Li-rich Giants Identified from LAMOST DR8 Low-resolution Survey
A small fraction of giants possess photospheric lithium (Li) abundance higher than the value predicted by the standard stellar evolution models, and the detailed mechanisms of Li enhancement are complicated and lack a definite conclusion. In order to better understand the Li enhancement behaviors, a...
Saved in:
Published in | The Astronomical journal Vol. 165; no. 2; pp. 52 - 62 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Madison
The American Astronomical Society
01.02.2023
IOP Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A small fraction of giants possess photospheric lithium (Li) abundance higher than the value predicted by the standard stellar evolution models, and the detailed mechanisms of Li enhancement are complicated and lack a definite conclusion. In order to better understand the Li enhancement behaviors, a large and homogeneous Li-rich giant sample is needed. In this study, we designed a modified convolutional neural network model called Coord-DenseNet to determine the
A
(Li) of Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) low-resolution survey (LRS) giant spectra. The precision is good on the test set: MAE = 0.15 dex, and
σ
= 0.21 dex. We used this model to predict the Li abundance of more than 900,000 LAMOST DR8 LRS giant spectra and identified 7768 Li-rich giants with Li abundances ranging from 2.0 to 5.4 dex, accounting for about 1.02% of all giants. We compared the Li abundance estimated by our work with those derived from high-resolution spectra. We found that the consistency was good if the overall deviation of 0.27 dex between them was not considered. The analysis shows that the difference is mainly due to the high
A
(Li) from the medium-resolution spectra in the training set. This sample of Li-rich giants dramatically expands the existing sample size of Li-rich giants and provides us with more samples to further study the formation and evolution of Li-rich giants. |
---|---|
AbstractList | A small fraction of giants possess photospheric lithium (Li) abundance higher than the value predicted by the standard stellar evolution models, and the detailed mechanisms of Li enhancement are complicated and lack a definite conclusion. In order to better understand the Li enhancement behaviors, a large and homogeneous Li-rich giant sample is needed. In this study, we designed a modified convolutional neural network model called Coord-DenseNet to determine the
A
(Li) of Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) low-resolution survey (LRS) giant spectra. The precision is good on the test set: MAE = 0.15 dex, and
σ
= 0.21 dex. We used this model to predict the Li abundance of more than 900,000 LAMOST DR8 LRS giant spectra and identified 7768 Li-rich giants with Li abundances ranging from 2.0 to 5.4 dex, accounting for about 1.02% of all giants. We compared the Li abundance estimated by our work with those derived from high-resolution spectra. We found that the consistency was good if the overall deviation of 0.27 dex between them was not considered. The analysis shows that the difference is mainly due to the high
A
(Li) from the medium-resolution spectra in the training set. This sample of Li-rich giants dramatically expands the existing sample size of Li-rich giants and provides us with more samples to further study the formation and evolution of Li-rich giants. A small fraction of giants possess photospheric lithium (Li) abundance higher than the value predicted by the standard stellar evolution models, and the detailed mechanisms of Li enhancement are complicated and lack a definite conclusion. In order to better understand the Li enhancement behaviors, a large and homogeneous Li-rich giant sample is needed. In this study, we designed a modified convolutional neural network model called Coord-DenseNet to determine the A(Li) of Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) low-resolution survey (LRS) giant spectra. The precision is good on the test set: MAE = 0.15 dex, and σ = 0.21 dex. We used this model to predict the Li abundance of more than 900,000 LAMOST DR8 LRS giant spectra and identified 7768 Li-rich giants with Li abundances ranging from 2.0 to 5.4 dex, accounting for about 1.02% of all giants. We compared the Li abundance estimated by our work with those derived from high-resolution spectra. We found that the consistency was good if the overall deviation of 0.27 dex between them was not considered. The analysis shows that the difference is mainly due to the high A(Li) from the medium-resolution spectra in the training set. This sample of Li-rich giants dramatically expands the existing sample size of Li-rich giants and provides us with more samples to further study the formation and evolution of Li-rich giants. |
Author | Gao, Qi Cai, Beichen Shi, Jianrong Bu, Yude Yi, Zhenping Kong, Xiaoming |
Author_xml | – sequence: 1 givenname: Beichen surname: Cai fullname: Cai, Beichen organization: Shandong University School of Mechanical, Electrical & Information Engineering, Weihai, 264209, Shandong, People's Republic of China – sequence: 2 givenname: Xiaoming orcidid: 0000-0002-4764-4749 surname: Kong fullname: Kong, Xiaoming organization: Shandong University School of Mechanical, Electrical & Information Engineering, Weihai, 264209, Shandong, People's Republic of China – sequence: 3 givenname: Jianrong orcidid: 0000-0002-0349-7839 surname: Shi fullname: Shi, Jianrong organization: Chinese Academy of Sciences Key Laboratory of Optical Astronomy, National Astronomical Observatories, Beijing 100101, People's Republic of China – sequence: 4 givenname: Qi orcidid: 0000-0003-4972-0677 surname: Gao fullname: Gao, Qi organization: Chinese Academy of Sciences Key Laboratory of Optical Astronomy, National Astronomical Observatories, Beijing 100101, People's Republic of China – sequence: 5 givenname: Yude surname: Bu fullname: Bu, Yude organization: Shandong University School of Mathematics and Statistics, Weihai, 264209, Shandong, People's Republic of China – sequence: 6 givenname: Zhenping orcidid: 0000-0001-8590-4110 surname: Yi fullname: Yi, Zhenping organization: Shandong University School of Mechanical, Electrical & Information Engineering, Weihai, 264209, Shandong, People's Republic of China |
BookMark | eNp9kM1L5TAUxYM44NNx77Lg1o43adImKxGdcR5UBD_W4Ta9mcnj2TzTPgf_e1s7HzCIqwuHcw7n_vbZbhc7YuyIw5dCy-qUq0Lnhdb8FB2C0Tts8VfaZQsAkHkpVLnH9vt-BcC5BrlgZ3XIU3A_s6uA3dBny5a6IfhAbeZTfMzq8-ubu_vs8lZndfyVJ-rjejuE2GV32_RML5_ZJ4_rng5_3wP28O3r_cX3vL65Wl6c17mTUg65E5V048zCiIY495JIkMFK-gbahptWAiEvvfPgjOTYclCkvEaQWlPhiwO2nHvbiCu7SeER04uNGOybENMPi2kIbk3Wt5VvtGgUUSWFQdRaGYfaVUYUBFPX8dy1SfFpS_1gV3GbunG-FVUpFS8NiNFVzi6XYt8n8taFAafXh4RhbTnYCbydKNuJsp3Bj0H4L_hn7geRkzkS4ubfmA_sx-_YRwy8VFZYJeym9cUrsxygJg |
CitedBy_id | crossref_primary_10_1093_mnras_stad831 crossref_primary_10_3390_universe9090416 crossref_primary_10_1051_0004_6361_202349106 crossref_primary_10_3847_1538_4357_ad6004 crossref_primary_10_3847_1538_4357_ad6b2c |
Cites_doi | 10.1093/mnras/stw1512 10.1086/309874 10.1093/mnras/stz128 10.3847/1538-4365/aaa415 10.1038/s41550-018-0544-7 10.1109/5.726791 10.1051/0004-6361/200913897 10.1088/1674-4527/12/7/002 10.1088/2041-8205/767/1/L19 10.1051/0004-6361/201833027 10.3847/2041-8213/aac16f 10.1051/0004-6361/201118412 10.3847/1538-4357/ab5e89 10.1103/PhysRev.97.1237 10.3847/1538-4365/ac1acf 10.3847/1538-4357/833/2/225 10.1093/mnras/stab1356 10.1051/0004-6361:20066709 10.1088/1009-9271/6/3/01 10.1051/0004-6361/200912524 10.3847/1538-4357/abf841 10.3847/1538-4357/ab1b4b 10.3847/0004-637X/829/2/127 10.3847/1538-4357/ab27bf 10.1046/j.1365-8711.1999.02784.x 10.1093/pasj/57.1.45 10.3847/1538-4357/ab6dea 10.1051/0004-6361/201423400 10.1051/0004-6361:20031084 10.1088/2041-8205/730/1/L12 10.1016/j.procs.2020.07.012 10.1093/mnras/sty2939 10.3847/1538-4357/ab54d0 10.3847/1538-3881/aacbcb 10.3847/1538-3881/ab3fad 10.1038/132567b0 10.1088/2041-8205/752/1/L16 10.1007/s12036-018-9516-7 10.1093/mnras/sty3217 10.1086/499946 10.1088/0004-637X/757/2/109 10.1051/0004-6361/202243871 10.1088/0004-6256/150/4/123 10.1051/0004-6361/201321493 10.3847/1538-4365/ab505c 10.1051/0004-6361/200912469 10.1088/1674-4527/12/9/003 10.1088/1475-7516/2020/03/010 10.1146/annurev.nucl.56.080805.140437 10.1088/0004-637X/743/2/107 10.1111/j.1365-2966.2009.16195.x 10.3847/2041-8213/aabf8e 10.3847/2041-8213/ab2599 10.1134/S1063773711060041 10.1093/mnras/sts661 10.1088/0004-637X/785/2/94 10.1038/s41550-020-01217-8 10.1086/191375 10.1093/mnras/staa2271 10.1051/0004-6361/202140935 10.1086/186428 10.1086/156996 10.1086/148429 10.1051/0004-6361/202141340 10.1051/0004-6361/200911736 10.1086/159859 10.1088/1674-4527/15/8/002 10.1051/0004-6361:20078341 10.3847/1538-4357/ab4c47 10.1051/0004-6361/201117743 10.3847/2041-8213/aaa438 10.3847/1538-3881/aacb1f |
ContentType | Journal Article |
Copyright | 2023. The Author(s). Published by the American Astronomical Society. 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. The Author(s). Published by the American Astronomical Society. – notice: 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 7TG 8FD H8D KL. L7M DOA |
DOI | 10.3847/1538-3881/aca098 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
EISSN | 1538-3881 |
ExternalDocumentID | oai_doaj_org_article_fd7fb82b5ee7429aa8859ca8c7923e0f 10_3847_1538_3881_aca098 ajaca098 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (NSFC) grantid: U1931209 funderid: https://doi.org/10.13039/501100001809 – fundername: NSFC ∣ Young Scientists Fund grantid: 11803016 funderid: https://doi.org/10.13039/501100010909 – fundername: National Natural Science Foundation of China (NSFC) grantid: 11873037 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | -DZ -~X 123 1JI 23N 4.4 6J9 85S AAFWJ AAGCD AAJIO ABDNZ ABHWH ABXSS ACBEA ACGFS ACHIP ACNCT ACYRX AEFHF AENEX AFPKN AGNAY AHPAA AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ HF~ IJHAN IOP KOT N5L O3W O43 OK1 P2P PJBAE RIN RNP RNS ROL SY9 T37 TR2 TSCCA UPT WH7 ~02 AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M |
ID | FETCH-LOGICAL-c444t-c274c847392be11f4ee2e9a74fb0db19d40ea16fcf0c941ad105e5f8a0488e3f3 |
IEDL.DBID | O3W |
ISSN | 0004-6256 |
IngestDate | Wed Aug 27 01:21:58 EDT 2025 Wed Aug 13 10:35:50 EDT 2025 Tue Jul 01 03:26:44 EDT 2025 Thu Apr 24 23:02:55 EDT 2025 Wed Aug 21 03:31:58 EDT 2024 Tue Jan 17 23:04:59 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c444t-c274c847392be11f4ee2e9a74fb0db19d40ea16fcf0c941ad105e5f8a0488e3f3 |
Notes | AAS42613 Stars and Stellar Physics ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4972-0677 0000-0002-0349-7839 0000-0001-8590-4110 0000-0002-4764-4749 |
OpenAccessLink | https://iopscience.iop.org/article/10.3847/1538-3881/aca098 |
PQID | 2764516902 |
PQPubID | 4562438 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fd7fb82b5ee7429aa8859ca8c7923e0f crossref_primary_10_3847_1538_3881_aca098 iop_journals_10_3847_1538_3881_aca098 proquest_journals_2764516902 crossref_citationtrail_10_3847_1538_3881_aca098 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Madison |
PublicationPlace_xml | – name: Madison |
PublicationTitle | The Astronomical journal |
PublicationTitleAbbrev | AJ |
PublicationTitleAlternate | Astron. J |
PublicationYear | 2023 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Gonzalez (ajaca098bib25) 2009; 508 Mishenina (ajaca098bib49) 2012; 547 Iben (ajaca098bib30) 1965; 142 Charbonnel (ajaca098bib12) 2000 Hanni (ajaca098bib27) 1984; 10 Holanda (ajaca098bib28) 2020; 498 Kumar (ajaca098bib33) 2011; 730 Casey (ajaca098bib11) 2016; 461 Brown (ajaca098bib6) 1989; 71 Takeda (ajaca098bib68) 2005; 57 Nepal (ajaca098bib50) 2022 Reddy (ajaca098bib54) 2019; 484 Yi (ajaca098bib74) 2019; 887 Wallerstein (ajaca098bib70) 1982; 255 Carlberg (ajaca098bib9) 2012; 757 Li (ajaca098bib39) 2018a; 852 Li (ajaca098bib40) 2018b; 234 Zhang (ajaca098bib75) 2020; 889 Romano (ajaca098bib55) 2021; 653 Ting (ajaca098bib69) 2018; 858 Fields (ajaca098bib19) 2020; 2020 Adamów (ajaca098bib1) 2014; 569 Shi (ajaca098bib59) 2007; 465 Sackmann (ajaca098bib57) 1992; 392 Singh (ajaca098bib62) 2019b; 878 Steigman (ajaca098bib64) 2007; 57 Liu (ajaca098bib43) 2014; 785 Magrini (ajaca098bib45) 2021; 651 Ruchti (ajaca098bib56) 2011; 743 Wang (ajaca098bib71) 2020; 891 Da Silva (ajaca098bib15) 2009; 508 Khatri (ajaca098bib31) 2011; 37 Siess (ajaca098bib60) 1999; 308 Huang (ajaca098bib29) 2017 de La Reza (ajaca098bib16) 1996; 456 Aguilera-Gómez (ajaca098bib2) 2016; 829 Salpeter (ajaca098bib58) 1955; 97 Gratton (ajaca098bib26) 1989; 215 Delgado Mena (ajaca098bib17) 2014; 562 Cui (ajaca098bib14) 2012; 12 Deliyannis (ajaca098bib18) 2019; 158 Gamow (ajaca098bib20) 1933; 132 Zhou (ajaca098bib79) 2019; 877 Liu (ajaca098bib42) 2018 Kumar (ajaca098bib34) 2018a; 39 Luo (ajaca098bib44) 2015; 15 Gao (ajaca098bib22) 2019; 245 Rebull (ajaca098bib53) 2015; 150 Yan (ajaca098bib72) 2018; 2 Zhao (ajaca098bib77) 2016; 833 Leung (ajaca098bib38) 2019; 483 Anthony-Twarog (ajaca098bib4) 2018; 156 Alexander (ajaca098bib3) 1967; 87 Prisinzano (ajaca098bib52) 2007; 475 Gao (ajaca098bib21) 2022; 668 Casey (ajaca098bib10) 2019; 880 Smiljanic (ajaca098bib63) 2018; 617 Kumar (ajaca098bib35) 2018b; 858 Zhao (ajaca098bib76) 2006; 6 Lind (ajaca098bib41) 2009; 503 Yan (ajaca098bib73) 2021; 5 Gao (ajaca098bib23) 2021; 914 Lebzelter (ajaca098bib36) 2012; 538 LeCun (ajaca098bib37) 1998; 86 Sun (ajaca098bib65) 2021; 257 Bu (ajaca098bib7) 2019; 886 Oh (ajaca098bib51) 2020; 175 Kirby (ajaca098bib32) 2012; 752 Takeda (ajaca098bib67) 2010; 515 Carbon (ajaca098bib8) 2018; 156 Zhao (ajaca098bib78) 2012; 12 Singh (ajaca098bib61) 2019a; 482 Mallik (ajaca098bib46) 2003; 409 Anthony-Twarog (ajaca098bib5) 2013; 767 Martell (ajaca098bib48) 2021; 505 Sweigart (ajaca098bib66) 1979; 229 Martell (ajaca098bib47) 2013; 430 Chen (ajaca098bib13) 2006; 131 Gonzalez (ajaca098bib24) 2010; 403 |
References_xml | – volume: 461 start-page: 3336 year: 2016 ident: ajaca098bib11 publication-title: MNRAS doi: 10.1093/mnras/stw1512 – volume: 456 start-page: L115 year: 1996 ident: ajaca098bib16 publication-title: ApJ doi: 10.1086/309874 – volume: 484 start-page: 2000 year: 2019 ident: ajaca098bib54 publication-title: MNRAS doi: 10.1093/mnras/stz128 – volume: 234 start-page: 31 year: 2018b ident: ajaca098bib40 publication-title: ApJS doi: 10.3847/1538-4365/aaa415 – year: 2000 ident: ajaca098bib12 – volume: 2 start-page: 790 year: 2018 ident: ajaca098bib72 publication-title: NatAs doi: 10.1038/s41550-018-0544-7 – volume: 86 start-page: 2278 year: 1998 ident: ajaca098bib37 publication-title: Proc. of the IEEE doi: 10.1109/5.726791 – volume: 515 start-page: A93 year: 2010 ident: ajaca098bib67 publication-title: A&A doi: 10.1051/0004-6361/200913897 – volume: 12 start-page: 723 year: 2012 ident: ajaca098bib78 publication-title: RAA doi: 10.1088/1674-4527/12/7/002 – volume: 767 start-page: L19 year: 2013 ident: ajaca098bib5 publication-title: ApJL doi: 10.1088/2041-8205/767/1/L19 – volume: 617 start-page: A4 year: 2018 ident: ajaca098bib63 publication-title: A&A doi: 10.1051/0004-6361/201833027 – volume: 858 start-page: L22 year: 2018b ident: ajaca098bib35 publication-title: ApJL doi: 10.3847/2041-8213/aac16f – volume: 547 start-page: A106 year: 2012 ident: ajaca098bib49 publication-title: A&A doi: 10.1051/0004-6361/201118412 – volume: 889 start-page: 33 year: 2020 ident: ajaca098bib75 publication-title: ApJ doi: 10.3847/1538-4357/ab5e89 – volume: 97 start-page: 1237 year: 1955 ident: ajaca098bib58 publication-title: PhRv doi: 10.1103/PhysRev.97.1237 – start-page: 9628 year: 2018 ident: ajaca098bib42 – volume: 257 start-page: 22 year: 2021 ident: ajaca098bib65 publication-title: ApJS doi: 10.3847/1538-4365/ac1acf – volume: 833 start-page: 225 year: 2016 ident: ajaca098bib77 publication-title: ApJ doi: 10.3847/1538-4357/833/2/225 – volume: 505 start-page: 5340 year: 2021 ident: ajaca098bib48 publication-title: MNRAS doi: 10.1093/mnras/stab1356 – volume: 465 start-page: 587 year: 2007 ident: ajaca098bib59 publication-title: A&A doi: 10.1051/0004-6361:20066709 – volume: 6 start-page: 265 year: 2006 ident: ajaca098bib76 publication-title: RAA doi: 10.1088/1009-9271/6/3/01 – volume: 503 start-page: 545 year: 2009 ident: ajaca098bib41 publication-title: A&A doi: 10.1051/0004-6361/200912524 – volume: 914 start-page: 116 year: 2021 ident: ajaca098bib23 publication-title: ApJ doi: 10.3847/1538-4357/abf841 – volume: 877 start-page: 104 year: 2019 ident: ajaca098bib79 publication-title: ApJ doi: 10.3847/1538-4357/ab1b4b – volume: 215 start-page: 66 year: 1989 ident: ajaca098bib26 publication-title: A&A – volume: 829 start-page: 127 year: 2016 ident: ajaca098bib2 publication-title: ApJ doi: 10.3847/0004-637X/829/2/127 – volume: 880 start-page: 125 year: 2019 ident: ajaca098bib10 publication-title: ApJ doi: 10.3847/1538-4357/ab27bf – volume: 308 start-page: 1133 year: 1999 ident: ajaca098bib60 publication-title: MNRAS doi: 10.1046/j.1365-8711.1999.02784.x – volume: 57 start-page: 45 year: 2005 ident: ajaca098bib68 publication-title: PASJ doi: 10.1093/pasj/57.1.45 – volume: 891 start-page: 23 year: 2020 ident: ajaca098bib71 publication-title: ApJ doi: 10.3847/1538-4357/ab6dea – volume: 569 start-page: A55 year: 2014 ident: ajaca098bib1 publication-title: A&A doi: 10.1051/0004-6361/201423400 – volume: 409 start-page: 251 year: 2003 ident: ajaca098bib46 publication-title: A&A doi: 10.1051/0004-6361:20031084 – start-page: 4700 year: 2017 ident: ajaca098bib29 – volume: 730 start-page: L12 year: 2011 ident: ajaca098bib33 publication-title: ApJL doi: 10.1088/2041-8205/730/1/L12 – volume: 175 start-page: 64 year: 2020 ident: ajaca098bib51 publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.07.012 – volume: 482 start-page: 3822 year: 2019a ident: ajaca098bib61 publication-title: MNRAS doi: 10.1093/mnras/sty2939 – volume: 887 start-page: 241 year: 2019 ident: ajaca098bib74 publication-title: ApJ doi: 10.3847/1538-4357/ab54d0 – volume: 156 start-page: 53 year: 2018 ident: ajaca098bib8 publication-title: AJ doi: 10.3847/1538-3881/aacbcb – volume: 158 start-page: 163 year: 2019 ident: ajaca098bib18 publication-title: AJ doi: 10.3847/1538-3881/ab3fad – volume: 132 start-page: 567 year: 1933 ident: ajaca098bib20 publication-title: Natur doi: 10.1038/132567b0 – volume: 752 start-page: L16 year: 2012 ident: ajaca098bib32 publication-title: ApJL doi: 10.1088/2041-8205/752/1/L16 – volume: 39 start-page: 1 year: 2018a ident: ajaca098bib34 publication-title: JApA doi: 10.1007/s12036-018-9516-7 – volume: 483 start-page: 3255 year: 2019 ident: ajaca098bib38 publication-title: MNRAS doi: 10.1093/mnras/sty3217 – volume: 131 start-page: 1816 year: 2006 ident: ajaca098bib13 publication-title: AJ doi: 10.1086/499946 – volume: 757 start-page: 109 year: 2012 ident: ajaca098bib9 publication-title: ApJ doi: 10.1088/0004-637X/757/2/109 – volume: 668 start-page: A126 year: 2022 ident: ajaca098bib21 publication-title: A&A doi: 10.1051/0004-6361/202243871 – volume: 150 start-page: 123 year: 2015 ident: ajaca098bib53 publication-title: AJ doi: 10.1088/0004-6256/150/4/123 – volume: 562 start-page: A92 year: 2014 ident: ajaca098bib17 publication-title: A&A doi: 10.1051/0004-6361/201321493 – volume: 245 start-page: 33 year: 2019 ident: ajaca098bib22 publication-title: ApJS doi: 10.3847/1538-4365/ab505c – year: 2022 ident: ajaca098bib50 – volume: 10 start-page: 51 year: 1984 ident: ajaca098bib27 publication-title: SvAL – volume: 508 start-page: 289 year: 2009 ident: ajaca098bib25 publication-title: A&A doi: 10.1051/0004-6361/200912469 – volume: 12 start-page: 1197 year: 2012 ident: ajaca098bib14 publication-title: RAA doi: 10.1088/1674-4527/12/9/003 – volume: 2020 start-page: 010 year: 2020 ident: ajaca098bib19 publication-title: JCAP doi: 10.1088/1475-7516/2020/03/010 – volume: 57 start-page: 463 year: 2007 ident: ajaca098bib64 publication-title: ARNPS doi: 10.1146/annurev.nucl.56.080805.140437 – volume: 743 start-page: 107 year: 2011 ident: ajaca098bib56 publication-title: ApJ doi: 10.1088/0004-637X/743/2/107 – volume: 403 start-page: 1368 year: 2010 ident: ajaca098bib24 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.16195.x – volume: 858 start-page: L7 year: 2018 ident: ajaca098bib69 publication-title: ApJL doi: 10.3847/2041-8213/aabf8e – volume: 878 start-page: L21 year: 2019b ident: ajaca098bib62 publication-title: ApJL doi: 10.3847/2041-8213/ab2599 – volume: 37 start-page: 367 year: 2011 ident: ajaca098bib31 publication-title: AstL doi: 10.1134/S1063773711060041 – volume: 430 start-page: 611 year: 2013 ident: ajaca098bib47 publication-title: MNRAS doi: 10.1093/mnras/sts661 – volume: 785 start-page: 94 year: 2014 ident: ajaca098bib43 publication-title: ApJ doi: 10.1088/0004-637X/785/2/94 – volume: 5 start-page: 86 year: 2021 ident: ajaca098bib73 publication-title: NatAs doi: 10.1038/s41550-020-01217-8 – volume: 71 start-page: 293 year: 1989 ident: ajaca098bib6 publication-title: ApJS doi: 10.1086/191375 – volume: 498 start-page: 77 year: 2020 ident: ajaca098bib28 publication-title: MNRAS doi: 10.1093/mnras/staa2271 – volume: 651 start-page: A84 year: 2021 ident: ajaca098bib45 publication-title: A&A doi: 10.1051/0004-6361/202140935 – volume: 392 start-page: L71 year: 1992 ident: ajaca098bib57 publication-title: ApJ doi: 10.1086/186428 – volume: 229 start-page: 624 year: 1979 ident: ajaca098bib66 publication-title: ApJ doi: 10.1086/156996 – volume: 142 start-page: 1447 year: 1965 ident: ajaca098bib30 publication-title: ApJ doi: 10.1086/148429 – volume: 653 start-page: A72 year: 2021 ident: ajaca098bib55 publication-title: A&A doi: 10.1051/0004-6361/202141340 – volume: 508 start-page: 833 year: 2009 ident: ajaca098bib15 publication-title: A&A doi: 10.1051/0004-6361/200911736 – volume: 255 start-page: 577 year: 1982 ident: ajaca098bib70 publication-title: ApJ doi: 10.1086/159859 – volume: 15 start-page: 1095 year: 2015 ident: ajaca098bib44 publication-title: RAA doi: 10.1088/1674-4527/15/8/002 – volume: 475 start-page: 539 year: 2007 ident: ajaca098bib52 publication-title: A&A doi: 10.1051/0004-6361:20078341 – volume: 87 start-page: 238 year: 1967 ident: ajaca098bib3 publication-title: Obs – volume: 886 start-page: 128 year: 2019 ident: ajaca098bib7 publication-title: ApJ doi: 10.3847/1538-4357/ab4c47 – volume: 538 start-page: A36 year: 2012 ident: ajaca098bib36 publication-title: A&A doi: 10.1051/0004-6361/201117743 – volume: 852 start-page: L31 year: 2018a ident: ajaca098bib39 publication-title: ApJL doi: 10.3847/2041-8213/aaa438 – volume: 156 start-page: 37 year: 2018 ident: ajaca098bib4 publication-title: AJ doi: 10.3847/1538-3881/aacb1f |
SSID | ssj0011804 |
Score | 2.4420495 |
Snippet | A small fraction of giants possess photospheric lithium (Li) abundance higher than the value predicted by the standard stellar evolution models, and the... |
SourceID | doaj proquest crossref iop |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 52 |
SubjectTerms | Abundance Artificial neural networks Astronomical models Astronomy Chemical abundances Chemical enrichment Chemically peculiar giant stars Lithium Neural networks Photosphere Sky surveys (astronomy) Spectra Spectroscopic telescopes Stellar abundances Stellar evolution Stellar models |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwELYQJy4IWBCFsvIBVtqD1ThxYue06i4vrQpIPCRulu2MRSVoqz521X-_4zgtIKTuhVsUTWJ7xvPy4xtCjgtlE8itYCXG80zIomKlTAtm0dVmAXzEQLg7fHVdXD6I34_545tSX-FMWIQHjozr-Ep6q1KbA2AWVxqjVF46o1wAvoPEB-uLPm-RTDX7B1wlIm5KZmh-O7VaY8u8Y5xJSvXOCdVY_eha-sPRB4Nce5nzLbLZhIe0G7u1TdZgsEP2u5OwYD18mdNvtH6O6xGTL-RHr8_Qkj3Ri3440ELjvVuPcSUNF0dor3t1c3dPT28V7Q3_Msytm6lG72bjPzDfJQ_nZ_e_LllTE4E5IcSUOcwiHQ4JwxoLnHsBkEJppPA2qSwvK5GA4YV3PnGl4KbC-Alyr0zQVMh8tkfWB8MB7BNqvUT1k967zAurJLpubiVYZVJnpcxapLNgknYNYHioW_GsMXEIbNWBrTqwVUe2tsj35RejCJaxgvZn4PuSLsBc1y9Q-LoRvv6f8FvkBKWmG7WbrGis_Y4Om-FFrlOdp3pU4W_aC7G_0qSyEPUmYnrwGV09JBuhUn088N0m69PxDI4wnpnar_XU_QfWau_m priority: 102 providerName: Directory of Open Access Journals |
Title | Li-rich Giants Identified from LAMOST DR8 Low-resolution Survey |
URI | https://iopscience.iop.org/article/10.3847/1538-3881/aca098 https://www.proquest.com/docview/2764516902 https://doaj.org/article/fd7fb82b5ee7429aa8859ca8c7923e0f |
Volume | 165 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFLf4uOyCGGyi0CEfBtIOpnHixI44TAXGl8qKBmjcLNt5FpWgrWgB8d_vOQ6d0CbEJYqiFzt5fp-238-EfC2UTSC3gpUYzzMhi4qVMi2YRVebBfARA6F2-OxncXwlTq_z6zmyO6uFGY0b07-DtxEoOLIw6HeGtrRT6yg2wzvGmaRU82QxU4UKmVc_-z1bQuAqiRDMiWAY5DdrlP9t4ZVPqqH70dNg9__Y59rpHC6TpSZapN34bR_JHAxXyFp3EuavR3fPdJvW93F6YrJKvvcGDA3bDT0ahP0tNJbhegwzaagjob3uWf_ikh78UrQ3emKYajeSRy8e7h_h-RO5OvxxuX_MmiMSmBNCTJnDpNLhL2GUY4FzLwBSKI0U3iaV5WUlEjC88M4nrhTcVBhOQe6VCYoLmc8-k4XhaAhrhFovURul9y7zwiqJnpxbCVaZ1FkpsxbpvDBJuwY_PBxjcasxjwhs1YGtOrBVR7a2yLfZG-OInfEG7V7g-4wuoF7XD1ACdCMB2lfSW5XaHAAz-tIYpfLSGeUCCCIkvkW2cNR0o4WTNzprv6LDbniR61TnqR5X2Ez7Zdj_0qSyEPWaYrr-zl42yIdwNn3c4t0mC9P7B_iCEczUbtaZP15P-uebtdT-AdqE6IE |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1dTxQxsFFIjC8GUcMJSB_UxId6291u230iJ3CiHmAEIm9N250GEr27cIeGf-90W84QDPGt2Z1tu9P5bDszhLyW2hVQO8EatOeZULJljSolc6hqq5h8xEKMHT44lPun4vNZfZbrnHaxMJNpFv3vsZkSBScURv6uUJb2Ox7Fbnjfels0uj9tw0OyXFdSxtoNR9X3xTEC10VKw1wIhoZ-Pqf8Zy-39FKXvh-1DU7hjozuFM9whTzJFiMdpPk9JQ9gvErWBrO4hz35eU3f0q6dtihmz8j26IKhcDunHy_iHReaQnEDmpo0xpLQ0eDg6PiE7n7TdDT5zdDdztRHj68uf8H1c3I63DvZ2We5TALzQog58-hYevwltHQccB4EQAmNVSK4onW8aUUBlsvgQ-EbwW2LJhXUQdvIvFCF6gVZGk_GsEaoCwo5UoXgqyCcVqjNuVPgtC29U6rqkf4NkozPOcRjKYsfBn2JiFYT0WoiWk1Ca4-8W3wxTfkz7oH9EPG-gIuZr7sHSAUmU4EJrQpOl64GQK--sVbruvFW-5gIEYrQI29w1UzmxNk9g23cgsNhuKxNaerSIEHh65tl_wtTKim6c8Xy5X-OskUefd0dmtGnwy_r5HEsVZ9ufG-QpfnlFWyiQTN3rzqi_QNPV-py |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Li-rich+Giants+Identified+from+LAMOST+DR8+Low-resolution+Survey&rft.jtitle=The+Astronomical+journal&rft.au=Cai%2C+Beichen&rft.au=Kong%2C+Xiaoming&rft.au=Shi%2C+Jianrong&rft.au=Gao%2C+Qi&rft.date=2023-02-01&rft.issn=0004-6256&rft.eissn=1538-3881&rft.volume=165&rft.issue=2&rft.spage=52&rft_id=info:doi/10.3847%2F1538-3881%2Faca098&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_3881_aca098 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6256&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6256&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6256&client=summon |