Dijet impact factor in DIS at next-to-leading order in the Color Glass Condensate

A bstract We compute the next-to-leading order impact factor for inclusive dijet production in deeply inelastic electron-nucleus scattering at small x Bj . Our computation, performed in the framework of the Color Glass Condensate effective field theory, includes all real and virtual contributions in...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2021; no. 11; pp. 1 - 108
Main Authors Caucal, Paul, Salazar, Farid, Venugopalan, Raju
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2021
Springer Nature B.V
Springer Nature
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract We compute the next-to-leading order impact factor for inclusive dijet production in deeply inelastic electron-nucleus scattering at small x Bj . Our computation, performed in the framework of the Color Glass Condensate effective field theory, includes all real and virtual contributions in the gluon shock wave background of all-twist lightlike Wilson line correlators. We demonstrate explicitly that the rapidity evolution of these correlators, to leading logarithmic accuracy, is described by the JIMWLK Hamiltonian. When combined with the next-to-leading order JIMWLK Hamiltonian, our results for the impact factor improve the accuracy of the inclusive dijet cross-section to O ( α s 2 ln( x f /x Bj )), where x f is a rapidity factorization scale. These results are an essential ingredient in assessing the discovery potential of inclusive dijets to uncover the physics of gluon saturation at the Electron-Ion Collider.
AbstractList We compute the next-to-leading order impact factor for inclusive dijet production in deeply inelastic electron-nucleus scattering at small xBj. Our computation, performed in the framework of the Color Glass Condensate effective field theory, includes all real and virtual contributions in the gluon shock wave background of all-twist lightlike Wilson line correlators. We demonstrate explicitly that the rapidity evolution of these correlators, to leading logarithmic accuracy, is described by the JIMWLK Hamiltonian. When combined with the next-to-leading order JIMWLK Hamiltonian, our results for the impact factor improve the accuracy of the inclusive dijet cross-section to O(αs2ln(xf/xBj)), where xf is a rapidity factorization scale. These results are an essential ingredient in assessing the discovery potential of inclusive dijets to uncover the physics of gluon saturation at the Electron-Ion Collider.
In this work, we compute the next-to-leading order impact factor for inclusive dijet production in deeply inelastic electron-nucleus scattering at small xBj. Our computation, performed in the framework of the Color Glass Condensate effective field theory, includes all real and virtual contributions in the gluon shock wave background of all-twist lightlike Wilson line correlators. We demonstrate explicitly that the rapidity evolution of these correlators, to leading logarithmic accuracy, is described by the JIMWLK Hamiltonian. When combined with the next-to-leading order JIMWLK Hamiltonian, our results for the impact factor improve the accuracy of the inclusive dijet cross-section to \( \mathcal{O} \) ( \( {\alpha}_s^2 \) ln(xf /xBj)), where xf is a rapidity factorization scale. These results are an essential ingredient in assessing the discovery potential of inclusive dijets to uncover the physics of gluon saturation at the Electron-Ion Collider.
A bstract We compute the next-to-leading order impact factor for inclusive dijet production in deeply inelastic electron-nucleus scattering at small x Bj . Our computation, performed in the framework of the Color Glass Condensate effective field theory, includes all real and virtual contributions in the gluon shock wave background of all-twist lightlike Wilson line correlators. We demonstrate explicitly that the rapidity evolution of these correlators, to leading logarithmic accuracy, is described by the JIMWLK Hamiltonian. When combined with the next-to-leading order JIMWLK Hamiltonian, our results for the impact factor improve the accuracy of the inclusive dijet cross-section to $$ \mathcal{O} $$ O ( $$ {\alpha}_s^2 $$ α s 2 ln( x f /x Bj )), where x f is a rapidity factorization scale. These results are an essential ingredient in assessing the discovery potential of inclusive dijets to uncover the physics of gluon saturation at the Electron-Ion Collider.
Abstract We compute the next-to-leading order impact factor for inclusive dijet production in deeply inelastic electron-nucleus scattering at small x Bj. Our computation, performed in the framework of the Color Glass Condensate effective field theory, includes all real and virtual contributions in the gluon shock wave background of all-twist lightlike Wilson line correlators. We demonstrate explicitly that the rapidity evolution of these correlators, to leading logarithmic accuracy, is described by the JIMWLK Hamiltonian. When combined with the next-to-leading order JIMWLK Hamiltonian, our results for the impact factor improve the accuracy of the inclusive dijet cross-section to O $$ \mathcal{O} $$ ( α s 2 $$ {\alpha}_s^2 $$ ln(x f /x Bj)), where x f is a rapidity factorization scale. These results are an essential ingredient in assessing the discovery potential of inclusive dijets to uncover the physics of gluon saturation at the Electron-Ion Collider.
A bstract We compute the next-to-leading order impact factor for inclusive dijet production in deeply inelastic electron-nucleus scattering at small x Bj . Our computation, performed in the framework of the Color Glass Condensate effective field theory, includes all real and virtual contributions in the gluon shock wave background of all-twist lightlike Wilson line correlators. We demonstrate explicitly that the rapidity evolution of these correlators, to leading logarithmic accuracy, is described by the JIMWLK Hamiltonian. When combined with the next-to-leading order JIMWLK Hamiltonian, our results for the impact factor improve the accuracy of the inclusive dijet cross-section to O ( α s 2 ln( x f /x Bj )), where x f is a rapidity factorization scale. These results are an essential ingredient in assessing the discovery potential of inclusive dijets to uncover the physics of gluon saturation at the Electron-Ion Collider.
ArticleNumber 222
Author Caucal, Paul
Salazar, Farid
Venugopalan, Raju
Author_xml – sequence: 1
  givenname: Paul
  surname: Caucal
  fullname: Caucal, Paul
  organization: Physics Department, Brookhaven National Laboratory
– sequence: 2
  givenname: Farid
  orcidid: 0000-0002-4007-6136
  surname: Salazar
  fullname: Salazar, Farid
  email: farid.salazarwong@stonybrook.edu
  organization: Physics Department, Brookhaven National Laboratory, Physics Department, Stony Brook University, Center for Frontiers in Nuclear Science (CFNS), Stony Brook University
– sequence: 3
  givenname: Raju
  surname: Venugopalan
  fullname: Venugopalan, Raju
  organization: Physics Department, Brookhaven National Laboratory
BackLink https://www.osti.gov/servlets/purl/1832773$$D View this record in Osti.gov
BookMark eNp1kc1PHSEUxYmxiR913e3Ebupi6oVhBJbmafU1JtrUrgnDXJ68jPAKmOh_X3xjWjfdXG4uv3Ny4RyQ3RADEvKJwlcKIE6_X1_eUfqFAaMnjLEdsk-BqVZyoXbf9XvkIOc1AO2pgn3y48KvsTT-cWNsaVwtMTU-NBfLn40pTcDn0pbYTmhGH1ZNTCNu78sDNos4VfhqMjnXPowYsin4kXxwZsp49HYekl_fLu8X1-3N7dVycX7TWs55qXVQg5EdkwimG6RVSgknejtyJhVz_SB7UKM1MDqHknHe9eBQUGeRDkx1h2Q5-47RrPUm-UeTXnQ0Xm8HMa20ScXbCTVHqrjpnDROcTZIKRUKDgMMrH4XYvU6nr1iLl5n6wvaBxtDQFs0rUsK0VXo8wxtUvz9hLnodXxKob5RszPgZ72gW-p0pmyKOSd0f1ejoF-D0nNQ-jUoXYOqCpgVuZJhhemf7_8kfwCv8pRe
CitedBy_id crossref_primary_10_1007_JHEP10_2022_184
crossref_primary_10_1103_PhysRevLett_130_192301
crossref_primary_10_1103_PhysRevD_109_034035
crossref_primary_10_1007_JHEP01_2023_095
crossref_primary_10_1007_JHEP01_2024_159
crossref_primary_10_1007_JHEP10_2022_103
crossref_primary_10_1007_JHEP05_2024_024
crossref_primary_10_1007_JHEP06_2024_180
crossref_primary_10_1103_PhysRevD_106_094014
crossref_primary_10_1103_PhysRevD_109_074011
crossref_primary_10_1007_JHEP02_2024_165
crossref_primary_10_1007_JHEP03_2023_159
crossref_primary_10_1103_PhysRevLett_128_202001
crossref_primary_10_1103_PhysRevLett_132_081902
crossref_primary_10_1007_JHEP08_2023_062
crossref_primary_10_1103_PhysRevD_106_114025
crossref_primary_10_1103_PhysRevD_107_074016
crossref_primary_10_1103_PhysRevD_106_034013
crossref_primary_10_1103_PhysRevD_109_054004
crossref_primary_10_1140_epjc_s10052_023_12064_y
crossref_primary_10_1103_PhysRevD_107_016016
crossref_primary_10_1103_PhysRevLett_130_151902
crossref_primary_10_3390_universe9070324
crossref_primary_10_1007_JHEP05_2024_110
crossref_primary_10_1007_JHEP08_2022_247
crossref_primary_10_1007_JHEP01_2024_005
crossref_primary_10_1140_epjc_s10052_023_12120_7
crossref_primary_10_1007_JHEP11_2022_103
crossref_primary_10_1007_JHEP11_2022_169
crossref_primary_10_1103_PhysRevD_108_096025
crossref_primary_10_1103_PhysRevD_109_094001
crossref_primary_10_1103_PhysRevD_105_114038
crossref_primary_10_1103_PhysRevD_107_114007
crossref_primary_10_1007_JHEP03_2024_027
crossref_primary_10_1103_PhysRevD_106_054035
crossref_primary_10_1103_PhysRevD_108_074003
crossref_primary_10_1103_PhysRevLett_128_202302
crossref_primary_10_1007_JHEP07_2023_121
crossref_primary_10_1103_PhysRevD_107_054036
crossref_primary_10_1103_PhysRevD_106_036026
crossref_primary_10_1007_JHEP07_2022_041
crossref_primary_10_1103_PhysRevLett_130_181901
crossref_primary_10_3390_sym16050550
crossref_primary_10_1140_epja_s10050_024_01287_6
Cites_doi 10.1103/PhysRevD.83.105005
10.1016/j.nuclphysa.2006.10.075
10.1007/JHEP05(2019)156
10.1016/j.physletb.2019.06.055
10.1088/1126-6708/2008/11/057
10.1140/epjc/s10052-017-5101-5
10.1103/PhysRevD.86.054005
10.1103/PhysRevD.52.2935
10.1016/S0370-2693(01)00524-X
10.1103/PhysRevD.91.094016
10.1007/JHEP04(2019)081
10.1007/JHEP08(2018)139
10.1103/PhysRevD.103.094026
10.1016/S0550-3213(02)00149-9
10.1103/PhysRevLett.115.252301
10.1103/PhysRevD.96.074033
10.1088/1361-6633/aa5435
10.1103/PhysRevD.96.094017
10.1103/PhysRevD.85.034039
10.1007/JHEP09(2021)178
10.1103/PhysRevLett.126.142001
10.1016/j.physletb.2016.08.035
10.1016/j.ppnp.2014.01.004
10.3390/universe7080312
10.1007/JHEP02(2018)058
10.1007/JHEP12(2020)181
10.1103/PhysRevD.66.014021
10.1103/PhysRevLett.124.112301
10.1103/PhysRevD.49.2233
10.1017/9781108691550
10.1016/j.physletb.2015.09.071
10.1103/PhysRevD.62.114005
10.1103/PhysRevD.100.074020
10.1007/JHEP06(2021)085
10.1103/PhysRevD.88.111501
10.1103/PhysRevD.89.074037
10.1016/0370-1573(83)90022-4
10.1016/j.aop.2018.04.015
10.1103/PhysRevD.101.034028
10.1140/epjc/s10052-017-4906-6
10.1088/1361-6633/aaf216
10.1103/PhysRevD.60.034008
10.1103/RevModPhys.71.1275
10.1017/CBO9781139022187
10.1103/PhysRevD.101.071505
10.1103/PhysRevD.103.094012
10.1103/PhysRevLett.112.012302
10.1016/j.nuclphysb.2017.03.028
10.1007/JHEP09(2015)106
10.1007/JHEP05(2018)013
10.1007/JHEP05(2012)086
10.1146/annurev.nucl.010909.083629
10.1016/j.nuclphysa.2004.07.006
10.1103/PhysRevD.59.094002
10.1103/PhysRevD.104.056032
10.1103/PhysRevD.46.192
10.1103/PhysRevD.53.458
10.1007/JHEP06(2016)164
10.1007/JHEP06(2020)086
10.1007/JHEP11(2016)149
10.1103/PhysRevD.59.014015
10.1103/PhysRevD.94.054016
10.1103/PhysRevD.49.3352
10.1103/PhysRevD.89.061704
10.1007/JHEP05(2017)097
10.1016/S0550-3213(96)00589-5
10.1103/PhysRevD.104.054014
10.1007/JHEP10(2015)017
10.1016/j.nuclphysb.2017.05.012
10.1103/PhysRevD.102.051502
10.1007/JHEP07(2021)196
10.1007/JHEP01(2021)052
10.1016/0550-3213(95)00638-9
10.1103/PhysRevD.77.014019
10.1007/JHEP08(2014)114
10.1007/JHEP12(2016)034
10.1103/PhysRevD.88.114010
10.1142/9789812795533_0005
10.1016/S0375-9474(01)00642-X
10.1016/S0375-9474(01)01329-X
10.1103/PhysRevLett.119.072002
10.1142/S0218301318300035
10.1016/0550-3213(86)90164-1
10.1007/JHEP01(2017)115
10.1007/JHEP10(2019)208
10.1103/PhysRevC.99.015204
10.1016/0550-3213(79)90234-7
10.1103/PhysRevLett.110.082301
10.1016/j.nuclphysa.2005.05.163
10.1103/PhysRevD.104.054037
10.1103/PhysRevD.87.014013
10.1103/PhysRevLett.108.122301
10.1103/PhysRevD.73.034019
10.1142/1341
10.1140/epjc/s10052-021-09572-0
10.1103/PhysRevD.102.074028
10.1016/j.physletb.2021.136723
10.1007/JHEP03(2021)005
10.1103/PhysRevD.97.114027
10.1103/PhysRevD.50.2225
10.1103/PhysRevD.55.5414
10.1007/JHEP12(2016)041
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Brookhaven National Laboratory (BNL), Upton, NY (United States)
CorporateAuthor_xml – name: Brookhaven National Laboratory (BNL), Upton, NY (United States)
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
OIOZB
OTOTI
DOA
DOI 10.1007/JHEP11(2021)222
DatabaseName Springer_OA刊
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
OSTI.GOV - Hybrid
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
DatabaseTitleList Publicly Available Content Database

CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer_OA刊
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 108
ExternalDocumentID oai_doaj_org_article_4e194a3f8af942b8889e740b0b2202ee
1832773
10_1007_JHEP11_2021_222
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
AAYZJ
ACACY
ACGFS
ACHIP
ACREN
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFNRJ
AFPKN
AFWTZ
AHBXF
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1PV
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
ABEEZ
ABTEG
ACAFW
ACBXY
ACMRT
ACULB
ADKPE
ADRFC
AEFHF
AEJGL
AERVB
AFLOW
AGJBK
AHSBF
AHSEE
AIYBF
AKPSB
AOAED
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EJD
EMSAF
EPQRW
EQZZN
H13
HAK
IJHAN
IOP
IZVLO
JCGBZ
KC5
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
PRINS
OIOZB
OTOTI
ID FETCH-LOGICAL-c444t-c4b9ba8328e0a3b8c9997f75cd42892f5b8509dca0dffe8244350fe71fce1b293
IEDL.DBID DOA
ISSN 1029-8479
IngestDate Tue Oct 22 15:12:09 EDT 2024
Mon Jul 10 02:34:28 EDT 2023
Thu Oct 10 16:31:24 EDT 2024
Thu Sep 26 17:07:57 EDT 2024
Sat Dec 16 12:08:25 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords NLO Computations
Deep Inelastic Scattering (Phenomenology)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-c4b9ba8328e0a3b8c9997f75cd42892f5b8509dca0dffe8244350fe71fce1b293
Notes SC0012704
BNL-222438-2021-JAAM
USDOE Office of Science (SC), Nuclear Physics (NP)
ORCID 0000-0002-4007-6136
0000000240076136
OpenAccessLink https://doaj.org/article/4e194a3f8af942b8889e740b0b2202ee
PQID 2604657173
PQPubID 2034718
PageCount 108
ParticipantIDs doaj_primary_oai_doaj_org_article_4e194a3f8af942b8889e740b0b2202ee
osti_scitechconnect_1832773
proquest_journals_2604657173
crossref_primary_10_1007_JHEP11_2021_222
springer_journals_10_1007_JHEP11_2021_222
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
– name: United States
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Nature
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer Nature
– name: SpringerOpen
References KolbéIRoyKSalazarFSchenkeBVenugopalanRInclusive prompt photon-jet correlations as a probe of gluon saturation in electron-nucleus scattering at small xJHEP2021010522021JHEP...01..052K10.1007/JHEP01(2021)052[arXiv:2008.04372] [INSPIRE]
A.H. Mueller, B.-W. Xiao and F. Yuan, Sudakov resummation in small-x saturation formalism, Phys. Rev. Lett.110 (2013) 082301 [arXiv:1210.5792] [INSPIRE].
A.H. Mueller, B.-W. Xiao and F. Yuan, Sudakov double logarithms resummation in hard processes in the small-x saturation formalism, Phys. Rev. D88 (2013) 114010 [arXiv:1308.2993] [INSPIRE].
I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys. B463 (1996) 99 [hep-ph/9509348] [INSPIRE].
J.-P. Blaizot, High gluon densities in heavy ion collisions, Rept. Prog. Phys.80 (2017) 032301 [arXiv:1607.04448] [INSPIRE].
GelisFQuantum field theory2019Cambridge, U.K.Cambridge University Press10.1017/9781108691550
A. Dumitru, T. Lappi and V. Skokov, Distribution of linearly polarized gluons and elliptic azimuthal anisotropy in deep inelastic scattering dijet production at high energy, Phys. Rev. Lett.115 (2015) 252301 [arXiv:1508.04438] [INSPIRE].
KovnerALublinskyMMulianYNLO JIMWLK evolution unabridgedJHEP2014081142014JHEP...08..114K10.1007/JHEP08(2014)114[arXiv:1405.0418] [INSPIRE]
A. van Hameren, P. Kotko, K. Kutak, C. Marquet, E. Petreska and S. Sapeta, Forward di-jet production in p+Pb collisions in the small-x improved TMD factorization framework, JHEP12 (2016) 034 [Erratum ibid.02 (2019) 158] [arXiv:1607.03121] [INSPIRE].
G. Beuf, T. Lappi and R. Paatelainen, Massive quarks in NLO dipole factorization for DIS: longitudinal photon, Phys. Rev. D104 (2021) 056032 [arXiv:2103.14549] [INSPIRE].
RoyKVenugopalanRInclusive prompt photon production in electron-nucleus scattering at small xJHEP2018050132018JHEP...05..013R10.1007/JHEP05(2018)013[arXiv:1802.09550] [INSPIRE]
I. Balitsky and G.A. Chirilli, Rapidity evolution of Wilson lines at the next-to-leading order, Phys. Rev. D88 (2013) 111501 [arXiv:1309.7644] [INSPIRE].
Y.V. Kovchegov, Small x F2structure function of a nucleus including multiple Pomeron exchanges, Phys. Rev. D60 (1999) 034008 [hep-ph/9901281] [INSPIRE].
DuclouéBIancuEMuellerAHSoyezGTriantafyllopoulosDNNon-linear evolution in QCD at high-energy beyond leading orderJHEP2019040812019JHEP...04..081D395399310.1007/JHEP04(2019)081[arXiv:1902.06637] [INSPIRE]
A. Ayala, J. Jalilian-Marian, L.D. McLerran and R. Venugopalan, Quantum corrections to the Weizsacker-Williams gluon distribution function at small x, Phys. Rev. D53 (1996) 458 [hep-ph/9508302] [INSPIRE].
NeillDRingerFSoft fragmentation on the celestial sphereJHEP2020060862020JHEP...06..086N10.1007/JHEP06(2020)086[arXiv:2003.02275] [INSPIRE]
R. Boussarie, A.V. Grabovsky, D.Y. Ivanov, L. Szymanowski and S. Wallon, Next-to-leading order computation of exclusive diffractive light vector meson production in a saturation framework, Phys. Rev. Lett.119 (2017) 072002 [arXiv:1612.08026] [INSPIRE].
A. Dumitru, V. Skokov and T. Ullrich, Measuring the Weizsäcker-Williams distribution of linearly polarized gluons at an electron-ion collider through dijet azimuthal asymmetries, Phys. Rev. C99 (2019) 015204 [arXiv:1809.02615] [INSPIRE].
H. Mäntysaari, N. Mueller, F. Salazar and B. Schenke, Multigluon correlations and evidence of saturation from dijet measurements at an electron-ion collider, Phys. Rev. Lett.124 (2020) 112301 [arXiv:1912.05586] [INSPIRE].
AltinolukTBoussarieRLow x physics as an infinite twist (G)TMD framework: unravelling the origins of saturationJHEP2019102082019JHEP...10..208A405105410.1007/JHEP10(2019)208[arXiv:1902.07930] [INSPIRE]
SchwartzMDQuantum field theory and the standard model2014Cambridge, U.K.Cambridge University Press
IvanovDYPapaAThe next-to-leading order forward jet vertex in the small-cone approximationJHEP2012050862012JHEP...05..086I10.1007/JHEP05(2012)086[arXiv:1202.1082] [INSPIRE]
R. Boussarie, Perturbative study of selected exclusive QCD processes at high and moderate energies, theses, Université Paris Saclay (COmUE), Paris, France, September 2016.
M. Hentschinski, Color glass condensate formalism, Balitsky-JIMWLK evolution, and Lipatov’s high energy effective action, Phys. Rev. D97 (2018) 114027 [arXiv:1802.06755] [INSPIRE].
J.P. Blaizot, F. Gelis and R. Venugopalan, High-energy pA collisions in the color glass condensate approach. 2. Quark production, Nucl. Phys. A743 (2004) 57 [hep-ph/0402257] [INSPIRE].
AyalaAHentschinskiMJalilian-MarianJTejeda-YeomansMEPolarized 3 parton production in inclusive DIS at small xPhys. Lett. B20167612292016PhLB..761..229A10.1016/j.physletb.2016.08.035[arXiv:1604.08526] [INSPIRE]
I.I. Balitsky and A.V. Belitsky, Nonlinear evolution in high density QCD, Nucl. Phys. B629 (2002) 290 [hep-ph/0110158] [INSPIRE].
AltinolukTMarquetCTaelsPLow-x improved TMD approach to the lepto- and hadroproduction of a heavy-quark pairJHEP2021060852021JHEP...06..085A431635510.1007/JHEP06(2021)085[arXiv:2103.14495] [INSPIRE]
E. Ferreiro, E. Iancu, A. Leonidov and L. McLerran, Nonlinear gluon evolution in the color glass condensate. 2, Nucl. Phys. A703 (2002) 489 [hep-ph/0109115] [INSPIRE].
GelisFIancuEJalilian-MarianJVenugopalanRThe color glass condensateAnn. Rev. Nucl. Part. Sci.2010604632010ARNPS..60..463G10.1146/annurev.nucl.010909.083629[arXiv:1002.0333] [INSPIRE]
BalitskyITarasovAGluon TMD in particle production from low to moderate xJHEP2016061642016JHEP...06..164B353880210.1007/JHEP06(2016)164[arXiv:1603.06548] [INSPIRE]
Y. Hatta, B.-W. Xiao, F. Yuan and J. Zhou, Anisotropy in dijet production in exclusive and inclusive processes, Phys. Rev. Lett.126 (2021) 142001 [arXiv:2010.10774] [INSPIRE].
R. Abdul Khalek et al., Science requirements and detector concepts for the electron-ion collider: EIC yellow report, arXiv:2103.05419 [INSPIRE].
BenicSFukushimaKGarcia-MonteroOVenugopalanRProbing gluon saturation with next-to-leading order photon production at central rapidities in proton-nucleus collisionsJHEP2017011152017JHEP...01..115B10.1007/JHEP01(2017)115[arXiv:1609.09424] [INSPIRE]
BondarenkoSLipatovLPrygarinAEffective action for reggeized gluons, classical gluon field of relativistic color charge and color glass condensate approachEur. Phys. J. C2017775272017EPJC...77..527B10.1140/epjc/s10052-017-5101-5[arXiv:1706.00278] [INSPIRE]
H. Mäntysaari and J. Penttala, Exclusive heavy vector meson production at next-to-leading order in the dipole picture, Phys. Lett. B823 (2021) 136723 [arXiv:2104.02349] [INSPIRE].
Y. Hatta, E. Iancu, K. Itakura and L. McLerran, Odderon in the color glass condensate, Nucl. Phys. A760 (2005) 172 [hep-ph/0501171] [INSPIRE].
AyalaAHentschinskiMJalilian-MarianJTejeda-YeomansMESpinor helicity methods in high-energy factorization: efficient momentum-space calculations in the color glass condensate formalismNucl. Phys. B20179202322017NuPhB.920..232A365639210.1016/j.nuclphysb.2017.03.028[arXiv:1701.07143] [INSPIRE]
K. Roy and R. Venugopalan, NLO impact factor for inclusive photon+dijet production in e + A DIS at small x, Phys. Rev. D101 (2020) 034028 [arXiv:1911.04530] [INSPIRE].
Y. Hatta, B.-W. Xiao, F. Yuan and J. Zhou, Azimuthal angular asymmetry of soft gluon radiation in jet production, Phys. Rev. D104 (2021) 054037 [arXiv:2106.05307] [INSPIRE].
A. Kovner, M. Lublinsky and Y. Mulian, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner evolution at next to leading order, Phys. Rev. D89 (2014) 061704 [arXiv:1310.0378] [INSPIRE].
L.D. McLerran and R. Venugopalan, Fock space distributions, structure functions, higher twists and small x, Phys. Rev. D59 (1999) 094002 [hep-ph/9809427] [INSPIRE].
G. Beuf, Dipole factorization for DIS at NLO: loop correction to theγTL∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\gamma}_{TL}^{\ast } $$\end{document}→ qq¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{q} $$\end{document}light-front wave functions, Phys. Rev. D94 (2016) 054016 [arXiv:1606.00777] [INSPIRE].
G. Beuf, NLO corrections for the dipole factorization of DIS structure functions at low x, Phys. Rev. D85 (2012) 034039 [arXiv:1112.4501] [INSPIRE].
G. Beuf, Dipole factorization for DIS at NLO: combining the qq¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{q} $$\end{document}and qq¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{q} $$\end{document}g contributions, Phys. Rev. D96 (2017) 074033 [arXiv:1708.06557] [INSPIRE].
IancuEMadrigalJDMuellerAHSoyezGTriantafyllopoulosDNCollinearly-improved BK evolution meets the HERA dataPhys. Lett. B20157506432015PhLB..750..643I10.1016/j.physletb.2015.09.071[arXiv:1507.03651] [INSPIRE]
E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass condensate. 1, Nucl. Phys. A692 (2001) 583 [hep-ph/0011241] [INSPIRE].
MuellerAHConformal spacelike-timelike correspondence in QCDJHEP2018081392018JHEP...08..139M386118310.1007/JHEP08(2018)139[arXiv:1804.07249] [INSPIRE]
F. Gelis and Y. Mehtar-Tani, Gluon propagation inside a high-energy nucleus, Phys. Rev. D73 (2006) 034019 [hep-ph/0512079] [INSPIRE].
L.D. McLerran and R. Venugopalan, Green’s functions in the color field of a large nucleus, Phys. Rev. D50 (1994) 2225 [hep-ph/9402335] [INSPIRE].
Y.V. Kovchegov and H. Weigert, Triumvirate of running couplings in small-x evolution, Nucl. Phys. A784
E Petreska (17261_CR99) 2018; 27
17261_CR104
17261_CR74
17261_CR102
M Lublinsky (17261_CR28) 2017; 05
17261_CR103
17261_CR71
17261_CR73
K Roy (17261_CR72) 2018; 05
A Ayala (17261_CR75) 2016; 761
17261_CR79
I Balitsky (17261_CR87) 2015; 10
17261_CR80
17261_CR107
17261_CR81
E Iancu (17261_CR105) 2021; 07
E Iancu (17261_CR48) 2021; 03
17261_CR83
S Bondarenko (17261_CR67) 2017; 77
I Balitsky (17261_CR88) 2016; 06
A Bassetto (17261_CR58) 1991
17261_CR91
17261_CR90
S Caron-Huot (17261_CR30) 2018; 02
H Hänninen (17261_CR35) 2018; 393
17261_CR53
17261_CR52
17261_CR54
JL Albacete (17261_CR13) 2014; 76
17261_CR51
17261_CR50
T Altinoluk (17261_CR101) 2019; 10
17261_CR56
17261_CR59
T Altinoluk (17261_CR100) 2019; 05
A Morreale (17261_CR15) 2021; 7
17261_CR64
17261_CR63
17261_CR65
17261_CR60
17261_CR62
17261_CR61
17261_CR68
F Gelis (17261_CR78) 2019
A Kovner (17261_CR27) 2014; 08
E Iancu (17261_CR49) 2015; 750
AH Mueller (17261_CR85) 2018; 08
P Kotko (17261_CR93) 2017; 77
17261_CR31
17261_CR33
17261_CR32
17261_CR8
17261_CR7
17261_CR9
17261_CR39
17261_CR38
E Iancu (17261_CR69) 2016; 12
17261_CR34
17261_CR37
17261_CR36
B-W Xiao (17261_CR89) 2017; 921
P Kotko (17261_CR97) 2015; 09
17261_CR4
H Fujii (17261_CR94) 2020; 12
17261_CR3
17261_CR6
T Altinoluk (17261_CR96) 2021; 06
17261_CR5
17261_CR2
17261_CR1
17261_CR42
17261_CR41
17261_CR44
S Bondarenko (17261_CR66) 2021; 81
17261_CR43
17261_CR40
17261_CR46
17261_CR45
17261_CR47
B Ducloué (17261_CR70) 2019; 04
A Ayala (17261_CR76) 2017; 920
Y Hatta (17261_CR84) 2008; 11
17261_CR10
17261_CR98
17261_CR92
17261_CR95
17261_CR17
17261_CR16
17261_CR19
S Benic (17261_CR57) 2017; 01
17261_CR18
17261_CR12
17261_CR14
D Neill (17261_CR86) 2020; 06
I Kolbé (17261_CR106) 2021; 01
17261_CR20
17261_CR22
17261_CR21
17261_CR29
17261_CR24
17261_CR23
MD Schwartz (17261_CR77) 2014
17261_CR26
17261_CR25
R Boussarie (17261_CR55) 2021; 09
F Gelis (17261_CR11) 2010; 60
DY Ivanov (17261_CR82) 2012; 05
References_xml – ident: 17261_CR59
  doi: 10.1103/PhysRevD.83.105005
– ident: 17261_CR83
– ident: 17261_CR24
  doi: 10.1016/j.nuclphysa.2006.10.075
– volume: 05
  start-page: 156
  year: 2019
  ident: 17261_CR100
  publication-title: JHEP
  doi: 10.1007/JHEP05(2019)156
  contributor:
    fullname: T Altinoluk
– ident: 17261_CR95
  doi: 10.1016/j.physletb.2019.06.055
– volume: 11
  start-page: 057
  year: 2008
  ident: 17261_CR84
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/11/057
  contributor:
    fullname: Y Hatta
– volume: 77
  start-page: 527
  year: 2017
  ident: 17261_CR67
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-017-5101-5
  contributor:
    fullname: S Bondarenko
– ident: 17261_CR43
  doi: 10.1103/PhysRevD.86.054005
– ident: 17261_CR64
  doi: 10.1103/PhysRevD.52.2935
– ident: 17261_CR21
  doi: 10.1016/S0370-2693(01)00524-X
– ident: 17261_CR68
– ident: 17261_CR44
  doi: 10.1103/PhysRevD.91.094016
– volume: 04
  start-page: 081
  year: 2019
  ident: 17261_CR70
  publication-title: JHEP
  doi: 10.1007/JHEP04(2019)081
  contributor:
    fullname: B Ducloué
– volume: 08
  start-page: 139
  year: 2018
  ident: 17261_CR85
  publication-title: JHEP
  doi: 10.1007/JHEP08(2018)139
  contributor:
    fullname: AH Mueller
– ident: 17261_CR74
  doi: 10.1103/PhysRevD.103.094026
– ident: 17261_CR62
  doi: 10.1016/S0550-3213(02)00149-9
– ident: 17261_CR52
  doi: 10.1103/PhysRevLett.115.252301
– ident: 17261_CR34
  doi: 10.1103/PhysRevD.96.074033
– ident: 17261_CR14
  doi: 10.1088/1361-6633/aa5435
– ident: 17261_CR36
  doi: 10.1103/PhysRevD.96.094017
– ident: 17261_CR32
  doi: 10.1103/PhysRevD.85.034039
– volume: 09
  start-page: 178
  year: 2021
  ident: 17261_CR55
  publication-title: JHEP
  doi: 10.1007/JHEP09(2021)178
  contributor:
    fullname: R Boussarie
– ident: 17261_CR90
  doi: 10.1103/PhysRevLett.126.142001
– volume: 761
  start-page: 229
  year: 2016
  ident: 17261_CR75
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2016.08.035
  contributor:
    fullname: A Ayala
– volume: 76
  start-page: 1
  year: 2014
  ident: 17261_CR13
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2014.01.004
  contributor:
    fullname: JL Albacete
– volume: 7
  start-page: 312
  year: 2021
  ident: 17261_CR15
  publication-title: Universe
  doi: 10.3390/universe7080312
  contributor:
    fullname: A Morreale
– volume: 02
  start-page: 058
  year: 2018
  ident: 17261_CR30
  publication-title: JHEP
  doi: 10.1007/JHEP02(2018)058
  contributor:
    fullname: S Caron-Huot
– volume: 12
  start-page: 181
  year: 2020
  ident: 17261_CR94
  publication-title: JHEP
  doi: 10.1007/JHEP12(2020)181
  contributor:
    fullname: H Fujii
– ident: 17261_CR73
  doi: 10.1103/PhysRevD.66.014021
– ident: 17261_CR54
  doi: 10.1103/PhysRevLett.124.112301
– ident: 17261_CR7
  doi: 10.1103/PhysRevD.49.2233
– volume-title: Quantum field theory
  year: 2019
  ident: 17261_CR78
  doi: 10.1017/9781108691550
  contributor:
    fullname: F Gelis
– volume: 750
  start-page: 643
  year: 2015
  ident: 17261_CR49
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2015.09.071
  contributor:
    fullname: E Iancu
– ident: 17261_CR19
  doi: 10.1103/PhysRevD.62.114005
– ident: 17261_CR40
  doi: 10.1103/PhysRevD.100.074020
– volume: 06
  start-page: 085
  year: 2021
  ident: 17261_CR96
  publication-title: JHEP
  doi: 10.1007/JHEP06(2021)085
  contributor:
    fullname: T Altinoluk
– ident: 17261_CR25
  doi: 10.1103/PhysRevD.88.111501
– ident: 17261_CR51
  doi: 10.1103/PhysRevD.89.074037
– ident: 17261_CR2
  doi: 10.1016/0370-1573(83)90022-4
– volume: 393
  start-page: 358
  year: 2018
  ident: 17261_CR35
  publication-title: Annals Phys.
  doi: 10.1016/j.aop.2018.04.015
  contributor:
    fullname: H Hänninen
– ident: 17261_CR47
  doi: 10.1103/PhysRevD.101.034028
– volume: 77
  start-page: 353
  year: 2017
  ident: 17261_CR93
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-017-4906-6
  contributor:
    fullname: P Kotko
– ident: 17261_CR5
  doi: 10.1088/1361-6633/aaf216
– ident: 17261_CR29
  doi: 10.1103/PhysRevD.60.034008
– ident: 17261_CR1
  doi: 10.1103/RevModPhys.71.1275
– ident: 17261_CR12
  doi: 10.1017/CBO9781139022187
– ident: 17261_CR46
  doi: 10.1103/PhysRevD.101.071505
– ident: 17261_CR102
  doi: 10.1103/PhysRevD.103.094012
– ident: 17261_CR45
  doi: 10.1103/PhysRevLett.112.012302
– volume: 920
  start-page: 232
  year: 2017
  ident: 17261_CR76
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2017.03.028
  contributor:
    fullname: A Ayala
– volume: 09
  start-page: 106
  year: 2015
  ident: 17261_CR97
  publication-title: JHEP
  doi: 10.1007/JHEP09(2015)106
  contributor:
    fullname: P Kotko
– volume: 05
  start-page: 013
  year: 2018
  ident: 17261_CR72
  publication-title: JHEP
  doi: 10.1007/JHEP05(2018)013
  contributor:
    fullname: K Roy
– volume: 05
  start-page: 086
  year: 2012
  ident: 17261_CR82
  publication-title: JHEP
  doi: 10.1007/JHEP05(2012)086
  contributor:
    fullname: DY Ivanov
– volume: 60
  start-page: 463
  year: 2010
  ident: 17261_CR11
  publication-title: Ann. Rev. Nucl. Part. Sci.
  doi: 10.1146/annurev.nucl.010909.083629
  contributor:
    fullname: F Gelis
– ident: 17261_CR56
  doi: 10.1016/j.nuclphysa.2004.07.006
– ident: 17261_CR63
  doi: 10.1103/PhysRevD.59.094002
– ident: 17261_CR37
  doi: 10.1103/PhysRevD.104.056032
– ident: 17261_CR80
  doi: 10.1103/PhysRevD.46.192
– ident: 17261_CR61
  doi: 10.1103/PhysRevD.53.458
– volume: 06
  start-page: 164
  year: 2016
  ident: 17261_CR88
  publication-title: JHEP
  doi: 10.1007/JHEP06(2016)164
  contributor:
    fullname: I Balitsky
– volume-title: Quantum field theory and the standard model
  year: 2014
  ident: 17261_CR77
  contributor:
    fullname: MD Schwartz
– ident: 17261_CR4
– volume: 06
  start-page: 086
  year: 2020
  ident: 17261_CR86
  publication-title: JHEP
  doi: 10.1007/JHEP06(2020)086
  contributor:
    fullname: D Neill
– ident: 17261_CR39
  doi: 10.1007/JHEP11(2016)149
– ident: 17261_CR18
  doi: 10.1103/PhysRevD.59.014015
– ident: 17261_CR33
  doi: 10.1103/PhysRevD.94.054016
– ident: 17261_CR8
  doi: 10.1103/PhysRevD.49.3352
– ident: 17261_CR26
  doi: 10.1103/PhysRevD.89.061704
– volume: 05
  start-page: 097
  year: 2017
  ident: 17261_CR28
  publication-title: JHEP
  doi: 10.1007/JHEP05(2017)097
  contributor:
    fullname: M Lublinsky
– ident: 17261_CR81
  doi: 10.1016/S0550-3213(96)00589-5
– ident: 17261_CR92
  doi: 10.1103/PhysRevD.104.054014
– volume: 10
  start-page: 017
  year: 2015
  ident: 17261_CR87
  publication-title: JHEP
  doi: 10.1007/JHEP10(2015)017
  contributor:
    fullname: I Balitsky
– volume: 921
  start-page: 104
  year: 2017
  ident: 17261_CR89
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2017.05.012
  contributor:
    fullname: B-W Xiao
– ident: 17261_CR71
  doi: 10.1103/PhysRevD.102.051502
– volume: 07
  start-page: 196
  year: 2021
  ident: 17261_CR105
  publication-title: JHEP
  doi: 10.1007/JHEP07(2021)196
  contributor:
    fullname: E Iancu
– volume: 01
  start-page: 052
  year: 2021
  ident: 17261_CR106
  publication-title: JHEP
  doi: 10.1007/JHEP01(2021)052
  contributor:
    fullname: I Kolbé
– ident: 17261_CR16
  doi: 10.1016/0550-3213(95)00638-9
– ident: 17261_CR23
  doi: 10.1103/PhysRevD.77.014019
– volume: 08
  start-page: 114
  year: 2014
  ident: 17261_CR27
  publication-title: JHEP
  doi: 10.1007/JHEP08(2014)114
  contributor:
    fullname: A Kovner
– ident: 17261_CR98
  doi: 10.1007/JHEP12(2016)034
– ident: 17261_CR104
  doi: 10.1103/PhysRevD.88.114010
– ident: 17261_CR10
  doi: 10.1142/9789812795533_0005
– ident: 17261_CR20
  doi: 10.1016/S0375-9474(01)00642-X
– ident: 17261_CR22
  doi: 10.1016/S0375-9474(01)01329-X
– ident: 17261_CR38
  doi: 10.1103/PhysRevLett.119.072002
– volume: 27
  start-page: 1830003
  year: 2018
  ident: 17261_CR99
  publication-title: Int. J. Mod. Phys. E
  doi: 10.1142/S0218301318300035
  contributor:
    fullname: E Petreska
– ident: 17261_CR3
  doi: 10.1016/0550-3213(86)90164-1
– volume: 01
  start-page: 115
  year: 2017
  ident: 17261_CR57
  publication-title: JHEP
  doi: 10.1007/JHEP01(2017)115
  contributor:
    fullname: S Benic
– volume: 10
  start-page: 208
  year: 2019
  ident: 17261_CR101
  publication-title: JHEP
  doi: 10.1007/JHEP10(2019)208
  contributor:
    fullname: T Altinoluk
– ident: 17261_CR53
  doi: 10.1103/PhysRevC.99.015204
– ident: 17261_CR6
– ident: 17261_CR107
  doi: 10.1016/0550-3213(79)90234-7
– ident: 17261_CR103
  doi: 10.1103/PhysRevLett.110.082301
– ident: 17261_CR79
  doi: 10.1016/j.nuclphysa.2005.05.163
– ident: 17261_CR91
  doi: 10.1103/PhysRevD.104.054037
– ident: 17261_CR31
  doi: 10.1103/PhysRevD.87.014013
– ident: 17261_CR42
  doi: 10.1103/PhysRevLett.108.122301
– ident: 17261_CR60
  doi: 10.1103/PhysRevD.73.034019
– volume-title: Yang-Mills theories in algebraic noncovariant gauges: canonical quantization and renormalization
  year: 1991
  ident: 17261_CR58
  doi: 10.1142/1341
  contributor:
    fullname: A Bassetto
– volume: 81
  start-page: 793
  year: 2021
  ident: 17261_CR66
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-021-09572-0
  contributor:
    fullname: S Bondarenko
– ident: 17261_CR50
  doi: 10.1103/PhysRevD.102.074028
– ident: 17261_CR41
  doi: 10.1016/j.physletb.2021.136723
– volume: 03
  start-page: 005
  year: 2021
  ident: 17261_CR48
  publication-title: JHEP
  doi: 10.1007/JHEP03(2021)005
  contributor:
    fullname: E Iancu
– ident: 17261_CR65
  doi: 10.1103/PhysRevD.97.114027
– ident: 17261_CR9
  doi: 10.1103/PhysRevD.50.2225
– ident: 17261_CR17
  doi: 10.1103/PhysRevD.55.5414
– volume: 12
  start-page: 041
  year: 2016
  ident: 17261_CR69
  publication-title: JHEP
  doi: 10.1007/JHEP12(2016)041
  contributor:
    fullname: E Iancu
SSID ssj0015190
Score 2.6575997
Snippet A bstract We compute the next-to-leading order impact factor for inclusive dijet production in deeply inelastic electron-nucleus scattering at small x Bj . Our...
We compute the next-to-leading order impact factor for inclusive dijet production in deeply inelastic electron-nucleus scattering at small xBj. Our...
In this work, we compute the next-to-leading order impact factor for inclusive dijet production in deeply inelastic electron-nucleus scattering at small xBj....
Abstract We compute the next-to-leading order impact factor for inclusive dijet production in deeply inelastic electron-nucleus scattering at small x Bj. Our...
SourceID doaj
osti
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Publisher
StartPage 1
SubjectTerms Classical and Quantum Gravitation
Color
Condensates
Correlators
Deep inelastic scattering (phenomenology)
Elementary Particles
Field theory
Gluons
High energy physics
Impact factors
Inelastic scattering
NLO Computations
NUCLEAR PHYSICS AND RADIATION PHYSICS
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Shock waves
String Theory
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Na90wDBfbK4Ndyj5Z1m74sEN7CHVs5-s01vZ1b4WV7qPQm7Ece3SMpH0v-_8n5aOlg-2ShDiYIFnST5YsAbwrGt0UVVGkKveYmgZN6hTWqY6hzpCUg9J83vnzWbG6MKeX-eW04baZ0ipnnTgo6qbzvEd-QLjbFDnHjN9f36TcNYqjq1MLjYewpchTkAvYOlyenX-9jSMQPpFzQR9ZHpyuludZtkcOf7avlLpni4aS_XTrSLTuwc2_IqSD4Tl5AtsTYhQfRhY_hQehfQaPhsxNv3kOX46vfoZejKcdxdg-R1y14vjTN-F60bJn23fprzFZXgylNnmcgJ84Is23Fh8ZQNMz98LdEPR8ARcny-9Hq3Tqk5B6Y0xPV6zRkWhWQTqNlSfQV8Yy9w35FrWKOVYECxrvZBNjqMig61zGUGbRhwzJ3r-ERdu14RUIJACiShXQ5TS1VNj4TEfMa9IFWkqXwN5MMXs9lsOwc-HjkbiWiWuJuAkcMkVvP-M61sOLbv3DTmJhTchq43SsXKyNQnLH61AaiRIVzRNCAjvMD0twgGvaek7-8b1lPVSWOoHdmU12Er2NvVsoCezPrLsb_sffvv7_VDvwmL8cDyHuwqJf_w5vCI30-HZacn8AqhXbcQ
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BFRIXRFsQ4VH50AMcghw_8jjy7BapFaisxM3yODZaqLLVbvj_jJPNIop66CWxYseKZjwz38QzY4CveS3rvMzzVGiHqapRpVZglcrgqwxJOQgZ851__MxHY3V9r-9XgC9_XTRPJ8OOZKeoh1y369HlTZYdka-eHZNNW4UPOtZCoxU8FqfLfQPCI3wo4PP-pTe2pyvRT7cpidIbePnXjmhnaK62YHOBENlpz9KPsOKbT7DeRWq6-We4vZg8-pb12Y2sPy6HTRp28f0Xsy1roifbTtPffXA860prxn4CeuycNN2MfYuAmdrx7Ns5Qc1tGF9d3p2P0sW5CKlTSrV0xQotiWLpuZVYOgJ5RSi0q8mXqETQWBIMqJ3ldQi-JAMuNQ--yILzGZJ934G1Ztr4XWBIgEMUwqPVNDUXWLtMBtQVyb7k3CZwNFDM_OnLX5ih0HFPXBOJa4i4CZxFii6HxbrV3YPp7MEsxMAon1XKylDaUCmB5H5XvlAcOQqax_sE9iM_DJn_WMPWxWAf15qod4pCJnAwsMksRG1uyCFTuY7BBAkcD6x77f7H1-79x9h92IjNPgPxANba2bM_JCjS4pdu9b0ASAHVQQ
  priority: 102
  providerName: Springer Nature
Title Dijet impact factor in DIS at next-to-leading order in the Color Glass Condensate
URI https://link.springer.com/article/10.1007/JHEP11(2021)222
https://www.proquest.com/docview/2604657173
https://www.osti.gov/servlets/purl/1832773
https://doaj.org/article/4e194a3f8af942b8889e740b0b2202ee
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5RUKVeqkJbNYWufOgBDhGO7byOsOyyRQJBYSVulsexJaoqW7Hp_-84TkqphLhwcd6WNRPPfCOPvwH4WjSyKaqiSEVuMVUNqtQIrFPpXZ0hGQchw37n84tisVRnt_ntP6W-Qk5YpAeOgjtUjsJsI31lfK0EUsBWu1Jx5Cgobneut768HoOpYf2AcAkfiXx4eXi2mF1m2T59kB0IIR75oJ6qnw4rmlKPYOZ_K6O9w5m_g7cDUmRHcYTbsOHaHXjdZ2za9Xu4Orn74ToWdzmyWDaH3bXs5Ns1Mx1rQ0TbrdKfMUme9RSb4TkBPjYli3fPTgNwpvNQA3dNkPMDLOezm-kiHeojpFYp1VGLNRqakpXjRmJlCeyVvsxtQzFFLXyOFcGBxhreeO8qcuQy596VmbcuQ_LzH2GzXbXuEzAk4CFK4dDk1DUX2NhMesxrsgGSc5PA_igx_SvSYOiR8DgKVwfhahJuAsdBon9fC_zV_Q3Sqh60qp_TagK7QR-aYEDgsrUh6cd2OtifspQJ7I1q0sOUW2sKzFSRh6SCBA5G1T08fmK0n19itLvwJvQXtyjuwWZ3_9t9IazS4QReVfPTCWwdzy4uv9PVVKjQFtNJ_8NSuxRHfwCeQedr
link.rule.ids 230,315,783,787,867,888,2109,12777,21400,27936,27937,33385,33756,41131,41132,41535,42200,42201,42604,43612,43817,51588,52245,52246,74363,74630
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LT94wDLcYaNou09hDFBjLYQc4VKRJ-johXh8fT20aSNyiJE0QaGrh-7r_H7sPEJPYpa2aNqrs2v45jm2AH1klq6zIslikzsaqsio2wpaxDL5MLCoHISnf-fwim16pk-v0elhwmw_bKked2CnqqnG0Rr6NuFtlKcWMd-4fYuoaRdHVoYXGG1hSEm01ZYpPjp6iCIhO-FjOh-fbJ9PDn0myie5-siWEeGGJuoL9eGpQsF6AzX_io53ZmXyEDwNeZLs9g5dhwdef4G23b9PNP8Ovg9s737I-15H1zXPYbc0Ojn8z07Ka_Nq2if_0W-VZV2iTxhH2sX3UezN2RPAZr6kT7hyB5xe4mhxe7k_joUtC7JRSLR5taQ0KZuG5kbZwCPnykKeuQs-iFCG1BYKCyhleheALNOcy5cHnSXA-sWjtv8Ji3dR-BZhF-CFy4a1JcWoubOUSGWxaoiaQnJsINkeK6fu-GIYeyx73xNVEXI3EjWCPKPr0GFWx7m40sxs9CIVWPimVkaEwoVTCojNe-lxxy63AebyPYI34oREMUEVbR1t_XKtJC-W5jGB9ZJMeBG-un3-TCLZG1j0Pv_K1q_-f6ju8m16en-mz44vTNXhPb_XpiOuw2M7--m-IS1q70f18j2JR3Pw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDLfgJhAviE-t24A88LA9VJcmadM-Iba74zbgdHxM2luUpAkaQu12V_5_nDbdNCR4aaumjSo7tn-uHRvgbVHzuiiLImW5NamojUg1M1XKvasyg8qB8bDf-fOqWJ6Ls4v8IuY_bWNa5agTe0Vdtzb8I58i7hZFHmLGUx_TItazxbur6zR0kAqR1thO4z7sSFFwOoGd4_lq_fUmpoBYhY7Ffaicni3n6yw7ROc_O2KM3bFLffl-PLUoZneg51_R0t4ILZ7A44geyfuB3U_hnmuewYM-i9Nun8OX2eVP15Fh5yMZWumQy4bMTr8R3ZEmeLldm_4aEudJX3YzjCMIJCeoBTfkQwDTeB364m4Rhr6A88X8-8kyjT0TUiuE6PBoKqNRTEtHNTelRQAovcxtjX5GxXxuSoQItdW09t6VaNx5Tr2TmbcuM2j7X8KkaRu3C8QgGGGSOaNznJoyU9uMe5NXqBc4pTqBw5Fi6moojaHGIsgDcVUgrkLiJnAcKHrzWKhp3d9oNz9UFBElXFYJzX2pfSWYQde8clJQQw3DeZxLYD_wQyE0CPVtbUgEsp0KOklKnsDByCYVxXCrbhdNAkcj626H__G1e_-f6g08xJWnPp2uPu7Do_DSsDfxACbd5rd7hSClM6_j6vsDtSfimQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dijet+impact+factor+in+DIS+at+next-to-leading+order+in+the+Color+Glass+Condensate&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Caucal%2C+Paul&rft.au=Salazar%2C+Farid&rft.au=Venugopalan%2C+Raju&rft.date=2021-11-01&rft.pub=Springer+Nature&rft.issn=1029-8479&rft.eissn=1029-8479&rft.volume=2021&rft.issue=11&rft_id=info:doi/10.1007%2FJHEP11%282021%29222&rft.externalDocID=1832773
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon