml | – sequence: 1 givenname: Paul surname: Caucal fullname: Caucal, Paul organization: Physics Department, Brookhaven National Laboratory – sequence: 2 givenname: Farid orcidid: 0000-0002-4007-6136 surname: Salazar fullname: Salazar, Farid email: farid.salazarwong@stonybrook.edu organization: Physics Department, Brookhaven National Laboratory, Physics Department, Stony Brook University, Center for Frontiers in Nuclear Science (CFNS), Stony Brook University – sequence: 3 givenname: Raju surname: Venugopalan fullname: Venugopalan, Raju organization: Physics Department, Brookhaven National Laboratory |
BackLink | https://www.osti.gov/servlets/purl/1832773$$D View this record in Osti.gov |
BookMark | eNp1kc1PHSEUxYmxiR913e3Ebupi6oVhBJbmafU1JtrUrgnDXJ68jPAKmOh_X3xjWjfdXG4uv3Ny4RyQ3RADEvKJwlcKIE6_X1_eUfqFAaMnjLEdsk-BqVZyoXbf9XvkIOc1AO2pgn3y48KvsTT-cWNsaVwtMTU-NBfLn40pTcDn0pbYTmhGH1ZNTCNu78sDNos4VfhqMjnXPowYsin4kXxwZsp49HYekl_fLu8X1-3N7dVycX7TWs55qXVQg5EdkwimG6RVSgknejtyJhVz_SB7UKM1MDqHknHe9eBQUGeRDkx1h2Q5-47RrPUm-UeTXnQ0Xm8HMa20ScXbCTVHqrjpnDROcTZIKRUKDgMMrH4XYvU6nr1iLl5n6wvaBxtDQFs0rUsK0VXo8wxtUvz9hLnodXxKob5RszPgZ72gW-p0pmyKOSd0f1ejoF-D0nNQ-jUoXYOqCpgVuZJhhemf7_8kfwCv8pRe |
CitedBy_id | crossref_primary_10_1007_JHEP10_2022_184 crossref_primary_10_1103_PhysRevLett_130_192301 crossref_primary_10_1103_PhysRevD_109_034035 crossref_primary_10_1007_JHEP01_2023_095 crossref_primary_10_1007_JHEP01_2024_159 crossref_primary_10_1007_JHEP10_2022_103 crossref_primary_10_1007_JHEP05_2024_024 crossref_primary_10_1007_JHEP06_2024_180 crossref_primary_10_1103_PhysRevD_106_094014 crossref_primary_10_1103_PhysRevD_109_074011 crossref_primary_10_1007_JHEP02_2024_165 crossref_primary_10_1007_JHEP03_2023_159 crossref_primary_10_1103_PhysRevLett_128_202001 crossref_primary_10_1103_PhysRevLett_132_081902 crossref_primary_10_1007_JHEP08_2023_062 crossref_primary_10_1103_PhysRevD_106_114025 crossref_primary_10_1103_PhysRevD_107_074016 crossref_primary_10_1103_PhysRevD_106_034013 crossref_primary_10_1103_PhysRevD_109_054004 crossref_primary_10_1140_epjc_s10052_023_12064_y crossref_primary_10_1103_PhysRevD_107_016016 crossref_primary_10_1103_PhysRevLett_130_151902 crossref_primary_10_3390_universe9070324 crossref_primary_10_1007_JHEP05_2024_110 crossref_primary_10_1007_JHEP08_2022_247 crossref_primary_10_1007_JHEP01_2024_005 crossref_primary_10_1140_epjc_s10052_023_12120_7 crossref_primary_10_1007_JHEP11_2022_103 crossref_primary_10_1007_JHEP11_2022_169 crossref_primary_10_1103_PhysRevD_108_096025 crossref_primary_10_1103_PhysRevD_109_094001 crossref_primary_10_1103_PhysRevD_105_114038 crossref_primary_10_1103_PhysRevD_107_114007 crossref_primary_10_1007_JHEP03_2024_027 crossref_primary_10_1103_PhysRevD_106_054035 crossref_primary_10_1103_PhysRevD_108_074003 crossref_primary_10_1103_PhysRevLett_128_202302 crossref_primary_10_1007_JHEP07_2023_121 crossref_primary_10_1103_PhysRevD_107_054036 crossref_primary_10_1103_PhysRevD_106_036026 crossref_primary_10_1007_JHEP07_2022_041 crossref_primary_10_1103_PhysRevLett_130_181901 crossref_primary_10_3390_sym16050550 crossref_primary_10_1140_epja_s10050_024_01287_6 |
Cites_doi | 10.1103/PhysRevD.83.105005 10.1016/j.nuclphysa.2006.10.075 10.1007/JHEP05(2019)156 10.1016/j.physletb.2019.06.055 10.1088/1126-6708/2008/11/057 10.1140/epjc/s10052-017-5101-5 10.1103/PhysRevD.86.054005 10.1103/PhysRevD.52.2935 10.1016/S0370-2693(01)00524-X 10.1103/PhysRevD.91.094016 10.1007/JHEP04(2019)081 10.1007/JHEP08(2018)139 10.1103/PhysRevD.103.094026 10.1016/S0550-3213(02)00149-9 10.1103/PhysRevLett.115.252301 10.1103/PhysRevD.96.074033 10.1088/1361-6633/aa5435 10.1103/PhysRevD.96.094017 10.1103/PhysRevD.85.034039 10.1007/JHEP09(2021)178 10.1103/PhysRevLett.126.142001 10.1016/j.physletb.2016.08.035 10.1016/j.ppnp.2014.01.004 10.3390/universe7080312 10.1007/JHEP02(2018)058 10.1007/JHEP12(2020)181 10.1103/PhysRevD.66.014021 10.1103/PhysRevLett.124.112301 10.1103/PhysRevD.49.2233 10.1017/9781108691550 10.1016/j.physletb.2015.09.071 10.1103/PhysRevD.62.114005 10.1103/PhysRevD.100.074020 10.1007/JHEP06(2021)085 10.1103/PhysRevD.88.111501 10.1103/PhysRevD.89.074037 10.1016/0370-1573(83)90022-4 10.1016/j.aop.2018.04.015 10.1103/PhysRevD.101.034028 10.1140/epjc/s10052-017-4906-6 10.1088/1361-6633/aaf216 10.1103/PhysRevD.60.034008 10.1103/RevModPhys.71.1275 10.1017/CBO9781139022187 10.1103/PhysRevD.101.071505 10.1103/PhysRevD.103.094012 10.1103/PhysRevLett.112.012302 10.1016/j.nuclphysb.2017.03.028 10.1007/JHEP09(2015)106 10.1007/JHEP05(2018)013 10.1007/JHEP05(2012)086 10.1146/annurev.nucl.010909.083629 10.1016/j.nuclphysa.2004.07.006 10.1103/PhysRevD.59.094002 10.1103/PhysRevD.104.056032 10.1103/PhysRevD.46.192 10.1103/PhysRevD.53.458 10.1007/JHEP06(2016)164 10.1007/JHEP06(2020)086 10.1007/JHEP11(2016)149 10.1103/PhysRevD.59.014015 10.1103/PhysRevD.94.054016 10.1103/PhysRevD.49.3352 10.1103/PhysRevD.89.061704 10.1007/JHEP05(2017)097 10.1016/S0550-3213(96)00589-5 10.1103/PhysRevD.104.054014 10.1007/JHEP10(2015)017 10.1016/j.nuclphysb.2017.05.012 10.1103/PhysRevD.102.051502 10.1007/JHEP07(2021)196 10.1007/JHEP01(2021)052 10.1016/0550-3213(95)00638-9 10.1103/PhysRevD.77.014019 10.1007/JHEP08(2014)114 10.1007/JHEP12(2016)034 10.1103/PhysRevD.88.114010 10.1142/9789812795533_0005 10.1016/S0375-9474(01)00642-X 10.1016/S0375-9474(01)01329-X 10.1103/PhysRevLett.119.072002 10.1142/S0218301318300035 10.1016/0550-3213(86)90164-1 10.1007/JHEP01(2017)115 10.1007/JHEP10(2019)208 10.1103/PhysRevC.99.015204 10.1016/0550-3213(79)90234-7 10.1103/PhysRevLett.110.082301 10.1016/j.nuclphysa.2005.05.163 10.1103/PhysRevD.104.054037 10.1103/PhysRevD.87.014013 10.1103/PhysRevLett.108.122301 10.1103/PhysRevD.73.034019 10.1142/1341 10.1140/epjc/s10052-021-09572-0 10.1103/PhysRevD.102.074028 10.1016/j.physletb.2021.136723 10.1007/JHEP03(2021)005 10.1103/PhysRevD.97.114027 10.1103/PhysRevD.50.2225 10.1103/PhysRevD.55.5414 10.1007/JHEP12(2016)041 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Brookhaven National Laboratory (BNL), Upton, NY (United States) |
CorporateAuthor_xml | – name: Brookhaven National Laboratory (BNL), Upton, NY (United States) |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PIMPY PQEST PQQKQ PQUKI PRINS OIOZB OTOTI DOA |
DOI | 10.1007/JHEP11(2021)222 |
DatabaseName | Springer_OA刊 CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China OSTI.GOV - Hybrid OSTI.GOV DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest One Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer_OA刊 url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 108 |
ExternalDocumentID | oai_doaj_org_article_4e194a3f8af942b8889e740b0b2202ee 1832773 10_1007_JHEP11_2021_222 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN AAYZJ ACACY ACGFS ACHIP ACREN ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFNRJ AFPKN AFWTZ AHBXF AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT 02O 1JI 1PV 1WK 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI AAYXX ABEEZ ABTEG ACAFW ACBXY ACMRT ACULB ADKPE ADRFC AEFHF AEJGL AERVB AFLOW AGJBK AHSBF AHSEE AIYBF AKPSB AOAED BAPOH BBWZM BGNMA CAG CITATION CJUJL COF CRLBU EDWGO EJD EMSAF EPQRW EQZZN H13 HAK IJHAN IOP IZVLO JCGBZ KC5 KOT M45 M4Y NT- NT. NU0 O9- PJBAE Q02 R4D RIN RKQ RNS ROL RPA S1Z S3P SY9 T37 ABUWG AZQEC DWQXO PQEST PQQKQ PQUKI PRINS OIOZB OTOTI |
ID | FETCH-LOGICAL-c444t-c4b9ba8328e0a3b8c9997f75cd42892f5b8509dca0dffe8244350fe71fce1b293 |
IEDL.DBID | DOA |
ISSN | 1029-8479 |
IngestDate | Tue Oct 22 15:12:09 EDT 2024 Mon Jul 10 02:34:28 EDT 2023 Thu Oct 10 16:31:24 EDT 2024 Thu Sep 26 17:07:57 EDT 2024 Sat Dec 16 12:08:25 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | NLO Computations Deep Inelastic Scattering (Phenomenology) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c444t-c4b9ba8328e0a3b8c9997f75cd42892f5b8509dca0dffe8244350fe71fce1b293 |
Notes | SC0012704 BNL-222438-2021-JAAM USDOE Office of Science (SC), Nuclear Physics (NP) |
ORCID | 0000-0002-4007-6136 0000000240076136 |
OpenAccessLink | https://doaj.org/article/4e194a3f8af942b8889e740b0b2202ee |
PQID | 2604657173 |
PQPubID | 2034718 |
PageCount | 108 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4e194a3f8af942b8889e740b0b2202ee osti_scitechconnect_1832773 proquest_journals_2604657173 crossref_primary_10_1007_JHEP11_2021_222 springer_journals_10_1007_JHEP11_2021_222 |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg – name: United States |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer Nature SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer Nature – name: SpringerOpen |
References | KolbéIRoyKSalazarFSchenkeBVenugopalanRInclusive prompt photon-jet correlations as a probe of gluon saturation in electron-nucleus scattering at small xJHEP2021010522021JHEP...01..052K10.1007/JHEP01(2021)052[arXiv:2008.04372] [INSPIRE] A.H. Mueller, B.-W. Xiao and F. Yuan, Sudakov resummation in small-x saturation formalism, Phys. Rev. Lett.110 (2013) 082301 [arXiv:1210.5792] [INSPIRE]. A.H. Mueller, B.-W. Xiao and F. Yuan, Sudakov double logarithms resummation in hard processes in the small-x saturation formalism, Phys. Rev. D88 (2013) 114010 [arXiv:1308.2993] [INSPIRE]. I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys. B463 (1996) 99 [hep-ph/9509348] [INSPIRE]. J.-P. Blaizot, High gluon densities in heavy ion collisions, Rept. Prog. Phys.80 (2017) 032301 [arXiv:1607.04448] [INSPIRE]. GelisFQuantum field theory2019Cambridge, U.K.Cambridge University Press10.1017/9781108691550 A. Dumitru, T. Lappi and V. Skokov, Distribution of linearly polarized gluons and elliptic azimuthal anisotropy in deep inelastic scattering dijet production at high energy, Phys. Rev. Lett.115 (2015) 252301 [arXiv:1508.04438] [INSPIRE]. KovnerALublinskyMMulianYNLO JIMWLK evolution unabridgedJHEP2014081142014JHEP...08..114K10.1007/JHEP08(2014)114[arXiv:1405.0418] [INSPIRE] A. van Hameren, P. Kotko, K. Kutak, C. Marquet, E. Petreska and S. Sapeta, Forward di-jet production in p+Pb collisions in the small-x improved TMD factorization framework, JHEP12 (2016) 034 [Erratum ibid.02 (2019) 158] [arXiv:1607.03121] [INSPIRE]. G. Beuf, T. Lappi and R. Paatelainen, Massive quarks in NLO dipole factorization for DIS: longitudinal photon, Phys. Rev. D104 (2021) 056032 [arXiv:2103.14549] [INSPIRE]. RoyKVenugopalanRInclusive prompt photon production in electron-nucleus scattering at small xJHEP2018050132018JHEP...05..013R10.1007/JHEP05(2018)013[arXiv:1802.09550] [INSPIRE] I. Balitsky and G.A. Chirilli, Rapidity evolution of Wilson lines at the next-to-leading order, Phys. Rev. D88 (2013) 111501 [arXiv:1309.7644] [INSPIRE]. Y.V. Kovchegov, Small x F2structure function of a nucleus including multiple Pomeron exchanges, Phys. Rev. D60 (1999) 034008 [hep-ph/9901281] [INSPIRE]. DuclouéBIancuEMuellerAHSoyezGTriantafyllopoulosDNNon-linear evolution in QCD at high-energy beyond leading orderJHEP2019040812019JHEP...04..081D395399310.1007/JHEP04(2019)081[arXiv:1902.06637] [INSPIRE] A. Ayala, J. Jalilian-Marian, L.D. McLerran and R. Venugopalan, Quantum corrections to the Weizsacker-Williams gluon distribution function at small x, Phys. Rev. D53 (1996) 458 [hep-ph/9508302] [INSPIRE]. NeillDRingerFSoft fragmentation on the celestial sphereJHEP2020060862020JHEP...06..086N10.1007/JHEP06(2020)086[arXiv:2003.02275] [INSPIRE] R. Boussarie, A.V. Grabovsky, D.Y. Ivanov, L. Szymanowski and S. Wallon, Next-to-leading order computation of exclusive diffractive light vector meson production in a saturation framework, Phys. Rev. Lett.119 (2017) 072002 [arXiv:1612.08026] [INSPIRE]. A. Dumitru, V. Skokov and T. Ullrich, Measuring the Weizsäcker-Williams distribution of linearly polarized gluons at an electron-ion collider through dijet azimuthal asymmetries, Phys. Rev. C99 (2019) 015204 [arXiv:1809.02615] [INSPIRE]. H. Mäntysaari, N. Mueller, F. Salazar and B. Schenke, Multigluon correlations and evidence of saturation from dijet measurements at an electron-ion collider, Phys. Rev. Lett.124 (2020) 112301 [arXiv:1912.05586] [INSPIRE]. AltinolukTBoussarieRLow x physics as an infinite twist (G)TMD framework: unravelling the origins of saturationJHEP2019102082019JHEP...10..208A405105410.1007/JHEP10(2019)208[arXiv:1902.07930] [INSPIRE] SchwartzMDQuantum field theory and the standard model2014Cambridge, U.K.Cambridge University Press IvanovDYPapaAThe next-to-leading order forward jet vertex in the small-cone approximationJHEP2012050862012JHEP...05..086I10.1007/JHEP05(2012)086[arXiv:1202.1082] [INSPIRE] R. Boussarie, Perturbative study of selected exclusive QCD processes at high and moderate energies, theses, Université Paris Saclay (COmUE), Paris, France, September 2016. M. Hentschinski, Color glass condensate formalism, Balitsky-JIMWLK evolution, and Lipatov’s high energy effective action, Phys. Rev. D97 (2018) 114027 [arXiv:1802.06755] [INSPIRE]. J.P. Blaizot, F. Gelis and R. Venugopalan, High-energy pA collisions in the color glass condensate approach. 2. Quark production, Nucl. Phys. A743 (2004) 57 [hep-ph/0402257] [INSPIRE]. AyalaAHentschinskiMJalilian-MarianJTejeda-YeomansMEPolarized 3 parton production in inclusive DIS at small xPhys. Lett. B20167612292016PhLB..761..229A10.1016/j.physletb.2016.08.035[arXiv:1604.08526] [INSPIRE] I.I. Balitsky and A.V. Belitsky, Nonlinear evolution in high density QCD, Nucl. Phys. B629 (2002) 290 [hep-ph/0110158] [INSPIRE]. AltinolukTMarquetCTaelsPLow-x improved TMD approach to the lepto- and hadroproduction of a heavy-quark pairJHEP2021060852021JHEP...06..085A431635510.1007/JHEP06(2021)085[arXiv:2103.14495] [INSPIRE] E. Ferreiro, E. Iancu, A. Leonidov and L. McLerran, Nonlinear gluon evolution in the color glass condensate. 2, Nucl. Phys. A703 (2002) 489 [hep-ph/0109115] [INSPIRE]. GelisFIancuEJalilian-MarianJVenugopalanRThe color glass condensateAnn. Rev. Nucl. Part. Sci.2010604632010ARNPS..60..463G10.1146/annurev.nucl.010909.083629[arXiv:1002.0333] [INSPIRE] BalitskyITarasovAGluon TMD in particle production from low to moderate xJHEP2016061642016JHEP...06..164B353880210.1007/JHEP06(2016)164[arXiv:1603.06548] [INSPIRE] Y. Hatta, B.-W. Xiao, F. Yuan and J. Zhou, Anisotropy in dijet production in exclusive and inclusive processes, Phys. Rev. Lett.126 (2021) 142001 [arXiv:2010.10774] [INSPIRE]. R. Abdul Khalek et al., Science requirements and detector concepts for the electron-ion collider: EIC yellow report, arXiv:2103.05419 [INSPIRE]. BenicSFukushimaKGarcia-MonteroOVenugopalanRProbing gluon saturation with next-to-leading order photon production at central rapidities in proton-nucleus collisionsJHEP2017011152017JHEP...01..115B10.1007/JHEP01(2017)115[arXiv:1609.09424] [INSPIRE] BondarenkoSLipatovLPrygarinAEffective action for reggeized gluons, classical gluon field of relativistic color charge and color glass condensate approachEur. Phys. J. C2017775272017EPJC...77..527B10.1140/epjc/s10052-017-5101-5[arXiv:1706.00278] [INSPIRE] H. Mäntysaari and J. Penttala, Exclusive heavy vector meson production at next-to-leading order in the dipole picture, Phys. Lett. B823 (2021) 136723 [arXiv:2104.02349] [INSPIRE]. Y. Hatta, E. Iancu, K. Itakura and L. McLerran, Odderon in the color glass condensate, Nucl. Phys. A760 (2005) 172 [hep-ph/0501171] [INSPIRE]. AyalaAHentschinskiMJalilian-MarianJTejeda-YeomansMESpinor helicity methods in high-energy factorization: efficient momentum-space calculations in the color glass condensate formalismNucl. Phys. B20179202322017NuPhB.920..232A365639210.1016/j.nuclphysb.2017.03.028[arXiv:1701.07143] [INSPIRE] K. Roy and R. Venugopalan, NLO impact factor for inclusive photon+dijet production in e + A DIS at small x, Phys. Rev. D101 (2020) 034028 [arXiv:1911.04530] [INSPIRE]. Y. Hatta, B.-W. Xiao, F. Yuan and J. Zhou, Azimuthal angular asymmetry of soft gluon radiation in jet production, Phys. Rev. D104 (2021) 054037 [arXiv:2106.05307] [INSPIRE]. A. Kovner, M. Lublinsky and Y. Mulian, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner evolution at next to leading order, Phys. Rev. D89 (2014) 061704 [arXiv:1310.0378] [INSPIRE]. L.D. McLerran and R. Venugopalan, Fock space distributions, structure functions, higher twists and small x, Phys. Rev. D59 (1999) 094002 [hep-ph/9809427] [INSPIRE]. G. Beuf, Dipole factorization for DIS at NLO: loop correction to theγTL∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\gamma}_{TL}^{\ast } $$\end{document}→ qq¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{q} $$\end{document}light-front wave functions, Phys. Rev. D94 (2016) 054016 [arXiv:1606.00777] [INSPIRE]. G. Beuf, NLO corrections for the dipole factorization of DIS structure functions at low x, Phys. Rev. D85 (2012) 034039 [arXiv:1112.4501] [INSPIRE]. G. Beuf, Dipole factorization for DIS at NLO: combining the qq¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{q} $$\end{document}and qq¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{q} $$\end{document}g contributions, Phys. Rev. D96 (2017) 074033 [arXiv:1708.06557] [INSPIRE]. IancuEMadrigalJDMuellerAHSoyezGTriantafyllopoulosDNCollinearly-improved BK evolution meets the HERA dataPhys. Lett. B20157506432015PhLB..750..643I10.1016/j.physletb.2015.09.071[arXiv:1507.03651] [INSPIRE] E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass condensate. 1, Nucl. Phys. A692 (2001) 583 [hep-ph/0011241] [INSPIRE]. MuellerAHConformal spacelike-timelike correspondence in QCDJHEP2018081392018JHEP...08..139M386118310.1007/JHEP08(2018)139[arXiv:1804.07249] [INSPIRE] F. Gelis and Y. Mehtar-Tani, Gluon propagation inside a high-energy nucleus, Phys. Rev. D73 (2006) 034019 [hep-ph/0512079] [INSPIRE]. L.D. McLerran and R. Venugopalan, Green’s functions in the color field of a large nucleus, Phys. Rev. D50 (1994) 2225 [hep-ph/9402335] [INSPIRE]. Y.V. Kovchegov and H. Weigert, Triumvirate of running couplings in small-x evolution, Nucl. Phys. A784 E Petreska (17261_CR99) 2018; 27 17261_CR104 17261_CR74 17261_CR102 M Lublinsky (17261_CR28) 2017; 05 17261_CR103 17261_CR71 17261_CR73 K Roy (17261_CR72) 2018; 05 A Ayala (17261_CR75) 2016; 761 17261_CR79 I Balitsky (17261_CR87) 2015; 10 17261_CR80 17261_CR107 17261_CR81 E Iancu (17261_CR105) 2021; 07 E Iancu (17261_CR48) 2021; 03 17261_CR83 S Bondarenko (17261_CR67) 2017; 77 I Balitsky (17261_CR88) 2016; 06 A Bassetto (17261_CR58) 1991 17261_CR91 17261_CR90 S Caron-Huot (17261_CR30) 2018; 02 H Hänninen (17261_CR35) 2018; 393 17261_CR53 17261_CR52 17261_CR54 JL Albacete (17261_CR13) 2014; 76 17261_CR51 17261_CR50 T Altinoluk (17261_CR101) 2019; 10 17261_CR56 17261_CR59 T Altinoluk (17261_CR100) 2019; 05 A Morreale (17261_CR15) 2021; 7 17261_CR64 17261_CR63 17261_CR65 17261_CR60 17261_CR62 17261_CR61 17261_CR68 F Gelis (17261_CR78) 2019 A Kovner (17261_CR27) 2014; 08 E Iancu (17261_CR49) 2015; 750 AH Mueller (17261_CR85) 2018; 08 P Kotko (17261_CR93) 2017; 77 17261_CR31 17261_CR33 17261_CR32 17261_CR8 17261_CR7 17261_CR9 17261_CR39 17261_CR38 E Iancu (17261_CR69) 2016; 12 17261_CR34 17261_CR37 17261_CR36 B-W Xiao (17261_CR89) 2017; 921 P Kotko (17261_CR97) 2015; 09 17261_CR4 H Fujii (17261_CR94) 2020; 12 17261_CR3 17261_CR6 T Altinoluk (17261_CR96) 2021; 06 17261_CR5 17261_CR2 17261_CR1 17261_CR42 17261_CR41 17261_CR44 S Bondarenko (17261_CR66) 2021; 81 17261_CR43 17261_CR40 17261_CR46 17261_CR45 17261_CR47 B Ducloué (17261_CR70) 2019; 04 A Ayala (17261_CR76) 2017; 920 Y Hatta (17261_CR84) 2008; 11 17261_CR10 17261_CR98 17261_CR92 17261_CR95 17261_CR17 17261_CR16 17261_CR19 S Benic (17261_CR57) 2017; 01 17261_CR18 17261_CR12 17261_CR14 D Neill (17261_CR86) 2020; 06 I Kolbé (17261_CR106) 2021; 01 17261_CR20 17261_CR22 17261_CR21 17261_CR29 17261_CR24 17261_CR23 MD Schwartz (17261_CR77) 2014 17261_CR26 17261_CR25 R Boussarie (17261_CR55) 2021; 09 F Gelis (17261_CR11) 2010; 60 DY Ivanov (17261_CR82) 2012; 05 |
References_xml | – ident: 17261_CR59 doi: 10.1103/PhysRevD.83.105005 – ident: 17261_CR83 – ident: 17261_CR24 doi: 10.1016/j.nuclphysa.2006.10.075 – volume: 05 start-page: 156 year: 2019 ident: 17261_CR100 publication-title: JHEP doi: 10.1007/JHEP05(2019)156 contributor: fullname: T Altinoluk – ident: 17261_CR95 doi: 10.1016/j.physletb.2019.06.055 – volume: 11 start-page: 057 year: 2008 ident: 17261_CR84 publication-title: JHEP doi: 10.1088/1126-6708/2008/11/057 contributor: fullname: Y Hatta – volume: 77 start-page: 527 year: 2017 ident: 17261_CR67 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-017-5101-5 contributor: fullname: S Bondarenko – ident: 17261_CR43 doi: 10.1103/PhysRevD.86.054005 – ident: 17261_CR64 doi: 10.1103/PhysRevD.52.2935 – ident: 17261_CR21 doi: 10.1016/S0370-2693(01)00524-X – ident: 17261_CR68 – ident: 17261_CR44 doi: 10.1103/PhysRevD.91.094016 – volume: 04 start-page: 081 year: 2019 ident: 17261_CR70 publication-title: JHEP doi: 10.1007/JHEP04(2019)081 contributor: fullname: B Ducloué – volume: 08 start-page: 139 year: 2018 ident: 17261_CR85 publication-title: JHEP doi: 10.1007/JHEP08(2018)139 contributor: fullname: AH Mueller – ident: 17261_CR74 doi: 10.1103/PhysRevD.103.094026 – ident: 17261_CR62 doi: 10.1016/S0550-3213(02)00149-9 – ident: 17261_CR52 doi: 10.1103/PhysRevLett.115.252301 – ident: 17261_CR34 doi: 10.1103/PhysRevD.96.074033 – ident: 17261_CR14 doi: 10.1088/1361-6633/aa5435 – ident: 17261_CR36 doi: 10.1103/PhysRevD.96.094017 – ident: 17261_CR32 doi: 10.1103/PhysRevD.85.034039 – volume: 09 start-page: 178 year: 2021 ident: 17261_CR55 publication-title: JHEP doi: 10.1007/JHEP09(2021)178 contributor: fullname: R Boussarie – ident: 17261_CR90 doi: 10.1103/PhysRevLett.126.142001 – volume: 761 start-page: 229 year: 2016 ident: 17261_CR75 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2016.08.035 contributor: fullname: A Ayala – volume: 76 start-page: 1 year: 2014 ident: 17261_CR13 publication-title: Prog. Part. Nucl. Phys. doi: 10.1016/j.ppnp.2014.01.004 contributor: fullname: JL Albacete – volume: 7 start-page: 312 year: 2021 ident: 17261_CR15 publication-title: Universe doi: 10.3390/universe7080312 contributor: fullname: A Morreale – volume: 02 start-page: 058 year: 2018 ident: 17261_CR30 publication-title: JHEP doi: 10.1007/JHEP02(2018)058 contributor: fullname: S Caron-Huot – volume: 12 start-page: 181 year: 2020 ident: 17261_CR94 publication-title: JHEP doi: 10.1007/JHEP12(2020)181 contributor: fullname: H Fujii – ident: 17261_CR73 doi: 10.1103/PhysRevD.66.014021 – ident: 17261_CR54 doi: 10.1103/PhysRevLett.124.112301 – ident: 17261_CR7 doi: 10.1103/PhysRevD.49.2233 – volume-title: Quantum field theory year: 2019 ident: 17261_CR78 doi: 10.1017/9781108691550 contributor: fullname: F Gelis – volume: 750 start-page: 643 year: 2015 ident: 17261_CR49 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2015.09.071 contributor: fullname: E Iancu – ident: 17261_CR19 doi: 10.1103/PhysRevD.62.114005 – ident: 17261_CR40 doi: 10.1103/PhysRevD.100.074020 – volume: 06 start-page: 085 year: 2021 ident: 17261_CR96 publication-title: JHEP doi: 10.1007/JHEP06(2021)085 contributor: fullname: T Altinoluk – ident: 17261_CR25 doi: 10.1103/PhysRevD.88.111501 – ident: 17261_CR51 doi: 10.1103/PhysRevD.89.074037 – ident: 17261_CR2 doi: 10.1016/0370-1573(83)90022-4 – volume: 393 start-page: 358 year: 2018 ident: 17261_CR35 publication-title: Annals Phys. doi: 10.1016/j.aop.2018.04.015 contributor: fullname: H Hänninen – ident: 17261_CR47 doi: 10.1103/PhysRevD.101.034028 – volume: 77 start-page: 353 year: 2017 ident: 17261_CR93 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-017-4906-6 contributor: fullname: P Kotko – ident: 17261_CR5 doi: 10.1088/1361-6633/aaf216 – ident: 17261_CR29 doi: 10.1103/PhysRevD.60.034008 – ident: 17261_CR1 doi: 10.1103/RevModPhys.71.1275 – ident: 17261_CR12 doi: 10.1017/CBO9781139022187 – ident: 17261_CR46 doi: 10.1103/PhysRevD.101.071505 – ident: 17261_CR102 doi: 10.1103/PhysRevD.103.094012 – ident: 17261_CR45 doi: 10.1103/PhysRevLett.112.012302 – volume: 920 start-page: 232 year: 2017 ident: 17261_CR76 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2017.03.028 contributor: fullname: A Ayala – volume: 09 start-page: 106 year: 2015 ident: 17261_CR97 publication-title: JHEP doi: 10.1007/JHEP09(2015)106 contributor: fullname: P Kotko – volume: 05 start-page: 013 year: 2018 ident: 17261_CR72 publication-title: JHEP doi: 10.1007/JHEP05(2018)013 contributor: fullname: K Roy – volume: 05 start-page: 086 year: 2012 ident: 17261_CR82 publication-title: JHEP doi: 10.1007/JHEP05(2012)086 contributor: fullname: DY Ivanov – volume: 60 start-page: 463 year: 2010 ident: 17261_CR11 publication-title: Ann. Rev. Nucl. Part. Sci. doi: 10.1146/annurev.nucl.010909.083629 contributor: fullname: F Gelis – ident: 17261_CR56 doi: 10.1016/j.nuclphysa.2004.07.006 – ident: 17261_CR63 doi: 10.1103/PhysRevD.59.094002 – ident: 17261_CR37 doi: 10.1103/PhysRevD.104.056032 – ident: 17261_CR80 doi: 10.1103/PhysRevD.46.192 – ident: 17261_CR61 doi: 10.1103/PhysRevD.53.458 – volume: 06 start-page: 164 year: 2016 ident: 17261_CR88 publication-title: JHEP doi: 10.1007/JHEP06(2016)164 contributor: fullname: I Balitsky – volume-title: Quantum field theory and the standard model year: 2014 ident: 17261_CR77 contributor: fullname: MD Schwartz – ident: 17261_CR4 – volume: 06 start-page: 086 year: 2020 ident: 17261_CR86 publication-title: JHEP doi: 10.1007/JHEP06(2020)086 contributor: fullname: D Neill – ident: 17261_CR39 doi: 10.1007/JHEP11(2016)149 – ident: 17261_CR18 doi: 10.1103/PhysRevD.59.014015 – ident: 17261_CR33 doi: 10.1103/PhysRevD.94.054016 – ident: 17261_CR8 doi: 10.1103/PhysRevD.49.3352 – ident: 17261_CR26 doi: 10.1103/PhysRevD.89.061704 – volume: 05 start-page: 097 year: 2017 ident: 17261_CR28 publication-title: JHEP doi: 10.1007/JHEP05(2017)097 contributor: fullname: M Lublinsky – ident: 17261_CR81 doi: 10.1016/S0550-3213(96)00589-5 – ident: 17261_CR92 doi: 10.1103/PhysRevD.104.054014 – volume: 10 start-page: 017 year: 2015 ident: 17261_CR87 publication-title: JHEP doi: 10.1007/JHEP10(2015)017 contributor: fullname: I Balitsky – volume: 921 start-page: 104 year: 2017 ident: 17261_CR89 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2017.05.012 contributor: fullname: B-W Xiao – ident: 17261_CR71 doi: 10.1103/PhysRevD.102.051502 – volume: 07 start-page: 196 year: 2021 ident: 17261_CR105 publication-title: JHEP doi: 10.1007/JHEP07(2021)196 contributor: fullname: E Iancu – volume: 01 start-page: 052 year: 2021 ident: 17261_CR106 publication-title: JHEP doi: 10.1007/JHEP01(2021)052 contributor: fullname: I Kolbé – ident: 17261_CR16 doi: 10.1016/0550-3213(95)00638-9 – ident: 17261_CR23 doi: 10.1103/PhysRevD.77.014019 – volume: 08 start-page: 114 year: 2014 ident: 17261_CR27 publication-title: JHEP doi: 10.1007/JHEP08(2014)114 contributor: fullname: A Kovner – ident: 17261_CR98 doi: 10.1007/JHEP12(2016)034 – ident: 17261_CR104 doi: 10.1103/PhysRevD.88.114010 – ident: 17261_CR10 doi: 10.1142/9789812795533_0005 – ident: 17261_CR20 doi: 10.1016/S0375-9474(01)00642-X – ident: 17261_CR22 doi: 10.1016/S0375-9474(01)01329-X – ident: 17261_CR38 doi: 10.1103/PhysRevLett.119.072002 – volume: 27 start-page: 1830003 year: 2018 ident: 17261_CR99 publication-title: Int. J. Mod. Phys. E doi: 10.1142/S0218301318300035 contributor: fullname: E Petreska – ident: 17261_CR3 doi: 10.1016/0550-3213(86)90164-1 – volume: 01 start-page: 115 year: 2017 ident: 17261_CR57 publication-title: JHEP doi: 10.1007/JHEP01(2017)115 contributor: fullname: S Benic – volume: 10 start-page: 208 year: 2019 ident: 17261_CR101 publication-title: JHEP doi: 10.1007/JHEP10(2019)208 contributor: fullname: T Altinoluk – ident: 17261_CR53 doi: 10.1103/PhysRevC.99.015204 – ident: 17261_CR6 – ident: 17261_CR107 doi: 10.1016/0550-3213(79)90234-7 – ident: 17261_CR103 doi: 10.1103/PhysRevLett.110.082301 – ident: 17261_CR79 doi: 10.1016/j.nuclphysa.2005.05.163 – ident: 17261_CR91 doi: 10.1103/PhysRevD.104.054037 – ident: 17261_CR31 doi: 10.1103/PhysRevD.87.014013 – ident: 17261_CR42 doi: 10.1103/PhysRevLett.108.122301 – ident: 17261_CR60 doi: 10.1103/PhysRevD.73.034019 – volume-title: Yang-Mills theories in algebraic noncovariant gauges: canonical quantization and renormalization year: 1991 ident: 17261_CR58 doi: 10.1142/1341 contributor: fullname: A Bassetto – volume: 81 start-page: 793 year: 2021 ident: 17261_CR66 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-021-09572-0 contributor: fullname: S Bondarenko – ident: 17261_CR50 doi: 10.1103/PhysRevD.102.074028 – ident: 17261_CR41 doi: 10.1016/j.physletb.2021.136723 – volume: 03 start-page: 005 year: 2021 ident: 17261_CR48 publication-title: JHEP doi: 10.1007/JHEP03(2021)005 contributor: fullname: E Iancu – ident: 17261_CR65 doi: 10.1103/PhysRevD.97.114027 – ident: 17261_CR9 doi: 10.1103/PhysRevD.50.2225 – ident: 17261_CR17 doi: 10.1103/PhysRevD.55.5414 – volume: 12 start-page: 041 year: 2016 ident: 17261_CR69 publication-title: JHEP doi: 10.1007/JHEP12(2016)041 contributor: fullname: E Iancu |
SSID | ssj0015190 |
Score | 2.6575997 |
Snippet | A
bstract
We compute the next-to-leading order impact factor for inclusive dijet production in deeply inelastic electron-nucleus scattering at small
x
Bj
. Our... We compute the next-to-leading order impact factor for inclusive dijet production in deeply inelastic electron-nucleus scattering at small xBj. Our... In this work, we compute the next-to-leading order impact factor for inclusive dijet production in deeply inelastic electron-nucleus scattering at small xBj.... Abstract We compute the next-to-leading order impact factor for inclusive dijet production in deeply inelastic electron-nucleus scattering at small x Bj. Our... |
SourceID | doaj osti proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Classical and Quantum Gravitation Color Condensates Correlators Deep inelastic scattering (phenomenology) Elementary Particles Field theory Gluons High energy physics Impact factors Inelastic scattering NLO Computations NUCLEAR PHYSICS AND RADIATION PHYSICS Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory Shock waves String Theory |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Na90wDBfbK4Ndyj5Z1m74sEN7CHVs5-s01vZ1b4WV7qPQm7Ece3SMpH0v-_8n5aOlg-2ShDiYIFnST5YsAbwrGt0UVVGkKveYmgZN6hTWqY6hzpCUg9J83vnzWbG6MKeX-eW04baZ0ipnnTgo6qbzvEd-QLjbFDnHjN9f36TcNYqjq1MLjYewpchTkAvYOlyenX-9jSMQPpFzQR9ZHpyuludZtkcOf7avlLpni4aS_XTrSLTuwc2_IqSD4Tl5AtsTYhQfRhY_hQehfQaPhsxNv3kOX46vfoZejKcdxdg-R1y14vjTN-F60bJn23fprzFZXgylNnmcgJ84Is23Fh8ZQNMz98LdEPR8ARcny-9Hq3Tqk5B6Y0xPV6zRkWhWQTqNlSfQV8Yy9w35FrWKOVYECxrvZBNjqMig61zGUGbRhwzJ3r-ERdu14RUIJACiShXQ5TS1VNj4TEfMa9IFWkqXwN5MMXs9lsOwc-HjkbiWiWuJuAkcMkVvP-M61sOLbv3DTmJhTchq43SsXKyNQnLH61AaiRIVzRNCAjvMD0twgGvaek7-8b1lPVSWOoHdmU12Er2NvVsoCezPrLsb_sffvv7_VDvwmL8cDyHuwqJf_w5vCI30-HZacn8AqhXbcQ priority: 102 providerName: ProQuest – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BFRIXRFsQ4VH50AMcghw_8jjy7BapFaisxM3yODZaqLLVbvj_jJPNIop66CWxYseKZjwz38QzY4CveS3rvMzzVGiHqapRpVZglcrgqwxJOQgZ851__MxHY3V9r-9XgC9_XTRPJ8OOZKeoh1y369HlTZYdka-eHZNNW4UPOtZCoxU8FqfLfQPCI3wo4PP-pTe2pyvRT7cpidIbePnXjmhnaK62YHOBENlpz9KPsOKbT7DeRWq6-We4vZg8-pb12Y2sPy6HTRp28f0Xsy1roifbTtPffXA860prxn4CeuycNN2MfYuAmdrx7Ns5Qc1tGF9d3p2P0sW5CKlTSrV0xQotiWLpuZVYOgJ5RSi0q8mXqETQWBIMqJ3ldQi-JAMuNQ--yILzGZJ934G1Ztr4XWBIgEMUwqPVNDUXWLtMBtQVyb7k3CZwNFDM_OnLX5ih0HFPXBOJa4i4CZxFii6HxbrV3YPp7MEsxMAon1XKylDaUCmB5H5XvlAcOQqax_sE9iM_DJn_WMPWxWAf15qod4pCJnAwsMksRG1uyCFTuY7BBAkcD6x77f7H1-79x9h92IjNPgPxANba2bM_JCjS4pdu9b0ASAHVQQ priority: 102 providerName: Springer Nature |
Title | Dijet impact factor in DIS at next-to-leading order in the Color Glass Condensate |
URI | https://link.springer.com/article/10.1007/JHEP11(2021)222 https://www.proquest.com/docview/2604657173 https://www.osti.gov/servlets/purl/1832773 https://doaj.org/article/4e194a3f8af942b8889e740b0b2202ee |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5RUKVeqkJbNYWufOgBDhGO7byOsOyyRQJBYSVulsexJaoqW7Hp_-84TkqphLhwcd6WNRPPfCOPvwH4WjSyKaqiSEVuMVUNqtQIrFPpXZ0hGQchw37n84tisVRnt_ntP6W-Qk5YpAeOgjtUjsJsI31lfK0EUsBWu1Jx5Cgobneut768HoOpYf2AcAkfiXx4eXi2mF1m2T59kB0IIR75oJ6qnw4rmlKPYOZ_K6O9w5m_g7cDUmRHcYTbsOHaHXjdZ2za9Xu4Orn74ToWdzmyWDaH3bXs5Ns1Mx1rQ0TbrdKfMUme9RSb4TkBPjYli3fPTgNwpvNQA3dNkPMDLOezm-kiHeojpFYp1VGLNRqakpXjRmJlCeyVvsxtQzFFLXyOFcGBxhreeO8qcuQy596VmbcuQ_LzH2GzXbXuEzAk4CFK4dDk1DUX2NhMesxrsgGSc5PA_igx_SvSYOiR8DgKVwfhahJuAsdBon9fC_zV_Q3Sqh60qp_TagK7QR-aYEDgsrUh6cd2OtifspQJ7I1q0sOUW2sKzFSRh6SCBA5G1T08fmK0n19itLvwJvQXtyjuwWZ3_9t9IazS4QReVfPTCWwdzy4uv9PVVKjQFtNJ_8NSuxRHfwCeQedr |
link.rule.ids | 230,315,783,787,867,888,2109,12777,21400,27936,27937,33385,33756,41131,41132,41535,42200,42201,42604,43612,43817,51588,52245,52246,74363,74630 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LT94wDLcYaNou09hDFBjLYQc4VKRJ-johXh8fT20aSNyiJE0QaGrh-7r_H7sPEJPYpa2aNqrs2v45jm2AH1klq6zIslikzsaqsio2wpaxDL5MLCoHISnf-fwim16pk-v0elhwmw_bKked2CnqqnG0Rr6NuFtlKcWMd-4fYuoaRdHVoYXGG1hSEm01ZYpPjp6iCIhO-FjOh-fbJ9PDn0myie5-siWEeGGJuoL9eGpQsF6AzX_io53ZmXyEDwNeZLs9g5dhwdef4G23b9PNP8Ovg9s737I-15H1zXPYbc0Ojn8z07Ka_Nq2if_0W-VZV2iTxhH2sX3UezN2RPAZr6kT7hyB5xe4mhxe7k_joUtC7JRSLR5taQ0KZuG5kbZwCPnykKeuQs-iFCG1BYKCyhleheALNOcy5cHnSXA-sWjtv8Ji3dR-BZhF-CFy4a1JcWoubOUSGWxaoiaQnJsINkeK6fu-GIYeyx73xNVEXI3EjWCPKPr0GFWx7m40sxs9CIVWPimVkaEwoVTCojNe-lxxy63AebyPYI34oREMUEVbR1t_XKtJC-W5jGB9ZJMeBG-un3-TCLZG1j0Pv_K1q_-f6ju8m16en-mz44vTNXhPb_XpiOuw2M7--m-IS1q70f18j2JR3Pw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDLfgJhAviE-t24A88LA9VJcmadM-Iba74zbgdHxM2luUpAkaQu12V_5_nDbdNCR4aaumjSo7tn-uHRvgbVHzuiiLImW5NamojUg1M1XKvasyg8qB8bDf-fOqWJ6Ls4v8IuY_bWNa5agTe0Vdtzb8I58i7hZFHmLGUx_TItazxbur6zR0kAqR1thO4z7sSFFwOoGd4_lq_fUmpoBYhY7Ffaicni3n6yw7ROc_O2KM3bFLffl-PLUoZneg51_R0t4ILZ7A44geyfuB3U_hnmuewYM-i9Nun8OX2eVP15Fh5yMZWumQy4bMTr8R3ZEmeLldm_4aEudJX3YzjCMIJCeoBTfkQwDTeB364m4Rhr6A88X8-8kyjT0TUiuE6PBoKqNRTEtHNTelRQAovcxtjX5GxXxuSoQItdW09t6VaNx5Tr2TmbcuM2j7X8KkaRu3C8QgGGGSOaNznJoyU9uMe5NXqBc4pTqBw5Fi6moojaHGIsgDcVUgrkLiJnAcKHrzWKhp3d9oNz9UFBElXFYJzX2pfSWYQde8clJQQw3DeZxLYD_wQyE0CPVtbUgEsp0KOklKnsDByCYVxXCrbhdNAkcj626H__G1e_-f6g08xJWnPp2uPu7Do_DSsDfxACbd5rd7hSClM6_j6vsDtSfimQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dijet+impact+factor+in+DIS+at+next-to-leading+order+in+the+Color+Glass+Condensate&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Caucal%2C+Paul&rft.au=Salazar%2C+Farid&rft.au=Venugopalan%2C+Raju&rft.date=2021-11-01&rft.pub=Springer+Nature&rft.issn=1029-8479&rft.eissn=1029-8479&rft.volume=2021&rft.issue=11&rft_id=info:doi/10.1007%2FJHEP11%282021%29222&rft.externalDocID=1832773 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |