Li-rich Giants Identified from LAMOST DR8 Low-resolution Survey

A small fraction of giants possess photospheric lithium (Li) abundance higher than the value predicted by the standard stellar evolution models, and the detailed mechanisms of Li enhancement are complicated and lack a definite conclusion. In order to better understand the Li enhancement behaviors, a...

Full description

Saved in:
Bibliographic Details
Published inThe Astronomical journal Vol. 165; no. 2; pp. 52 - 62
Main Authors Cai, Beichen, Kong, Xiaoming, Shi, Jianrong, Gao, Qi, Bu, Yude, Yi, Zhenping
Format Journal Article
LanguageEnglish
Published Madison The American Astronomical Society 01.02.2023
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A small fraction of giants possess photospheric lithium (Li) abundance higher than the value predicted by the standard stellar evolution models, and the detailed mechanisms of Li enhancement are complicated and lack a definite conclusion. In order to better understand the Li enhancement behaviors, a large and homogeneous Li-rich giant sample is needed. In this study, we designed a modified convolutional neural network model called Coord-DenseNet to determine the A (Li) of Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) low-resolution survey (LRS) giant spectra. The precision is good on the test set: MAE = 0.15 dex, and σ = 0.21 dex. We used this model to predict the Li abundance of more than 900,000 LAMOST DR8 LRS giant spectra and identified 7768 Li-rich giants with Li abundances ranging from 2.0 to 5.4 dex, accounting for about 1.02% of all giants. We compared the Li abundance estimated by our work with those derived from high-resolution spectra. We found that the consistency was good if the overall deviation of 0.27 dex between them was not considered. The analysis shows that the difference is mainly due to the high A (Li) from the medium-resolution spectra in the training set. This sample of Li-rich giants dramatically expands the existing sample size of Li-rich giants and provides us with more samples to further study the formation and evolution of Li-rich giants.
AbstractList A small fraction of giants possess photospheric lithium (Li) abundance higher than the value predicted by the standard stellar evolution models, and the detailed mechanisms of Li enhancement are complicated and lack a definite conclusion. In order to better understand the Li enhancement behaviors, a large and homogeneous Li-rich giant sample is needed. In this study, we designed a modified convolutional neural network model called Coord-DenseNet to determine the A (Li) of Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) low-resolution survey (LRS) giant spectra. The precision is good on the test set: MAE = 0.15 dex, and σ = 0.21 dex. We used this model to predict the Li abundance of more than 900,000 LAMOST DR8 LRS giant spectra and identified 7768 Li-rich giants with Li abundances ranging from 2.0 to 5.4 dex, accounting for about 1.02% of all giants. We compared the Li abundance estimated by our work with those derived from high-resolution spectra. We found that the consistency was good if the overall deviation of 0.27 dex between them was not considered. The analysis shows that the difference is mainly due to the high A (Li) from the medium-resolution spectra in the training set. This sample of Li-rich giants dramatically expands the existing sample size of Li-rich giants and provides us with more samples to further study the formation and evolution of Li-rich giants.
A small fraction of giants possess photospheric lithium (Li) abundance higher than the value predicted by the standard stellar evolution models, and the detailed mechanisms of Li enhancement are complicated and lack a definite conclusion. In order to better understand the Li enhancement behaviors, a large and homogeneous Li-rich giant sample is needed. In this study, we designed a modified convolutional neural network model called Coord-DenseNet to determine the A(Li) of Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) low-resolution survey (LRS) giant spectra. The precision is good on the test set: MAE = 0.15 dex, and σ = 0.21 dex. We used this model to predict the Li abundance of more than 900,000 LAMOST DR8 LRS giant spectra and identified 7768 Li-rich giants with Li abundances ranging from 2.0 to 5.4 dex, accounting for about 1.02% of all giants. We compared the Li abundance estimated by our work with those derived from high-resolution spectra. We found that the consistency was good if the overall deviation of 0.27 dex between them was not considered. The analysis shows that the difference is mainly due to the high A(Li) from the medium-resolution spectra in the training set. This sample of Li-rich giants dramatically expands the existing sample size of Li-rich giants and provides us with more samples to further study the formation and evolution of Li-rich giants.
Author Gao, Qi
Cai, Beichen
Shi, Jianrong
Bu, Yude
Yi, Zhenping
Kong, Xiaoming
Author_xml – sequence: 1
  givenname: Beichen
  surname: Cai
  fullname: Cai, Beichen
  organization: Shandong University School of Mechanical, Electrical & Information Engineering, Weihai, 264209, Shandong, People's Republic of China
– sequence: 2
  givenname: Xiaoming
  orcidid: 0000-0002-4764-4749
  surname: Kong
  fullname: Kong, Xiaoming
  organization: Shandong University School of Mechanical, Electrical & Information Engineering, Weihai, 264209, Shandong, People's Republic of China
– sequence: 3
  givenname: Jianrong
  orcidid: 0000-0002-0349-7839
  surname: Shi
  fullname: Shi, Jianrong
  organization: Chinese Academy of Sciences Key Laboratory of Optical Astronomy, National Astronomical Observatories, Beijing 100101, People's Republic of China
– sequence: 4
  givenname: Qi
  orcidid: 0000-0003-4972-0677
  surname: Gao
  fullname: Gao, Qi
  organization: Chinese Academy of Sciences Key Laboratory of Optical Astronomy, National Astronomical Observatories, Beijing 100101, People's Republic of China
– sequence: 5
  givenname: Yude
  surname: Bu
  fullname: Bu, Yude
  organization: Shandong University School of Mathematics and Statistics, Weihai, 264209, Shandong, People's Republic of China
– sequence: 6
  givenname: Zhenping
  orcidid: 0000-0001-8590-4110
  surname: Yi
  fullname: Yi, Zhenping
  organization: Shandong University School of Mechanical, Electrical & Information Engineering, Weihai, 264209, Shandong, People's Republic of China
BookMark eNp9kM1L5TAUxYM44NNx77Lg1o43adImKxGdcR5UBD_W4Ta9mcnj2TzTPgf_e1s7HzCIqwuHcw7n_vbZbhc7YuyIw5dCy-qUq0Lnhdb8FB2C0Tts8VfaZQsAkHkpVLnH9vt-BcC5BrlgZ3XIU3A_s6uA3dBny5a6IfhAbeZTfMzq8-ubu_vs8lZndfyVJ-rjejuE2GV32_RML5_ZJ4_rng5_3wP28O3r_cX3vL65Wl6c17mTUg65E5V048zCiIY495JIkMFK-gbahptWAiEvvfPgjOTYclCkvEaQWlPhiwO2nHvbiCu7SeER04uNGOybENMPi2kIbk3Wt5VvtGgUUSWFQdRaGYfaVUYUBFPX8dy1SfFpS_1gV3GbunG-FVUpFS8NiNFVzi6XYt8n8taFAafXh4RhbTnYCbydKNuJsp3Bj0H4L_hn7geRkzkS4ubfmA_sx-_YRwy8VFZYJeym9cUrsxygJg
CitedBy_id crossref_primary_10_1093_mnras_stad831
crossref_primary_10_3390_universe9090416
crossref_primary_10_1051_0004_6361_202349106
crossref_primary_10_3847_1538_4357_ad6004
crossref_primary_10_3847_1538_4357_ad6b2c
Cites_doi 10.1093/mnras/stw1512
10.1086/309874
10.1093/mnras/stz128
10.3847/1538-4365/aaa415
10.1038/s41550-018-0544-7
10.1109/5.726791
10.1051/0004-6361/200913897
10.1088/1674-4527/12/7/002
10.1088/2041-8205/767/1/L19
10.1051/0004-6361/201833027
10.3847/2041-8213/aac16f
10.1051/0004-6361/201118412
10.3847/1538-4357/ab5e89
10.1103/PhysRev.97.1237
10.3847/1538-4365/ac1acf
10.3847/1538-4357/833/2/225
10.1093/mnras/stab1356
10.1051/0004-6361:20066709
10.1088/1009-9271/6/3/01
10.1051/0004-6361/200912524
10.3847/1538-4357/abf841
10.3847/1538-4357/ab1b4b
10.3847/0004-637X/829/2/127
10.3847/1538-4357/ab27bf
10.1046/j.1365-8711.1999.02784.x
10.1093/pasj/57.1.45
10.3847/1538-4357/ab6dea
10.1051/0004-6361/201423400
10.1051/0004-6361:20031084
10.1088/2041-8205/730/1/L12
10.1016/j.procs.2020.07.012
10.1093/mnras/sty2939
10.3847/1538-4357/ab54d0
10.3847/1538-3881/aacbcb
10.3847/1538-3881/ab3fad
10.1038/132567b0
10.1088/2041-8205/752/1/L16
10.1007/s12036-018-9516-7
10.1093/mnras/sty3217
10.1086/499946
10.1088/0004-637X/757/2/109
10.1051/0004-6361/202243871
10.1088/0004-6256/150/4/123
10.1051/0004-6361/201321493
10.3847/1538-4365/ab505c
10.1051/0004-6361/200912469
10.1088/1674-4527/12/9/003
10.1088/1475-7516/2020/03/010
10.1146/annurev.nucl.56.080805.140437
10.1088/0004-637X/743/2/107
10.1111/j.1365-2966.2009.16195.x
10.3847/2041-8213/aabf8e
10.3847/2041-8213/ab2599
10.1134/S1063773711060041
10.1093/mnras/sts661
10.1088/0004-637X/785/2/94
10.1038/s41550-020-01217-8
10.1086/191375
10.1093/mnras/staa2271
10.1051/0004-6361/202140935
10.1086/186428
10.1086/156996
10.1086/148429
10.1051/0004-6361/202141340
10.1051/0004-6361/200911736
10.1086/159859
10.1088/1674-4527/15/8/002
10.1051/0004-6361:20078341
10.3847/1538-4357/ab4c47
10.1051/0004-6361/201117743
10.3847/2041-8213/aaa438
10.3847/1538-3881/aacb1f
ContentType Journal Article
Copyright 2023. The Author(s). Published by the American Astronomical Society.
2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. The Author(s). Published by the American Astronomical Society.
– notice: 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOA
DOI 10.3847/1538-3881/aca098
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef
Aerospace Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 1538-3881
ExternalDocumentID oai_doaj_org_article_fd7fb82b5ee7429aa8859ca8c7923e0f
10_3847_1538_3881_aca098
ajaca098
GrantInformation_xml – fundername: National Natural Science Foundation of China (NSFC)
  grantid: U1931209
  funderid: https://doi.org/10.13039/501100001809
– fundername: NSFC ∣ Young Scientists Fund
  grantid: 11803016
  funderid: https://doi.org/10.13039/501100010909
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 11873037
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID -DZ
-~X
123
1JI
23N
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABDNZ
ABHWH
ABXSS
ACBEA
ACGFS
ACHIP
ACNCT
ACYRX
AEFHF
AENEX
AFPKN
AGNAY
AHPAA
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
HF~
IJHAN
IOP
KOT
N5L
O3W
O43
OK1
P2P
PJBAE
RIN
RNP
RNS
ROL
SY9
T37
TR2
TSCCA
UPT
WH7
~02
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
ID FETCH-LOGICAL-c444t-c274c847392be11f4ee2e9a74fb0db19d40ea16fcf0c941ad105e5f8a0488e3f3
IEDL.DBID O3W
ISSN 0004-6256
IngestDate Wed Aug 27 01:21:58 EDT 2025
Wed Aug 13 10:35:50 EDT 2025
Tue Jul 01 03:26:44 EDT 2025
Thu Apr 24 23:02:55 EDT 2025
Wed Aug 21 03:31:58 EDT 2024
Tue Jan 17 23:04:59 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-c274c847392be11f4ee2e9a74fb0db19d40ea16fcf0c941ad105e5f8a0488e3f3
Notes AAS42613
Stars and Stellar Physics
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4972-0677
0000-0002-0349-7839
0000-0001-8590-4110
0000-0002-4764-4749
OpenAccessLink https://iopscience.iop.org/article/10.3847/1538-3881/aca098
PQID 2764516902
PQPubID 4562438
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_fd7fb82b5ee7429aa8859ca8c7923e0f
crossref_primary_10_3847_1538_3881_aca098
iop_journals_10_3847_1538_3881_aca098
proquest_journals_2764516902
crossref_citationtrail_10_3847_1538_3881_aca098
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Madison
PublicationPlace_xml – name: Madison
PublicationTitle The Astronomical journal
PublicationTitleAbbrev AJ
PublicationTitleAlternate Astron. J
PublicationYear 2023
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Gonzalez (ajaca098bib25) 2009; 508
Mishenina (ajaca098bib49) 2012; 547
Iben (ajaca098bib30) 1965; 142
Charbonnel (ajaca098bib12) 2000
Hanni (ajaca098bib27) 1984; 10
Holanda (ajaca098bib28) 2020; 498
Kumar (ajaca098bib33) 2011; 730
Casey (ajaca098bib11) 2016; 461
Brown (ajaca098bib6) 1989; 71
Takeda (ajaca098bib68) 2005; 57
Nepal (ajaca098bib50) 2022
Reddy (ajaca098bib54) 2019; 484
Yi (ajaca098bib74) 2019; 887
Wallerstein (ajaca098bib70) 1982; 255
Carlberg (ajaca098bib9) 2012; 757
Li (ajaca098bib39) 2018a; 852
Li (ajaca098bib40) 2018b; 234
Zhang (ajaca098bib75) 2020; 889
Romano (ajaca098bib55) 2021; 653
Ting (ajaca098bib69) 2018; 858
Fields (ajaca098bib19) 2020; 2020
Adamów (ajaca098bib1) 2014; 569
Shi (ajaca098bib59) 2007; 465
Sackmann (ajaca098bib57) 1992; 392
Singh (ajaca098bib62) 2019b; 878
Steigman (ajaca098bib64) 2007; 57
Liu (ajaca098bib43) 2014; 785
Magrini (ajaca098bib45) 2021; 651
Ruchti (ajaca098bib56) 2011; 743
Wang (ajaca098bib71) 2020; 891
Da Silva (ajaca098bib15) 2009; 508
Khatri (ajaca098bib31) 2011; 37
Siess (ajaca098bib60) 1999; 308
Huang (ajaca098bib29) 2017
de La Reza (ajaca098bib16) 1996; 456
Aguilera-Gómez (ajaca098bib2) 2016; 829
Salpeter (ajaca098bib58) 1955; 97
Gratton (ajaca098bib26) 1989; 215
Delgado Mena (ajaca098bib17) 2014; 562
Cui (ajaca098bib14) 2012; 12
Deliyannis (ajaca098bib18) 2019; 158
Gamow (ajaca098bib20) 1933; 132
Zhou (ajaca098bib79) 2019; 877
Liu (ajaca098bib42) 2018
Kumar (ajaca098bib34) 2018a; 39
Luo (ajaca098bib44) 2015; 15
Gao (ajaca098bib22) 2019; 245
Rebull (ajaca098bib53) 2015; 150
Yan (ajaca098bib72) 2018; 2
Zhao (ajaca098bib77) 2016; 833
Leung (ajaca098bib38) 2019; 483
Anthony-Twarog (ajaca098bib4) 2018; 156
Alexander (ajaca098bib3) 1967; 87
Prisinzano (ajaca098bib52) 2007; 475
Gao (ajaca098bib21) 2022; 668
Casey (ajaca098bib10) 2019; 880
Smiljanic (ajaca098bib63) 2018; 617
Kumar (ajaca098bib35) 2018b; 858
Zhao (ajaca098bib76) 2006; 6
Lind (ajaca098bib41) 2009; 503
Yan (ajaca098bib73) 2021; 5
Gao (ajaca098bib23) 2021; 914
Lebzelter (ajaca098bib36) 2012; 538
LeCun (ajaca098bib37) 1998; 86
Sun (ajaca098bib65) 2021; 257
Bu (ajaca098bib7) 2019; 886
Oh (ajaca098bib51) 2020; 175
Kirby (ajaca098bib32) 2012; 752
Takeda (ajaca098bib67) 2010; 515
Carbon (ajaca098bib8) 2018; 156
Zhao (ajaca098bib78) 2012; 12
Singh (ajaca098bib61) 2019a; 482
Mallik (ajaca098bib46) 2003; 409
Anthony-Twarog (ajaca098bib5) 2013; 767
Martell (ajaca098bib48) 2021; 505
Sweigart (ajaca098bib66) 1979; 229
Martell (ajaca098bib47) 2013; 430
Chen (ajaca098bib13) 2006; 131
Gonzalez (ajaca098bib24) 2010; 403
References_xml – volume: 461
  start-page: 3336
  year: 2016
  ident: ajaca098bib11
  publication-title: MNRAS
  doi: 10.1093/mnras/stw1512
– volume: 456
  start-page: L115
  year: 1996
  ident: ajaca098bib16
  publication-title: ApJ
  doi: 10.1086/309874
– volume: 484
  start-page: 2000
  year: 2019
  ident: ajaca098bib54
  publication-title: MNRAS
  doi: 10.1093/mnras/stz128
– volume: 234
  start-page: 31
  year: 2018b
  ident: ajaca098bib40
  publication-title: ApJS
  doi: 10.3847/1538-4365/aaa415
– year: 2000
  ident: ajaca098bib12
– volume: 2
  start-page: 790
  year: 2018
  ident: ajaca098bib72
  publication-title: NatAs
  doi: 10.1038/s41550-018-0544-7
– volume: 86
  start-page: 2278
  year: 1998
  ident: ajaca098bib37
  publication-title: Proc. of the IEEE
  doi: 10.1109/5.726791
– volume: 515
  start-page: A93
  year: 2010
  ident: ajaca098bib67
  publication-title: A&A
  doi: 10.1051/0004-6361/200913897
– volume: 12
  start-page: 723
  year: 2012
  ident: ajaca098bib78
  publication-title: RAA
  doi: 10.1088/1674-4527/12/7/002
– volume: 767
  start-page: L19
  year: 2013
  ident: ajaca098bib5
  publication-title: ApJL
  doi: 10.1088/2041-8205/767/1/L19
– volume: 617
  start-page: A4
  year: 2018
  ident: ajaca098bib63
  publication-title: A&A
  doi: 10.1051/0004-6361/201833027
– volume: 858
  start-page: L22
  year: 2018b
  ident: ajaca098bib35
  publication-title: ApJL
  doi: 10.3847/2041-8213/aac16f
– volume: 547
  start-page: A106
  year: 2012
  ident: ajaca098bib49
  publication-title: A&A
  doi: 10.1051/0004-6361/201118412
– volume: 889
  start-page: 33
  year: 2020
  ident: ajaca098bib75
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab5e89
– volume: 97
  start-page: 1237
  year: 1955
  ident: ajaca098bib58
  publication-title: PhRv
  doi: 10.1103/PhysRev.97.1237
– start-page: 9628
  year: 2018
  ident: ajaca098bib42
– volume: 257
  start-page: 22
  year: 2021
  ident: ajaca098bib65
  publication-title: ApJS
  doi: 10.3847/1538-4365/ac1acf
– volume: 833
  start-page: 225
  year: 2016
  ident: ajaca098bib77
  publication-title: ApJ
  doi: 10.3847/1538-4357/833/2/225
– volume: 505
  start-page: 5340
  year: 2021
  ident: ajaca098bib48
  publication-title: MNRAS
  doi: 10.1093/mnras/stab1356
– volume: 465
  start-page: 587
  year: 2007
  ident: ajaca098bib59
  publication-title: A&A
  doi: 10.1051/0004-6361:20066709
– volume: 6
  start-page: 265
  year: 2006
  ident: ajaca098bib76
  publication-title: RAA
  doi: 10.1088/1009-9271/6/3/01
– volume: 503
  start-page: 545
  year: 2009
  ident: ajaca098bib41
  publication-title: A&A
  doi: 10.1051/0004-6361/200912524
– volume: 914
  start-page: 116
  year: 2021
  ident: ajaca098bib23
  publication-title: ApJ
  doi: 10.3847/1538-4357/abf841
– volume: 877
  start-page: 104
  year: 2019
  ident: ajaca098bib79
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab1b4b
– volume: 215
  start-page: 66
  year: 1989
  ident: ajaca098bib26
  publication-title: A&A
– volume: 829
  start-page: 127
  year: 2016
  ident: ajaca098bib2
  publication-title: ApJ
  doi: 10.3847/0004-637X/829/2/127
– volume: 880
  start-page: 125
  year: 2019
  ident: ajaca098bib10
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab27bf
– volume: 308
  start-page: 1133
  year: 1999
  ident: ajaca098bib60
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.1999.02784.x
– volume: 57
  start-page: 45
  year: 2005
  ident: ajaca098bib68
  publication-title: PASJ
  doi: 10.1093/pasj/57.1.45
– volume: 891
  start-page: 23
  year: 2020
  ident: ajaca098bib71
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab6dea
– volume: 569
  start-page: A55
  year: 2014
  ident: ajaca098bib1
  publication-title: A&A
  doi: 10.1051/0004-6361/201423400
– volume: 409
  start-page: 251
  year: 2003
  ident: ajaca098bib46
  publication-title: A&A
  doi: 10.1051/0004-6361:20031084
– start-page: 4700
  year: 2017
  ident: ajaca098bib29
– volume: 730
  start-page: L12
  year: 2011
  ident: ajaca098bib33
  publication-title: ApJL
  doi: 10.1088/2041-8205/730/1/L12
– volume: 175
  start-page: 64
  year: 2020
  ident: ajaca098bib51
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.07.012
– volume: 482
  start-page: 3822
  year: 2019a
  ident: ajaca098bib61
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2939
– volume: 887
  start-page: 241
  year: 2019
  ident: ajaca098bib74
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab54d0
– volume: 156
  start-page: 53
  year: 2018
  ident: ajaca098bib8
  publication-title: AJ
  doi: 10.3847/1538-3881/aacbcb
– volume: 158
  start-page: 163
  year: 2019
  ident: ajaca098bib18
  publication-title: AJ
  doi: 10.3847/1538-3881/ab3fad
– volume: 132
  start-page: 567
  year: 1933
  ident: ajaca098bib20
  publication-title: Natur
  doi: 10.1038/132567b0
– volume: 752
  start-page: L16
  year: 2012
  ident: ajaca098bib32
  publication-title: ApJL
  doi: 10.1088/2041-8205/752/1/L16
– volume: 39
  start-page: 1
  year: 2018a
  ident: ajaca098bib34
  publication-title: JApA
  doi: 10.1007/s12036-018-9516-7
– volume: 483
  start-page: 3255
  year: 2019
  ident: ajaca098bib38
  publication-title: MNRAS
  doi: 10.1093/mnras/sty3217
– volume: 131
  start-page: 1816
  year: 2006
  ident: ajaca098bib13
  publication-title: AJ
  doi: 10.1086/499946
– volume: 757
  start-page: 109
  year: 2012
  ident: ajaca098bib9
  publication-title: ApJ
  doi: 10.1088/0004-637X/757/2/109
– volume: 668
  start-page: A126
  year: 2022
  ident: ajaca098bib21
  publication-title: A&A
  doi: 10.1051/0004-6361/202243871
– volume: 150
  start-page: 123
  year: 2015
  ident: ajaca098bib53
  publication-title: AJ
  doi: 10.1088/0004-6256/150/4/123
– volume: 562
  start-page: A92
  year: 2014
  ident: ajaca098bib17
  publication-title: A&A
  doi: 10.1051/0004-6361/201321493
– volume: 245
  start-page: 33
  year: 2019
  ident: ajaca098bib22
  publication-title: ApJS
  doi: 10.3847/1538-4365/ab505c
– year: 2022
  ident: ajaca098bib50
– volume: 10
  start-page: 51
  year: 1984
  ident: ajaca098bib27
  publication-title: SvAL
– volume: 508
  start-page: 289
  year: 2009
  ident: ajaca098bib25
  publication-title: A&A
  doi: 10.1051/0004-6361/200912469
– volume: 12
  start-page: 1197
  year: 2012
  ident: ajaca098bib14
  publication-title: RAA
  doi: 10.1088/1674-4527/12/9/003
– volume: 2020
  start-page: 010
  year: 2020
  ident: ajaca098bib19
  publication-title: JCAP
  doi: 10.1088/1475-7516/2020/03/010
– volume: 57
  start-page: 463
  year: 2007
  ident: ajaca098bib64
  publication-title: ARNPS
  doi: 10.1146/annurev.nucl.56.080805.140437
– volume: 743
  start-page: 107
  year: 2011
  ident: ajaca098bib56
  publication-title: ApJ
  doi: 10.1088/0004-637X/743/2/107
– volume: 403
  start-page: 1368
  year: 2010
  ident: ajaca098bib24
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.16195.x
– volume: 858
  start-page: L7
  year: 2018
  ident: ajaca098bib69
  publication-title: ApJL
  doi: 10.3847/2041-8213/aabf8e
– volume: 878
  start-page: L21
  year: 2019b
  ident: ajaca098bib62
  publication-title: ApJL
  doi: 10.3847/2041-8213/ab2599
– volume: 37
  start-page: 367
  year: 2011
  ident: ajaca098bib31
  publication-title: AstL
  doi: 10.1134/S1063773711060041
– volume: 430
  start-page: 611
  year: 2013
  ident: ajaca098bib47
  publication-title: MNRAS
  doi: 10.1093/mnras/sts661
– volume: 785
  start-page: 94
  year: 2014
  ident: ajaca098bib43
  publication-title: ApJ
  doi: 10.1088/0004-637X/785/2/94
– volume: 5
  start-page: 86
  year: 2021
  ident: ajaca098bib73
  publication-title: NatAs
  doi: 10.1038/s41550-020-01217-8
– volume: 71
  start-page: 293
  year: 1989
  ident: ajaca098bib6
  publication-title: ApJS
  doi: 10.1086/191375
– volume: 498
  start-page: 77
  year: 2020
  ident: ajaca098bib28
  publication-title: MNRAS
  doi: 10.1093/mnras/staa2271
– volume: 651
  start-page: A84
  year: 2021
  ident: ajaca098bib45
  publication-title: A&A
  doi: 10.1051/0004-6361/202140935
– volume: 392
  start-page: L71
  year: 1992
  ident: ajaca098bib57
  publication-title: ApJ
  doi: 10.1086/186428
– volume: 229
  start-page: 624
  year: 1979
  ident: ajaca098bib66
  publication-title: ApJ
  doi: 10.1086/156996
– volume: 142
  start-page: 1447
  year: 1965
  ident: ajaca098bib30
  publication-title: ApJ
  doi: 10.1086/148429
– volume: 653
  start-page: A72
  year: 2021
  ident: ajaca098bib55
  publication-title: A&A
  doi: 10.1051/0004-6361/202141340
– volume: 508
  start-page: 833
  year: 2009
  ident: ajaca098bib15
  publication-title: A&A
  doi: 10.1051/0004-6361/200911736
– volume: 255
  start-page: 577
  year: 1982
  ident: ajaca098bib70
  publication-title: ApJ
  doi: 10.1086/159859
– volume: 15
  start-page: 1095
  year: 2015
  ident: ajaca098bib44
  publication-title: RAA
  doi: 10.1088/1674-4527/15/8/002
– volume: 475
  start-page: 539
  year: 2007
  ident: ajaca098bib52
  publication-title: A&A
  doi: 10.1051/0004-6361:20078341
– volume: 87
  start-page: 238
  year: 1967
  ident: ajaca098bib3
  publication-title: Obs
– volume: 886
  start-page: 128
  year: 2019
  ident: ajaca098bib7
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab4c47
– volume: 538
  start-page: A36
  year: 2012
  ident: ajaca098bib36
  publication-title: A&A
  doi: 10.1051/0004-6361/201117743
– volume: 852
  start-page: L31
  year: 2018a
  ident: ajaca098bib39
  publication-title: ApJL
  doi: 10.3847/2041-8213/aaa438
– volume: 156
  start-page: 37
  year: 2018
  ident: ajaca098bib4
  publication-title: AJ
  doi: 10.3847/1538-3881/aacb1f
SSID ssj0011804
Score 2.4420495
Snippet A small fraction of giants possess photospheric lithium (Li) abundance higher than the value predicted by the standard stellar evolution models, and the...
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 52
SubjectTerms Abundance
Artificial neural networks
Astronomical models
Astronomy
Chemical abundances
Chemical enrichment
Chemically peculiar giant stars
Lithium
Neural networks
Photosphere
Sky surveys (astronomy)
Spectra
Spectroscopic telescopes
Stellar abundances
Stellar evolution
Stellar models
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwELYQJy4IWBCFsvIBVtqD1ThxYue06i4vrQpIPCRulu2MRSVoqz521X-_4zgtIKTuhVsUTWJ7xvPy4xtCjgtlE8itYCXG80zIomKlTAtm0dVmAXzEQLg7fHVdXD6I34_545tSX-FMWIQHjozr-Ep6q1KbA2AWVxqjVF46o1wAvoPEB-uLPm-RTDX7B1wlIm5KZmh-O7VaY8u8Y5xJSvXOCdVY_eha-sPRB4Nce5nzLbLZhIe0G7u1TdZgsEP2u5OwYD18mdNvtH6O6xGTL-RHr8_Qkj3Ri3440ELjvVuPcSUNF0dor3t1c3dPT28V7Q3_Msytm6lG72bjPzDfJQ_nZ_e_LllTE4E5IcSUOcwiHQ4JwxoLnHsBkEJppPA2qSwvK5GA4YV3PnGl4KbC-Alyr0zQVMh8tkfWB8MB7BNqvUT1k967zAurJLpubiVYZVJnpcxapLNgknYNYHioW_GsMXEIbNWBrTqwVUe2tsj35RejCJaxgvZn4PuSLsBc1y9Q-LoRvv6f8FvkBKWmG7WbrGis_Y4Om-FFrlOdp3pU4W_aC7G_0qSyEPUmYnrwGV09JBuhUn088N0m69PxDI4wnpnar_XU_QfWau_m
  priority: 102
  providerName: Directory of Open Access Journals
Title Li-rich Giants Identified from LAMOST DR8 Low-resolution Survey
URI https://iopscience.iop.org/article/10.3847/1538-3881/aca098
https://www.proquest.com/docview/2764516902
https://doaj.org/article/fd7fb82b5ee7429aa8859ca8c7923e0f
Volume 165
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFLf4uOyCGGyi0CEfBtIOpnHixI44TAXGl8qKBmjcLNt5FpWgrWgB8d_vOQ6d0CbEJYqiFzt5fp-238-EfC2UTSC3gpUYzzMhi4qVMi2YRVebBfARA6F2-OxncXwlTq_z6zmyO6uFGY0b07-DtxEoOLIw6HeGtrRT6yg2wzvGmaRU82QxU4UKmVc_-z1bQuAqiRDMiWAY5DdrlP9t4ZVPqqH70dNg9__Y59rpHC6TpSZapN34bR_JHAxXyFp3EuavR3fPdJvW93F6YrJKvvcGDA3bDT0ahP0tNJbhegwzaagjob3uWf_ikh78UrQ3emKYajeSRy8e7h_h-RO5OvxxuX_MmiMSmBNCTJnDpNLhL2GUY4FzLwBSKI0U3iaV5WUlEjC88M4nrhTcVBhOQe6VCYoLmc8-k4XhaAhrhFovURul9y7zwiqJnpxbCVaZ1FkpsxbpvDBJuwY_PBxjcasxjwhs1YGtOrBVR7a2yLfZG-OInfEG7V7g-4wuoF7XD1ACdCMB2lfSW5XaHAAz-tIYpfLSGeUCCCIkvkW2cNR0o4WTNzprv6LDbniR61TnqR5X2Ez7Zdj_0qSyEPWaYrr-zl42yIdwNn3c4t0mC9P7B_iCEczUbtaZP15P-uebtdT-AdqE6IE
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1dTxQxsFFIjC8GUcMJSB_UxId6291u230iJ3CiHmAEIm9N250GEr27cIeGf-90W84QDPGt2Z1tu9P5bDszhLyW2hVQO8EatOeZULJljSolc6hqq5h8xEKMHT44lPun4vNZfZbrnHaxMJNpFv3vsZkSBScURv6uUJb2Ox7Fbnjfels0uj9tw0OyXFdSxtoNR9X3xTEC10VKw1wIhoZ-Pqf8Zy-39FKXvh-1DU7hjozuFM9whTzJFiMdpPk9JQ9gvErWBrO4hz35eU3f0q6dtihmz8j26IKhcDunHy_iHReaQnEDmpo0xpLQ0eDg6PiE7n7TdDT5zdDdztRHj68uf8H1c3I63DvZ2We5TALzQog58-hYevwltHQccB4EQAmNVSK4onW8aUUBlsvgQ-EbwW2LJhXUQdvIvFCF6gVZGk_GsEaoCwo5UoXgqyCcVqjNuVPgtC29U6rqkf4NkozPOcRjKYsfBn2JiFYT0WoiWk1Ca4-8W3wxTfkz7oH9EPG-gIuZr7sHSAUmU4EJrQpOl64GQK--sVbruvFW-5gIEYrQI29w1UzmxNk9g23cgsNhuKxNaerSIEHh65tl_wtTKim6c8Xy5X-OskUefd0dmtGnwy_r5HEsVZ9ufG-QpfnlFWyiQTN3rzqi_QNPV-py
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Li-rich+Giants+Identified+from+LAMOST+DR8+Low-resolution+Survey&rft.jtitle=The+Astronomical+journal&rft.au=Cai%2C+Beichen&rft.au=Kong%2C+Xiaoming&rft.au=Shi%2C+Jianrong&rft.au=Gao%2C+Qi&rft.date=2023-02-01&rft.issn=0004-6256&rft.eissn=1538-3881&rft.volume=165&rft.issue=2&rft.spage=52&rft_id=info:doi/10.3847%2F1538-3881%2Faca098&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_3881_aca098
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6256&client=summon