Influence of Preprocessing Methods of Automated Milking Systems Data on Prediction of Mastitis with Machine Learning Models

Missing data and class imbalance hinder the accurate prediction of rare events such as dairy mastitis. Resampling and imputation are employed to handle these problems. These methods are often used arbitrarily, despite their profound impact on prediction due to changes caused to the data structure. W...

Full description

Saved in:
Bibliographic Details
Published inAgriEngineering Vol. 6; no. 3; pp. 3427 - 3442
Main Authors Kashongwe, Olivier, Kabelitz, Tina, Ammon, Christian, Minogue, Lukas, Doherr, Markus, Silva Boloña, Pablo, Amon, Thomas, Amon, Barbara
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Missing data and class imbalance hinder the accurate prediction of rare events such as dairy mastitis. Resampling and imputation are employed to handle these problems. These methods are often used arbitrarily, despite their profound impact on prediction due to changes caused to the data structure. We hypothesize that their use affects the performance of ML models fitted to automated milking systems (AMSs) data for mastitis prediction. We compare three imputations—simple imputer (SI), multiple imputer (MICE) and linear interpolation (LI)—and three resampling techniques: Synthetic Minority Oversampling Technique (SMOTE), Support Vector Machine SMOTE (SVMSMOTE) and SMOTE with Edited Nearest Neighbors (SMOTEEN). The classifiers were logistic regression (LR), multilayer perceptron (MLP), decision tree (DT) and random forest (RF). We evaluated them with various metrics and compared models with the kappa score. A complete case analysis fitted the RF (0.78) better than other models, for which SI performed best. The DT, RF, and MLP performed better with SVMSMOTE. The RF, DT and MLP had the overall best performance, contributed by imputation or resampling (SMOTE and SVMSMOTE). We recommend carefully selecting resampling and imputation techniques and comparing them with complete cases before deciding on the preprocessing approach used to test AMS data with ML models.
AbstractList Missing data and class imbalance hinder the accurate prediction of rare events such as dairy mastitis. Resampling and imputation are employed to handle these problems. These methods are often used arbitrarily, despite their profound impact on prediction due to changes caused to the data structure. We hypothesize that their use affects the performance of ML models fitted to automated milking systems (AMSs) data for mastitis prediction. We compare three imputations—simple imputer (SI), multiple imputer (MICE) and linear interpolation (LI)—and three resampling techniques: Synthetic Minority Oversampling Technique (SMOTE), Support Vector Machine SMOTE (SVMSMOTE) and SMOTE with Edited Nearest Neighbors (SMOTEEN). The classifiers were logistic regression (LR), multilayer perceptron (MLP), decision tree (DT) and random forest (RF). We evaluated them with various metrics and compared models with the kappa score. A complete case analysis fitted the RF (0.78) better than other models, for which SI performed best. The DT, RF, and MLP performed better with SVMSMOTE. The RF, DT and MLP had the overall best performance, contributed by imputation or resampling (SMOTE and SVMSMOTE). We recommend carefully selecting resampling and imputation techniques and comparing them with complete cases before deciding on the preprocessing approach used to test AMS data with ML models.
Author Kashongwe, Olivier
Kabelitz, Tina
Ammon, Christian
Minogue, Lukas
Silva Boloña, Pablo
Amon, Thomas
Amon, Barbara
Doherr, Markus
Author_xml – sequence: 1
  givenname: Olivier
  orcidid: 0000-0002-6107-4084
  surname: Kashongwe
  fullname: Kashongwe, Olivier
– sequence: 2
  givenname: Tina
  orcidid: 0000-0002-0665-625X
  surname: Kabelitz
  fullname: Kabelitz, Tina
– sequence: 3
  givenname: Christian
  orcidid: 0000-0001-6852-4992
  surname: Ammon
  fullname: Ammon, Christian
– sequence: 4
  givenname: Lukas
  orcidid: 0009-0005-8670-6905
  surname: Minogue
  fullname: Minogue, Lukas
– sequence: 5
  givenname: Markus
  orcidid: 0000-0003-0064-1708
  surname: Doherr
  fullname: Doherr, Markus
– sequence: 6
  givenname: Pablo
  surname: Silva Boloña
  fullname: Silva Boloña, Pablo
– sequence: 7
  givenname: Thomas
  orcidid: 0000-0003-2468-3160
  surname: Amon
  fullname: Amon, Thomas
– sequence: 8
  givenname: Barbara
  orcidid: 0000-0001-5650-1806
  surname: Amon
  fullname: Amon, Barbara
BookMark eNptkV1rFDEUhgepYK39CzLgjTdrTz4mmbks1erCLgrq9XBMTnazziY1yVCKf95MV0TEq5zkPHl4k_O8OQsxUNO8ZPBGiAGucJc8hZ0PRMmHnQIBbOieNOdccbnSEvjZX_Wz5jLnAwDwDmQ3DOfNz3Vw00zBUBtd-ynRXYqGcq6udktlH21eGtdziUcsZNutn74vzc8PudAxt2-xYBvDctV6U3wtK7_FXHzxub33ZV93Zl8TthvCFB7N0dKUXzRPHU6ZLn-vF83X23dfbj6sNh_fr2-uNysjpSwrAz1xN_TKCtSaK8O0JdF1hpHkYIkxq60i44w2gM4COdUTDqgHrvk3EBfN-uS1EQ_jXfJHTA9jRD8-HsS0GzEVbyYamR2sUppp7VASAWrinVMKh54BSVNdr0-u-k8_ZsplPPpsaJowUJzzKFgneqmBiYq--gc9xDmF-tJKMeC90N0STp0ok2LOidyfgAzGZcTj_0csfgFSCaFW
Cites_doi 10.1016/j.idairyj.2021.105051
10.1016/j.jclinepi.2019.02.016
10.3390/atmos15080912
10.1007/s11042-024-19103-0
10.1016/j.prevetmed.2024.106160
10.1038/s41598-020-61126-8
10.3390/s20143863
10.1053/j.sodo.2024.01.007
10.3389/fbioe.2019.00186
10.1186/s13063-016-1473-3
10.1109/ACCESS.2020.2986809
10.14569/IJACSA.2018.090660
10.3390/ani14030427
10.1016/j.asoc.2023.110986
10.1007/s42452-021-04598-1
10.1002/icd.2407
10.1109/JBHI.2024.3376428
10.3390/ani14162295
10.3390/info14010054
10.3390/agriengineering3030037
10.3390/computers12100204
10.1016/j.neucom.2016.02.006
10.5713/ajas.20.0156
10.3390/dairy3040050
10.3390/ani13152538
10.1201/9780429492259
10.1109/ACCESS.2021.3102399
10.1016/B978-0-323-98385-3.00004-9
10.1016/j.livsci.2024.105522
10.1038/s41598-021-93056-4
10.1016/j.compag.2016.12.008
10.1016/j.vetmic.2024.110015
10.3390/atmos10110718
10.1007/s11069-024-06406-6
10.1007/s13721-024-00447-4
10.1016/j.compag.2024.108877
10.3390/s24041112
10.1016/j.compag.2022.107002
10.1088/1742-6596/1754/1/012187
10.3390/dairy3040061
10.1007/s10489-024-05314-3
10.1146/annurev-resource-100518-093954
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7X2
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
DWQXO
HCIFZ
M0K
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
DOA
DOI 10.3390/agriengineering6030195
DatabaseName CrossRef
ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Agriculture Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA

Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central (subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2624-7402
EndPage 3442
ExternalDocumentID oai_doaj_org_article_1d9d667177fa4ee0a7e25f66a9810e4c
10_3390_agriengineering6030195
GroupedDBID 7X2
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ACUHS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAG
IAO
ITC
M0K
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
3V.
8FE
8FH
8FK
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c444t-c08e2f986d3a7726c17de355c1e420de11d7d6ecfc7c0afd0ef68ea9a79272b03
IEDL.DBID DOA
ISSN 2624-7402
IngestDate Wed Aug 27 01:30:55 EDT 2025
Sun Aug 24 04:09:42 EDT 2025
Mon Jun 30 11:28:45 EDT 2025
Tue Jul 01 04:13:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-c08e2f986d3a7726c17de355c1e420de11d7d6ecfc7c0afd0ef68ea9a79272b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6852-4992
0009-0005-8670-6905
0000-0002-6107-4084
0000-0003-0064-1708
0000-0002-0665-625X
0000-0003-2468-3160
0000-0001-5650-1806
OpenAccessLink https://doaj.org/article/1d9d667177fa4ee0a7e25f66a9810e4c
PQID 3110283750
PQPubID 5046921
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_1d9d667177fa4ee0a7e25f66a9810e4c
proquest_miscellaneous_3153847013
proquest_journals_3110283750
crossref_primary_10_3390_agriengineering6030195
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle AgriEngineering
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Pham (ref_22) 2024; 30
ref_14
ref_36
ref_13
ref_12
ref_34
ref_33
Hannon (ref_18) 2024; 225
Cheng (ref_1) 2020; 33
Woods (ref_23) 2024; 33
Pedregosa (ref_29) 2011; 12
Upadhyay (ref_46) 2020; 41
Bonestroo (ref_11) 2022; 198
Haxhiaj (ref_7) 2022; 3
ref_17
Li (ref_24) 2024; 28
ref_39
Huang (ref_25) 2021; 1754
Kaur (ref_47) 2024; 120
ref_37
Hogeveen (ref_3) 2019; 11
Delgado (ref_15) 2021; 119
Sitkowska (ref_16) 2021; 3
Ghorbani (ref_31) 2020; 8
Egyedy (ref_2) 2022; 3
Johnson (ref_27) 2022; 14
Jian (ref_44) 2016; 193
ref_45
Abidin (ref_38) 2018; 9
ref_43
ref_20
ref_40
Hut (ref_30) 2024; 220
Khushi (ref_26) 2021; 9
Buabeng (ref_42) 2021; 3
Mukaka (ref_41) 2016; 17
Dominiak (ref_19) 2017; 133
ref_9
Adriaens (ref_10) 2024; 287
Nogueira (ref_32) 2017; 18
Liu (ref_35) 2024; 54
ref_8
Hughes (ref_21) 2019; 110
ref_5
ref_4
Guo (ref_28) 2024; 150
ref_6
References_xml – volume: 119
  start-page: 105051
  year: 2021
  ident: ref_15
  article-title: Exploring Machine Learning Algorithms for Early Prediction of Clinical Mastitis
  publication-title: Int. Dairy J.
  doi: 10.1016/j.idairyj.2021.105051
– volume: 110
  start-page: 63
  year: 2019
  ident: ref_21
  article-title: The Proportion of Missing Data Should Not Be Used to Guide Decisions on Multiple Imputation
  publication-title: J. Clin. Epidemiol.
  doi: 10.1016/j.jclinepi.2019.02.016
– ident: ref_37
  doi: 10.3390/atmos15080912
– ident: ref_45
  doi: 10.1007/s11042-024-19103-0
– volume: 225
  start-page: 106160
  year: 2024
  ident: ref_18
  article-title: Predictive modelling of deviation from expected milk yield in transition cows on automatic milking systems
  publication-title: Prev. Vet. Med.
  doi: 10.1016/j.prevetmed.2024.106160
– ident: ref_13
  doi: 10.1038/s41598-020-61126-8
– ident: ref_14
  doi: 10.3390/s20143863
– volume: 30
  start-page: 37
  year: 2024
  ident: ref_22
  article-title: Missing Data: Issues, Concepts, Methods
  publication-title: Semin. Orthod.
  doi: 10.1053/j.sodo.2024.01.007
– ident: ref_5
  doi: 10.3389/fbioe.2019.00186
– volume: 17
  start-page: 341
  year: 2016
  ident: ref_41
  article-title: Is Using Multiple Imputation Better than Complete Case Analysis for Estimating a Prevalence (Risk) Difference in Randomized Controlled Trials When Binary Outcome Observations Are Missing?
  publication-title: Trials
  doi: 10.1186/s13063-016-1473-3
– volume: 8
  start-page: 67899
  year: 2020
  ident: ref_31
  article-title: Comparing Different Resampling Methods in Predicting Students’ Performance Using Machine Learning Techniques
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2986809
– volume: 9
  start-page: 660
  year: 2018
  ident: ref_38
  article-title: Performance Analysis of Machine Learning Algorithms for Missing Value Imputation
  publication-title: ijacsa
  doi: 10.14569/IJACSA.2018.090660
– ident: ref_17
  doi: 10.3390/ani14030427
– volume: 150
  start-page: 110986
  year: 2024
  ident: ref_28
  article-title: Adaptive SV-Borderline SMOTE-SVM algorithm for imbalanced data classification
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2023.110986
– volume: 3
  start-page: 593
  year: 2021
  ident: ref_42
  article-title: A Novel Hybrid Predictive Maintenance Model Based on Clustering, Smote and Multi-Layer Perceptron Neural Network Optimised with Grey Wolf Algorithm
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-021-04598-1
– volume: 33
  start-page: e2407
  year: 2024
  ident: ref_23
  article-title: Best practices for addressing missing data through multiple imputation
  publication-title: Infant. Child Dev.
  doi: 10.1002/icd.2407
– volume: 28
  start-page: 3102
  year: 2024
  ident: ref_24
  article-title: Method for Incomplete and Imbalanced Data Based on Multivariate Imputation by Chained Equations and Ensemble Learning
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2024.3376428
– volume: 14
  start-page: 43
  year: 2022
  ident: ref_27
  article-title: A Survey on Classifying Big Data with Label Noise
  publication-title: J. Data Inf. Qual.
– ident: ref_33
  doi: 10.3390/ani14162295
– ident: ref_43
  doi: 10.3390/info14010054
– ident: ref_8
– volume: 41
  start-page: 387
  year: 2020
  ident: ref_46
  article-title: Improvised Number Identification Using SVM and Random Forest Classifiers
  publication-title: J. Inf. Optim. Sci.
– volume: 3
  start-page: 575
  year: 2021
  ident: ref_16
  article-title: MasPA: A Machine Learning Application to Predict Risk of Mastitis in Cattle from AMS Sensor Data
  publication-title: Agriengineering
  doi: 10.3390/agriengineering3030037
– ident: ref_34
  doi: 10.3390/computers12100204
– volume: 193
  start-page: 115
  year: 2016
  ident: ref_44
  article-title: A New Sampling Method for Classifying Imbalanced Data Based on Support Vector Machine Ensemble
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.02.006
– volume: 33
  start-page: 1699
  year: 2020
  ident: ref_1
  article-title: Bovine Mastitis: Risk Factors, Therapeutic Strategies, and Alternative Treatments-A Review
  publication-title: Asian-Australas. J. Anim. Sci.
  doi: 10.5713/ajas.20.0156
– volume: 3
  start-page: 722
  year: 2022
  ident: ref_7
  article-title: Mastitis: What It Is, Current Diagnostics, and the Potential of Metabolomics to Identify New Predictive Biomarkers
  publication-title: Dairy
  doi: 10.3390/dairy3040050
– ident: ref_6
  doi: 10.3390/ani13152538
– ident: ref_20
  doi: 10.1201/9780429492259
– volume: 9
  start-page: 109960
  year: 2021
  ident: ref_26
  article-title: A Comparative Performance Analysis of Data Resampling Methods on Imbalance Medical Data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3102399
– ident: ref_9
  doi: 10.1016/B978-0-323-98385-3.00004-9
– volume: 287
  start-page: 105522
  year: 2024
  ident: ref_10
  article-title: Key udder health parameters on dairy farms with an automated milking system
  publication-title: Livest. Sci.
  doi: 10.1016/j.livsci.2024.105522
– ident: ref_12
  doi: 10.1038/s41598-021-93056-4
– volume: 133
  start-page: 46
  year: 2017
  ident: ref_19
  article-title: Prioritizing Alarms from Sensor-Based Detection Models in Livestock Production—A Review on Model Performance and Alarm Reducing Methods
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.12.008
– ident: ref_4
  doi: 10.1016/j.vetmic.2024.110015
– volume: 18
  start-page: 1
  year: 2017
  ident: ref_32
  article-title: Imbalanced-Learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning
  publication-title: J. Mach. Learn. Res.
– ident: ref_36
  doi: 10.3390/atmos10110718
– volume: 120
  start-page: 5075
  year: 2024
  ident: ref_47
  article-title: Estimation of missing weather variables using different data mining techniques for avalanche forecasting
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-024-06406-6
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_29
  article-title: Scikit-Learn: Machine Learning in Python
  publication-title: J. Mach. Learn. Res.
– ident: ref_40
  doi: 10.1007/s13721-024-00447-4
– volume: 220
  start-page: 108877
  year: 2024
  ident: ref_30
  article-title: A Predictive Model for Hypocalcaemia in Dairy Cows Utilizing Behavioural Sensor Data Combined with Deep Learning
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2024.108877
– ident: ref_39
  doi: 10.3390/s24041112
– volume: 198
  start-page: 107002
  year: 2022
  ident: ref_11
  article-title: Forecasting Chronic Mastitis Using Automatic Milking System Sensor Data and Gradient-Boosting Classifiers
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107002
– volume: 1754
  start-page: 012187
  year: 2021
  ident: ref_25
  article-title: Missing Data Filling Method Based on Linear Interpolation and Lightgbm
  publication-title: Proc. J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1754/1/012187
– volume: 3
  start-page: 881
  year: 2022
  ident: ref_2
  article-title: Mastitis: Impact of Dry Period, Pathogens, and Immune Responses on Etiopathogenesis of Disease and its Association with Periparturient Diseases
  publication-title: Dairy
  doi: 10.3390/dairy3040061
– volume: 54
  start-page: 2528
  year: 2024
  ident: ref_35
  article-title: Missing data imputation and classification of small sample missing time series data based on gradient penalized adversarial multi-task learning
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-024-05314-3
– volume: 11
  start-page: 289
  year: 2019
  ident: ref_3
  article-title: Production Diseases Reduce the Efficiency of Dairy Production: A Review of the Results, Methods, and Approaches Regarding the Economics of Mastitis
  publication-title: Annu. Rev. Resour. Econ.
  doi: 10.1146/annurev-resource-100518-093954
SSID ssj0002504599
Score 2.267176
Snippet Missing data and class imbalance hinder the accurate prediction of rare events such as dairy mastitis. Resampling and imputation are employed to handle these...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 3427
SubjectTerms Accuracy
Algorithms
Automation
class
dairy cows
Dairy farms
Dairy industry
Data structures
Datasets
decision support systems
Decision trees
Disease prevention
Machine learning
Mastitis
Methods
Milk
Milking
Missing data
missing-value imputation
Multilayer perceptrons
neural networks
oversampling
performance metrics
prediction
Predictions
Preprocessing
regression analysis
Resampling
Sensors
Support vector machines
undersampling
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Ra9swEBZd-rI9jK3tWLZ2qNBXE9mWJetppFtLN0gpY4W-GVk6hcCwu9h52p_fnaJkg40-2pJluJPuPp1O3zF24bVUICBkwQmXycqprDU2ZFA7U_oyOB8i2-eturmXXx-qhxRwG1Ja5c4mRkPte0cx8lmZR1eIDu7j48-MqkbR6WoqofGMHaIJrusJO7y8ur37to-yEEFXZcz2anCJ-_uZXRJ_8J7qT9GWgIpL_OWVInn_P7Y5OpzrV-xlQop8vlXta3YA3RF7MV-uE1sGHLNfX3YlRngf-B0RVMa0f_wjX8TS0AM1zDdjj8AUPF-sflBonCeecv7Zjpb3HX3qV_GGA_VfWEogWA2cgrT4ROmWwBMTK45MxXOGE3Z_ffX9002WqilkTko5Zk7UUARTK19ahNTK5doDog2XgyyEhzz32itwwWknbPCoQFWDNVabQhetKN-wSdd38JZxVYrWF7KylW4ljoUgweVWV6bWLerJTNlsJ83mcUua0eBmg-Tf_F_-U3ZJQt_3JtLr-KJfL5u0hprcG68U7j91sBJAWA1FFZSyps4FSDdlpzuVNWklDs2feTNl5_tmXEN0MGI76DfUB82-1IiG3z09xHv2vEBQs80xO2WTcb2BMwQlY_shzbzfmbrnCA
  priority: 102
  providerName: ProQuest
Title Influence of Preprocessing Methods of Automated Milking Systems Data on Prediction of Mastitis with Machine Learning Models
URI https://www.proquest.com/docview/3110283750
https://www.proquest.com/docview/3153847013
https://doaj.org/article/1d9d667177fa4ee0a7e25f66a9810e4c
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBaje9keyn60LG1aNNiriWTLkvWYrinZIKWMFvpmZOlUAsUujfNU6N_eO9sJgRb6sheDLVkWp9PpO_n0HWO_glEaBMQkeuETlXudVNbFBApvs5BFH2LH9nmp5zfq721-u5Pqi2LCenrgXnATGWzQGp0OE50CEM5AmketnS2kAOXJ-uKat-NMkQ0mYq7c2v5IcIZ-_cTdEW_wluJPkytASSV2VqOOtP-VTe4WmosvbH9AiHza9-wr-wD1N_Z5evc4sGTAd_b0Z5NahDeRXxExZRfuj1_kiy4l9IoKpuu2QUAKgS-W97Qlzgd-cn7uWsebml4Ny-5kA9VfOAocWK44bc7iHYVZAh8YWLFlSpqzOmA3F7Pr3_NkyKKQeKVUm3hRQBptoUPmEEprL00ARBlegkpFACmDCRp89MYLFwMOnC7AWWdsatJKZIdsr25q-MG4zkQVUpW73FQK20Jw4KUzuS1MlUlpR2yykWb50JNllOhkkPzLt-U_Ymck9G1tIrvuHqAKlIMKlO-pwIiNN0NWDjNwVWJ_CDohIBqxn9tinDv0Q8TV0KypDpp7ZRAFH_2PfhyzTylCnj4Cbcz22sc1nCBkaatT9vFsdnn177TTUrwunmcvIP3xNQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdG9wA8ID5FYYCR4DGqkzh2_IBQxza1bK0mtEl7C459riqhZjStEOJ_4m_kLh8FCcTbHpM4F-V89n347neMvfFaKhAQouCEi2TmVFQaGyLInUl9GpwPDdrnXE0u5cer7GqP_exrYSitst8Tm43aV45i5KM0blQhKrj3118j6hpFp6t9C41WLE7h-zd02ep30yOc37dJcnJ88WESdV0FIiel3ERO5JAEkyufWjQtlYu1B9S6LgaZCA9x7LVX4ILTTtjg8UdUDtZYbRKdlCJFurfYvkyVSAZs__B4fv5pF9UhQLDMmLYUOU2NGNkF4RXvoAUVuSDUzOIPLdg0C_hLFzQK7uQ-u9dZpnzcitIDtgerh-zueLHu0DngEfsx7Vua8CrwcwLEbMoM8It81rSirunBeLup0BAGz2fLLxSK5x0uOj-yG8urFb3ql01FBY2fWUpYWNacgsJ4RemdwDvkV6RMzXrqx-zyRvj8hA1W1QqeMq5SUfpEZjbTpURaaJS42OrM5LpEuTBDNuq5WVy3IB0FOjfE_-Lf_B-yQ2L6bjSBbDc3qvWi6NZsEXvjlUJ_VwcrAYTVkGRBKWvyWIB0Q3bQT1nRrfy6-C2nQ_Z69xjXLB3E2BVUWxqDakZqtL6f_Z_EK3Z7cjE7K86m89Pn7E6CBlWb33bABpv1Fl6gQbQpX3ZSyNnnmxb8X7KeJUI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWroTggHiKLgsYCY5R83Ds-IBQl261ZWlVIVbaW3DscVUJJUubaoX4Z_w6ZvIoSCBue0ziTJTx2PPwzDeMvXZKSAjBB96GNhCplUGhjQ8gszpxibfON2ifC3l2IT5cppcH7GdfC0Nplf2e2GzUrrIUIx8lUaMKUcGNfJcWsZxM3119C6iDFJ209u00WhE5h-_X6L5t384mONdv4nh6-vn9WdB1GAisEKIObJhB7HUmXWLQzJQ2Ug5QA9sIRBw6iCKnnATrrbKh8Q5_SmZgtFE6VnERJkj3FjtU5BUN2OHJ6WL5aR_hIXCwVOu2LDlJdDgyK8Iu3sMMSnJHqLHFHxqxaRzwl15olN30PrvXWal83IrVA3YA5UN2d7zadEgd8Ij9mPXtTXjl-ZLAMZuSA_winzdtqbf0YLyrKzSKwfH5-iuF5XmHkc4npja8KulVt26qK2j83FDywnrLKUCMV5TqCbxDgUXK1Lhn-5hd3Aifn7BBWZXwlHGZhIWLRWpSVQikhQaKjYxKdaYKlBE9ZKOem_lVC9iRo6ND_M__zf8hOyGm70cT4HZzo9qs8m795pHTTkr0fZU3AiA0CuLUS2l0FoUg7JAd91OWd7vANv8ts0P2av8Y1y8dypgSqh2NQZUjFFriR_8n8ZLdRoHPP84W58_YnRhtqzbV7ZgN6s0OnqNtVBcvOiHk7MtNy_0v3gMpdw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+Preprocessing+Methods+of+Automated+Milking+Systems+Data+on+Prediction+of+Mastitis+with+Machine+Learning+Models&rft.jtitle=AgriEngineering&rft.au=Olivier+Kashongwe&rft.au=Tina+Kabelitz&rft.au=Christian+Ammon&rft.au=Lukas+Minogue&rft.date=2024-09-01&rft.pub=MDPI+AG&rft.eissn=2624-7402&rft.volume=6&rft.issue=3&rft.spage=3427&rft.epage=3442&rft_id=info:doi/10.3390%2Fagriengineering6030195&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1d9d667177fa4ee0a7e25f66a9810e4c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-7402&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-7402&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-7402&client=summon