Enzymatic characteristics of immobilized carbonic anhydrase and its applications in CO2 conversion

[Display omitted] •The enzymatic characteristics of immobilized CA are comprehensively summarized.•Approaches for immobilization and the advantages and disadvantages are discussed.•Applications of CA in native and immobilized status are reviewed.•Studies of CO2 conversion are summarized, providing i...

Full description

Saved in:
Bibliographic Details
Published inColloids and surfaces, B, Biointerfaces Vol. 204; p. 111779
Main Authors Ren, Sizhu, Chen, Ruixue, Wu, Zhangfei, Su, Shan, Hou, Jiaxi, Yuan, Yanlin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •The enzymatic characteristics of immobilized CA are comprehensively summarized.•Approaches for immobilization and the advantages and disadvantages are discussed.•Applications of CA in native and immobilized status are reviewed.•Studies of CO2 conversion are summarized, providing ideas for CO2 utilization. Native carbonic anhydrase (CA) has been widely used in several different applications due to its catalytic function in the interconversion of carbon dioxide (CO2) and carbonic acid. However, subject to its stability and recyclability, native CA often deactivates when in harsh environments, which restricts its applications in the commercial market. Maintaining the stability and high catalytic activity of CA is challenging. Immobilization provides an effective route that can improve enzymatic stability. Through the interaction of covalent bonds and van der Waals forces, water-soluble CA can be combined with various insoluble supports to form water-insoluble immobilized CA so that CA stability and utilization can be greatly improved. However, if the immobilization method or immobilization condition is not suitable, it often leads to a decrease in CA activity, reducing the application effects on CO2 conversion. In this review, we discuss existing immobilization methods and applications of immobilized CA in the environmental field, such as the mineralization of carbon dioxide and multienzyme cascade catalysis based on CA. Additionally, prospects in current development are outlined. Because of the many outstanding and superior properties after immobilization, CA is likely to be used in a wide variety of scientific and technical areas in the future.
AbstractList Native carbonic anhydrase (CA) has been widely used in several different applications due to its catalytic function in the interconversion of carbon dioxide (CO₂) and carbonic acid. However, subject to its stability and recyclability, native CA often deactivates when in harsh environments, which restricts its applications in the commercial market. Maintaining the stability and high catalytic activity of CA is challenging. Immobilization provides an effective route that can improve enzymatic stability. Through the interaction of covalent bonds and van der Waals forces, water-soluble CA can be combined with various insoluble supports to form water-insoluble immobilized CA so that CA stability and utilization can be greatly improved. However, if the immobilization method or immobilization condition is not suitable, it often leads to a decrease in CA activity, reducing the application effects on CO₂ conversion. In this review, we discuss existing immobilization methods and applications of immobilized CA in the environmental field, such as the mineralization of carbon dioxide and multienzyme cascade catalysis based on CA. Additionally, prospects in current development are outlined. Because of the many outstanding and superior properties after immobilization, CA is likely to be used in a wide variety of scientific and technical areas in the future.
Native carbonic anhydrase (CA) has been widely used in several different applications due to its catalytic function in the interconversion of carbon dioxide (CO2) and carbonic acid. However, subject to its stability and recyclability, native CA often deactivates when in harsh environments, which restricts its applications in the commercial market. Maintaining the stability and high catalytic activity of CA is challenging. Immobilization provides an effective route that can improve enzymatic stability. Through the interaction of covalent bonds and van der Waals forces, water-soluble CA can be combined with various insoluble supports to form water-insoluble immobilized CA so that CA stability and utilization can be greatly improved. However, if the immobilization method or immobilization condition is not suitable, it often leads to a decrease in CA activity, reducing the application effects on CO2 conversion. In this review, we discuss existing immobilization methods and applications of immobilized CA in the environmental field, such as the mineralization of carbon dioxide and multienzyme cascade catalysis based on CA. Additionally, prospects in current development are outlined. Because of the many outstanding and superior properties after immobilization, CA is likely to be used in a wide variety of scientific and technical areas in the future.Native carbonic anhydrase (CA) has been widely used in several different applications due to its catalytic function in the interconversion of carbon dioxide (CO2) and carbonic acid. However, subject to its stability and recyclability, native CA often deactivates when in harsh environments, which restricts its applications in the commercial market. Maintaining the stability and high catalytic activity of CA is challenging. Immobilization provides an effective route that can improve enzymatic stability. Through the interaction of covalent bonds and van der Waals forces, water-soluble CA can be combined with various insoluble supports to form water-insoluble immobilized CA so that CA stability and utilization can be greatly improved. However, if the immobilization method or immobilization condition is not suitable, it often leads to a decrease in CA activity, reducing the application effects on CO2 conversion. In this review, we discuss existing immobilization methods and applications of immobilized CA in the environmental field, such as the mineralization of carbon dioxide and multienzyme cascade catalysis based on CA. Additionally, prospects in current development are outlined. Because of the many outstanding and superior properties after immobilization, CA is likely to be used in a wide variety of scientific and technical areas in the future.
[Display omitted] •The enzymatic characteristics of immobilized CA are comprehensively summarized.•Approaches for immobilization and the advantages and disadvantages are discussed.•Applications of CA in native and immobilized status are reviewed.•Studies of CO2 conversion are summarized, providing ideas for CO2 utilization. Native carbonic anhydrase (CA) has been widely used in several different applications due to its catalytic function in the interconversion of carbon dioxide (CO2) and carbonic acid. However, subject to its stability and recyclability, native CA often deactivates when in harsh environments, which restricts its applications in the commercial market. Maintaining the stability and high catalytic activity of CA is challenging. Immobilization provides an effective route that can improve enzymatic stability. Through the interaction of covalent bonds and van der Waals forces, water-soluble CA can be combined with various insoluble supports to form water-insoluble immobilized CA so that CA stability and utilization can be greatly improved. However, if the immobilization method or immobilization condition is not suitable, it often leads to a decrease in CA activity, reducing the application effects on CO2 conversion. In this review, we discuss existing immobilization methods and applications of immobilized CA in the environmental field, such as the mineralization of carbon dioxide and multienzyme cascade catalysis based on CA. Additionally, prospects in current development are outlined. Because of the many outstanding and superior properties after immobilization, CA is likely to be used in a wide variety of scientific and technical areas in the future.
ArticleNumber 111779
Author Yuan, Yanlin
Wu, Zhangfei
Su, Shan
Ren, Sizhu
Chen, Ruixue
Hou, Jiaxi
Author_xml – sequence: 1
  givenname: Sizhu
  surname: Ren
  fullname: Ren, Sizhu
  email: sizhu_ren@163.com
  organization: Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China
– sequence: 2
  givenname: Ruixue
  surname: Chen
  fullname: Chen, Ruixue
  organization: Tianjin University of Science and Technology, College of Biotechnology, Tianjin, No 29, 13th, Avenue, 300457, Tianjin, PR China
– sequence: 3
  givenname: Zhangfei
  surname: Wu
  fullname: Wu, Zhangfei
  organization: Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China
– sequence: 4
  givenname: Shan
  surname: Su
  fullname: Su, Shan
  organization: Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China
– sequence: 5
  givenname: Jiaxi
  surname: Hou
  fullname: Hou, Jiaxi
  organization: Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China
– sequence: 6
  givenname: Yanlin
  surname: Yuan
  fullname: Yuan, Yanlin
  email: pinfan10@126.com
  organization: Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China
BookMark eNqNkE1LxDAURYMoOI7-BcnSTcekSZMWXCiDXyC40XVIXl8xQ5uMSUcYf73V0Y0bXb0P7rmLc0T2QwxIyClnC864Ol8tIPZ5kzq3KFnJF5xzrZs9MuO1FoUUSu-TGWtKXWitqkNylPOKMVZKrmfEXYf37WBHDxRebLIwYvJ5OjONHfXDEJ3v_Tu2FGxyMUw5G162bbIZp62lfszUrte9h6kkhkx9oMvHkkIMb5jy9DomB53tM558zzl5vrl-Wt4VD4-398urhwKklGPhnKgbjV3ZaIayktIBr5m0LToOgKJiErkQwgJzSimo2lIB1o61wLquQTEnZ7vedYqvG8yjGXwG7HsbMG6yKSsthWi0rv8R5XXTSKbUFFW7KKSYc8LOrJMfbNoazsynf7MyP_7Np3-z8z-BF79A8OOXozFZ3_-NX-5wnJS9eUwmg8cA2PqEMJo2-r8qPgCSWqoi
CitedBy_id crossref_primary_10_1007_s11270_024_06918_8
crossref_primary_10_3390_chemengineering5040065
crossref_primary_10_1016_j_seppur_2022_121299
crossref_primary_10_3390_app13179494
crossref_primary_10_1016_j_memlet_2022_100031
crossref_primary_10_1016_j_biteb_2023_101380
crossref_primary_10_1016_j_bcab_2023_102755
crossref_primary_10_1016_j_psep_2024_01_100
crossref_primary_10_1016_j_jobe_2024_108886
crossref_primary_10_1016_j_enconman_2024_118467
crossref_primary_10_1016_j_ccst_2024_100257
crossref_primary_10_1016_j_fuproc_2023_107905
crossref_primary_10_1016_j_bej_2022_108719
crossref_primary_10_3390_molecules28145520
crossref_primary_10_1016_j_foodhyd_2022_107693
crossref_primary_10_1002_ceat_202200271
crossref_primary_10_1016_j_cej_2023_146847
crossref_primary_10_1021_acs_chemmater_2c03169
crossref_primary_10_1016_j_chemosphere_2022_134419
crossref_primary_10_1021_acsomega_3c00691
crossref_primary_10_1007_s11244_022_01770_8
crossref_primary_10_1021_acs_biomac_3c00993
crossref_primary_10_3390_magnetochemistry9040110
crossref_primary_10_1016_j_jgsce_2024_205237
crossref_primary_10_1007_s11814_024_00050_3
crossref_primary_10_1007_s11270_025_07873_8
crossref_primary_10_1007_s12010_024_04908_4
crossref_primary_10_1016_j_cej_2023_146186
crossref_primary_10_3390_molecules30020251
Cites_doi 10.1021/acs.jafc.9b04385
10.1007/s12010-013-0226-y
10.1002/ghg.2007
10.1021/acs.jafc.7b03922
10.1080/14756366.2020.1743284
10.1002/cjce.23528
10.1186/1556-276X-6-450
10.1016/S0141-0229(96)00085-3
10.1016/j.procbio.2011.01.023
10.3109/14756366.2012.761608
10.1016/S0032-9592(99)00017-5
10.1016/j.molcatb.2012.03.021
10.1016/j.ijbiomac.2017.03.030
10.1007/s12257-012-0398-2
10.1021/la000942h
10.1021/acs.est.8b04671
10.1016/j.procbio.2017.03.025
10.1021/jp204661v
10.1016/j.enzmictec.2007.01.018
10.1016/j.ces.2010.02.010
10.1039/C1SM06452E
10.1080/10826068.2019.1633669
10.1016/j.rser.2018.04.103
10.1016/j.jclepro.2012.10.049
10.1016/j.apsusc.2013.12.016
10.1007/s12154-013-0102-9
10.1021/ac052030w
10.1016/j.memsci.2010.08.042
10.1002/adsc.200700082
10.1039/C9RA10633B
10.1016/j.rser.2020.109799
10.1039/C3CS60075K
10.1039/c3cs35464d
10.1016/j.ijbiomac.2015.05.051
10.1021/la501333s
10.1016/j.ijbiomac.2016.12.012
10.1016/j.ijbiomac.2018.02.092
10.1021/acsnano.5b01278
10.1016/j.molcatb.2015.03.014
10.1016/j.biortech.2011.09.043
10.1002/bit.21510
10.1073/pnas.52.3.833
10.1021/la0497200
10.1016/j.ijbiomac.2020.10.009
10.1039/C5AY02670A
10.1021/ar400236y
10.1016/j.ijbiomac.2020.11.127
10.1021/acs.est.9b05284
10.1007/s12010-009-8758-x
10.1002/anie.201708530
10.1134/S0003683819040112
10.1002/bit.21584
10.1039/c3nj00688c
10.3109/14756366.2012.703185
10.1016/j.procbio.2015.09.015
10.1007/s11274-013-1343-z
10.1016/S0958-1669(03)00096-X
10.1002/1521-3927(20000701)21:11<750::AID-MARC750>3.0.CO;2-3
10.1039/c3cs35506c
10.1021/cs200218f
10.1016/j.polymer.2009.09.067
10.1021/jacs.7b01794
10.1080/14756366.2017.1316719
10.1016/j.bej.2019.03.002
10.1002/bit.260240805
10.1142/S1793604718500467
10.1002/elps.201900428
10.1042/BA20030060
10.1016/j.jcou.2020.101172
10.3390/ijms21082960
10.1002/adsc.201900439
10.1002/app.47784
10.1016/j.procbio.2018.08.017
10.1039/C5CY00179J
10.1038/nnano.2012.80
10.1088/1742-6596/885/1/012006
10.1002/bab.1629
10.1007/s10934-006-9089-8
10.1016/j.ijbiomac.2018.10.147
10.1016/j.ijggc.2016.03.016
10.1007/s11356-019-06667-w
10.1016/j.foodchem.2006.01.042
10.1021/ie801931j
10.1146/annurev-earth-053018-060108
10.1002/cbic.201900061
10.1007/s10529-009-0173-4
10.1021/ef100750y
10.1016/S0304-4165(02)00153-8
10.1002/bit.25136
10.1021/cm048659h
10.1002/ente.201600747
10.3109/07388551.2013.795516
10.1007/s11051-007-9332-5
10.1007/s10529-011-0671-z
10.1016/j.matdes.2021.109463
10.1016/j.molcatb.2009.02.022
10.1016/j.cej.2019.05.141
10.1002/bit.26180
10.1021/acs.energyfuels.6b02777
10.1039/C4TA05760K
10.1002/mame.201200331
10.1039/c2cp40654c
10.1016/0005-2744(71)90143-4
10.1016/j.chemosphere.2015.07.020
10.1081/SS-100108358
10.1038/nature11117
10.1002/adsc.200800309
10.1016/j.micromeso.2011.12.005
10.1039/C2CC38225C
10.1080/14756366.2020.1734800
10.1039/C4RA05362A
10.1111/j.1749-6632.2003.tb06019.x
10.3390/ijms21082922
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright © 2021 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright © 2021 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.colsurfb.2021.111779
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Chemistry
EISSN 1873-4367
ExternalDocumentID 10_1016_j_colsurfb_2021_111779
S092777652100223X
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABGSF
ABMAC
ABNEU
ABNUV
ABUDA
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AFXIZ
AFZHZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M24
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCE
SDF
SDG
SDP
SES
SEW
SMS
SPC
SSG
SSK
SSM
SSQ
SSU
SSZ
T5K
VH1
WH7
WUQ
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
BNPGV
CITATION
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c444t-bb3897ef2970e4544bc1804adeb1cce3504e1333ac0b666c5d26ce8b0dc0ff9e3
IEDL.DBID .~1
ISSN 0927-7765
1873-4367
IngestDate Thu Jul 10 22:55:43 EDT 2025
Fri Jul 11 15:37:55 EDT 2025
Tue Jul 01 03:27:14 EDT 2025
Thu Apr 24 22:58:17 EDT 2025
Fri Feb 23 02:44:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords BCA
Stability
ADH
Recyclability
HCA
GDH
FDH
FALDH
PVDF
CSDE
NADH
Carbonic anhydrase
Catalytic function
Immobilized support
PE
PEI
CLEAs
CLE
DA
CA
CLECs
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-bb3897ef2970e4544bc1804adeb1cce3504e1333ac0b666c5d26ce8b0dc0ff9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PQID 2518994066
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2574339778
proquest_miscellaneous_2518994066
crossref_primary_10_1016_j_colsurfb_2021_111779
crossref_citationtrail_10_1016_j_colsurfb_2021_111779
elsevier_sciencedirect_doi_10_1016_j_colsurfb_2021_111779
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
20210801
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationTitle Colloids and surfaces, B, Biointerfaces
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Adhikari (bib0005) 2019
Ren, Li, Jiao, Jia, Jiang, Bilal, Cui (bib0295) 2019; 373
Angeli, Prete, Ghobril, Hitce, Supuran (bib0035) 2020; 35
Jaya, Nathan, A. P (bib0045) 2019; 49
Goldhahn, Taut, Schubert, Burgert, Chanana (bib0240) 2020; 10
Schüler, Caruso (bib0490) 2000; 21
Sheldon (bib0135) 2007; 349
Al-Dhrub, Sahin, Ozmen, Tunca, Bulbul (bib0525) 2017; 57
Shao, Wu, Xu, Zhang, Cai (bib0175) 2012; 14
Wang, Zhao, Meng (bib0270) 2009; 136
Morel, Lam, Saito (bib0015) 2020; 48
Srivastava, Singh, Khatri, Singh, Arya (bib0060) 2020; 165
Ulbricht, Papra (bib0155) 1997; 20
Godara, Pundir (bib0160) 2008; 127
Bhattacharya, Shrivastava, Sharma (bib0400) 2013; 170
Nogalska, Ammendola, Portugal, Tylkowski, Valls (bib0470) 2018
Guedidi, Yurekli, Deratani, Déjardin, Innocent, Altinkaya, Roudesli, Yemenicioglu (bib0335) 2010; 365
Krasavin, Sharonova, Sharoyko, Zhukovsky, Supuran (bib0040) 2020; 35
Carrazco-Escalante, Caro-Corrales, Iribe-Salazar, Ríos-Iribe, Vázquez-López, Gutiérrez-Dorado, Hernández-Calderón (bib0075) 2020; 98
Jampala, Preethi, Ramanujam, Harish, Uppuluri, Anbazhagan (bib0245) 2017; 95
Migliardini, De Luca, Carginale, Rossi, Corbo, Supuran, Capasso (bib0545) 2014; 29
Zhou, Luo, Li, Ma, He, Jiang, Yin, Gao (bib0340) 2019; 146
Merle, Fradette, Madore, Barralet (bib0385) 2014; 30
Cao, van Langen, Sheldon (bib0315) 2003; 14
Sanjay, Sugunan (bib0410) 2008; 15
Li, Shen, Zhou, He, Su, Song, Yang (bib0105) 2020; 41
Tang, Kang (bib0445) 2006; 78
Capasso, Luca, Carginale, Cannio, Rossi (bib0025) 2012; 27
Tsuru, Tsuge, Kubota, Yoshida, Yoshioka, Asaeda (bib0455) 2001; 36
Jun, Yang, Jeon, Kim, Pack, Jin, Kim (bib0535) 2020; 54
Cazelles, Drone, Fajula, Ersen, Moldovan, Galarneau (bib0620) 2013; 37
Jensen, Maberly, Gontero (bib0020) 2020; 21
Zhu, Li, Sun, Tang, Bian (bib0010) 2016; 49
Zhang, Du, Shao, Wang, Ye, Chen, Chen (bib0405) 2018; 52
Hosseini, Hosseini, Zohreh, Yaghoubi, Pourjavadi (bib0165) 2018; 66
Haynie, Khadka, Cross, Gitnik, Le (bib0310) 2013; 298
Baskaya, Zhao, Flickinger, Wang (bib0595) 2010; 162
Zhang, Zhang, Lu, Rostam-Abadi, Jones (bib0150) 2011; 102
Vertegel, Siegel, Dordick (bib0505) 2004; 20
Min, Son, Ki, Choi, Pack (bib0210) 2016; 143
Bornscheuer, Huisman, Kazlauskas, Lutz, Moore, Robins (bib0345) 2012; 485
Yadav, Wanjari, Prabhu, Kumar, Labhsetwar, Satyanarayanan, Kotwal, Rayalu (bib0180) 2010; 24
Oviya, Sukumaran, Giri (bib0230) 2013; 29
Moon, Kim, Jo, Cha (bib0555) 2020; 39
Zhang, Zhi, Zhang, Huang, Chen (bib0395) 2009; 50
Sandor, Riechel, Kaplan, Mathiowitz (bib0220) 2002; 1570
Sun, Wang, Wang, Ji, Liu (bib0460) 2019; 136
Ji, Su, Wang, Ma, Zhang (bib0615) 2015; 9
Güzel-Akdemir, Carradori, Grande, Demir-Yazc, Akdemir (bib0030) 2020; 21
Castillo, Solá, Ferrer, Barletta, Griebenow (bib0330) 2008; 99
Cowan, Ge, Qin, McGregor, Trachtenberg (bib0390) 2003; 984
Abdel-Naby (bib0290) 1999; 34
Mohd Rafidi, Abdullah, Hamzah (bib0560) 2017; 885
Ge, Lei, Zare (bib0515) 2012; 7
Jing, Pan, Lv, Zhou (bib0440) 2015; 50
Fathali, Rezaei, Faramarzi, Habibi-Rezaei (bib0275) 2019; 122
Moon, Eu, Lee, Kim, Youn (bib0050) 2020; 10
Zhang (bib0300) 2011; 1
Yushkova, Nazarova, Matyuhina, Noskova, Shavronskaya, Vinogradov, Skvortsova, Krivoshapkina (bib0110) 2019; 67
Forsyth, Yip, Patwardhan (bib0530) 2013; 49
Lim, Kim, Hwang (bib0065) 2019; 55
Lu, Zhang, Yuan, Zhu, Chen, Wang, Wang (bib0095) 2019; 20
Cantone, Ferrario, Corici, Ebert, Fattor, Spizzo, Gardossi (bib0090) 2013; 42
Tan, Han, Yu, Chiu, Chang, Ouyang, Fan, Lo, Ng (bib0370) 2018; 73
Kahveci, Xu (bib0285) 2011; 33
Silva, Gómez-Vallejo, Llop, López-Gallego (bib0380) 2015; 5
Cabirol, Tan, Tay, Cheng, Hanefeld, Sheldon (bib0280) 2008; 350
Chen, Wang, Gao, Jiang, Hu, Li, Zhai, Jiang (bib0100) 2021; 201
Zhang, Zhang, Chen, Zhang (bib0510) 2010; 65
Hu, Dai, Liu, Du, Wang (bib0130) 2018; 91
Shi, Wu, Zhang, Simmons, Singh, Yang, Wyman (bib0140) 2017; 114
Liao, Lo, Hsu, Wu, Wang, Shieh, Morabito, Chou, Wu, Tsung (bib0190) 2017; 139
Mateo, Palomo, Fernandez-Lorente, Guisan, Fernandez-Lafuente (bib0355) 2007; 40
Boguslaski, Janik (bib0205) 1971; 250
Schoffelen, van Hest (bib0305) 2012; 8
Yu, Chen, Qi, Li, Shin, Lei, Liu (bib0215) 2012; 153
Wang, Jiang (bib0120) 2011; 743
Sheldon (bib0070) 2013; 42
Caruso, Schüler (bib0495) 2000; 16
Benhelal, Zahedi, Shamsaei, Bahadori (bib0520) 2013; 51
Khameneh, Bolouri, Nemati, Rezvani, Attar, Saboury, Falahati (bib0145) 2017; 99
Catana, Eloy, Rocha, Ferreira, Cabral, Fernandes (bib0420) 2007; 101
Yu, Liang, Caruso (bib0485) 2005; 17
Wang, Li, Zhao, Liu (bib0590) 2015; 116
Giri, Pant (bib0055) 2020; 27
Carlsson, Jonsson (bib0375) 2000; 90
Zhang, Wu, Huang, Zhang, Guo (bib0475) 2011; 6
Sun, Wei, Wang, Zhao, Liu (bib0465) 2018; 65
Tetter, Hilvert (bib0200) 2017; 56
Roessl, Nahálka, Nidetzky (bib0260) 2010; 32
El-Zahab, Donnelly, Wang (bib0605) 2008; 99
Zhang, Pan, Li, Cai, Olabi, Anthony, Manovic (bib0550) 2020; 125
Dicosimo, McAuliffe, Poulose, Bohlmann (bib0250) 2013; 42
Gascón, Díaz, Blanco, Márquez-Álvarez (bib0415) 2014; 4
Perfetto, Del Prete, Vullo, Sansone, Barone, Rossi, Supuran, Capasso (bib0435) 2017; 32
Fang, Huang, Chen, Xu (bib0195) 2011; 44
Jia, Narasimhan, Mallapragada (bib0425) 2014; 111
Luo, Meyer, Mateiu, Pinelo (bib0600) 2015; 32
Bhattacharya, Schiavone, Chakrabarti, Bhattacharya (bib0185) 2003; 38
Hou, Dong, Xiao, Malassigne, Chen (bib0500) 2015; 3
Vinoba, Bhagiyalakshmi, Jeong, Yoon, Nam (bib0430) 2011; 115
Homaei, Sariri, Vianello, Stevanato (bib0325) 2013; 6
Wanjari, Prabhu, Yadav, Satyanarayana, Labhsetwar, Rayalu (bib0575) 2011; 46
Zhang, Du, Shao, Wang, Ye, Chen, Chen (bib0480) 2018; 52
Al-Mamoori, Krishnamurthy, Rownaghi, Rezaei (bib0585) 2017; 5
Netto, Nakamura, Andrade, Toma (bib0350) 2012; 84
Hammons, Coleman (bib0360) 1982; 24
Jig, Pan, Lv, Zhou (bib0570) 2015; 50
Putri, Dwinanda, Widjaja, Hamzah, Sangian (bib0235) 2021; 1053
Sun, Jiang, Jiang, Zhang, Li (bib0610) 2009; 48
Liu (bib0115) 2015
Johnson, Zawadzka, Deobald, Crawford, Paszczynski (bib0170) 2008; 10
Lv, Yang, Pan, Zhou, Jing (bib0365) 2015; 79
Cen, Liu, Xue, Zheng (bib0085) 2019; 361
Quiocho, Richards (bib0265) 1964; 52
Kainz, Reiser (bib0450) 2014; 47
Chien, Sureshkumar, Hsieh, Wang (bib0225) 2013; 18
Ashkan, Hemmati, Homaei, Dinari, Jamlidoost, Tashakor (bib0320) 2021; 168
Faridi, Bose, Satyanarayana (bib0540) 2017; 31
Prabhu, Wanjari, Gawande, Das, Labhsetwar, Kotwal, Puri, Satyanarayana, Rayalu (bib0565) 2009; 60
Salgaonkar, Nadar, Rathod (bib0580) 2018; 113
Kazenwadel, Wagner, Rapp, Franzreb (bib0080) 2015; 7
Nishiyama, Watanabe, Inoue (bib0125) 2014; 294
Cui, Jia (bib0255) 2015; 35
Gascón (10.1016/j.colsurfb.2021.111779_bib0415) 2014; 4
Angeli (10.1016/j.colsurfb.2021.111779_bib0035) 2020; 35
Carlsson (10.1016/j.colsurfb.2021.111779_bib0375) 2000; 90
Zhou (10.1016/j.colsurfb.2021.111779_bib0340) 2019; 146
Wanjari (10.1016/j.colsurfb.2021.111779_bib0575) 2011; 46
Hammons (10.1016/j.colsurfb.2021.111779_bib0360) 1982; 24
Liu (10.1016/j.colsurfb.2021.111779_bib0115) 2015
Liao (10.1016/j.colsurfb.2021.111779_bib0190) 2017; 139
Homaei (10.1016/j.colsurfb.2021.111779_bib0325) 2013; 6
Sun (10.1016/j.colsurfb.2021.111779_bib0610) 2009; 48
Roessl (10.1016/j.colsurfb.2021.111779_bib0260) 2010; 32
Sandor (10.1016/j.colsurfb.2021.111779_bib0220) 2002; 1570
Fathali (10.1016/j.colsurfb.2021.111779_bib0275) 2019; 122
Jig (10.1016/j.colsurfb.2021.111779_bib0570) 2015; 50
Baskaya (10.1016/j.colsurfb.2021.111779_bib0595) 2010; 162
Jampala (10.1016/j.colsurfb.2021.111779_bib0245) 2017; 95
Boguslaski (10.1016/j.colsurfb.2021.111779_bib0205) 1971; 250
Jun (10.1016/j.colsurfb.2021.111779_bib0535) 2020; 54
Srivastava (10.1016/j.colsurfb.2021.111779_bib0060) 2020; 165
Migliardini (10.1016/j.colsurfb.2021.111779_bib0545) 2014; 29
Dicosimo (10.1016/j.colsurfb.2021.111779_bib0250) 2013; 42
Li (10.1016/j.colsurfb.2021.111779_bib0105) 2020; 41
Nishiyama (10.1016/j.colsurfb.2021.111779_bib0125) 2014; 294
Chien (10.1016/j.colsurfb.2021.111779_bib0225) 2013; 18
Hosseini (10.1016/j.colsurfb.2021.111779_bib0165) 2018; 66
Catana (10.1016/j.colsurfb.2021.111779_bib0420) 2007; 101
Vinoba (10.1016/j.colsurfb.2021.111779_bib0430) 2011; 115
Shao (10.1016/j.colsurfb.2021.111779_bib0175) 2012; 14
Mateo (10.1016/j.colsurfb.2021.111779_bib0355) 2007; 40
Yushkova (10.1016/j.colsurfb.2021.111779_bib0110) 2019; 67
Quiocho (10.1016/j.colsurfb.2021.111779_bib0265) 1964; 52
Bhattacharya (10.1016/j.colsurfb.2021.111779_bib0400) 2013; 170
Tan (10.1016/j.colsurfb.2021.111779_bib0370) 2018; 73
Perfetto (10.1016/j.colsurfb.2021.111779_bib0435) 2017; 32
Zhang (10.1016/j.colsurfb.2021.111779_bib0395) 2009; 50
Moon (10.1016/j.colsurfb.2021.111779_bib0050) 2020; 10
Netto (10.1016/j.colsurfb.2021.111779_bib0350) 2012; 84
Sanjay (10.1016/j.colsurfb.2021.111779_bib0410) 2008; 15
Abdel-Naby (10.1016/j.colsurfb.2021.111779_bib0290) 1999; 34
Jensen (10.1016/j.colsurfb.2021.111779_bib0020) 2020; 21
El-Zahab (10.1016/j.colsurfb.2021.111779_bib0605) 2008; 99
Tetter (10.1016/j.colsurfb.2021.111779_bib0200) 2017; 56
Kahveci (10.1016/j.colsurfb.2021.111779_bib0285) 2011; 33
Capasso (10.1016/j.colsurfb.2021.111779_bib0025) 2012; 27
Jing (10.1016/j.colsurfb.2021.111779_bib0440) 2015; 50
Faridi (10.1016/j.colsurfb.2021.111779_bib0540) 2017; 31
Haynie (10.1016/j.colsurfb.2021.111779_bib0310) 2013; 298
Sheldon (10.1016/j.colsurfb.2021.111779_bib0135) 2007; 349
Cao (10.1016/j.colsurfb.2021.111779_bib0315) 2003; 14
Ji (10.1016/j.colsurfb.2021.111779_bib0615) 2015; 9
Kazenwadel (10.1016/j.colsurfb.2021.111779_bib0080) 2015; 7
Lv (10.1016/j.colsurfb.2021.111779_bib0365) 2015; 79
Nogalska (10.1016/j.colsurfb.2021.111779_bib0470) 2018
Merle (10.1016/j.colsurfb.2021.111779_bib0385) 2014; 30
Johnson (10.1016/j.colsurfb.2021.111779_bib0170) 2008; 10
Cazelles (10.1016/j.colsurfb.2021.111779_bib0620) 2013; 37
Ren (10.1016/j.colsurfb.2021.111779_bib0295) 2019; 373
Kainz (10.1016/j.colsurfb.2021.111779_bib0450) 2014; 47
Putri (10.1016/j.colsurfb.2021.111779_bib0235) 2021; 1053
Zhang (10.1016/j.colsurfb.2021.111779_bib0510) 2010; 65
Oviya (10.1016/j.colsurfb.2021.111779_bib0230) 2013; 29
Hu (10.1016/j.colsurfb.2021.111779_bib0130) 2018; 91
Guedidi (10.1016/j.colsurfb.2021.111779_bib0335) 2010; 365
Cantone (10.1016/j.colsurfb.2021.111779_bib0090) 2013; 42
Silva (10.1016/j.colsurfb.2021.111779_bib0380) 2015; 5
Sheldon (10.1016/j.colsurfb.2021.111779_bib0070) 2013; 42
Giri (10.1016/j.colsurfb.2021.111779_bib0055) 2020; 27
Zhang (10.1016/j.colsurfb.2021.111779_bib0475) 2011; 6
Yadav (10.1016/j.colsurfb.2021.111779_bib0180) 2010; 24
Ge (10.1016/j.colsurfb.2021.111779_bib0515) 2012; 7
Sun (10.1016/j.colsurfb.2021.111779_bib0465) 2018; 65
Lim (10.1016/j.colsurfb.2021.111779_bib0065) 2019; 55
Zhang (10.1016/j.colsurfb.2021.111779_bib0550) 2020; 125
Goldhahn (10.1016/j.colsurfb.2021.111779_bib0240) 2020; 10
Zhang (10.1016/j.colsurfb.2021.111779_bib0300) 2011; 1
Prabhu (10.1016/j.colsurfb.2021.111779_bib0565) 2009; 60
Benhelal (10.1016/j.colsurfb.2021.111779_bib0520) 2013; 51
Carrazco-Escalante (10.1016/j.colsurfb.2021.111779_bib0075) 2020; 98
Ulbricht (10.1016/j.colsurfb.2021.111779_bib0155) 1997; 20
Wang (10.1016/j.colsurfb.2021.111779_bib0120) 2011; 743
Ashkan (10.1016/j.colsurfb.2021.111779_bib0320) 2021; 168
Wang (10.1016/j.colsurfb.2021.111779_bib0590) 2015; 116
Jaya (10.1016/j.colsurfb.2021.111779_bib0045) 2019; 49
Bhattacharya (10.1016/j.colsurfb.2021.111779_bib0185) 2003; 38
Zhang (10.1016/j.colsurfb.2021.111779_bib0405) 2018; 52
Jia (10.1016/j.colsurfb.2021.111779_bib0425) 2014; 111
Krasavin (10.1016/j.colsurfb.2021.111779_bib0040) 2020; 35
Yu (10.1016/j.colsurfb.2021.111779_bib0215) 2012; 153
Zhang (10.1016/j.colsurfb.2021.111779_bib0150) 2011; 102
Al-Dhrub (10.1016/j.colsurfb.2021.111779_bib0525) 2017; 57
Caruso (10.1016/j.colsurfb.2021.111779_bib0495) 2000; 16
Salgaonkar (10.1016/j.colsurfb.2021.111779_bib0580) 2018; 113
Khameneh (10.1016/j.colsurfb.2021.111779_bib0145) 2017; 99
Tang (10.1016/j.colsurfb.2021.111779_bib0445) 2006; 78
Wang (10.1016/j.colsurfb.2021.111779_bib0270) 2009; 136
Fang (10.1016/j.colsurfb.2021.111779_bib0195) 2011; 44
Castillo (10.1016/j.colsurfb.2021.111779_bib0330) 2008; 99
Godara (10.1016/j.colsurfb.2021.111779_bib0160) 2008; 127
Zhu (10.1016/j.colsurfb.2021.111779_bib0010) 2016; 49
Zhang (10.1016/j.colsurfb.2021.111779_bib0480) 2018; 52
Forsyth (10.1016/j.colsurfb.2021.111779_bib0530) 2013; 49
Cen (10.1016/j.colsurfb.2021.111779_bib0085) 2019; 361
Tsuru (10.1016/j.colsurfb.2021.111779_bib0455) 2001; 36
Moon (10.1016/j.colsurfb.2021.111779_bib0555) 2020; 39
Hou (10.1016/j.colsurfb.2021.111779_bib0500) 2015; 3
Schoffelen (10.1016/j.colsurfb.2021.111779_bib0305) 2012; 8
Vertegel (10.1016/j.colsurfb.2021.111779_bib0505) 2004; 20
Güzel-Akdemir (10.1016/j.colsurfb.2021.111779_bib0030) 2020; 21
Cabirol (10.1016/j.colsurfb.2021.111779_bib0280) 2008; 350
Mohd Rafidi (10.1016/j.colsurfb.2021.111779_bib0560) 2017; 885
Lu (10.1016/j.colsurfb.2021.111779_bib0095) 2019; 20
Chen (10.1016/j.colsurfb.2021.111779_bib0100) 2021; 201
Schüler (10.1016/j.colsurfb.2021.111779_bib0490) 2000; 21
Cui (10.1016/j.colsurfb.2021.111779_bib0255) 2015; 35
Luo (10.1016/j.colsurfb.2021.111779_bib0600) 2015; 32
Adhikari (10.1016/j.colsurfb.2021.111779_bib0005) 2019
Min (10.1016/j.colsurfb.2021.111779_bib0210) 2016; 143
Yu (10.1016/j.colsurfb.2021.111779_bib0485) 2005; 17
Morel (10.1016/j.colsurfb.2021.111779_bib0015) 2020; 48
Bornscheuer (10.1016/j.colsurfb.2021.111779_bib0345) 2012; 485
Al-Mamoori (10.1016/j.colsurfb.2021.111779_bib0585) 2017; 5
Shi (10.1016/j.colsurfb.2021.111779_bib0140) 2017; 114
Sun (10.1016/j.colsurfb.2021.111779_bib0460) 2019; 136
Cowan (10.1016/j.colsurfb.2021.111779_bib0390) 2003; 984
References_xml – volume: 27
  start-page: 1294
  year: 2020
  end-page: 1318
  ident: bib0055
  article-title: Carbonic anhydrase modification for carbon management
  publication-title: Environ. Sci. Pollut. Res.
– volume: 32
  start-page: 759
  year: 2017
  end-page: 766
  ident: bib0435
  article-title: Production and covalent immobilisation of the recombinant bacterial carbonic anhydrase (SspCA) onto magnetic nanoparticles
  publication-title: J. Enzym. Inhib. Med. Chem.
– volume: 9
  start-page: 4600
  year: 2015
  end-page: 4610
  ident: bib0615
  article-title: Tethering of nicotinamide adenine dinucleotide inside hollow nanofibers for high-yield synthesis of methanol from carbon dioxide catalyzed by coencapsulated multienzymes
  publication-title: ACS Nano
– volume: 57
  start-page: 95
  year: 2017
  end-page: 104
  ident: bib0525
  article-title: Immobilization and characterization of human carbonic anhydrase I on amine functionalized magnetic nanoparticles
  publication-title: Process Biochem.
– volume: 31
  start-page: 3002
  year: 2017
  end-page: 3009
  ident: bib0540
  article-title: Utility of immobilized recombinant carbonic anhydrase of
  publication-title: Energy Fuels
– volume: 54
  start-page: 1223
  year: 2020
  end-page: 1231
  ident: bib0535
  article-title: Stabilized and immobilized carbonic anhydrase on electrospun nanofibers for enzymatic CO
  publication-title: Environ. Sci. Technol.
– volume: 7
  start-page: 428
  year: 2012
  end-page: 432
  ident: bib0515
  article-title: Protein-inorganic hybrid nanoflowers
  publication-title: Nat. Nanotechnol.
– volume: 168
  start-page: 708
  year: 2021
  end-page: 721
  ident: bib0320
  article-title: Immobilization of enzymes on nanoinorganic support materials: an update
  publication-title: Int. J. Biol. Macromol.
– volume: 27
  start-page: 892
  year: 2012
  end-page: 897
  ident: bib0025
  article-title: Biochemical properties of a novel and highly thermostable bacterial α-carbonic anhydrase from
  publication-title: J. Enzym. Inhib. Med. Chem.
– volume: 91
  start-page: 793
  year: 2018
  end-page: 801
  ident: bib0130
  article-title: Progress & prospect of metal-organic frameworks (MOFs) for enzyme immobilization (enzyme/MOFs)
  publication-title: Renew. Sust. Energ. Rev.
– volume: 365
  start-page: 59
  year: 2010
  end-page: 67
  ident: bib0335
  article-title: Effect of enzyme location on activity and stability of trypsin and urease immobilized on porous membranes by using layer-by-layer self-assembly of polyelectrolyte
  publication-title: J. Membr. Sci.
– volume: 294
  start-page: 66
  year: 2014
  end-page: 70
  ident: bib0125
  article-title: Effects of acoustic wave resonance oscillation on immobilized enzyme
  publication-title: Appl. Surf. Sci.
– volume: 52
  start-page: 12708
  year: 2018
  end-page: 12716
  ident: bib0480
  article-title: Carbonic anhydrase Enzyme-MOFs composite with a superior catalytic performance to promote CO
  publication-title: Environ. Sci. Technol.
– volume: 15
  start-page: 359
  year: 2008
  end-page: 367
  ident: bib0410
  article-title: Acid activated montmorillonite: an efficient immobilization support for improving reusability, storage stability and operational stability of enzymes
  publication-title: J. Porous Mat.
– volume: 4
  start-page: 34356
  year: 2014
  end-page: 34368
  ident: bib0415
  article-title: Hybrid periodic mesoporous organosilica designed to improve the properties of immobilized enzymes
  publication-title: RSC Adv.
– volume: 20
  start-page: 61
  year: 1997
  end-page: 68
  ident: bib0155
  article-title: Polyacrylonitrile enzyme ultrafiltration membranes prepared by adsorption, cross-linking, and covalent binding
  publication-title: Enzyme Microb. Technol.
– volume: 21
  start-page: 750
  year: 2000
  end-page: 753
  ident: bib0490
  article-title: Preparation of enzyme multilayers on colloids for biocatalysis
  publication-title: Macromol. Rapid Commun.
– volume: 350
  start-page: 2329
  year: 2008
  end-page: 2338
  ident: bib0280
  article-title: Linum usitatissimum hydroxynitrile lyase cross‐linked enzyme aggregates: a recyclable enantioselective catalyst
  publication-title: Adv. Synth. Catal.
– volume: 65
  start-page: 362
  year: 2018
  end-page: 371
  ident: bib0465
  article-title: Immobilization of carbonic anhydrase on polyvinylidene fluoride membranes
  publication-title: Biotechnol. Appl. Biochem.
– volume: 162
  start-page: 391
  year: 2010
  end-page: 398
  ident: bib0595
  article-title: Thermodynamic feasibility of enzymatic reduction of carbon dioxide to methanol
  publication-title: Appl. Biochem. Biotechnol.
– volume: 55
  start-page: 375
  year: 2019
  end-page: 379
  ident: bib0065
  article-title: Sequestration of CO
  publication-title: Appl. Biochem. Micro.
– volume: 5
  start-page: 2705
  year: 2015
  end-page: 2713
  ident: bib0380
  article-title: Efficient nitrogen-13 radiochemistry catalyzed by a highly stable immobilized biocatalyst
  publication-title: Catal. Sci. Technol.
– volume: 38
  start-page: 111
  year: 2003
  end-page: 117
  ident: bib0185
  article-title: CO
  publication-title: Biotechnol. Appl. Biochem.
– volume: 153
  start-page: 166
  year: 2012
  end-page: 170
  ident: bib0215
  article-title: Enzymatic conversion of CO
  publication-title: Microporous Mesoporous Mater.
– volume: 116
  start-page: 89
  year: 2015
  end-page: 94
  ident: bib0590
  article-title: Effect of carbonic anhydrase on enzymatic conversion of CO
  publication-title: J. Mol. Catal. B Enzym
– volume: 5
  start-page: 834
  year: 2017
  end-page: 849
  ident: bib0585
  article-title: Carbon capture and utilization update
  publication-title: Energy Technol.
– volume: 42
  start-page: 6262
  year: 2013
  end-page: 6276
  ident: bib0090
  article-title: Efficient immobilisation of industrial biocatalysts: criteria and constraints for the selection of organic polymeric carriers and immobilisation methods
  publication-title: Chem. Soc. Rev.
– volume: 41
  start-page: 335
  year: 2020
  end-page: 344
  ident: bib0105
  article-title: Controllable and high-performance immobilized enzyme reactor:DNA-directed immobilization of multienzyme in polyamidoamine dendrimer-functionalized capillaries
  publication-title: Electrophoresis.
– volume: 78
  start-page: 2514
  year: 2006
  end-page: 2520
  ident: bib0445
  article-title: Enzyme inhibitor screening by capillary electrophoresis with an on-column immobilized enzyme microreactor created by an ionic binding technique
  publication-title: Anal. Chem.
– volume: 50
  start-page: 2234
  year: 2015
  end-page: 2241
  ident: bib0440
  article-title: Immobilization of carbonic anhydrase on epoxy-functionalized magnetic polymer microspheres for CO
  publication-title: Process Biochem.
– volume: 67
  start-page: 11553
  year: 2019
  end-page: 11567
  ident: bib0110
  article-title: Application of immobilized enzymes in food industry
  publication-title: J. Agric. Food Chem.
– volume: 44
  start-page: 87
  year: 2011
  end-page: 95
  ident: bib0195
  article-title: Polymer materials for enzyme immobilization and their application in bioreactors
  publication-title: Biochem.Mol.Biol.Rep.
– volume: 201
  year: 2021
  ident: bib0100
  article-title: DNA directed immobilization of horseradish peroxidase on phase-transitioned lysozyme modified TiO
  publication-title: Mater. Des.
– volume: 56
  start-page: 14933
  year: 2017
  end-page: 14936
  ident: bib0200
  article-title: Enzyme encapsulation by a ferritin cage
  publication-title: Angew. Chem.-Int. Edit.
– volume: 84
  start-page: 136
  year: 2012
  end-page: 143
  ident: bib0350
  article-title: Improving the catalytic activity of formate dehydrogenase from
  publication-title: J. Mol. Catal. B-Enzym.
– volume: 65
  start-page: 3199
  year: 2010
  end-page: 3207
  ident: bib0510
  article-title: Selective separation of low concentration CO
  publication-title: Chem. Eng. Sci.
– volume: 99
  start-page: 739
  year: 2017
  end-page: 745
  ident: bib0145
  article-title: A spectroscopic study on the absorption of carbonic anhydrase onto the nanoporous silica nanoparticle
  publication-title: Int. J. Biol. Macromol.
– volume: 743
  start-page: 95
  year: 2011
  end-page: 106
  ident: bib0120
  article-title: Reversible his-tagged enzyme immobilization on functionalized carbon nanotubes as nanoscale biocatalyst
  publication-title: Int. J. Biol. Macromol.
– volume: 373
  start-page: 1254
  year: 2019
  end-page: 1278
  ident: bib0295
  article-title: Recent progress in multienzymes co-immobilization and multienzyme system applications
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 20608
  year: 2020
  end-page: 20619
  ident: bib0240
  article-title: Enzyme immobilization inside the porous wood structure: a natural scaffold for continuous-flow biocatalysis
  publication-title: RSC Adv.
– volume: 136
  start-page: S325
  year: 2009
  ident: bib0270
  article-title: Synthesis of cross-linked polyethylene glycol diacrylate polymers and their application as supports for laccase immobilization
  publication-title: Transactions of China Pulp & Paper.
– volume: 35
  start-page: 824
  year: 2020
  end-page: 830
  ident: bib0035
  article-title: Activation studies of the β-carbonic anhydrases from Malassezia restricta with amines and amino acids
  publication-title: J. Enzym. Inhib. Med. Chem.
– volume: 170
  start-page: 756
  year: 2013
  end-page: 773
  ident: bib0400
  article-title: Evaluation of enhanced thermostability and operational stability of carbonic anhydrase from Micrococcus species
  publication-title: Appl. Biochem. Biotechnol.
– volume: 50
  start-page: 2234
  year: 2015
  end-page: 2241
  ident: bib0570
  article-title: Immobilization of carbonic anhydrase on epoxy-functionalized magnetic polymer microspheres for CO
  publication-title: Process Biochem.
– volume: 10
  start-page: 1
  year: 2020
  end-page: 9
  ident: bib0050
  article-title: Comparison of reactions with different calcium sources for CaCO
  publication-title: Greenh. Gases.
– volume: 33
  start-page: 2065
  year: 2011
  end-page: 2071
  ident: bib0285
  article-title: Enhancement of activity and selectivity of Candida rugosa lipase and Candida antarctica lipase A by bioimprinting and/or immobilization for application in the selective ethanolysis of fish oil
  publication-title: Biotechnol. Lett.
– volume: 49
  start-page: 3191
  year: 2013
  end-page: 3193
  ident: bib0530
  article-title: CO
  publication-title: Chem. Commun.
– volume: 35
  start-page: 665
  year: 2020
  end-page: 671
  ident: bib0040
  article-title: Combining carbonic anhydrase and thioredoxin reductase inhibitory motifs within a single molecule dramatically increases its cytotoxicity
  publication-title: J. Enzym. Inhib. Med. Chem.
– volume: 52
  start-page: 12708
  year: 2018
  end-page: 12716
  ident: bib0405
  article-title: Carbonic anhydrase Enzyme-MOFs composite with a superior catalytic performance to promote CO
  publication-title: Environ. Sci. Technol.
– volume: 18
  start-page: 567
  year: 2013
  end-page: 574
  ident: bib0225
  article-title: Biosequestration of carbon dioxide using a silicified carbonic anhydrase catalyst
  publication-title: Biotechnol. Bioprocess Eng.
– volume: 99
  start-page: 508
  year: 2008
  end-page: 514
  ident: bib0605
  article-title: Particle-tethered NADH for production of methanol from CO
  publication-title: Biotechnol. Bioeng.
– volume: 66
  start-page: 789
  year: 2018
  end-page: 798
  ident: bib0165
  article-title: Covalent immobilization of cellulase using magnetic poly (ionic liquid) support: improvement of the enzyme activity and stability
  publication-title: J. Agric. Food Chem.
– volume: 20
  start-page: 1394
  year: 2019
  end-page: 1399
  ident: bib0095
  article-title: Artificial cellulosome complex from the self-assembly of Ni-NTA-functionalized polymeric micelles and cellulases
  publication-title: Chem. Bio. Chem.
– volume: 143
  start-page: 128
  year: 2016
  end-page: 134
  ident: bib0210
  article-title: High expression and biosilica encapsulation of alkaline-active carbonic anhydrase for CO
  publication-title: Chemosphere.
– volume: 21
  start-page: 2960
  year: 2020
  ident: bib0030
  article-title: Development of thiazolidinones as fungal carbonic anhydrase inhibitors
  publication-title: Int. J. Mol. Sci.
– volume: 40
  start-page: 1451
  year: 2007
  end-page: 1463
  ident: bib0355
  article-title: Improvement of enzyme activity, stability and selectivity via immobilization techniques
  publication-title: Enzyme Microb. Technol.
– volume: 250
  start-page: 266
  year: 1971
  end-page: 269
  ident: bib0205
  article-title: A kinetic study of microencapsulated bovine carbonic anhydrase
  publication-title: Biochim. Biophys. Acta
– volume: 42
  start-page: 6223
  year: 2013
  end-page: 6235
  ident: bib0070
  article-title: S. Van Pelt, Enzyme immobilisation in biocatalysis: why, what and how
  publication-title: Chem. Soc. Rev.
– volume: 79
  start-page: 719
  year: 2015
  end-page: 725
  ident: bib0365
  article-title: Immobilization of carbonic anhydrase on carboxyl-functionalized ferroferric oxide for CO
  publication-title: Int. J. Biol. Macromol.
– year: 2018
  ident: bib0470
  article-title: Polysulfone biomimetic membrane for CO
  publication-title: Funct. Mater. Lett.11
– volume: 3
  start-page: 3332
  year: 2015
  end-page: 3342
  ident: bib0500
  article-title: Preparation of titania based biocatalytic nanoparticles and membranes for CO
  publication-title: J. Mater. Chem. A.
– volume: 111
  start-page: 209
  year: 2014
  end-page: 222
  ident: bib0425
  article-title: Materials‐based strategies for multi‐enzyme immobilization and co‐localization: a review
  publication-title: Biotechnol. Bioeng.
– volume: 46
  start-page: 1010
  year: 2011
  end-page: 1018
  ident: bib0575
  article-title: Immobilization of carbonic anhydrase on chitosan beads for enhanced carbonation reaction
  publication-title: Process Biochem.
– volume: 165
  start-page: 1099
  year: 2020
  end-page: 1110
  ident: bib0060
  article-title: Immobilization of keratinase on chitosan grafted-β-cyclodextrin for the improvement of the enzyme properties and application of free keratinase in the textile industry
  publication-title: Int. J. Biol. Macromol.
– volume: 485
  start-page: 185
  year: 2012
  end-page: 194
  ident: bib0345
  article-title: Engineering the third wave of biocatalysis
  publication-title: Nature.
– volume: 127
  start-page: 370
  year: 2008
  end-page: 376
  ident: bib0160
  article-title: Urinary & serum oxalate determination by oxalate oxidase immobilized on to affixed arylamine glass beads
  publication-title: Indian J. Med. Res.
– volume: 32
  start-page: 319
  year: 2015
  end-page: 327
  ident: bib0600
  article-title: Cascade catalysis in membranes with enzyme immobilization for multi-enzymatic conversion of CO
  publication-title: New Bioeth.
– volume: 42
  start-page: 6437
  year: 2013
  end-page: 6474
  ident: bib0250
  article-title: Industrial use of immobilized enzymes
  publication-title: Chem. Soc. Rev.
– volume: 1570
  start-page: 63
  year: 2002
  end-page: 74
  ident: bib0220
  article-title: Effect of lecithin and MgCO
  publication-title: BBA - General Subjects.
– volume: 102
  start-page: 10194
  year: 2011
  end-page: 10201
  ident: bib0150
  article-title: Activity and stability of immobilized carbonic anhydrase for promoting CO
  publication-title: Bioresour. Technol.
– volume: 49
  start-page: 891
  year: 2019
  end-page: 899
  ident: bib0045
  article-title: Characterization of marine bacterial carbonic anhydrase and their CO2 sequestration abilities based on a soil microcosm
  publication-title: Prep. Biochem. Biotechnol.
– volume: 146
  start-page: 60
  year: 2019
  end-page: 68
  ident: bib0340
  article-title: Meso-molding three-dimensionally ordered macroporous alumina: a new platform to immobilize enzymes with high performance
  publication-title: Biochem. Eng. J.
– volume: 984
  start-page: 453
  year: 2003
  end-page: 469
  ident: bib0390
  article-title: CO2 capture by means of an enzyme‐based reactor
  publication-title: Ann. NY Acad. Sci.
– volume: 885
  year: 2017
  ident: bib0560
  article-title: Kinetic of carbonic anhydrase immobilized onto amberlite XAD 7 and it application in sequestration of CO
  publication-title: J. Phys. Conf. Series
– year: 2015
  ident: bib0115
  article-title: Encapsulation of biocatalysts (Cell/Enzyme) with high retaining activity
  publication-title: Dissertat. Theses – Gradworks.
– volume: 16
  start-page: 9595
  year: 2000
  end-page: 9603
  ident: bib0495
  article-title: Enzyme multilayers on colloid particles: assembly, stability, and enzymatic activity
  publication-title: Langmuir
– volume: 139
  start-page: 6530
  year: 2017
  end-page: 6533
  ident: bib0190
  article-title: Shielding against unfolding by embedding enzymes in metal–organic frameworks via a de novo approach
  publication-title: J. Am. Chem. Soc.
– volume: 32
  start-page: 341
  year: 2010
  end-page: 350
  ident: bib0260
  article-title: Carrier-free immobilized enzymes for biocatalysis
  publication-title: Biotechnol. Lett.
– volume: 361
  start-page: 1
  year: 2019
  end-page: 53
  ident: bib0085
  article-title: Immobilization of enzymes in/on membranes and their applications
  publication-title: Adv. Synth. Catal.
– volume: 21
  start-page: 2922
  year: 2020
  ident: bib0020
  article-title: Insights on the functions and ecophysiological relevance of the diverse carbonic anhydrases in microalgae
  publication-title: Int. J. Mol. Sci.
– volume: 8
  start-page: 1736
  year: 2012
  end-page: 1746
  ident: bib0305
  article-title: Multi-enzyme systems: bringing enzymes together in vitro
  publication-title: Soft Matter
– volume: 24
  start-page: 1773
  year: 1982
  end-page: 1788
  ident: bib0360
  article-title: Stability studies of immobilized enzyme stir rods
  publication-title: Biotechnol.Bioeng.
– volume: 29
  start-page: 1813
  year: 2013
  end-page: 1820
  ident: bib0230
  article-title: Immobilization and characterization of carbonic anhydrase purified from E. Coli MO1 and its influence on CO
  publication-title: World J. Microbiol. Biotechnol.
– volume: 1053
  year: 2021
  ident: bib0235
  article-title: Mass transfer and reaction in hydrolysis of coconut husk using immobilized enzyme on chitosan magnetic nanoparticle
  publication-title: IOP Conference Series: Mater. Sci. Eng
– volume: 60
  start-page: 13
  year: 2009
  end-page: 21
  ident: bib0565
  article-title: Immobilization of carbonic anhydrase enriched microorganism on biopolymer based materials
  publication-title: J. Mol. Catal. B-Enzym.
– volume: 298
  start-page: 529
  year: 2013
  end-page: 540
  ident: bib0310
  article-title: Mechanisms of stability of fibers electrospun from peptides with ionized side chains
  publication-title: Macromol. Mater. Eng.
– volume: 136
  start-page: 47784
  year: 2019
  ident: bib0460
  article-title: Immobilization of carbonic anhydrase on polyethylenimine/dopamine codeposited membranes
  publication-title: J. Appl. Polym. Sci.
– volume: 14
  start-page: 9076
  year: 2012
  end-page: 9085
  ident: bib0175
  article-title: Insight into the effects of graphene oxide sheets on the conformation and activity of glucose oxidase: towards developing a nanomaterial-based protein conformation assay
  publication-title: Phys. Chem. Chem. Phys.
– volume: 30
  start-page: 6915
  year: 2014
  end-page: 6919
  ident: bib0385
  article-title: Electropolymerized carbonic anhydrase immobilization for carbon dioxide capture
  publication-title: Langmuir.
– volume: 36
  start-page: 3721
  year: 2001
  end-page: 3736
  ident: bib0455
  article-title: Catalytic membrane reaction for methane steam reforming using porous silica membranes
  publication-title: Sep. Sci. Technol.
– volume: 39
  year: 2020
  ident: bib0555
  article-title: Immobilization of genetically engineered whole-cell biocatalysts with periplasmic carbonic anhydrase in polyurethane foam for enzymatic CO
  publication-title: J. CO
– volume: 24
  start-page: 6198
  year: 2010
  end-page: 6207
  ident: bib0180
  article-title: Immobilized carbonic anhydrase for the biomimetic carbonation reaction
  publication-title: Energy Fuels
– volume: 113
  start-page: 464
  year: 2018
  end-page: 475
  ident: bib0580
  article-title: Combi-metal organic framework (Combi-MOF) of α-amylase and glucoamylase for one pot starch hydrolysis
  publication-title: Int. J. Biol. Macromol.
– volume: 51
  start-page: 142
  year: 2013
  end-page: 161
  ident: bib0520
  article-title: Global strategies and potentials to curb CO
  publication-title: J. Clean. Prod.
– volume: 98
  start-page: 316
  year: 2020
  end-page: 329
  ident: bib0075
  article-title: A new approach for describing and solving the reversible Briggs-Haldane mechanism using immobilized enzyme
  publication-title: Can. J. Chem. Eng.
– volume: 114
  start-page: 503
  year: 2017
  end-page: 515
  ident: bib0140
  article-title: Dynamic changes of substrate reactivity and enzyme adsorption on partially hydrolyzed cellulose
  publication-title: Biotechnol. Bioeng.
– volume: 6
  start-page: 185
  year: 2013
  end-page: 205
  ident: bib0325
  article-title: Enzyme immobilization: an update
  publication-title: J.Chem.Biol.
– volume: 99
  start-page: 9
  year: 2008
  end-page: 17
  ident: bib0330
  article-title: Effect of PEG modification on subtilisin Carlsberg activity, enantioselectivity, and structural dynamics in 1, 4‐dioxane
  publication-title: Biotechnol. Bioeng.
– volume: 125
  year: 2020
  ident: bib0550
  article-title: Recent advances in carbon dioxide utilization
  publication-title: Renew. Sust. Energ. Rev.
– volume: 14
  start-page: 387
  year: 2003
  end-page: 394
  ident: bib0315
  article-title: Immobilised enzymes: carrier-bound or carrier-free?
  publication-title: Curr. Opin. Biotechnol.
– volume: 122
  start-page: 359
  year: 2019
  end-page: 366
  ident: bib0275
  article-title: Catalytic phenol removal using entrapped cross-linked laccase aggregates
  publication-title: Int. J. Biol. Macromol.
– volume: 34
  start-page: 399
  year: 1999
  end-page: 405
  ident: bib0290
  article-title: Immobilization of Paenibacillus macerans NRRL B-3186 cyclodextrin glucosyltransferase and properties of the immobilized enzyme
  publication-title: Process Biochem.
– volume: 101
  start-page: 260
  year: 2007
  end-page: 266
  ident: bib0420
  article-title: Stability evaluation of an immobilized enzyme system for inulin hydrolysis
  publication-title: Food Chem.
– volume: 349
  start-page: 1289
  year: 2007
  end-page: 1307
  ident: bib0135
  article-title: Enzyme immobilization: the quest for optimum performance
  publication-title: Adv. Synth. Catal.
– volume: 6
  start-page: 450
  year: 2011
  ident: bib0475
  article-title: Effect of substrate (ZnO) morphology on enzyme immobilization and its catalytic activity
  publication-title: Nanoscale Res. Lett.
– volume: 20
  start-page: 6800
  year: 2004
  end-page: 6807
  ident: bib0505
  article-title: Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme
  publication-title: Langmuir.
– volume: 90
  start-page: 241
  year: 2000
  end-page: 259
  ident: bib0375
  article-title: Folding and stability of human carbonic anhydrase II,the Carbonic Anhydrases
  publication-title: EXS.
– start-page: 711
  year: 2019
  end-page: 721
  ident: bib0005
  article-title: Application of immobilized enzymes in the food industry
  publication-title: Enzymes in Food Biotechnology
– volume: 17
  start-page: 171
  year: 2005
  end-page: 175
  ident: bib0485
  article-title: Enzyme multilayer-modified porous membranes as biocatalysts
  publication-title: Chem. Mat.
– volume: 95
  start-page: 843
  year: 2017
  end-page: 849
  ident: bib0245
  article-title: Immobilization of levan-xylanase nanohybrid on an alginate bead improves xylanase stability at wide pH and temperature
  publication-title: Int. J. Biol. Macromol.
– volume: 48
  start-page: 491
  year: 2020
  end-page: 517
  ident: bib0015
  article-title: Trace metal substitution in marine phytoplankton
  publication-title: Annu. Rev. Earth Planet. Sci.
– volume: 37
  start-page: 3721
  year: 2013
  end-page: 3730
  ident: bib0620
  article-title: Reduction of CO
  publication-title: New J. Chem.
– volume: 115
  start-page: 20209
  year: 2011
  end-page: 20216
  ident: bib0430
  article-title: Capture and sequestration of CO
  publication-title: J. Phys. Chem. C.
– volume: 50
  start-page: 5693
  year: 2009
  end-page: 5700
  ident: bib0395
  article-title: Immobilization of carbonic anhydrase by embedding and covalent coupling into nanocomposite hydrogel containing hydrotalcite
  publication-title: Polymer.
– volume: 47
  start-page: 667
  year: 2014
  end-page: 677
  ident: bib0450
  article-title: Polymer-and dendrimer-coated magnetic nanoparticles as versatile supports for catalysts, scavengers, and reagents
  publication-title: Accounts Chem. Res.
– volume: 49
  start-page: 290
  year: 2016
  end-page: 296
  ident: bib0010
  article-title: Enzymatic properties of immobilized carbonic anhydrase and the biocatalyst for promoting CO
  publication-title: Int. J. Greenh. Gas Control.
– volume: 35
  start-page: 15
  year: 2015
  end-page: 28
  ident: bib0255
  article-title: Optimization protocols and improved strategies of cross-linked enzyme aggregates technology: current development and future challenges
  publication-title: Crit. Rev. Biotechnol.
– volume: 29
  start-page: 146
  year: 2014
  end-page: 150
  ident: bib0545
  article-title: Biomimetic CO
  publication-title: J. Enzym. Inhib. Med. Chem.
– volume: 48
  start-page: 4210
  year: 2009
  end-page: 4215
  ident: bib0610
  article-title: Green and efficient conversion of CO
  publication-title: Ind. Eng. Chem. Res.
– volume: 73
  start-page: 38
  year: 2018
  end-page: 46
  ident: bib0370
  article-title: Efficient carbon dioxide sequestration by using recombinant carbonic anhydrase
  publication-title: Process Biochem.
– volume: 7
  start-page: 10291
  year: 2015
  end-page: 10298
  ident: bib0080
  article-title: Optimization of enzyme immobilization on magnetic microparticles using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) as a crosslinking agent
  publication-title: Anal. Methods
– volume: 10
  start-page: 1009
  year: 2008
  end-page: 1025
  ident: bib0170
  article-title: Novel method for immobilization of enzymes to magnetic nanoparticles
  publication-title: J. Nanopart. Res.
– volume: 52
  start-page: 833
  year: 1964
  ident: bib0265
  article-title: Intermolecular cross linking of a protein in the crystalline state: carboxypeptidase-A
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 1
  start-page: 998
  year: 2011
  end-page: 1009
  ident: bib0300
  article-title: Simpler is better: high-yield and potential low-cost biofuels production through cell-free synthetic pathway biotransformation (SyPaB)
  publication-title: ACS Catal.
– volume: 67
  start-page: 11553
  year: 2019
  ident: 10.1016/j.colsurfb.2021.111779_bib0110
  article-title: Application of immobilized enzymes in food industry
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.9b04385
– volume: 170
  start-page: 756
  year: 2013
  ident: 10.1016/j.colsurfb.2021.111779_bib0400
  article-title: Evaluation of enhanced thermostability and operational stability of carbonic anhydrase from Micrococcus species
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-013-0226-y
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.colsurfb.2021.111779_bib0050
  article-title: Comparison of reactions with different calcium sources for CaCO3 production using carbonic anhydrase
  publication-title: Greenh. Gases.
  doi: 10.1002/ghg.2007
– volume: 66
  start-page: 789
  year: 2018
  ident: 10.1016/j.colsurfb.2021.111779_bib0165
  article-title: Covalent immobilization of cellulase using magnetic poly (ionic liquid) support: improvement of the enzyme activity and stability
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.7b03922
– volume: 35
  start-page: 824
  year: 2020
  ident: 10.1016/j.colsurfb.2021.111779_bib0035
  article-title: Activation studies of the β-carbonic anhydrases from Malassezia restricta with amines and amino acids
  publication-title: J. Enzym. Inhib. Med. Chem.
  doi: 10.1080/14756366.2020.1743284
– volume: 98
  start-page: 316
  year: 2020
  ident: 10.1016/j.colsurfb.2021.111779_bib0075
  article-title: A new approach for describing and solving the reversible Briggs-Haldane mechanism using immobilized enzyme
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.23528
– volume: 6
  start-page: 450
  year: 2011
  ident: 10.1016/j.colsurfb.2021.111779_bib0475
  article-title: Effect of substrate (ZnO) morphology on enzyme immobilization and its catalytic activity
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-6-450
– volume: 20
  start-page: 61
  year: 1997
  ident: 10.1016/j.colsurfb.2021.111779_bib0155
  article-title: Polyacrylonitrile enzyme ultrafiltration membranes prepared by adsorption, cross-linking, and covalent binding
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/S0141-0229(96)00085-3
– volume: 44
  start-page: 87
  year: 2011
  ident: 10.1016/j.colsurfb.2021.111779_bib0195
  article-title: Polymer materials for enzyme immobilization and their application in bioreactors
  publication-title: Biochem.Mol.Biol.Rep.
– volume: 46
  start-page: 1010
  year: 2011
  ident: 10.1016/j.colsurfb.2021.111779_bib0575
  article-title: Immobilization of carbonic anhydrase on chitosan beads for enhanced carbonation reaction
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2011.01.023
– volume: 29
  start-page: 146
  year: 2014
  ident: 10.1016/j.colsurfb.2021.111779_bib0545
  article-title: Biomimetic CO2 capture using a highly thermostable bacterial α-carbonic anhydrase immobilized on a polyurethane foam
  publication-title: J. Enzym. Inhib. Med. Chem.
  doi: 10.3109/14756366.2012.761608
– volume: 34
  start-page: 399
  year: 1999
  ident: 10.1016/j.colsurfb.2021.111779_bib0290
  article-title: Immobilization of Paenibacillus macerans NRRL B-3186 cyclodextrin glucosyltransferase and properties of the immobilized enzyme
  publication-title: Process Biochem.
  doi: 10.1016/S0032-9592(99)00017-5
– volume: 84
  start-page: 136
  year: 2012
  ident: 10.1016/j.colsurfb.2021.111779_bib0350
  article-title: Improving the catalytic activity of formate dehydrogenase from Candida boidinii by using magnetic nanoparticles
  publication-title: J. Mol. Catal. B-Enzym.
  doi: 10.1016/j.molcatb.2012.03.021
– volume: 99
  start-page: 739
  year: 2017
  ident: 10.1016/j.colsurfb.2021.111779_bib0145
  article-title: A spectroscopic study on the absorption of carbonic anhydrase onto the nanoporous silica nanoparticle
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2017.03.030
– volume: 18
  start-page: 567
  year: 2013
  ident: 10.1016/j.colsurfb.2021.111779_bib0225
  article-title: Biosequestration of carbon dioxide using a silicified carbonic anhydrase catalyst
  publication-title: Biotechnol. Bioprocess Eng.
  doi: 10.1007/s12257-012-0398-2
– volume: 16
  start-page: 9595
  year: 2000
  ident: 10.1016/j.colsurfb.2021.111779_bib0495
  article-title: Enzyme multilayers on colloid particles: assembly, stability, and enzymatic activity
  publication-title: Langmuir
  doi: 10.1021/la000942h
– volume: 52
  start-page: 12708
  year: 2018
  ident: 10.1016/j.colsurfb.2021.111779_bib0480
  article-title: Carbonic anhydrase Enzyme-MOFs composite with a superior catalytic performance to promote CO2 absorption into tertiary amine solution
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b04671
– volume: 57
  start-page: 95
  year: 2017
  ident: 10.1016/j.colsurfb.2021.111779_bib0525
  article-title: Immobilization and characterization of human carbonic anhydrase I on amine functionalized magnetic nanoparticles
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2017.03.025
– volume: 115
  start-page: 20209
  year: 2011
  ident: 10.1016/j.colsurfb.2021.111779_bib0430
  article-title: Capture and sequestration of CO2 by human carbonic anhydrase covalently immobilized onto amine-functionalized SBA-15
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp204661v
– volume: 40
  start-page: 1451
  year: 2007
  ident: 10.1016/j.colsurfb.2021.111779_bib0355
  article-title: Improvement of enzyme activity, stability and selectivity via immobilization techniques
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/j.enzmictec.2007.01.018
– volume: 90
  start-page: 241
  year: 2000
  ident: 10.1016/j.colsurfb.2021.111779_bib0375
  article-title: Folding and stability of human carbonic anhydrase II,the Carbonic Anhydrases
  publication-title: EXS.
– volume: 65
  start-page: 3199
  year: 2010
  ident: 10.1016/j.colsurfb.2021.111779_bib0510
  article-title: Selective separation of low concentration CO2 using hydrogel immobilized CA enzyme based hollow fiber membrane reactors
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2010.02.010
– volume: 8
  start-page: 1736
  year: 2012
  ident: 10.1016/j.colsurfb.2021.111779_bib0305
  article-title: Multi-enzyme systems: bringing enzymes together in vitro
  publication-title: Soft Matter
  doi: 10.1039/C1SM06452E
– volume: 49
  start-page: 891
  year: 2019
  ident: 10.1016/j.colsurfb.2021.111779_bib0045
  article-title: Characterization of marine bacterial carbonic anhydrase and their CO2 sequestration abilities based on a soil microcosm
  publication-title: Prep. Biochem. Biotechnol.
  doi: 10.1080/10826068.2019.1633669
– volume: 91
  start-page: 793
  year: 2018
  ident: 10.1016/j.colsurfb.2021.111779_bib0130
  article-title: Progress & prospect of metal-organic frameworks (MOFs) for enzyme immobilization (enzyme/MOFs)
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2018.04.103
– volume: 51
  start-page: 142
  year: 2013
  ident: 10.1016/j.colsurfb.2021.111779_bib0520
  article-title: Global strategies and potentials to curb CO2 emissions in cement industry
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2012.10.049
– volume: 127
  start-page: 370
  year: 2008
  ident: 10.1016/j.colsurfb.2021.111779_bib0160
  article-title: Urinary & serum oxalate determination by oxalate oxidase immobilized on to affixed arylamine glass beads
  publication-title: Indian J. Med. Res.
– volume: 294
  start-page: 66
  year: 2014
  ident: 10.1016/j.colsurfb.2021.111779_bib0125
  article-title: Effects of acoustic wave resonance oscillation on immobilized enzyme
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2013.12.016
– volume: 6
  start-page: 185
  year: 2013
  ident: 10.1016/j.colsurfb.2021.111779_bib0325
  article-title: Enzyme immobilization: an update
  publication-title: J.Chem.Biol.
  doi: 10.1007/s12154-013-0102-9
– volume: 78
  start-page: 2514
  year: 2006
  ident: 10.1016/j.colsurfb.2021.111779_bib0445
  article-title: Enzyme inhibitor screening by capillary electrophoresis with an on-column immobilized enzyme microreactor created by an ionic binding technique
  publication-title: Anal. Chem.
  doi: 10.1021/ac052030w
– volume: 365
  start-page: 59
  year: 2010
  ident: 10.1016/j.colsurfb.2021.111779_bib0335
  article-title: Effect of enzyme location on activity and stability of trypsin and urease immobilized on porous membranes by using layer-by-layer self-assembly of polyelectrolyte
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.08.042
– volume: 349
  start-page: 1289
  year: 2007
  ident: 10.1016/j.colsurfb.2021.111779_bib0135
  article-title: Enzyme immobilization: the quest for optimum performance
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.200700082
– volume: 10
  start-page: 20608
  year: 2020
  ident: 10.1016/j.colsurfb.2021.111779_bib0240
  article-title: Enzyme immobilization inside the porous wood structure: a natural scaffold for continuous-flow biocatalysis
  publication-title: RSC Adv.
  doi: 10.1039/C9RA10633B
– year: 2015
  ident: 10.1016/j.colsurfb.2021.111779_bib0115
  article-title: Encapsulation of biocatalysts (Cell/Enzyme) with high retaining activity
  publication-title: Dissertat. Theses – Gradworks.
– volume: 125
  year: 2020
  ident: 10.1016/j.colsurfb.2021.111779_bib0550
  article-title: Recent advances in carbon dioxide utilization
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2020.109799
– volume: 42
  start-page: 6223
  year: 2013
  ident: 10.1016/j.colsurfb.2021.111779_bib0070
  article-title: S. Van Pelt, Enzyme immobilisation in biocatalysis: why, what and how
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60075K
– volume: 42
  start-page: 6262
  year: 2013
  ident: 10.1016/j.colsurfb.2021.111779_bib0090
  article-title: Efficient immobilisation of industrial biocatalysts: criteria and constraints for the selection of organic polymeric carriers and immobilisation methods
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs35464d
– volume: 79
  start-page: 719
  year: 2015
  ident: 10.1016/j.colsurfb.2021.111779_bib0365
  article-title: Immobilization of carbonic anhydrase on carboxyl-functionalized ferroferric oxide for CO2 capture
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2015.05.051
– volume: 30
  start-page: 6915
  year: 2014
  ident: 10.1016/j.colsurfb.2021.111779_bib0385
  article-title: Electropolymerized carbonic anhydrase immobilization for carbon dioxide capture
  publication-title: Langmuir.
  doi: 10.1021/la501333s
– volume: 95
  start-page: 843
  year: 2017
  ident: 10.1016/j.colsurfb.2021.111779_bib0245
  article-title: Immobilization of levan-xylanase nanohybrid on an alginate bead improves xylanase stability at wide pH and temperature
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2016.12.012
– volume: 113
  start-page: 464
  year: 2018
  ident: 10.1016/j.colsurfb.2021.111779_bib0580
  article-title: Combi-metal organic framework (Combi-MOF) of α-amylase and glucoamylase for one pot starch hydrolysis
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2018.02.092
– volume: 9
  start-page: 4600
  year: 2015
  ident: 10.1016/j.colsurfb.2021.111779_bib0615
  article-title: Tethering of nicotinamide adenine dinucleotide inside hollow nanofibers for high-yield synthesis of methanol from carbon dioxide catalyzed by coencapsulated multienzymes
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01278
– volume: 116
  start-page: 89
  year: 2015
  ident: 10.1016/j.colsurfb.2021.111779_bib0590
  article-title: Effect of carbonic anhydrase on enzymatic conversion of CO2 to formic acid and optimization of reaction conditions
  publication-title: J. Mol. Catal. B Enzym
  doi: 10.1016/j.molcatb.2015.03.014
– volume: 102
  start-page: 10194
  year: 2011
  ident: 10.1016/j.colsurfb.2021.111779_bib0150
  article-title: Activity and stability of immobilized carbonic anhydrase for promoting CO2 absorption into a carbonate solution for post-combustion CO2 capture
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.09.043
– volume: 99
  start-page: 9
  year: 2008
  ident: 10.1016/j.colsurfb.2021.111779_bib0330
  article-title: Effect of PEG modification on subtilisin Carlsberg activity, enantioselectivity, and structural dynamics in 1, 4‐dioxane
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.21510
– volume: 52
  start-page: 833
  year: 1964
  ident: 10.1016/j.colsurfb.2021.111779_bib0265
  article-title: Intermolecular cross linking of a protein in the crystalline state: carboxypeptidase-A
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.52.3.833
– volume: 20
  start-page: 6800
  year: 2004
  ident: 10.1016/j.colsurfb.2021.111779_bib0505
  article-title: Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme
  publication-title: Langmuir.
  doi: 10.1021/la0497200
– volume: 165
  start-page: 1099
  year: 2020
  ident: 10.1016/j.colsurfb.2021.111779_bib0060
  article-title: Immobilization of keratinase on chitosan grafted-β-cyclodextrin for the improvement of the enzyme properties and application of free keratinase in the textile industry
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2020.10.009
– volume: 7
  start-page: 10291
  year: 2015
  ident: 10.1016/j.colsurfb.2021.111779_bib0080
  article-title: Optimization of enzyme immobilization on magnetic microparticles using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) as a crosslinking agent
  publication-title: Anal. Methods
  doi: 10.1039/C5AY02670A
– volume: 47
  start-page: 667
  year: 2014
  ident: 10.1016/j.colsurfb.2021.111779_bib0450
  article-title: Polymer-and dendrimer-coated magnetic nanoparticles as versatile supports for catalysts, scavengers, and reagents
  publication-title: Accounts Chem. Res.
  doi: 10.1021/ar400236y
– volume: 168
  start-page: 708
  year: 2021
  ident: 10.1016/j.colsurfb.2021.111779_bib0320
  article-title: Immobilization of enzymes on nanoinorganic support materials: an update
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2020.11.127
– volume: 54
  start-page: 1223
  year: 2020
  ident: 10.1016/j.colsurfb.2021.111779_bib0535
  article-title: Stabilized and immobilized carbonic anhydrase on electrospun nanofibers for enzymatic CO2 conversion and utilization in expedited microalgal growth
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b05284
– volume: 162
  start-page: 391
  year: 2010
  ident: 10.1016/j.colsurfb.2021.111779_bib0595
  article-title: Thermodynamic feasibility of enzymatic reduction of carbon dioxide to methanol
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-009-8758-x
– volume: 56
  start-page: 14933
  year: 2017
  ident: 10.1016/j.colsurfb.2021.111779_bib0200
  article-title: Enzyme encapsulation by a ferritin cage
  publication-title: Angew. Chem.-Int. Edit.
  doi: 10.1002/anie.201708530
– volume: 55
  start-page: 375
  year: 2019
  ident: 10.1016/j.colsurfb.2021.111779_bib0065
  article-title: Sequestration of CO2 into CaCO3 using carbonic anhydrase immobilization on functionalized aluminum oxide
  publication-title: Appl. Biochem. Micro.
  doi: 10.1134/S0003683819040112
– volume: 99
  start-page: 508
  year: 2008
  ident: 10.1016/j.colsurfb.2021.111779_bib0605
  article-title: Particle-tethered NADH for production of methanol from CO2 catalyzed by coimmobilized enzymes
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.21584
– volume: 37
  start-page: 3721
  year: 2013
  ident: 10.1016/j.colsurfb.2021.111779_bib0620
  article-title: Reduction of CO2 to methanol by a polyenzymatic system encapsulated in phospholipids–silica nanocapsules
  publication-title: New J. Chem.
  doi: 10.1039/c3nj00688c
– volume: 27
  start-page: 892
  year: 2012
  ident: 10.1016/j.colsurfb.2021.111779_bib0025
  article-title: Biochemical properties of a novel and highly thermostable bacterial α-carbonic anhydrase from Sulfurihydrogenibium yellowstonense YO3AOP1
  publication-title: J. Enzym. Inhib. Med. Chem.
  doi: 10.3109/14756366.2012.703185
– start-page: 711
  year: 2019
  ident: 10.1016/j.colsurfb.2021.111779_bib0005
  article-title: Application of immobilized enzymes in the food industry
– volume: 50
  start-page: 2234
  year: 2015
  ident: 10.1016/j.colsurfb.2021.111779_bib0570
  article-title: Immobilization of carbonic anhydrase on epoxy-functionalized magnetic polymer microspheres for CO2 capture
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2015.09.015
– volume: 29
  start-page: 1813
  year: 2013
  ident: 10.1016/j.colsurfb.2021.111779_bib0230
  article-title: Immobilization and characterization of carbonic anhydrase purified from E. Coli MO1 and its influence on CO2 sequestration
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-013-1343-z
– volume: 14
  start-page: 387
  year: 2003
  ident: 10.1016/j.colsurfb.2021.111779_bib0315
  article-title: Immobilised enzymes: carrier-bound or carrier-free?
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/S0958-1669(03)00096-X
– volume: 21
  start-page: 750
  year: 2000
  ident: 10.1016/j.colsurfb.2021.111779_bib0490
  article-title: Preparation of enzyme multilayers on colloids for biocatalysis
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/1521-3927(20000701)21:11<750::AID-MARC750>3.0.CO;2-3
– volume: 42
  start-page: 6437
  year: 2013
  ident: 10.1016/j.colsurfb.2021.111779_bib0250
  article-title: Industrial use of immobilized enzymes
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs35506c
– volume: 1
  start-page: 998
  year: 2011
  ident: 10.1016/j.colsurfb.2021.111779_bib0300
  article-title: Simpler is better: high-yield and potential low-cost biofuels production through cell-free synthetic pathway biotransformation (SyPaB)
  publication-title: ACS Catal.
  doi: 10.1021/cs200218f
– volume: 50
  start-page: 5693
  year: 2009
  ident: 10.1016/j.colsurfb.2021.111779_bib0395
  article-title: Immobilization of carbonic anhydrase by embedding and covalent coupling into nanocomposite hydrogel containing hydrotalcite
  publication-title: Polymer.
  doi: 10.1016/j.polymer.2009.09.067
– volume: 139
  start-page: 6530
  year: 2017
  ident: 10.1016/j.colsurfb.2021.111779_bib0190
  article-title: Shielding against unfolding by embedding enzymes in metal–organic frameworks via a de novo approach
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01794
– volume: 32
  start-page: 759
  year: 2017
  ident: 10.1016/j.colsurfb.2021.111779_bib0435
  article-title: Production and covalent immobilisation of the recombinant bacterial carbonic anhydrase (SspCA) onto magnetic nanoparticles
  publication-title: J. Enzym. Inhib. Med. Chem.
  doi: 10.1080/14756366.2017.1316719
– volume: 32
  start-page: 319
  year: 2015
  ident: 10.1016/j.colsurfb.2021.111779_bib0600
  article-title: Cascade catalysis in membranes with enzyme immobilization for multi-enzymatic conversion of CO2 to methanol
  publication-title: New Bioeth.
– volume: 146
  start-page: 60
  year: 2019
  ident: 10.1016/j.colsurfb.2021.111779_bib0340
  article-title: Meso-molding three-dimensionally ordered macroporous alumina: a new platform to immobilize enzymes with high performance
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2019.03.002
– volume: 24
  start-page: 1773
  year: 1982
  ident: 10.1016/j.colsurfb.2021.111779_bib0360
  article-title: Stability studies of immobilized enzyme stir rods
  publication-title: Biotechnol.Bioeng.
  doi: 10.1002/bit.260240805
– year: 2018
  ident: 10.1016/j.colsurfb.2021.111779_bib0470
  article-title: Polysulfone biomimetic membrane for CO2 capture
  publication-title: Funct. Mater. Lett.11
  doi: 10.1142/S1793604718500467
– volume: 41
  start-page: 335
  year: 2020
  ident: 10.1016/j.colsurfb.2021.111779_bib0105
  article-title: Controllable and high-performance immobilized enzyme reactor:DNA-directed immobilization of multienzyme in polyamidoamine dendrimer-functionalized capillaries
  publication-title: Electrophoresis.
  doi: 10.1002/elps.201900428
– volume: 38
  start-page: 111
  year: 2003
  ident: 10.1016/j.colsurfb.2021.111779_bib0185
  article-title: CO2 hydration by immobilized carbonic anhydrase
  publication-title: Biotechnol. Appl. Biochem.
  doi: 10.1042/BA20030060
– volume: 39
  year: 2020
  ident: 10.1016/j.colsurfb.2021.111779_bib0555
  article-title: Immobilization of genetically engineered whole-cell biocatalysts with periplasmic carbonic anhydrase in polyurethane foam for enzymatic CO2 capture and utilization
  publication-title: J. CO2 Util
  doi: 10.1016/j.jcou.2020.101172
– volume: 1053
  year: 2021
  ident: 10.1016/j.colsurfb.2021.111779_bib0235
  article-title: Mass transfer and reaction in hydrolysis of coconut husk using immobilized enzyme on chitosan magnetic nanoparticle
– volume: 21
  start-page: 2960
  year: 2020
  ident: 10.1016/j.colsurfb.2021.111779_bib0030
  article-title: Development of thiazolidinones as fungal carbonic anhydrase inhibitors
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21082960
– volume: 361
  start-page: 1
  year: 2019
  ident: 10.1016/j.colsurfb.2021.111779_bib0085
  article-title: Immobilization of enzymes in/on membranes and their applications
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201900439
– volume: 136
  start-page: 47784
  year: 2019
  ident: 10.1016/j.colsurfb.2021.111779_bib0460
  article-title: Immobilization of carbonic anhydrase on polyethylenimine/dopamine codeposited membranes
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.47784
– volume: 73
  start-page: 38
  year: 2018
  ident: 10.1016/j.colsurfb.2021.111779_bib0370
  article-title: Efficient carbon dioxide sequestration by using recombinant carbonic anhydrase
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2018.08.017
– volume: 5
  start-page: 2705
  year: 2015
  ident: 10.1016/j.colsurfb.2021.111779_bib0380
  article-title: Efficient nitrogen-13 radiochemistry catalyzed by a highly stable immobilized biocatalyst
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C5CY00179J
– volume: 7
  start-page: 428
  year: 2012
  ident: 10.1016/j.colsurfb.2021.111779_bib0515
  article-title: Protein-inorganic hybrid nanoflowers
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.80
– volume: 885
  year: 2017
  ident: 10.1016/j.colsurfb.2021.111779_bib0560
  article-title: Kinetic of carbonic anhydrase immobilized onto amberlite XAD 7 and it application in sequestration of CO2 into CaCO3 precipitate
  publication-title: J. Phys. Conf. Series
  doi: 10.1088/1742-6596/885/1/012006
– volume: 65
  start-page: 362
  year: 2018
  ident: 10.1016/j.colsurfb.2021.111779_bib0465
  article-title: Immobilization of carbonic anhydrase on polyvinylidene fluoride membranes
  publication-title: Biotechnol. Appl. Biochem.
  doi: 10.1002/bab.1629
– volume: 15
  start-page: 359
  year: 2008
  ident: 10.1016/j.colsurfb.2021.111779_bib0410
  article-title: Acid activated montmorillonite: an efficient immobilization support for improving reusability, storage stability and operational stability of enzymes
  publication-title: J. Porous Mat.
  doi: 10.1007/s10934-006-9089-8
– volume: 122
  start-page: 359
  year: 2019
  ident: 10.1016/j.colsurfb.2021.111779_bib0275
  article-title: Catalytic phenol removal using entrapped cross-linked laccase aggregates
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2018.10.147
– volume: 49
  start-page: 290
  year: 2016
  ident: 10.1016/j.colsurfb.2021.111779_bib0010
  article-title: Enzymatic properties of immobilized carbonic anhydrase and the biocatalyst for promoting CO2 capture in vertical reactor
  publication-title: Int. J. Greenh. Gas Control.
  doi: 10.1016/j.ijggc.2016.03.016
– volume: 27
  start-page: 1294
  year: 2020
  ident: 10.1016/j.colsurfb.2021.111779_bib0055
  article-title: Carbonic anhydrase modification for carbon management
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-019-06667-w
– volume: 101
  start-page: 260
  year: 2007
  ident: 10.1016/j.colsurfb.2021.111779_bib0420
  article-title: Stability evaluation of an immobilized enzyme system for inulin hydrolysis
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2006.01.042
– volume: 48
  start-page: 4210
  year: 2009
  ident: 10.1016/j.colsurfb.2021.111779_bib0610
  article-title: Green and efficient conversion of CO2 to methanol by biomimetic coimmobilization of three dehydrogenases in protamine-templated titania
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie801931j
– volume: 50
  start-page: 2234
  year: 2015
  ident: 10.1016/j.colsurfb.2021.111779_bib0440
  article-title: Immobilization of carbonic anhydrase on epoxy-functionalized magnetic polymer microspheres for CO2 capture
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2015.09.015
– volume: 48
  start-page: 491
  year: 2020
  ident: 10.1016/j.colsurfb.2021.111779_bib0015
  article-title: Trace metal substitution in marine phytoplankton
  publication-title: Annu. Rev. Earth Planet. Sci.
  doi: 10.1146/annurev-earth-053018-060108
– volume: 20
  start-page: 1394
  year: 2019
  ident: 10.1016/j.colsurfb.2021.111779_bib0095
  article-title: Artificial cellulosome complex from the self-assembly of Ni-NTA-functionalized polymeric micelles and cellulases
  publication-title: Chem. Bio. Chem.
  doi: 10.1002/cbic.201900061
– volume: 32
  start-page: 341
  year: 2010
  ident: 10.1016/j.colsurfb.2021.111779_bib0260
  article-title: Carrier-free immobilized enzymes for biocatalysis
  publication-title: Biotechnol. Lett.
  doi: 10.1007/s10529-009-0173-4
– volume: 24
  start-page: 6198
  year: 2010
  ident: 10.1016/j.colsurfb.2021.111779_bib0180
  article-title: Immobilized carbonic anhydrase for the biomimetic carbonation reaction
  publication-title: Energy Fuels
  doi: 10.1021/ef100750y
– volume: 1570
  start-page: 63
  year: 2002
  ident: 10.1016/j.colsurfb.2021.111779_bib0220
  article-title: Effect of lecithin and MgCO3 as additives on the enzymatic activity of carbonic anhydrase encapsulated in poly(lactide-co-glycolide) (PLGA) microspheres
  publication-title: BBA - General Subjects.
  doi: 10.1016/S0304-4165(02)00153-8
– volume: 111
  start-page: 209
  year: 2014
  ident: 10.1016/j.colsurfb.2021.111779_bib0425
  article-title: Materials‐based strategies for multi‐enzyme immobilization and co‐localization: a review
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.25136
– volume: 17
  start-page: 171
  year: 2005
  ident: 10.1016/j.colsurfb.2021.111779_bib0485
  article-title: Enzyme multilayer-modified porous membranes as biocatalysts
  publication-title: Chem. Mat.
  doi: 10.1021/cm048659h
– volume: 52
  start-page: 12708
  year: 2018
  ident: 10.1016/j.colsurfb.2021.111779_bib0405
  article-title: Carbonic anhydrase Enzyme-MOFs composite with a superior catalytic performance to promote CO2 absorption into tertiary amine solution
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b04671
– volume: 5
  start-page: 834
  year: 2017
  ident: 10.1016/j.colsurfb.2021.111779_bib0585
  article-title: Carbon capture and utilization update
  publication-title: Energy Technol.
  doi: 10.1002/ente.201600747
– volume: 35
  start-page: 15
  year: 2015
  ident: 10.1016/j.colsurfb.2021.111779_bib0255
  article-title: Optimization protocols and improved strategies of cross-linked enzyme aggregates technology: current development and future challenges
  publication-title: Crit. Rev. Biotechnol.
  doi: 10.3109/07388551.2013.795516
– volume: 10
  start-page: 1009
  year: 2008
  ident: 10.1016/j.colsurfb.2021.111779_bib0170
  article-title: Novel method for immobilization of enzymes to magnetic nanoparticles
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-007-9332-5
– volume: 33
  start-page: 2065
  year: 2011
  ident: 10.1016/j.colsurfb.2021.111779_bib0285
  article-title: Enhancement of activity and selectivity of Candida rugosa lipase and Candida antarctica lipase A by bioimprinting and/or immobilization for application in the selective ethanolysis of fish oil
  publication-title: Biotechnol. Lett.
  doi: 10.1007/s10529-011-0671-z
– volume: 136
  start-page: S325
  year: 2009
  ident: 10.1016/j.colsurfb.2021.111779_bib0270
  article-title: Synthesis of cross-linked polyethylene glycol diacrylate polymers and their application as supports for laccase immobilization
  publication-title: Transactions of China Pulp & Paper.
– volume: 201
  year: 2021
  ident: 10.1016/j.colsurfb.2021.111779_bib0100
  article-title: DNA directed immobilization of horseradish peroxidase on phase-transitioned lysozyme modified TiO2 for efficient degradation of phenol in wastewater
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2021.109463
– volume: 60
  start-page: 13
  year: 2009
  ident: 10.1016/j.colsurfb.2021.111779_bib0565
  article-title: Immobilization of carbonic anhydrase enriched microorganism on biopolymer based materials
  publication-title: J. Mol. Catal. B-Enzym.
  doi: 10.1016/j.molcatb.2009.02.022
– volume: 373
  start-page: 1254
  year: 2019
  ident: 10.1016/j.colsurfb.2021.111779_bib0295
  article-title: Recent progress in multienzymes co-immobilization and multienzyme system applications
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.05.141
– volume: 114
  start-page: 503
  year: 2017
  ident: 10.1016/j.colsurfb.2021.111779_bib0140
  article-title: Dynamic changes of substrate reactivity and enzyme adsorption on partially hydrolyzed cellulose
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.26180
– volume: 31
  start-page: 3002
  year: 2017
  ident: 10.1016/j.colsurfb.2021.111779_bib0540
  article-title: Utility of immobilized recombinant carbonic anhydrase of Bacillus halodurans TSLV1 on the Surface of modified iron magnetic nanoparticles in carbon sequestration
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.6b02777
– volume: 3
  start-page: 3332
  year: 2015
  ident: 10.1016/j.colsurfb.2021.111779_bib0500
  article-title: Preparation of titania based biocatalytic nanoparticles and membranes for CO2 conversion
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C4TA05760K
– volume: 298
  start-page: 529
  year: 2013
  ident: 10.1016/j.colsurfb.2021.111779_bib0310
  article-title: Mechanisms of stability of fibers electrospun from peptides with ionized side chains
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201200331
– volume: 14
  start-page: 9076
  year: 2012
  ident: 10.1016/j.colsurfb.2021.111779_bib0175
  article-title: Insight into the effects of graphene oxide sheets on the conformation and activity of glucose oxidase: towards developing a nanomaterial-based protein conformation assay
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp40654c
– volume: 250
  start-page: 266
  year: 1971
  ident: 10.1016/j.colsurfb.2021.111779_bib0205
  article-title: A kinetic study of microencapsulated bovine carbonic anhydrase
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2744(71)90143-4
– volume: 143
  start-page: 128
  year: 2016
  ident: 10.1016/j.colsurfb.2021.111779_bib0210
  article-title: High expression and biosilica encapsulation of alkaline-active carbonic anhydrase for CO2 sequestration system development
  publication-title: Chemosphere.
  doi: 10.1016/j.chemosphere.2015.07.020
– volume: 743
  start-page: 95
  year: 2011
  ident: 10.1016/j.colsurfb.2021.111779_bib0120
  article-title: Reversible his-tagged enzyme immobilization on functionalized carbon nanotubes as nanoscale biocatalyst
  publication-title: Int. J. Biol. Macromol.
– volume: 36
  start-page: 3721
  year: 2001
  ident: 10.1016/j.colsurfb.2021.111779_bib0455
  article-title: Catalytic membrane reaction for methane steam reforming using porous silica membranes
  publication-title: Sep. Sci. Technol.
  doi: 10.1081/SS-100108358
– volume: 485
  start-page: 185
  year: 2012
  ident: 10.1016/j.colsurfb.2021.111779_bib0345
  article-title: Engineering the third wave of biocatalysis
  publication-title: Nature.
  doi: 10.1038/nature11117
– volume: 350
  start-page: 2329
  year: 2008
  ident: 10.1016/j.colsurfb.2021.111779_bib0280
  article-title: Linum usitatissimum hydroxynitrile lyase cross‐linked enzyme aggregates: a recyclable enantioselective catalyst
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.200800309
– volume: 153
  start-page: 166
  year: 2012
  ident: 10.1016/j.colsurfb.2021.111779_bib0215
  article-title: Enzymatic conversion of CO2 to bicarbonate in functionalized mesoporous silica
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2011.12.005
– volume: 49
  start-page: 3191
  year: 2013
  ident: 10.1016/j.colsurfb.2021.111779_bib0530
  article-title: CO2 sequestration by enzyme immobilized onto bioinspired silica
  publication-title: Chem. Commun.
  doi: 10.1039/C2CC38225C
– volume: 35
  start-page: 665
  year: 2020
  ident: 10.1016/j.colsurfb.2021.111779_bib0040
  article-title: Combining carbonic anhydrase and thioredoxin reductase inhibitory motifs within a single molecule dramatically increases its cytotoxicity
  publication-title: J. Enzym. Inhib. Med. Chem.
  doi: 10.1080/14756366.2020.1734800
– volume: 4
  start-page: 34356
  year: 2014
  ident: 10.1016/j.colsurfb.2021.111779_bib0415
  article-title: Hybrid periodic mesoporous organosilica designed to improve the properties of immobilized enzymes
  publication-title: RSC Adv.
  doi: 10.1039/C4RA05362A
– volume: 984
  start-page: 453
  year: 2003
  ident: 10.1016/j.colsurfb.2021.111779_bib0390
  article-title: CO2 capture by means of an enzyme‐based reactor
  publication-title: Ann. NY Acad. Sci.
  doi: 10.1111/j.1749-6632.2003.tb06019.x
– volume: 21
  start-page: 2922
  year: 2020
  ident: 10.1016/j.colsurfb.2021.111779_bib0020
  article-title: Insights on the functions and ecophysiological relevance of the diverse carbonic anhydrases in microalgae
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21082922
SSID ssj0002417
Score 2.4802756
SecondaryResourceType review_article
Snippet [Display omitted] •The enzymatic characteristics of immobilized CA are comprehensively summarized.•Approaches for immobilization and the advantages and...
Native carbonic anhydrase (CA) has been widely used in several different applications due to its catalytic function in the interconversion of carbon dioxide...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111779
SubjectTerms carbon dioxide
carbonate dehydratase
carbonic acid
Carbonic anhydrase
catalytic activity
Catalytic function
enzyme stability
Immobilized support
markets
mineralization
Recyclability
Stability
van der Waals forces
water solubility
Title Enzymatic characteristics of immobilized carbonic anhydrase and its applications in CO2 conversion
URI https://dx.doi.org/10.1016/j.colsurfb.2021.111779
https://www.proquest.com/docview/2518994066
https://www.proquest.com/docview/2574339778
Volume 204
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hOBQOVVmKWGiRK6He0s3DceLjagXaUokeKNLeLD9FEGTRPg7Lob-dsZPAUiE49JZE48jyjGa-sb8ZA5xQ6bjmGYtMUvim2pxGJeKIqFTKJYwzlblAkL1g4yt6PsknGzDqamE8rbL1_Y1PD966_TJoV3NwX1WDy5inRVEwjD8-EGUTX8FOC2_lP_4-0zwwQoWSaRSOvPRalfAN_vt2vpw5hXlimnjvUXhK1-sB6h9XHeLP2Sf42AJHMmzmtgsbtu7B3rDGpPluRb6TQOUMe-Q9-DDqrnHrwc5ax8E9UKf1wyp0aSX6ZatmMnWkQqP0ZNkHa4iWM-Xb5hJZX6_MDIMdPhlSLeZk_dCbVDUZ_U5JYK-HrbfPcHV2-mc0jtprFiJNKV1ESiFoKaxLeRFbmlOqdFLGVBp041rbLI-pxUw2kzpWmOzo3KRM21LFRsfOcZvtw2Y9re0BEIdgUBnjuTU5NYxLBEtcasVkEmeG0T7k3doK3fYg91dh3IqObHYjOp0IrxPR6KQPg6dx900XjndH8E514oU9CQwV74791ulaoLL8CYqs7XQ5FwgGMT9FDMTekkFQ5mF1efgfcziCbf_WUA2_wOZitrRfEf4s1HGw72PYGv78Nb54BOB7Bu8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RONAeqrK0Kn2AkarewubhOPERrUDL-wBIe7P8VINoFu3jsBz62zt2ErqgCg7cosSOIo8z3zf25xmAH1Q6rnnGIpMUPqk2p1GJPCIqlXIJ40xlLghkz9nwmh6P8tEKDLqzMF5W2fr-xqcHb93e6bej2b-rqv5lzNOiKBjijweibPQG1ij-vr6Mwd6ffzoPhKhwZhpbR7750jHhG3z57XQ-cQoDxTTx7qPwmq7_I9QTXx0A6PADvG-ZI9lvPm4DVmzdg839GqPm3wvykwQtZ1gk78H6oKvj1oN3SykHN0Ed1PeLkKaV6Me5msnYkQpnpVfL3ltDtJwonzeXyPrXwkwQ7fDKkGo2Jcu73qSqyeAiJUG-HtbePsL14cHVYBi1dRYiTSmdRUohaymsS3kRW5pTqnRSxlQa9ONa2yyPqcVQNpM6Vhjt6NykTNtSxUbHznGbfYLVelzbz0AcskFljBfX5NQwLpEtcakVk0mcGUa3IO_GVug2CbmvhXErOrXZjehsIrxNRGOTLeg_9Ltr0nC82IN3phOPJpRArHix725na4HG8lsosrbj-VQgG8QAFUkQe64NsjLPq8svr_iGHVgfXp2ditOj85Ov8NY_aXSH32B1Npnb78iFZmo7zPW_yOQIfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enzymatic+characteristics+of+immobilized+carbonic+anhydrase+and+its+applications+in+CO2+conversion&rft.jtitle=Colloids+and+surfaces%2C+B%2C+Biointerfaces&rft.au=Ren%2C+Sizhu&rft.au=Chen%2C+Ruixue&rft.au=Wu%2C+Zhangfei&rft.au=Su%2C+Shan&rft.date=2021-08-01&rft.issn=1873-4367&rft.eissn=1873-4367&rft.volume=204&rft.spage=111779&rft_id=info:doi/10.1016%2Fj.colsurfb.2021.111779&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7765&client=summon