Influence of Preprocessing Methods of Automated Milking Systems Data on Prediction of Mastitis with Machine Learning Models
Missing data and class imbalance hinder the accurate prediction of rare events such as dairy mastitis. Resampling and imputation are employed to handle these problems. These methods are often used arbitrarily, despite their profound impact on prediction due to changes caused to the data structure. W...
Saved in:
Published in | AgriEngineering Vol. 6; no. 3; pp. 3427 - 3442 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Missing data and class imbalance hinder the accurate prediction of rare events such as dairy mastitis. Resampling and imputation are employed to handle these problems. These methods are often used arbitrarily, despite their profound impact on prediction due to changes caused to the data structure. We hypothesize that their use affects the performance of ML models fitted to automated milking systems (AMSs) data for mastitis prediction. We compare three imputations—simple imputer (SI), multiple imputer (MICE) and linear interpolation (LI)—and three resampling techniques: Synthetic Minority Oversampling Technique (SMOTE), Support Vector Machine SMOTE (SVMSMOTE) and SMOTE with Edited Nearest Neighbors (SMOTEEN). The classifiers were logistic regression (LR), multilayer perceptron (MLP), decision tree (DT) and random forest (RF). We evaluated them with various metrics and compared models with the kappa score. A complete case analysis fitted the RF (0.78) better than other models, for which SI performed best. The DT, RF, and MLP performed better with SVMSMOTE. The RF, DT and MLP had the overall best performance, contributed by imputation or resampling (SMOTE and SVMSMOTE). We recommend carefully selecting resampling and imputation techniques and comparing them with complete cases before deciding on the preprocessing approach used to test AMS data with ML models. |
---|---|
AbstractList | Missing data and class imbalance hinder the accurate prediction of rare events such as dairy mastitis. Resampling and imputation are employed to handle these problems. These methods are often used arbitrarily, despite their profound impact on prediction due to changes caused to the data structure. We hypothesize that their use affects the performance of ML models fitted to automated milking systems (AMSs) data for mastitis prediction. We compare three imputations—simple imputer (SI), multiple imputer (MICE) and linear interpolation (LI)—and three resampling techniques: Synthetic Minority Oversampling Technique (SMOTE), Support Vector Machine SMOTE (SVMSMOTE) and SMOTE with Edited Nearest Neighbors (SMOTEEN). The classifiers were logistic regression (LR), multilayer perceptron (MLP), decision tree (DT) and random forest (RF). We evaluated them with various metrics and compared models with the kappa score. A complete case analysis fitted the RF (0.78) better than other models, for which SI performed best. The DT, RF, and MLP performed better with SVMSMOTE. The RF, DT and MLP had the overall best performance, contributed by imputation or resampling (SMOTE and SVMSMOTE). We recommend carefully selecting resampling and imputation techniques and comparing them with complete cases before deciding on the preprocessing approach used to test AMS data with ML models. |
Author | Kashongwe, Olivier Kabelitz, Tina Ammon, Christian Minogue, Lukas Silva Boloña, Pablo Amon, Thomas Amon, Barbara Doherr, Markus |
Author_xml | – sequence: 1 givenname: Olivier orcidid: 0000-0002-6107-4084 surname: Kashongwe fullname: Kashongwe, Olivier – sequence: 2 givenname: Tina orcidid: 0000-0002-0665-625X surname: Kabelitz fullname: Kabelitz, Tina – sequence: 3 givenname: Christian orcidid: 0000-0001-6852-4992 surname: Ammon fullname: Ammon, Christian – sequence: 4 givenname: Lukas orcidid: 0009-0005-8670-6905 surname: Minogue fullname: Minogue, Lukas – sequence: 5 givenname: Markus orcidid: 0000-0003-0064-1708 surname: Doherr fullname: Doherr, Markus – sequence: 6 givenname: Pablo surname: Silva Boloña fullname: Silva Boloña, Pablo – sequence: 7 givenname: Thomas orcidid: 0000-0003-2468-3160 surname: Amon fullname: Amon, Thomas – sequence: 8 givenname: Barbara orcidid: 0000-0001-5650-1806 surname: Amon fullname: Amon, Barbara |
BookMark | eNptkV1rFDEUhgepYK39CzLgjTdrTz4mmbks1erCLgrq9XBMTnazziY1yVCKf95MV0TEq5zkPHl4k_O8OQsxUNO8ZPBGiAGucJc8hZ0PRMmHnQIBbOieNOdccbnSEvjZX_Wz5jLnAwDwDmQ3DOfNz3Vw00zBUBtd-ynRXYqGcq6udktlH21eGtdziUcsZNutn74vzc8PudAxt2-xYBvDctV6U3wtK7_FXHzxub33ZV93Zl8TthvCFB7N0dKUXzRPHU6ZLn-vF83X23dfbj6sNh_fr2-uNysjpSwrAz1xN_TKCtSaK8O0JdF1hpHkYIkxq60i44w2gM4COdUTDqgHrvk3EBfN-uS1EQ_jXfJHTA9jRD8-HsS0GzEVbyYamR2sUppp7VASAWrinVMKh54BSVNdr0-u-k8_ZsplPPpsaJowUJzzKFgneqmBiYq--gc9xDmF-tJKMeC90N0STp0ok2LOidyfgAzGZcTj_0csfgFSCaFW |
Cites_doi | 10.1016/j.idairyj.2021.105051 10.1016/j.jclinepi.2019.02.016 10.3390/atmos15080912 10.1007/s11042-024-19103-0 10.1016/j.prevetmed.2024.106160 10.1038/s41598-020-61126-8 10.3390/s20143863 10.1053/j.sodo.2024.01.007 10.3389/fbioe.2019.00186 10.1186/s13063-016-1473-3 10.1109/ACCESS.2020.2986809 10.14569/IJACSA.2018.090660 10.3390/ani14030427 10.1016/j.asoc.2023.110986 10.1007/s42452-021-04598-1 10.1002/icd.2407 10.1109/JBHI.2024.3376428 10.3390/ani14162295 10.3390/info14010054 10.3390/agriengineering3030037 10.3390/computers12100204 10.1016/j.neucom.2016.02.006 10.5713/ajas.20.0156 10.3390/dairy3040050 10.3390/ani13152538 10.1201/9780429492259 10.1109/ACCESS.2021.3102399 10.1016/B978-0-323-98385-3.00004-9 10.1016/j.livsci.2024.105522 10.1038/s41598-021-93056-4 10.1016/j.compag.2016.12.008 10.1016/j.vetmic.2024.110015 10.3390/atmos10110718 10.1007/s11069-024-06406-6 10.1007/s13721-024-00447-4 10.1016/j.compag.2024.108877 10.3390/s24041112 10.1016/j.compag.2022.107002 10.1088/1742-6596/1754/1/012187 10.3390/dairy3040061 10.1007/s10489-024-05314-3 10.1146/annurev-resource-100518-093954 |
ContentType | Journal Article |
Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7X2 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BENPR BHPHI CCPQU DWQXO HCIFZ M0K PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 DOA |
DOI | 10.3390/agriengineering6030195 |
DatabaseName | CrossRef ProQuest Central (Corporate) Agricultural Science Collection ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Agriculture Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central (subscription) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2624-7402 |
EndPage | 3442 |
ExternalDocumentID | oai_doaj_org_article_1d9d667177fa4ee0a7e25f66a9810e4c 10_3390_agriengineering6030195 |
GroupedDBID | 7X2 AADQD AAFWJ AAHBH AAYXX ABDBF ACUHS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAG IAO ITC M0K MODMG M~E OK1 PHGZM PHGZT PIMPY 3V. 8FE 8FH 8FK ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c444t-c08e2f986d3a7726c17de355c1e420de11d7d6ecfc7c0afd0ef68ea9a79272b03 |
IEDL.DBID | DOA |
ISSN | 2624-7402 |
IngestDate | Wed Aug 27 01:30:55 EDT 2025 Sun Aug 24 04:09:42 EDT 2025 Mon Jun 30 11:28:45 EDT 2025 Tue Jul 01 04:13:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c444t-c08e2f986d3a7726c17de355c1e420de11d7d6ecfc7c0afd0ef68ea9a79272b03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6852-4992 0009-0005-8670-6905 0000-0002-6107-4084 0000-0003-0064-1708 0000-0002-0665-625X 0000-0003-2468-3160 0000-0001-5650-1806 |
OpenAccessLink | https://doaj.org/article/1d9d667177fa4ee0a7e25f66a9810e4c |
PQID | 3110283750 |
PQPubID | 5046921 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1d9d667177fa4ee0a7e25f66a9810e4c proquest_miscellaneous_3153847013 proquest_journals_3110283750 crossref_primary_10_3390_agriengineering6030195 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | AgriEngineering |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Pham (ref_22) 2024; 30 ref_14 ref_36 ref_13 ref_12 ref_34 ref_33 Hannon (ref_18) 2024; 225 Cheng (ref_1) 2020; 33 Woods (ref_23) 2024; 33 Pedregosa (ref_29) 2011; 12 Upadhyay (ref_46) 2020; 41 Bonestroo (ref_11) 2022; 198 Haxhiaj (ref_7) 2022; 3 ref_17 Li (ref_24) 2024; 28 ref_39 Huang (ref_25) 2021; 1754 Kaur (ref_47) 2024; 120 ref_37 Hogeveen (ref_3) 2019; 11 Delgado (ref_15) 2021; 119 Sitkowska (ref_16) 2021; 3 Ghorbani (ref_31) 2020; 8 Egyedy (ref_2) 2022; 3 Johnson (ref_27) 2022; 14 Jian (ref_44) 2016; 193 ref_45 Abidin (ref_38) 2018; 9 ref_43 ref_20 ref_40 Hut (ref_30) 2024; 220 Khushi (ref_26) 2021; 9 Buabeng (ref_42) 2021; 3 Mukaka (ref_41) 2016; 17 Dominiak (ref_19) 2017; 133 ref_9 Adriaens (ref_10) 2024; 287 Nogueira (ref_32) 2017; 18 Liu (ref_35) 2024; 54 ref_8 Hughes (ref_21) 2019; 110 ref_5 ref_4 Guo (ref_28) 2024; 150 ref_6 |
References_xml | – volume: 119 start-page: 105051 year: 2021 ident: ref_15 article-title: Exploring Machine Learning Algorithms for Early Prediction of Clinical Mastitis publication-title: Int. Dairy J. doi: 10.1016/j.idairyj.2021.105051 – volume: 110 start-page: 63 year: 2019 ident: ref_21 article-title: The Proportion of Missing Data Should Not Be Used to Guide Decisions on Multiple Imputation publication-title: J. Clin. Epidemiol. doi: 10.1016/j.jclinepi.2019.02.016 – ident: ref_37 doi: 10.3390/atmos15080912 – ident: ref_45 doi: 10.1007/s11042-024-19103-0 – volume: 225 start-page: 106160 year: 2024 ident: ref_18 article-title: Predictive modelling of deviation from expected milk yield in transition cows on automatic milking systems publication-title: Prev. Vet. Med. doi: 10.1016/j.prevetmed.2024.106160 – ident: ref_13 doi: 10.1038/s41598-020-61126-8 – ident: ref_14 doi: 10.3390/s20143863 – volume: 30 start-page: 37 year: 2024 ident: ref_22 article-title: Missing Data: Issues, Concepts, Methods publication-title: Semin. Orthod. doi: 10.1053/j.sodo.2024.01.007 – ident: ref_5 doi: 10.3389/fbioe.2019.00186 – volume: 17 start-page: 341 year: 2016 ident: ref_41 article-title: Is Using Multiple Imputation Better than Complete Case Analysis for Estimating a Prevalence (Risk) Difference in Randomized Controlled Trials When Binary Outcome Observations Are Missing? publication-title: Trials doi: 10.1186/s13063-016-1473-3 – volume: 8 start-page: 67899 year: 2020 ident: ref_31 article-title: Comparing Different Resampling Methods in Predicting Students’ Performance Using Machine Learning Techniques publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2986809 – volume: 9 start-page: 660 year: 2018 ident: ref_38 article-title: Performance Analysis of Machine Learning Algorithms for Missing Value Imputation publication-title: ijacsa doi: 10.14569/IJACSA.2018.090660 – ident: ref_17 doi: 10.3390/ani14030427 – volume: 150 start-page: 110986 year: 2024 ident: ref_28 article-title: Adaptive SV-Borderline SMOTE-SVM algorithm for imbalanced data classification publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2023.110986 – volume: 3 start-page: 593 year: 2021 ident: ref_42 article-title: A Novel Hybrid Predictive Maintenance Model Based on Clustering, Smote and Multi-Layer Perceptron Neural Network Optimised with Grey Wolf Algorithm publication-title: SN Appl. Sci. doi: 10.1007/s42452-021-04598-1 – volume: 33 start-page: e2407 year: 2024 ident: ref_23 article-title: Best practices for addressing missing data through multiple imputation publication-title: Infant. Child Dev. doi: 10.1002/icd.2407 – volume: 28 start-page: 3102 year: 2024 ident: ref_24 article-title: Method for Incomplete and Imbalanced Data Based on Multivariate Imputation by Chained Equations and Ensemble Learning publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2024.3376428 – volume: 14 start-page: 43 year: 2022 ident: ref_27 article-title: A Survey on Classifying Big Data with Label Noise publication-title: J. Data Inf. Qual. – ident: ref_33 doi: 10.3390/ani14162295 – ident: ref_43 doi: 10.3390/info14010054 – ident: ref_8 – volume: 41 start-page: 387 year: 2020 ident: ref_46 article-title: Improvised Number Identification Using SVM and Random Forest Classifiers publication-title: J. Inf. Optim. Sci. – volume: 3 start-page: 575 year: 2021 ident: ref_16 article-title: MasPA: A Machine Learning Application to Predict Risk of Mastitis in Cattle from AMS Sensor Data publication-title: Agriengineering doi: 10.3390/agriengineering3030037 – ident: ref_34 doi: 10.3390/computers12100204 – volume: 193 start-page: 115 year: 2016 ident: ref_44 article-title: A New Sampling Method for Classifying Imbalanced Data Based on Support Vector Machine Ensemble publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.02.006 – volume: 33 start-page: 1699 year: 2020 ident: ref_1 article-title: Bovine Mastitis: Risk Factors, Therapeutic Strategies, and Alternative Treatments-A Review publication-title: Asian-Australas. J. Anim. Sci. doi: 10.5713/ajas.20.0156 – volume: 3 start-page: 722 year: 2022 ident: ref_7 article-title: Mastitis: What It Is, Current Diagnostics, and the Potential of Metabolomics to Identify New Predictive Biomarkers publication-title: Dairy doi: 10.3390/dairy3040050 – ident: ref_6 doi: 10.3390/ani13152538 – ident: ref_20 doi: 10.1201/9780429492259 – volume: 9 start-page: 109960 year: 2021 ident: ref_26 article-title: A Comparative Performance Analysis of Data Resampling Methods on Imbalance Medical Data publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3102399 – ident: ref_9 doi: 10.1016/B978-0-323-98385-3.00004-9 – volume: 287 start-page: 105522 year: 2024 ident: ref_10 article-title: Key udder health parameters on dairy farms with an automated milking system publication-title: Livest. Sci. doi: 10.1016/j.livsci.2024.105522 – ident: ref_12 doi: 10.1038/s41598-021-93056-4 – volume: 133 start-page: 46 year: 2017 ident: ref_19 article-title: Prioritizing Alarms from Sensor-Based Detection Models in Livestock Production—A Review on Model Performance and Alarm Reducing Methods publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2016.12.008 – ident: ref_4 doi: 10.1016/j.vetmic.2024.110015 – volume: 18 start-page: 1 year: 2017 ident: ref_32 article-title: Imbalanced-Learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning publication-title: J. Mach. Learn. Res. – ident: ref_36 doi: 10.3390/atmos10110718 – volume: 120 start-page: 5075 year: 2024 ident: ref_47 article-title: Estimation of missing weather variables using different data mining techniques for avalanche forecasting publication-title: Nat. Hazards doi: 10.1007/s11069-024-06406-6 – volume: 12 start-page: 2825 year: 2011 ident: ref_29 article-title: Scikit-Learn: Machine Learning in Python publication-title: J. Mach. Learn. Res. – ident: ref_40 doi: 10.1007/s13721-024-00447-4 – volume: 220 start-page: 108877 year: 2024 ident: ref_30 article-title: A Predictive Model for Hypocalcaemia in Dairy Cows Utilizing Behavioural Sensor Data Combined with Deep Learning publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2024.108877 – ident: ref_39 doi: 10.3390/s24041112 – volume: 198 start-page: 107002 year: 2022 ident: ref_11 article-title: Forecasting Chronic Mastitis Using Automatic Milking System Sensor Data and Gradient-Boosting Classifiers publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107002 – volume: 1754 start-page: 012187 year: 2021 ident: ref_25 article-title: Missing Data Filling Method Based on Linear Interpolation and Lightgbm publication-title: Proc. J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1754/1/012187 – volume: 3 start-page: 881 year: 2022 ident: ref_2 article-title: Mastitis: Impact of Dry Period, Pathogens, and Immune Responses on Etiopathogenesis of Disease and its Association with Periparturient Diseases publication-title: Dairy doi: 10.3390/dairy3040061 – volume: 54 start-page: 2528 year: 2024 ident: ref_35 article-title: Missing data imputation and classification of small sample missing time series data based on gradient penalized adversarial multi-task learning publication-title: Appl. Intell. doi: 10.1007/s10489-024-05314-3 – volume: 11 start-page: 289 year: 2019 ident: ref_3 article-title: Production Diseases Reduce the Efficiency of Dairy Production: A Review of the Results, Methods, and Approaches Regarding the Economics of Mastitis publication-title: Annu. Rev. Resour. Econ. doi: 10.1146/annurev-resource-100518-093954 |
SSID | ssj0002504599 |
Score | 2.267176 |
Snippet | Missing data and class imbalance hinder the accurate prediction of rare events such as dairy mastitis. Resampling and imputation are employed to handle these... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 3427 |
SubjectTerms | Accuracy Algorithms Automation class dairy cows Dairy farms Dairy industry Data structures Datasets decision support systems Decision trees Disease prevention Machine learning Mastitis Methods Milk Milking Missing data missing-value imputation Multilayer perceptrons neural networks oversampling performance metrics prediction Predictions Preprocessing regression analysis Resampling Sensors Support vector machines undersampling |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Ra9swEBZd-rI9jK3tWLZ2qNBXE9mWJetppFtLN0gpY4W-GVk6hcCwu9h52p_fnaJkg40-2pJluJPuPp1O3zF24bVUICBkwQmXycqprDU2ZFA7U_oyOB8i2-eturmXXx-qhxRwG1Ja5c4mRkPte0cx8lmZR1eIDu7j48-MqkbR6WoqofGMHaIJrusJO7y8ur37to-yEEFXZcz2anCJ-_uZXRJ_8J7qT9GWgIpL_OWVInn_P7Y5OpzrV-xlQop8vlXta3YA3RF7MV-uE1sGHLNfX3YlRngf-B0RVMa0f_wjX8TS0AM1zDdjj8AUPF-sflBonCeecv7Zjpb3HX3qV_GGA_VfWEogWA2cgrT4ROmWwBMTK45MxXOGE3Z_ffX9002WqilkTko5Zk7UUARTK19ahNTK5doDog2XgyyEhzz32itwwWknbPCoQFWDNVabQhetKN-wSdd38JZxVYrWF7KylW4ljoUgweVWV6bWLerJTNlsJ83mcUua0eBmg-Tf_F_-U3ZJQt_3JtLr-KJfL5u0hprcG68U7j91sBJAWA1FFZSyps4FSDdlpzuVNWklDs2feTNl5_tmXEN0MGI76DfUB82-1IiG3z09xHv2vEBQs80xO2WTcb2BMwQlY_shzbzfmbrnCA priority: 102 providerName: ProQuest |
Title | Influence of Preprocessing Methods of Automated Milking Systems Data on Prediction of Mastitis with Machine Learning Models |
URI | https://www.proquest.com/docview/3110283750 https://www.proquest.com/docview/3153847013 https://doaj.org/article/1d9d667177fa4ee0a7e25f66a9810e4c |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBaje9keyn60LG1aNNiriWTLkvWYrinZIKWMFvpmZOlUAsUujfNU6N_eO9sJgRb6sheDLVkWp9PpO_n0HWO_glEaBMQkeuETlXudVNbFBApvs5BFH2LH9nmp5zfq721-u5Pqi2LCenrgXnATGWzQGp0OE50CEM5AmketnS2kAOXJ-uKat-NMkQ0mYq7c2v5IcIZ-_cTdEW_wluJPkytASSV2VqOOtP-VTe4WmosvbH9AiHza9-wr-wD1N_Z5evc4sGTAd_b0Z5NahDeRXxExZRfuj1_kiy4l9IoKpuu2QUAKgS-W97Qlzgd-cn7uWsebml4Ny-5kA9VfOAocWK44bc7iHYVZAh8YWLFlSpqzOmA3F7Pr3_NkyKKQeKVUm3hRQBptoUPmEEprL00ARBlegkpFACmDCRp89MYLFwMOnC7AWWdsatJKZIdsr25q-MG4zkQVUpW73FQK20Jw4KUzuS1MlUlpR2yykWb50JNllOhkkPzLt-U_Ymck9G1tIrvuHqAKlIMKlO-pwIiNN0NWDjNwVWJ_CDohIBqxn9tinDv0Q8TV0KypDpp7ZRAFH_2PfhyzTylCnj4Cbcz22sc1nCBkaatT9vFsdnn177TTUrwunmcvIP3xNQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdG9wA8ID5FYYCR4DGqkzh2_IBQxza1bK0mtEl7C459riqhZjStEOJ_4m_kLh8FCcTbHpM4F-V89n347neMvfFaKhAQouCEi2TmVFQaGyLInUl9GpwPDdrnXE0u5cer7GqP_exrYSitst8Tm43aV45i5KM0blQhKrj3118j6hpFp6t9C41WLE7h-zd02ep30yOc37dJcnJ88WESdV0FIiel3ERO5JAEkyufWjQtlYu1B9S6LgaZCA9x7LVX4ILTTtjg8UdUDtZYbRKdlCJFurfYvkyVSAZs__B4fv5pF9UhQLDMmLYUOU2NGNkF4RXvoAUVuSDUzOIPLdg0C_hLFzQK7uQ-u9dZpnzcitIDtgerh-zueLHu0DngEfsx7Vua8CrwcwLEbMoM8It81rSirunBeLup0BAGz2fLLxSK5x0uOj-yG8urFb3ql01FBY2fWUpYWNacgsJ4RemdwDvkV6RMzXrqx-zyRvj8hA1W1QqeMq5SUfpEZjbTpURaaJS42OrM5LpEuTBDNuq5WVy3IB0FOjfE_-Lf_B-yQ2L6bjSBbDc3qvWi6NZsEXvjlUJ_VwcrAYTVkGRBKWvyWIB0Q3bQT1nRrfy6-C2nQ_Z69xjXLB3E2BVUWxqDakZqtL6f_Z_EK3Z7cjE7K86m89Pn7E6CBlWb33bABpv1Fl6gQbQpX3ZSyNnnmxb8X7KeJUI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWroTggHiKLgsYCY5R83Ds-IBQl261ZWlVIVbaW3DscVUJJUubaoX4Z_w6ZvIoSCBue0ziTJTx2PPwzDeMvXZKSAjBB96GNhCplUGhjQ8gszpxibfON2ifC3l2IT5cppcH7GdfC0Nplf2e2GzUrrIUIx8lUaMKUcGNfJcWsZxM3119C6iDFJ209u00WhE5h-_X6L5t384mONdv4nh6-vn9WdB1GAisEKIObJhB7HUmXWLQzJQ2Ug5QA9sIRBw6iCKnnATrrbKh8Q5_SmZgtFE6VnERJkj3FjtU5BUN2OHJ6WL5aR_hIXCwVOu2LDlJdDgyK8Iu3sMMSnJHqLHFHxqxaRzwl15olN30PrvXWal83IrVA3YA5UN2d7zadEgd8Ij9mPXtTXjl-ZLAMZuSA_winzdtqbf0YLyrKzSKwfH5-iuF5XmHkc4npja8KulVt26qK2j83FDywnrLKUCMV5TqCbxDgUXK1Lhn-5hd3Aifn7BBWZXwlHGZhIWLRWpSVQikhQaKjYxKdaYKlBE9ZKOem_lVC9iRo6ND_M__zf8hOyGm70cT4HZzo9qs8m795pHTTkr0fZU3AiA0CuLUS2l0FoUg7JAd91OWd7vANv8ts0P2av8Y1y8dypgSqh2NQZUjFFriR_8n8ZLdRoHPP84W58_YnRhtqzbV7ZgN6s0OnqNtVBcvOiHk7MtNy_0v3gMpdw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+Preprocessing+Methods+of+Automated+Milking+Systems+Data+on+Prediction+of+Mastitis+with+Machine+Learning+Models&rft.jtitle=AgriEngineering&rft.au=Olivier+Kashongwe&rft.au=Tina+Kabelitz&rft.au=Christian+Ammon&rft.au=Lukas+Minogue&rft.date=2024-09-01&rft.pub=MDPI+AG&rft.eissn=2624-7402&rft.volume=6&rft.issue=3&rft.spage=3427&rft.epage=3442&rft_id=info:doi/10.3390%2Fagriengineering6030195&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1d9d667177fa4ee0a7e25f66a9810e4c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-7402&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-7402&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-7402&client=summon |