Enzymatic characteristics of immobilized carbonic anhydrase and its applications in CO2 conversion
[Display omitted] •The enzymatic characteristics of immobilized CA are comprehensively summarized.•Approaches for immobilization and the advantages and disadvantages are discussed.•Applications of CA in native and immobilized status are reviewed.•Studies of CO2 conversion are summarized, providing i...
Saved in:
Published in | Colloids and surfaces, B, Biointerfaces Vol. 204; p. 111779 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•The enzymatic characteristics of immobilized CA are comprehensively summarized.•Approaches for immobilization and the advantages and disadvantages are discussed.•Applications of CA in native and immobilized status are reviewed.•Studies of CO2 conversion are summarized, providing ideas for CO2 utilization.
Native carbonic anhydrase (CA) has been widely used in several different applications due to its catalytic function in the interconversion of carbon dioxide (CO2) and carbonic acid. However, subject to its stability and recyclability, native CA often deactivates when in harsh environments, which restricts its applications in the commercial market. Maintaining the stability and high catalytic activity of CA is challenging. Immobilization provides an effective route that can improve enzymatic stability. Through the interaction of covalent bonds and van der Waals forces, water-soluble CA can be combined with various insoluble supports to form water-insoluble immobilized CA so that CA stability and utilization can be greatly improved. However, if the immobilization method or immobilization condition is not suitable, it often leads to a decrease in CA activity, reducing the application effects on CO2 conversion. In this review, we discuss existing immobilization methods and applications of immobilized CA in the environmental field, such as the mineralization of carbon dioxide and multienzyme cascade catalysis based on CA. Additionally, prospects in current development are outlined. Because of the many outstanding and superior properties after immobilization, CA is likely to be used in a wide variety of scientific and technical areas in the future. |
---|---|
AbstractList | Native carbonic anhydrase (CA) has been widely used in several different applications due to its catalytic function in the interconversion of carbon dioxide (CO₂) and carbonic acid. However, subject to its stability and recyclability, native CA often deactivates when in harsh environments, which restricts its applications in the commercial market. Maintaining the stability and high catalytic activity of CA is challenging. Immobilization provides an effective route that can improve enzymatic stability. Through the interaction of covalent bonds and van der Waals forces, water-soluble CA can be combined with various insoluble supports to form water-insoluble immobilized CA so that CA stability and utilization can be greatly improved. However, if the immobilization method or immobilization condition is not suitable, it often leads to a decrease in CA activity, reducing the application effects on CO₂ conversion. In this review, we discuss existing immobilization methods and applications of immobilized CA in the environmental field, such as the mineralization of carbon dioxide and multienzyme cascade catalysis based on CA. Additionally, prospects in current development are outlined. Because of the many outstanding and superior properties after immobilization, CA is likely to be used in a wide variety of scientific and technical areas in the future. Native carbonic anhydrase (CA) has been widely used in several different applications due to its catalytic function in the interconversion of carbon dioxide (CO2) and carbonic acid. However, subject to its stability and recyclability, native CA often deactivates when in harsh environments, which restricts its applications in the commercial market. Maintaining the stability and high catalytic activity of CA is challenging. Immobilization provides an effective route that can improve enzymatic stability. Through the interaction of covalent bonds and van der Waals forces, water-soluble CA can be combined with various insoluble supports to form water-insoluble immobilized CA so that CA stability and utilization can be greatly improved. However, if the immobilization method or immobilization condition is not suitable, it often leads to a decrease in CA activity, reducing the application effects on CO2 conversion. In this review, we discuss existing immobilization methods and applications of immobilized CA in the environmental field, such as the mineralization of carbon dioxide and multienzyme cascade catalysis based on CA. Additionally, prospects in current development are outlined. Because of the many outstanding and superior properties after immobilization, CA is likely to be used in a wide variety of scientific and technical areas in the future.Native carbonic anhydrase (CA) has been widely used in several different applications due to its catalytic function in the interconversion of carbon dioxide (CO2) and carbonic acid. However, subject to its stability and recyclability, native CA often deactivates when in harsh environments, which restricts its applications in the commercial market. Maintaining the stability and high catalytic activity of CA is challenging. Immobilization provides an effective route that can improve enzymatic stability. Through the interaction of covalent bonds and van der Waals forces, water-soluble CA can be combined with various insoluble supports to form water-insoluble immobilized CA so that CA stability and utilization can be greatly improved. However, if the immobilization method or immobilization condition is not suitable, it often leads to a decrease in CA activity, reducing the application effects on CO2 conversion. In this review, we discuss existing immobilization methods and applications of immobilized CA in the environmental field, such as the mineralization of carbon dioxide and multienzyme cascade catalysis based on CA. Additionally, prospects in current development are outlined. Because of the many outstanding and superior properties after immobilization, CA is likely to be used in a wide variety of scientific and technical areas in the future. [Display omitted] •The enzymatic characteristics of immobilized CA are comprehensively summarized.•Approaches for immobilization and the advantages and disadvantages are discussed.•Applications of CA in native and immobilized status are reviewed.•Studies of CO2 conversion are summarized, providing ideas for CO2 utilization. Native carbonic anhydrase (CA) has been widely used in several different applications due to its catalytic function in the interconversion of carbon dioxide (CO2) and carbonic acid. However, subject to its stability and recyclability, native CA often deactivates when in harsh environments, which restricts its applications in the commercial market. Maintaining the stability and high catalytic activity of CA is challenging. Immobilization provides an effective route that can improve enzymatic stability. Through the interaction of covalent bonds and van der Waals forces, water-soluble CA can be combined with various insoluble supports to form water-insoluble immobilized CA so that CA stability and utilization can be greatly improved. However, if the immobilization method or immobilization condition is not suitable, it often leads to a decrease in CA activity, reducing the application effects on CO2 conversion. In this review, we discuss existing immobilization methods and applications of immobilized CA in the environmental field, such as the mineralization of carbon dioxide and multienzyme cascade catalysis based on CA. Additionally, prospects in current development are outlined. Because of the many outstanding and superior properties after immobilization, CA is likely to be used in a wide variety of scientific and technical areas in the future. |
ArticleNumber | 111779 |
Author | Yuan, Yanlin Wu, Zhangfei Su, Shan Ren, Sizhu Chen, Ruixue Hou, Jiaxi |
Author_xml | – sequence: 1 givenname: Sizhu surname: Ren fullname: Ren, Sizhu email: sizhu_ren@163.com organization: Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China – sequence: 2 givenname: Ruixue surname: Chen fullname: Chen, Ruixue organization: Tianjin University of Science and Technology, College of Biotechnology, Tianjin, No 29, 13th, Avenue, 300457, Tianjin, PR China – sequence: 3 givenname: Zhangfei surname: Wu fullname: Wu, Zhangfei organization: Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China – sequence: 4 givenname: Shan surname: Su fullname: Su, Shan organization: Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China – sequence: 5 givenname: Jiaxi surname: Hou fullname: Hou, Jiaxi organization: Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China – sequence: 6 givenname: Yanlin surname: Yuan fullname: Yuan, Yanlin email: pinfan10@126.com organization: Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China |
BookMark | eNqNkE1LxDAURYMoOI7-BcnSTcekSZMWXCiDXyC40XVIXl8xQ5uMSUcYf73V0Y0bXb0P7rmLc0T2QwxIyClnC864Ol8tIPZ5kzq3KFnJF5xzrZs9MuO1FoUUSu-TGWtKXWitqkNylPOKMVZKrmfEXYf37WBHDxRebLIwYvJ5OjONHfXDEJ3v_Tu2FGxyMUw5G162bbIZp62lfszUrte9h6kkhkx9oMvHkkIMb5jy9DomB53tM558zzl5vrl-Wt4VD4-398urhwKklGPhnKgbjV3ZaIayktIBr5m0LToOgKJiErkQwgJzSimo2lIB1o61wLquQTEnZ7vedYqvG8yjGXwG7HsbMG6yKSsthWi0rv8R5XXTSKbUFFW7KKSYc8LOrJMfbNoazsynf7MyP_7Np3-z8z-BF79A8OOXozFZ3_-NX-5wnJS9eUwmg8cA2PqEMJo2-r8qPgCSWqoi |
CitedBy_id | crossref_primary_10_1007_s11270_024_06918_8 crossref_primary_10_3390_chemengineering5040065 crossref_primary_10_1016_j_seppur_2022_121299 crossref_primary_10_3390_app13179494 crossref_primary_10_1016_j_memlet_2022_100031 crossref_primary_10_1016_j_biteb_2023_101380 crossref_primary_10_1016_j_bcab_2023_102755 crossref_primary_10_1016_j_psep_2024_01_100 crossref_primary_10_1016_j_jobe_2024_108886 crossref_primary_10_1016_j_enconman_2024_118467 crossref_primary_10_1016_j_ccst_2024_100257 crossref_primary_10_1016_j_fuproc_2023_107905 crossref_primary_10_1016_j_bej_2022_108719 crossref_primary_10_3390_molecules28145520 crossref_primary_10_1016_j_foodhyd_2022_107693 crossref_primary_10_1002_ceat_202200271 crossref_primary_10_1016_j_cej_2023_146847 crossref_primary_10_1021_acs_chemmater_2c03169 crossref_primary_10_1016_j_chemosphere_2022_134419 crossref_primary_10_1021_acsomega_3c00691 crossref_primary_10_1007_s11244_022_01770_8 crossref_primary_10_1021_acs_biomac_3c00993 crossref_primary_10_3390_magnetochemistry9040110 crossref_primary_10_1016_j_jgsce_2024_205237 crossref_primary_10_1007_s11814_024_00050_3 crossref_primary_10_1007_s11270_025_07873_8 crossref_primary_10_1007_s12010_024_04908_4 crossref_primary_10_1016_j_cej_2023_146186 crossref_primary_10_3390_molecules30020251 |
Cites_doi | 10.1021/acs.jafc.9b04385 10.1007/s12010-013-0226-y 10.1002/ghg.2007 10.1021/acs.jafc.7b03922 10.1080/14756366.2020.1743284 10.1002/cjce.23528 10.1186/1556-276X-6-450 10.1016/S0141-0229(96)00085-3 10.1016/j.procbio.2011.01.023 10.3109/14756366.2012.761608 10.1016/S0032-9592(99)00017-5 10.1016/j.molcatb.2012.03.021 10.1016/j.ijbiomac.2017.03.030 10.1007/s12257-012-0398-2 10.1021/la000942h 10.1021/acs.est.8b04671 10.1016/j.procbio.2017.03.025 10.1021/jp204661v 10.1016/j.enzmictec.2007.01.018 10.1016/j.ces.2010.02.010 10.1039/C1SM06452E 10.1080/10826068.2019.1633669 10.1016/j.rser.2018.04.103 10.1016/j.jclepro.2012.10.049 10.1016/j.apsusc.2013.12.016 10.1007/s12154-013-0102-9 10.1021/ac052030w 10.1016/j.memsci.2010.08.042 10.1002/adsc.200700082 10.1039/C9RA10633B 10.1016/j.rser.2020.109799 10.1039/C3CS60075K 10.1039/c3cs35464d 10.1016/j.ijbiomac.2015.05.051 10.1021/la501333s 10.1016/j.ijbiomac.2016.12.012 10.1016/j.ijbiomac.2018.02.092 10.1021/acsnano.5b01278 10.1016/j.molcatb.2015.03.014 10.1016/j.biortech.2011.09.043 10.1002/bit.21510 10.1073/pnas.52.3.833 10.1021/la0497200 10.1016/j.ijbiomac.2020.10.009 10.1039/C5AY02670A 10.1021/ar400236y 10.1016/j.ijbiomac.2020.11.127 10.1021/acs.est.9b05284 10.1007/s12010-009-8758-x 10.1002/anie.201708530 10.1134/S0003683819040112 10.1002/bit.21584 10.1039/c3nj00688c 10.3109/14756366.2012.703185 10.1016/j.procbio.2015.09.015 10.1007/s11274-013-1343-z 10.1016/S0958-1669(03)00096-X 10.1002/1521-3927(20000701)21:11<750::AID-MARC750>3.0.CO;2-3 10.1039/c3cs35506c 10.1021/cs200218f 10.1016/j.polymer.2009.09.067 10.1021/jacs.7b01794 10.1080/14756366.2017.1316719 10.1016/j.bej.2019.03.002 10.1002/bit.260240805 10.1142/S1793604718500467 10.1002/elps.201900428 10.1042/BA20030060 10.1016/j.jcou.2020.101172 10.3390/ijms21082960 10.1002/adsc.201900439 10.1002/app.47784 10.1016/j.procbio.2018.08.017 10.1039/C5CY00179J 10.1038/nnano.2012.80 10.1088/1742-6596/885/1/012006 10.1002/bab.1629 10.1007/s10934-006-9089-8 10.1016/j.ijbiomac.2018.10.147 10.1016/j.ijggc.2016.03.016 10.1007/s11356-019-06667-w 10.1016/j.foodchem.2006.01.042 10.1021/ie801931j 10.1146/annurev-earth-053018-060108 10.1002/cbic.201900061 10.1007/s10529-009-0173-4 10.1021/ef100750y 10.1016/S0304-4165(02)00153-8 10.1002/bit.25136 10.1021/cm048659h 10.1002/ente.201600747 10.3109/07388551.2013.795516 10.1007/s11051-007-9332-5 10.1007/s10529-011-0671-z 10.1016/j.matdes.2021.109463 10.1016/j.molcatb.2009.02.022 10.1016/j.cej.2019.05.141 10.1002/bit.26180 10.1021/acs.energyfuels.6b02777 10.1039/C4TA05760K 10.1002/mame.201200331 10.1039/c2cp40654c 10.1016/0005-2744(71)90143-4 10.1016/j.chemosphere.2015.07.020 10.1081/SS-100108358 10.1038/nature11117 10.1002/adsc.200800309 10.1016/j.micromeso.2011.12.005 10.1039/C2CC38225C 10.1080/14756366.2020.1734800 10.1039/C4RA05362A 10.1111/j.1749-6632.2003.tb06019.x 10.3390/ijms21082922 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright © 2021 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright © 2021 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.colsurfb.2021.111779 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Chemistry |
EISSN | 1873-4367 |
ExternalDocumentID | 10_1016_j_colsurfb_2021_111779 S092777652100223X |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABGSF ABMAC ABNEU ABNUV ABUDA ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNCT ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AEZYN AFKWA AFRZQ AFTJW AFXIZ AFZHZ AGHFR AGRDE AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M24 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCE SDF SDG SDP SES SEW SMS SPC SSG SSK SSM SSQ SSU SSZ T5K VH1 WH7 WUQ ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AGCQF AGQPQ AGRNS AIIUN ANKPU BNPGV CITATION SSH 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c444t-bb3897ef2970e4544bc1804adeb1cce3504e1333ac0b666c5d26ce8b0dc0ff9e3 |
IEDL.DBID | .~1 |
ISSN | 0927-7765 1873-4367 |
IngestDate | Thu Jul 10 22:55:43 EDT 2025 Fri Jul 11 15:37:55 EDT 2025 Tue Jul 01 03:27:14 EDT 2025 Thu Apr 24 22:58:17 EDT 2025 Fri Feb 23 02:44:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | BCA Stability ADH Recyclability HCA GDH FDH FALDH PVDF CSDE NADH Carbonic anhydrase Catalytic function Immobilized support PE PEI CLEAs CLE DA CA CLECs |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c444t-bb3897ef2970e4544bc1804adeb1cce3504e1333ac0b666c5d26ce8b0dc0ff9e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PQID | 2518994066 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2574339778 proquest_miscellaneous_2518994066 crossref_primary_10_1016_j_colsurfb_2021_111779 crossref_citationtrail_10_1016_j_colsurfb_2021_111779 elsevier_sciencedirect_doi_10_1016_j_colsurfb_2021_111779 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2021 2021-08-00 20210801 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: August 2021 |
PublicationDecade | 2020 |
PublicationTitle | Colloids and surfaces, B, Biointerfaces |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Adhikari (bib0005) 2019 Ren, Li, Jiao, Jia, Jiang, Bilal, Cui (bib0295) 2019; 373 Angeli, Prete, Ghobril, Hitce, Supuran (bib0035) 2020; 35 Jaya, Nathan, A. P (bib0045) 2019; 49 Goldhahn, Taut, Schubert, Burgert, Chanana (bib0240) 2020; 10 Schüler, Caruso (bib0490) 2000; 21 Sheldon (bib0135) 2007; 349 Al-Dhrub, Sahin, Ozmen, Tunca, Bulbul (bib0525) 2017; 57 Shao, Wu, Xu, Zhang, Cai (bib0175) 2012; 14 Wang, Zhao, Meng (bib0270) 2009; 136 Morel, Lam, Saito (bib0015) 2020; 48 Srivastava, Singh, Khatri, Singh, Arya (bib0060) 2020; 165 Ulbricht, Papra (bib0155) 1997; 20 Godara, Pundir (bib0160) 2008; 127 Bhattacharya, Shrivastava, Sharma (bib0400) 2013; 170 Nogalska, Ammendola, Portugal, Tylkowski, Valls (bib0470) 2018 Guedidi, Yurekli, Deratani, Déjardin, Innocent, Altinkaya, Roudesli, Yemenicioglu (bib0335) 2010; 365 Krasavin, Sharonova, Sharoyko, Zhukovsky, Supuran (bib0040) 2020; 35 Carrazco-Escalante, Caro-Corrales, Iribe-Salazar, Ríos-Iribe, Vázquez-López, Gutiérrez-Dorado, Hernández-Calderón (bib0075) 2020; 98 Jampala, Preethi, Ramanujam, Harish, Uppuluri, Anbazhagan (bib0245) 2017; 95 Migliardini, De Luca, Carginale, Rossi, Corbo, Supuran, Capasso (bib0545) 2014; 29 Zhou, Luo, Li, Ma, He, Jiang, Yin, Gao (bib0340) 2019; 146 Merle, Fradette, Madore, Barralet (bib0385) 2014; 30 Cao, van Langen, Sheldon (bib0315) 2003; 14 Sanjay, Sugunan (bib0410) 2008; 15 Li, Shen, Zhou, He, Su, Song, Yang (bib0105) 2020; 41 Tang, Kang (bib0445) 2006; 78 Capasso, Luca, Carginale, Cannio, Rossi (bib0025) 2012; 27 Tsuru, Tsuge, Kubota, Yoshida, Yoshioka, Asaeda (bib0455) 2001; 36 Jun, Yang, Jeon, Kim, Pack, Jin, Kim (bib0535) 2020; 54 Cazelles, Drone, Fajula, Ersen, Moldovan, Galarneau (bib0620) 2013; 37 Jensen, Maberly, Gontero (bib0020) 2020; 21 Zhu, Li, Sun, Tang, Bian (bib0010) 2016; 49 Zhang, Du, Shao, Wang, Ye, Chen, Chen (bib0405) 2018; 52 Hosseini, Hosseini, Zohreh, Yaghoubi, Pourjavadi (bib0165) 2018; 66 Haynie, Khadka, Cross, Gitnik, Le (bib0310) 2013; 298 Baskaya, Zhao, Flickinger, Wang (bib0595) 2010; 162 Zhang, Zhang, Lu, Rostam-Abadi, Jones (bib0150) 2011; 102 Vertegel, Siegel, Dordick (bib0505) 2004; 20 Min, Son, Ki, Choi, Pack (bib0210) 2016; 143 Bornscheuer, Huisman, Kazlauskas, Lutz, Moore, Robins (bib0345) 2012; 485 Yadav, Wanjari, Prabhu, Kumar, Labhsetwar, Satyanarayanan, Kotwal, Rayalu (bib0180) 2010; 24 Oviya, Sukumaran, Giri (bib0230) 2013; 29 Moon, Kim, Jo, Cha (bib0555) 2020; 39 Zhang, Zhi, Zhang, Huang, Chen (bib0395) 2009; 50 Sandor, Riechel, Kaplan, Mathiowitz (bib0220) 2002; 1570 Sun, Wang, Wang, Ji, Liu (bib0460) 2019; 136 Ji, Su, Wang, Ma, Zhang (bib0615) 2015; 9 Güzel-Akdemir, Carradori, Grande, Demir-Yazc, Akdemir (bib0030) 2020; 21 Castillo, Solá, Ferrer, Barletta, Griebenow (bib0330) 2008; 99 Cowan, Ge, Qin, McGregor, Trachtenberg (bib0390) 2003; 984 Abdel-Naby (bib0290) 1999; 34 Mohd Rafidi, Abdullah, Hamzah (bib0560) 2017; 885 Ge, Lei, Zare (bib0515) 2012; 7 Jing, Pan, Lv, Zhou (bib0440) 2015; 50 Fathali, Rezaei, Faramarzi, Habibi-Rezaei (bib0275) 2019; 122 Moon, Eu, Lee, Kim, Youn (bib0050) 2020; 10 Zhang (bib0300) 2011; 1 Yushkova, Nazarova, Matyuhina, Noskova, Shavronskaya, Vinogradov, Skvortsova, Krivoshapkina (bib0110) 2019; 67 Forsyth, Yip, Patwardhan (bib0530) 2013; 49 Lim, Kim, Hwang (bib0065) 2019; 55 Lu, Zhang, Yuan, Zhu, Chen, Wang, Wang (bib0095) 2019; 20 Cantone, Ferrario, Corici, Ebert, Fattor, Spizzo, Gardossi (bib0090) 2013; 42 Tan, Han, Yu, Chiu, Chang, Ouyang, Fan, Lo, Ng (bib0370) 2018; 73 Kahveci, Xu (bib0285) 2011; 33 Silva, Gómez-Vallejo, Llop, López-Gallego (bib0380) 2015; 5 Cabirol, Tan, Tay, Cheng, Hanefeld, Sheldon (bib0280) 2008; 350 Chen, Wang, Gao, Jiang, Hu, Li, Zhai, Jiang (bib0100) 2021; 201 Zhang, Zhang, Chen, Zhang (bib0510) 2010; 65 Hu, Dai, Liu, Du, Wang (bib0130) 2018; 91 Shi, Wu, Zhang, Simmons, Singh, Yang, Wyman (bib0140) 2017; 114 Liao, Lo, Hsu, Wu, Wang, Shieh, Morabito, Chou, Wu, Tsung (bib0190) 2017; 139 Mateo, Palomo, Fernandez-Lorente, Guisan, Fernandez-Lafuente (bib0355) 2007; 40 Boguslaski, Janik (bib0205) 1971; 250 Schoffelen, van Hest (bib0305) 2012; 8 Yu, Chen, Qi, Li, Shin, Lei, Liu (bib0215) 2012; 153 Wang, Jiang (bib0120) 2011; 743 Sheldon (bib0070) 2013; 42 Caruso, Schüler (bib0495) 2000; 16 Benhelal, Zahedi, Shamsaei, Bahadori (bib0520) 2013; 51 Khameneh, Bolouri, Nemati, Rezvani, Attar, Saboury, Falahati (bib0145) 2017; 99 Catana, Eloy, Rocha, Ferreira, Cabral, Fernandes (bib0420) 2007; 101 Yu, Liang, Caruso (bib0485) 2005; 17 Wang, Li, Zhao, Liu (bib0590) 2015; 116 Giri, Pant (bib0055) 2020; 27 Carlsson, Jonsson (bib0375) 2000; 90 Zhang, Wu, Huang, Zhang, Guo (bib0475) 2011; 6 Sun, Wei, Wang, Zhao, Liu (bib0465) 2018; 65 Tetter, Hilvert (bib0200) 2017; 56 Roessl, Nahálka, Nidetzky (bib0260) 2010; 32 El-Zahab, Donnelly, Wang (bib0605) 2008; 99 Zhang, Pan, Li, Cai, Olabi, Anthony, Manovic (bib0550) 2020; 125 Dicosimo, McAuliffe, Poulose, Bohlmann (bib0250) 2013; 42 Gascón, Díaz, Blanco, Márquez-Álvarez (bib0415) 2014; 4 Perfetto, Del Prete, Vullo, Sansone, Barone, Rossi, Supuran, Capasso (bib0435) 2017; 32 Fang, Huang, Chen, Xu (bib0195) 2011; 44 Jia, Narasimhan, Mallapragada (bib0425) 2014; 111 Luo, Meyer, Mateiu, Pinelo (bib0600) 2015; 32 Bhattacharya, Schiavone, Chakrabarti, Bhattacharya (bib0185) 2003; 38 Hou, Dong, Xiao, Malassigne, Chen (bib0500) 2015; 3 Vinoba, Bhagiyalakshmi, Jeong, Yoon, Nam (bib0430) 2011; 115 Homaei, Sariri, Vianello, Stevanato (bib0325) 2013; 6 Wanjari, Prabhu, Yadav, Satyanarayana, Labhsetwar, Rayalu (bib0575) 2011; 46 Zhang, Du, Shao, Wang, Ye, Chen, Chen (bib0480) 2018; 52 Al-Mamoori, Krishnamurthy, Rownaghi, Rezaei (bib0585) 2017; 5 Netto, Nakamura, Andrade, Toma (bib0350) 2012; 84 Hammons, Coleman (bib0360) 1982; 24 Jig, Pan, Lv, Zhou (bib0570) 2015; 50 Putri, Dwinanda, Widjaja, Hamzah, Sangian (bib0235) 2021; 1053 Sun, Jiang, Jiang, Zhang, Li (bib0610) 2009; 48 Liu (bib0115) 2015 Johnson, Zawadzka, Deobald, Crawford, Paszczynski (bib0170) 2008; 10 Lv, Yang, Pan, Zhou, Jing (bib0365) 2015; 79 Cen, Liu, Xue, Zheng (bib0085) 2019; 361 Quiocho, Richards (bib0265) 1964; 52 Kainz, Reiser (bib0450) 2014; 47 Chien, Sureshkumar, Hsieh, Wang (bib0225) 2013; 18 Ashkan, Hemmati, Homaei, Dinari, Jamlidoost, Tashakor (bib0320) 2021; 168 Faridi, Bose, Satyanarayana (bib0540) 2017; 31 Prabhu, Wanjari, Gawande, Das, Labhsetwar, Kotwal, Puri, Satyanarayana, Rayalu (bib0565) 2009; 60 Salgaonkar, Nadar, Rathod (bib0580) 2018; 113 Kazenwadel, Wagner, Rapp, Franzreb (bib0080) 2015; 7 Nishiyama, Watanabe, Inoue (bib0125) 2014; 294 Cui, Jia (bib0255) 2015; 35 Gascón (10.1016/j.colsurfb.2021.111779_bib0415) 2014; 4 Angeli (10.1016/j.colsurfb.2021.111779_bib0035) 2020; 35 Carlsson (10.1016/j.colsurfb.2021.111779_bib0375) 2000; 90 Zhou (10.1016/j.colsurfb.2021.111779_bib0340) 2019; 146 Wanjari (10.1016/j.colsurfb.2021.111779_bib0575) 2011; 46 Hammons (10.1016/j.colsurfb.2021.111779_bib0360) 1982; 24 Liu (10.1016/j.colsurfb.2021.111779_bib0115) 2015 Liao (10.1016/j.colsurfb.2021.111779_bib0190) 2017; 139 Homaei (10.1016/j.colsurfb.2021.111779_bib0325) 2013; 6 Sun (10.1016/j.colsurfb.2021.111779_bib0610) 2009; 48 Roessl (10.1016/j.colsurfb.2021.111779_bib0260) 2010; 32 Sandor (10.1016/j.colsurfb.2021.111779_bib0220) 2002; 1570 Fathali (10.1016/j.colsurfb.2021.111779_bib0275) 2019; 122 Jig (10.1016/j.colsurfb.2021.111779_bib0570) 2015; 50 Baskaya (10.1016/j.colsurfb.2021.111779_bib0595) 2010; 162 Jampala (10.1016/j.colsurfb.2021.111779_bib0245) 2017; 95 Boguslaski (10.1016/j.colsurfb.2021.111779_bib0205) 1971; 250 Jun (10.1016/j.colsurfb.2021.111779_bib0535) 2020; 54 Srivastava (10.1016/j.colsurfb.2021.111779_bib0060) 2020; 165 Migliardini (10.1016/j.colsurfb.2021.111779_bib0545) 2014; 29 Dicosimo (10.1016/j.colsurfb.2021.111779_bib0250) 2013; 42 Li (10.1016/j.colsurfb.2021.111779_bib0105) 2020; 41 Nishiyama (10.1016/j.colsurfb.2021.111779_bib0125) 2014; 294 Chien (10.1016/j.colsurfb.2021.111779_bib0225) 2013; 18 Hosseini (10.1016/j.colsurfb.2021.111779_bib0165) 2018; 66 Catana (10.1016/j.colsurfb.2021.111779_bib0420) 2007; 101 Vinoba (10.1016/j.colsurfb.2021.111779_bib0430) 2011; 115 Shao (10.1016/j.colsurfb.2021.111779_bib0175) 2012; 14 Mateo (10.1016/j.colsurfb.2021.111779_bib0355) 2007; 40 Yushkova (10.1016/j.colsurfb.2021.111779_bib0110) 2019; 67 Quiocho (10.1016/j.colsurfb.2021.111779_bib0265) 1964; 52 Bhattacharya (10.1016/j.colsurfb.2021.111779_bib0400) 2013; 170 Tan (10.1016/j.colsurfb.2021.111779_bib0370) 2018; 73 Perfetto (10.1016/j.colsurfb.2021.111779_bib0435) 2017; 32 Zhang (10.1016/j.colsurfb.2021.111779_bib0395) 2009; 50 Moon (10.1016/j.colsurfb.2021.111779_bib0050) 2020; 10 Netto (10.1016/j.colsurfb.2021.111779_bib0350) 2012; 84 Sanjay (10.1016/j.colsurfb.2021.111779_bib0410) 2008; 15 Abdel-Naby (10.1016/j.colsurfb.2021.111779_bib0290) 1999; 34 Jensen (10.1016/j.colsurfb.2021.111779_bib0020) 2020; 21 El-Zahab (10.1016/j.colsurfb.2021.111779_bib0605) 2008; 99 Tetter (10.1016/j.colsurfb.2021.111779_bib0200) 2017; 56 Kahveci (10.1016/j.colsurfb.2021.111779_bib0285) 2011; 33 Capasso (10.1016/j.colsurfb.2021.111779_bib0025) 2012; 27 Jing (10.1016/j.colsurfb.2021.111779_bib0440) 2015; 50 Faridi (10.1016/j.colsurfb.2021.111779_bib0540) 2017; 31 Haynie (10.1016/j.colsurfb.2021.111779_bib0310) 2013; 298 Sheldon (10.1016/j.colsurfb.2021.111779_bib0135) 2007; 349 Cao (10.1016/j.colsurfb.2021.111779_bib0315) 2003; 14 Ji (10.1016/j.colsurfb.2021.111779_bib0615) 2015; 9 Kazenwadel (10.1016/j.colsurfb.2021.111779_bib0080) 2015; 7 Lv (10.1016/j.colsurfb.2021.111779_bib0365) 2015; 79 Nogalska (10.1016/j.colsurfb.2021.111779_bib0470) 2018 Merle (10.1016/j.colsurfb.2021.111779_bib0385) 2014; 30 Johnson (10.1016/j.colsurfb.2021.111779_bib0170) 2008; 10 Cazelles (10.1016/j.colsurfb.2021.111779_bib0620) 2013; 37 Ren (10.1016/j.colsurfb.2021.111779_bib0295) 2019; 373 Kainz (10.1016/j.colsurfb.2021.111779_bib0450) 2014; 47 Putri (10.1016/j.colsurfb.2021.111779_bib0235) 2021; 1053 Zhang (10.1016/j.colsurfb.2021.111779_bib0510) 2010; 65 Oviya (10.1016/j.colsurfb.2021.111779_bib0230) 2013; 29 Hu (10.1016/j.colsurfb.2021.111779_bib0130) 2018; 91 Guedidi (10.1016/j.colsurfb.2021.111779_bib0335) 2010; 365 Cantone (10.1016/j.colsurfb.2021.111779_bib0090) 2013; 42 Silva (10.1016/j.colsurfb.2021.111779_bib0380) 2015; 5 Sheldon (10.1016/j.colsurfb.2021.111779_bib0070) 2013; 42 Giri (10.1016/j.colsurfb.2021.111779_bib0055) 2020; 27 Zhang (10.1016/j.colsurfb.2021.111779_bib0475) 2011; 6 Yadav (10.1016/j.colsurfb.2021.111779_bib0180) 2010; 24 Ge (10.1016/j.colsurfb.2021.111779_bib0515) 2012; 7 Sun (10.1016/j.colsurfb.2021.111779_bib0465) 2018; 65 Lim (10.1016/j.colsurfb.2021.111779_bib0065) 2019; 55 Zhang (10.1016/j.colsurfb.2021.111779_bib0550) 2020; 125 Goldhahn (10.1016/j.colsurfb.2021.111779_bib0240) 2020; 10 Zhang (10.1016/j.colsurfb.2021.111779_bib0300) 2011; 1 Prabhu (10.1016/j.colsurfb.2021.111779_bib0565) 2009; 60 Benhelal (10.1016/j.colsurfb.2021.111779_bib0520) 2013; 51 Carrazco-Escalante (10.1016/j.colsurfb.2021.111779_bib0075) 2020; 98 Ulbricht (10.1016/j.colsurfb.2021.111779_bib0155) 1997; 20 Wang (10.1016/j.colsurfb.2021.111779_bib0120) 2011; 743 Ashkan (10.1016/j.colsurfb.2021.111779_bib0320) 2021; 168 Wang (10.1016/j.colsurfb.2021.111779_bib0590) 2015; 116 Jaya (10.1016/j.colsurfb.2021.111779_bib0045) 2019; 49 Bhattacharya (10.1016/j.colsurfb.2021.111779_bib0185) 2003; 38 Zhang (10.1016/j.colsurfb.2021.111779_bib0405) 2018; 52 Jia (10.1016/j.colsurfb.2021.111779_bib0425) 2014; 111 Krasavin (10.1016/j.colsurfb.2021.111779_bib0040) 2020; 35 Yu (10.1016/j.colsurfb.2021.111779_bib0215) 2012; 153 Zhang (10.1016/j.colsurfb.2021.111779_bib0150) 2011; 102 Al-Dhrub (10.1016/j.colsurfb.2021.111779_bib0525) 2017; 57 Caruso (10.1016/j.colsurfb.2021.111779_bib0495) 2000; 16 Salgaonkar (10.1016/j.colsurfb.2021.111779_bib0580) 2018; 113 Khameneh (10.1016/j.colsurfb.2021.111779_bib0145) 2017; 99 Tang (10.1016/j.colsurfb.2021.111779_bib0445) 2006; 78 Wang (10.1016/j.colsurfb.2021.111779_bib0270) 2009; 136 Fang (10.1016/j.colsurfb.2021.111779_bib0195) 2011; 44 Castillo (10.1016/j.colsurfb.2021.111779_bib0330) 2008; 99 Godara (10.1016/j.colsurfb.2021.111779_bib0160) 2008; 127 Zhu (10.1016/j.colsurfb.2021.111779_bib0010) 2016; 49 Zhang (10.1016/j.colsurfb.2021.111779_bib0480) 2018; 52 Forsyth (10.1016/j.colsurfb.2021.111779_bib0530) 2013; 49 Cen (10.1016/j.colsurfb.2021.111779_bib0085) 2019; 361 Tsuru (10.1016/j.colsurfb.2021.111779_bib0455) 2001; 36 Moon (10.1016/j.colsurfb.2021.111779_bib0555) 2020; 39 Hou (10.1016/j.colsurfb.2021.111779_bib0500) 2015; 3 Schoffelen (10.1016/j.colsurfb.2021.111779_bib0305) 2012; 8 Vertegel (10.1016/j.colsurfb.2021.111779_bib0505) 2004; 20 Güzel-Akdemir (10.1016/j.colsurfb.2021.111779_bib0030) 2020; 21 Cabirol (10.1016/j.colsurfb.2021.111779_bib0280) 2008; 350 Mohd Rafidi (10.1016/j.colsurfb.2021.111779_bib0560) 2017; 885 Lu (10.1016/j.colsurfb.2021.111779_bib0095) 2019; 20 Chen (10.1016/j.colsurfb.2021.111779_bib0100) 2021; 201 Schüler (10.1016/j.colsurfb.2021.111779_bib0490) 2000; 21 Cui (10.1016/j.colsurfb.2021.111779_bib0255) 2015; 35 Luo (10.1016/j.colsurfb.2021.111779_bib0600) 2015; 32 Adhikari (10.1016/j.colsurfb.2021.111779_bib0005) 2019 Min (10.1016/j.colsurfb.2021.111779_bib0210) 2016; 143 Yu (10.1016/j.colsurfb.2021.111779_bib0485) 2005; 17 Morel (10.1016/j.colsurfb.2021.111779_bib0015) 2020; 48 Bornscheuer (10.1016/j.colsurfb.2021.111779_bib0345) 2012; 485 Al-Mamoori (10.1016/j.colsurfb.2021.111779_bib0585) 2017; 5 Shi (10.1016/j.colsurfb.2021.111779_bib0140) 2017; 114 Sun (10.1016/j.colsurfb.2021.111779_bib0460) 2019; 136 Cowan (10.1016/j.colsurfb.2021.111779_bib0390) 2003; 984 |
References_xml | – volume: 27 start-page: 1294 year: 2020 end-page: 1318 ident: bib0055 article-title: Carbonic anhydrase modification for carbon management publication-title: Environ. Sci. Pollut. Res. – volume: 32 start-page: 759 year: 2017 end-page: 766 ident: bib0435 article-title: Production and covalent immobilisation of the recombinant bacterial carbonic anhydrase (SspCA) onto magnetic nanoparticles publication-title: J. Enzym. Inhib. Med. Chem. – volume: 9 start-page: 4600 year: 2015 end-page: 4610 ident: bib0615 article-title: Tethering of nicotinamide adenine dinucleotide inside hollow nanofibers for high-yield synthesis of methanol from carbon dioxide catalyzed by coencapsulated multienzymes publication-title: ACS Nano – volume: 57 start-page: 95 year: 2017 end-page: 104 ident: bib0525 article-title: Immobilization and characterization of human carbonic anhydrase I on amine functionalized magnetic nanoparticles publication-title: Process Biochem. – volume: 31 start-page: 3002 year: 2017 end-page: 3009 ident: bib0540 article-title: Utility of immobilized recombinant carbonic anhydrase of publication-title: Energy Fuels – volume: 54 start-page: 1223 year: 2020 end-page: 1231 ident: bib0535 article-title: Stabilized and immobilized carbonic anhydrase on electrospun nanofibers for enzymatic CO publication-title: Environ. Sci. Technol. – volume: 7 start-page: 428 year: 2012 end-page: 432 ident: bib0515 article-title: Protein-inorganic hybrid nanoflowers publication-title: Nat. Nanotechnol. – volume: 168 start-page: 708 year: 2021 end-page: 721 ident: bib0320 article-title: Immobilization of enzymes on nanoinorganic support materials: an update publication-title: Int. J. Biol. Macromol. – volume: 27 start-page: 892 year: 2012 end-page: 897 ident: bib0025 article-title: Biochemical properties of a novel and highly thermostable bacterial α-carbonic anhydrase from publication-title: J. Enzym. Inhib. Med. Chem. – volume: 91 start-page: 793 year: 2018 end-page: 801 ident: bib0130 article-title: Progress & prospect of metal-organic frameworks (MOFs) for enzyme immobilization (enzyme/MOFs) publication-title: Renew. Sust. Energ. Rev. – volume: 365 start-page: 59 year: 2010 end-page: 67 ident: bib0335 article-title: Effect of enzyme location on activity and stability of trypsin and urease immobilized on porous membranes by using layer-by-layer self-assembly of polyelectrolyte publication-title: J. Membr. Sci. – volume: 294 start-page: 66 year: 2014 end-page: 70 ident: bib0125 article-title: Effects of acoustic wave resonance oscillation on immobilized enzyme publication-title: Appl. Surf. Sci. – volume: 52 start-page: 12708 year: 2018 end-page: 12716 ident: bib0480 article-title: Carbonic anhydrase Enzyme-MOFs composite with a superior catalytic performance to promote CO publication-title: Environ. Sci. Technol. – volume: 15 start-page: 359 year: 2008 end-page: 367 ident: bib0410 article-title: Acid activated montmorillonite: an efficient immobilization support for improving reusability, storage stability and operational stability of enzymes publication-title: J. Porous Mat. – volume: 4 start-page: 34356 year: 2014 end-page: 34368 ident: bib0415 article-title: Hybrid periodic mesoporous organosilica designed to improve the properties of immobilized enzymes publication-title: RSC Adv. – volume: 20 start-page: 61 year: 1997 end-page: 68 ident: bib0155 article-title: Polyacrylonitrile enzyme ultrafiltration membranes prepared by adsorption, cross-linking, and covalent binding publication-title: Enzyme Microb. Technol. – volume: 21 start-page: 750 year: 2000 end-page: 753 ident: bib0490 article-title: Preparation of enzyme multilayers on colloids for biocatalysis publication-title: Macromol. Rapid Commun. – volume: 350 start-page: 2329 year: 2008 end-page: 2338 ident: bib0280 article-title: Linum usitatissimum hydroxynitrile lyase cross‐linked enzyme aggregates: a recyclable enantioselective catalyst publication-title: Adv. Synth. Catal. – volume: 65 start-page: 362 year: 2018 end-page: 371 ident: bib0465 article-title: Immobilization of carbonic anhydrase on polyvinylidene fluoride membranes publication-title: Biotechnol. Appl. Biochem. – volume: 162 start-page: 391 year: 2010 end-page: 398 ident: bib0595 article-title: Thermodynamic feasibility of enzymatic reduction of carbon dioxide to methanol publication-title: Appl. Biochem. Biotechnol. – volume: 55 start-page: 375 year: 2019 end-page: 379 ident: bib0065 article-title: Sequestration of CO publication-title: Appl. Biochem. Micro. – volume: 5 start-page: 2705 year: 2015 end-page: 2713 ident: bib0380 article-title: Efficient nitrogen-13 radiochemistry catalyzed by a highly stable immobilized biocatalyst publication-title: Catal. Sci. Technol. – volume: 38 start-page: 111 year: 2003 end-page: 117 ident: bib0185 article-title: CO publication-title: Biotechnol. Appl. Biochem. – volume: 153 start-page: 166 year: 2012 end-page: 170 ident: bib0215 article-title: Enzymatic conversion of CO publication-title: Microporous Mesoporous Mater. – volume: 116 start-page: 89 year: 2015 end-page: 94 ident: bib0590 article-title: Effect of carbonic anhydrase on enzymatic conversion of CO publication-title: J. Mol. Catal. B Enzym – volume: 5 start-page: 834 year: 2017 end-page: 849 ident: bib0585 article-title: Carbon capture and utilization update publication-title: Energy Technol. – volume: 42 start-page: 6262 year: 2013 end-page: 6276 ident: bib0090 article-title: Efficient immobilisation of industrial biocatalysts: criteria and constraints for the selection of organic polymeric carriers and immobilisation methods publication-title: Chem. Soc. Rev. – volume: 41 start-page: 335 year: 2020 end-page: 344 ident: bib0105 article-title: Controllable and high-performance immobilized enzyme reactor:DNA-directed immobilization of multienzyme in polyamidoamine dendrimer-functionalized capillaries publication-title: Electrophoresis. – volume: 78 start-page: 2514 year: 2006 end-page: 2520 ident: bib0445 article-title: Enzyme inhibitor screening by capillary electrophoresis with an on-column immobilized enzyme microreactor created by an ionic binding technique publication-title: Anal. Chem. – volume: 50 start-page: 2234 year: 2015 end-page: 2241 ident: bib0440 article-title: Immobilization of carbonic anhydrase on epoxy-functionalized magnetic polymer microspheres for CO publication-title: Process Biochem. – volume: 67 start-page: 11553 year: 2019 end-page: 11567 ident: bib0110 article-title: Application of immobilized enzymes in food industry publication-title: J. Agric. Food Chem. – volume: 44 start-page: 87 year: 2011 end-page: 95 ident: bib0195 article-title: Polymer materials for enzyme immobilization and their application in bioreactors publication-title: Biochem.Mol.Biol.Rep. – volume: 201 year: 2021 ident: bib0100 article-title: DNA directed immobilization of horseradish peroxidase on phase-transitioned lysozyme modified TiO publication-title: Mater. Des. – volume: 56 start-page: 14933 year: 2017 end-page: 14936 ident: bib0200 article-title: Enzyme encapsulation by a ferritin cage publication-title: Angew. Chem.-Int. Edit. – volume: 84 start-page: 136 year: 2012 end-page: 143 ident: bib0350 article-title: Improving the catalytic activity of formate dehydrogenase from publication-title: J. Mol. Catal. B-Enzym. – volume: 65 start-page: 3199 year: 2010 end-page: 3207 ident: bib0510 article-title: Selective separation of low concentration CO publication-title: Chem. Eng. Sci. – volume: 99 start-page: 739 year: 2017 end-page: 745 ident: bib0145 article-title: A spectroscopic study on the absorption of carbonic anhydrase onto the nanoporous silica nanoparticle publication-title: Int. J. Biol. Macromol. – volume: 743 start-page: 95 year: 2011 end-page: 106 ident: bib0120 article-title: Reversible his-tagged enzyme immobilization on functionalized carbon nanotubes as nanoscale biocatalyst publication-title: Int. J. Biol. Macromol. – volume: 373 start-page: 1254 year: 2019 end-page: 1278 ident: bib0295 article-title: Recent progress in multienzymes co-immobilization and multienzyme system applications publication-title: Chem. Eng. J. – volume: 10 start-page: 20608 year: 2020 end-page: 20619 ident: bib0240 article-title: Enzyme immobilization inside the porous wood structure: a natural scaffold for continuous-flow biocatalysis publication-title: RSC Adv. – volume: 136 start-page: S325 year: 2009 ident: bib0270 article-title: Synthesis of cross-linked polyethylene glycol diacrylate polymers and their application as supports for laccase immobilization publication-title: Transactions of China Pulp & Paper. – volume: 35 start-page: 824 year: 2020 end-page: 830 ident: bib0035 article-title: Activation studies of the β-carbonic anhydrases from Malassezia restricta with amines and amino acids publication-title: J. Enzym. Inhib. Med. Chem. – volume: 170 start-page: 756 year: 2013 end-page: 773 ident: bib0400 article-title: Evaluation of enhanced thermostability and operational stability of carbonic anhydrase from Micrococcus species publication-title: Appl. Biochem. Biotechnol. – volume: 50 start-page: 2234 year: 2015 end-page: 2241 ident: bib0570 article-title: Immobilization of carbonic anhydrase on epoxy-functionalized magnetic polymer microspheres for CO publication-title: Process Biochem. – volume: 10 start-page: 1 year: 2020 end-page: 9 ident: bib0050 article-title: Comparison of reactions with different calcium sources for CaCO publication-title: Greenh. Gases. – volume: 33 start-page: 2065 year: 2011 end-page: 2071 ident: bib0285 article-title: Enhancement of activity and selectivity of Candida rugosa lipase and Candida antarctica lipase A by bioimprinting and/or immobilization for application in the selective ethanolysis of fish oil publication-title: Biotechnol. Lett. – volume: 49 start-page: 3191 year: 2013 end-page: 3193 ident: bib0530 article-title: CO publication-title: Chem. Commun. – volume: 35 start-page: 665 year: 2020 end-page: 671 ident: bib0040 article-title: Combining carbonic anhydrase and thioredoxin reductase inhibitory motifs within a single molecule dramatically increases its cytotoxicity publication-title: J. Enzym. Inhib. Med. Chem. – volume: 52 start-page: 12708 year: 2018 end-page: 12716 ident: bib0405 article-title: Carbonic anhydrase Enzyme-MOFs composite with a superior catalytic performance to promote CO publication-title: Environ. Sci. Technol. – volume: 18 start-page: 567 year: 2013 end-page: 574 ident: bib0225 article-title: Biosequestration of carbon dioxide using a silicified carbonic anhydrase catalyst publication-title: Biotechnol. Bioprocess Eng. – volume: 99 start-page: 508 year: 2008 end-page: 514 ident: bib0605 article-title: Particle-tethered NADH for production of methanol from CO publication-title: Biotechnol. Bioeng. – volume: 66 start-page: 789 year: 2018 end-page: 798 ident: bib0165 article-title: Covalent immobilization of cellulase using magnetic poly (ionic liquid) support: improvement of the enzyme activity and stability publication-title: J. Agric. Food Chem. – volume: 20 start-page: 1394 year: 2019 end-page: 1399 ident: bib0095 article-title: Artificial cellulosome complex from the self-assembly of Ni-NTA-functionalized polymeric micelles and cellulases publication-title: Chem. Bio. Chem. – volume: 143 start-page: 128 year: 2016 end-page: 134 ident: bib0210 article-title: High expression and biosilica encapsulation of alkaline-active carbonic anhydrase for CO publication-title: Chemosphere. – volume: 21 start-page: 2960 year: 2020 ident: bib0030 article-title: Development of thiazolidinones as fungal carbonic anhydrase inhibitors publication-title: Int. J. Mol. Sci. – volume: 40 start-page: 1451 year: 2007 end-page: 1463 ident: bib0355 article-title: Improvement of enzyme activity, stability and selectivity via immobilization techniques publication-title: Enzyme Microb. Technol. – volume: 250 start-page: 266 year: 1971 end-page: 269 ident: bib0205 article-title: A kinetic study of microencapsulated bovine carbonic anhydrase publication-title: Biochim. Biophys. Acta – volume: 42 start-page: 6223 year: 2013 end-page: 6235 ident: bib0070 article-title: S. Van Pelt, Enzyme immobilisation in biocatalysis: why, what and how publication-title: Chem. Soc. Rev. – volume: 79 start-page: 719 year: 2015 end-page: 725 ident: bib0365 article-title: Immobilization of carbonic anhydrase on carboxyl-functionalized ferroferric oxide for CO publication-title: Int. J. Biol. Macromol. – year: 2018 ident: bib0470 article-title: Polysulfone biomimetic membrane for CO publication-title: Funct. Mater. Lett.11 – volume: 3 start-page: 3332 year: 2015 end-page: 3342 ident: bib0500 article-title: Preparation of titania based biocatalytic nanoparticles and membranes for CO publication-title: J. Mater. Chem. A. – volume: 111 start-page: 209 year: 2014 end-page: 222 ident: bib0425 article-title: Materials‐based strategies for multi‐enzyme immobilization and co‐localization: a review publication-title: Biotechnol. Bioeng. – volume: 46 start-page: 1010 year: 2011 end-page: 1018 ident: bib0575 article-title: Immobilization of carbonic anhydrase on chitosan beads for enhanced carbonation reaction publication-title: Process Biochem. – volume: 165 start-page: 1099 year: 2020 end-page: 1110 ident: bib0060 article-title: Immobilization of keratinase on chitosan grafted-β-cyclodextrin for the improvement of the enzyme properties and application of free keratinase in the textile industry publication-title: Int. J. Biol. Macromol. – volume: 485 start-page: 185 year: 2012 end-page: 194 ident: bib0345 article-title: Engineering the third wave of biocatalysis publication-title: Nature. – volume: 127 start-page: 370 year: 2008 end-page: 376 ident: bib0160 article-title: Urinary & serum oxalate determination by oxalate oxidase immobilized on to affixed arylamine glass beads publication-title: Indian J. Med. Res. – volume: 32 start-page: 319 year: 2015 end-page: 327 ident: bib0600 article-title: Cascade catalysis in membranes with enzyme immobilization for multi-enzymatic conversion of CO publication-title: New Bioeth. – volume: 42 start-page: 6437 year: 2013 end-page: 6474 ident: bib0250 article-title: Industrial use of immobilized enzymes publication-title: Chem. Soc. Rev. – volume: 1570 start-page: 63 year: 2002 end-page: 74 ident: bib0220 article-title: Effect of lecithin and MgCO publication-title: BBA - General Subjects. – volume: 102 start-page: 10194 year: 2011 end-page: 10201 ident: bib0150 article-title: Activity and stability of immobilized carbonic anhydrase for promoting CO publication-title: Bioresour. Technol. – volume: 49 start-page: 891 year: 2019 end-page: 899 ident: bib0045 article-title: Characterization of marine bacterial carbonic anhydrase and their CO2 sequestration abilities based on a soil microcosm publication-title: Prep. Biochem. Biotechnol. – volume: 146 start-page: 60 year: 2019 end-page: 68 ident: bib0340 article-title: Meso-molding three-dimensionally ordered macroporous alumina: a new platform to immobilize enzymes with high performance publication-title: Biochem. Eng. J. – volume: 984 start-page: 453 year: 2003 end-page: 469 ident: bib0390 article-title: CO2 capture by means of an enzyme‐based reactor publication-title: Ann. NY Acad. Sci. – volume: 885 year: 2017 ident: bib0560 article-title: Kinetic of carbonic anhydrase immobilized onto amberlite XAD 7 and it application in sequestration of CO publication-title: J. Phys. Conf. Series – year: 2015 ident: bib0115 article-title: Encapsulation of biocatalysts (Cell/Enzyme) with high retaining activity publication-title: Dissertat. Theses – Gradworks. – volume: 16 start-page: 9595 year: 2000 end-page: 9603 ident: bib0495 article-title: Enzyme multilayers on colloid particles: assembly, stability, and enzymatic activity publication-title: Langmuir – volume: 139 start-page: 6530 year: 2017 end-page: 6533 ident: bib0190 article-title: Shielding against unfolding by embedding enzymes in metal–organic frameworks via a de novo approach publication-title: J. Am. Chem. Soc. – volume: 32 start-page: 341 year: 2010 end-page: 350 ident: bib0260 article-title: Carrier-free immobilized enzymes for biocatalysis publication-title: Biotechnol. Lett. – volume: 361 start-page: 1 year: 2019 end-page: 53 ident: bib0085 article-title: Immobilization of enzymes in/on membranes and their applications publication-title: Adv. Synth. Catal. – volume: 21 start-page: 2922 year: 2020 ident: bib0020 article-title: Insights on the functions and ecophysiological relevance of the diverse carbonic anhydrases in microalgae publication-title: Int. J. Mol. Sci. – volume: 8 start-page: 1736 year: 2012 end-page: 1746 ident: bib0305 article-title: Multi-enzyme systems: bringing enzymes together in vitro publication-title: Soft Matter – volume: 24 start-page: 1773 year: 1982 end-page: 1788 ident: bib0360 article-title: Stability studies of immobilized enzyme stir rods publication-title: Biotechnol.Bioeng. – volume: 29 start-page: 1813 year: 2013 end-page: 1820 ident: bib0230 article-title: Immobilization and characterization of carbonic anhydrase purified from E. Coli MO1 and its influence on CO publication-title: World J. Microbiol. Biotechnol. – volume: 1053 year: 2021 ident: bib0235 article-title: Mass transfer and reaction in hydrolysis of coconut husk using immobilized enzyme on chitosan magnetic nanoparticle publication-title: IOP Conference Series: Mater. Sci. Eng – volume: 60 start-page: 13 year: 2009 end-page: 21 ident: bib0565 article-title: Immobilization of carbonic anhydrase enriched microorganism on biopolymer based materials publication-title: J. Mol. Catal. B-Enzym. – volume: 298 start-page: 529 year: 2013 end-page: 540 ident: bib0310 article-title: Mechanisms of stability of fibers electrospun from peptides with ionized side chains publication-title: Macromol. Mater. Eng. – volume: 136 start-page: 47784 year: 2019 ident: bib0460 article-title: Immobilization of carbonic anhydrase on polyethylenimine/dopamine codeposited membranes publication-title: J. Appl. Polym. Sci. – volume: 14 start-page: 9076 year: 2012 end-page: 9085 ident: bib0175 article-title: Insight into the effects of graphene oxide sheets on the conformation and activity of glucose oxidase: towards developing a nanomaterial-based protein conformation assay publication-title: Phys. Chem. Chem. Phys. – volume: 30 start-page: 6915 year: 2014 end-page: 6919 ident: bib0385 article-title: Electropolymerized carbonic anhydrase immobilization for carbon dioxide capture publication-title: Langmuir. – volume: 36 start-page: 3721 year: 2001 end-page: 3736 ident: bib0455 article-title: Catalytic membrane reaction for methane steam reforming using porous silica membranes publication-title: Sep. Sci. Technol. – volume: 39 year: 2020 ident: bib0555 article-title: Immobilization of genetically engineered whole-cell biocatalysts with periplasmic carbonic anhydrase in polyurethane foam for enzymatic CO publication-title: J. CO – volume: 24 start-page: 6198 year: 2010 end-page: 6207 ident: bib0180 article-title: Immobilized carbonic anhydrase for the biomimetic carbonation reaction publication-title: Energy Fuels – volume: 113 start-page: 464 year: 2018 end-page: 475 ident: bib0580 article-title: Combi-metal organic framework (Combi-MOF) of α-amylase and glucoamylase for one pot starch hydrolysis publication-title: Int. J. Biol. Macromol. – volume: 51 start-page: 142 year: 2013 end-page: 161 ident: bib0520 article-title: Global strategies and potentials to curb CO publication-title: J. Clean. Prod. – volume: 98 start-page: 316 year: 2020 end-page: 329 ident: bib0075 article-title: A new approach for describing and solving the reversible Briggs-Haldane mechanism using immobilized enzyme publication-title: Can. J. Chem. Eng. – volume: 114 start-page: 503 year: 2017 end-page: 515 ident: bib0140 article-title: Dynamic changes of substrate reactivity and enzyme adsorption on partially hydrolyzed cellulose publication-title: Biotechnol. Bioeng. – volume: 6 start-page: 185 year: 2013 end-page: 205 ident: bib0325 article-title: Enzyme immobilization: an update publication-title: J.Chem.Biol. – volume: 99 start-page: 9 year: 2008 end-page: 17 ident: bib0330 article-title: Effect of PEG modification on subtilisin Carlsberg activity, enantioselectivity, and structural dynamics in 1, 4‐dioxane publication-title: Biotechnol. Bioeng. – volume: 125 year: 2020 ident: bib0550 article-title: Recent advances in carbon dioxide utilization publication-title: Renew. Sust. Energ. Rev. – volume: 14 start-page: 387 year: 2003 end-page: 394 ident: bib0315 article-title: Immobilised enzymes: carrier-bound or carrier-free? publication-title: Curr. Opin. Biotechnol. – volume: 122 start-page: 359 year: 2019 end-page: 366 ident: bib0275 article-title: Catalytic phenol removal using entrapped cross-linked laccase aggregates publication-title: Int. J. Biol. Macromol. – volume: 34 start-page: 399 year: 1999 end-page: 405 ident: bib0290 article-title: Immobilization of Paenibacillus macerans NRRL B-3186 cyclodextrin glucosyltransferase and properties of the immobilized enzyme publication-title: Process Biochem. – volume: 101 start-page: 260 year: 2007 end-page: 266 ident: bib0420 article-title: Stability evaluation of an immobilized enzyme system for inulin hydrolysis publication-title: Food Chem. – volume: 349 start-page: 1289 year: 2007 end-page: 1307 ident: bib0135 article-title: Enzyme immobilization: the quest for optimum performance publication-title: Adv. Synth. Catal. – volume: 6 start-page: 450 year: 2011 ident: bib0475 article-title: Effect of substrate (ZnO) morphology on enzyme immobilization and its catalytic activity publication-title: Nanoscale Res. Lett. – volume: 20 start-page: 6800 year: 2004 end-page: 6807 ident: bib0505 article-title: Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme publication-title: Langmuir. – volume: 90 start-page: 241 year: 2000 end-page: 259 ident: bib0375 article-title: Folding and stability of human carbonic anhydrase II,the Carbonic Anhydrases publication-title: EXS. – start-page: 711 year: 2019 end-page: 721 ident: bib0005 article-title: Application of immobilized enzymes in the food industry publication-title: Enzymes in Food Biotechnology – volume: 17 start-page: 171 year: 2005 end-page: 175 ident: bib0485 article-title: Enzyme multilayer-modified porous membranes as biocatalysts publication-title: Chem. Mat. – volume: 95 start-page: 843 year: 2017 end-page: 849 ident: bib0245 article-title: Immobilization of levan-xylanase nanohybrid on an alginate bead improves xylanase stability at wide pH and temperature publication-title: Int. J. Biol. Macromol. – volume: 48 start-page: 491 year: 2020 end-page: 517 ident: bib0015 article-title: Trace metal substitution in marine phytoplankton publication-title: Annu. Rev. Earth Planet. Sci. – volume: 37 start-page: 3721 year: 2013 end-page: 3730 ident: bib0620 article-title: Reduction of CO publication-title: New J. Chem. – volume: 115 start-page: 20209 year: 2011 end-page: 20216 ident: bib0430 article-title: Capture and sequestration of CO publication-title: J. Phys. Chem. C. – volume: 50 start-page: 5693 year: 2009 end-page: 5700 ident: bib0395 article-title: Immobilization of carbonic anhydrase by embedding and covalent coupling into nanocomposite hydrogel containing hydrotalcite publication-title: Polymer. – volume: 47 start-page: 667 year: 2014 end-page: 677 ident: bib0450 article-title: Polymer-and dendrimer-coated magnetic nanoparticles as versatile supports for catalysts, scavengers, and reagents publication-title: Accounts Chem. Res. – volume: 49 start-page: 290 year: 2016 end-page: 296 ident: bib0010 article-title: Enzymatic properties of immobilized carbonic anhydrase and the biocatalyst for promoting CO publication-title: Int. J. Greenh. Gas Control. – volume: 35 start-page: 15 year: 2015 end-page: 28 ident: bib0255 article-title: Optimization protocols and improved strategies of cross-linked enzyme aggregates technology: current development and future challenges publication-title: Crit. Rev. Biotechnol. – volume: 29 start-page: 146 year: 2014 end-page: 150 ident: bib0545 article-title: Biomimetic CO publication-title: J. Enzym. Inhib. Med. Chem. – volume: 48 start-page: 4210 year: 2009 end-page: 4215 ident: bib0610 article-title: Green and efficient conversion of CO publication-title: Ind. Eng. Chem. Res. – volume: 73 start-page: 38 year: 2018 end-page: 46 ident: bib0370 article-title: Efficient carbon dioxide sequestration by using recombinant carbonic anhydrase publication-title: Process Biochem. – volume: 7 start-page: 10291 year: 2015 end-page: 10298 ident: bib0080 article-title: Optimization of enzyme immobilization on magnetic microparticles using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) as a crosslinking agent publication-title: Anal. Methods – volume: 10 start-page: 1009 year: 2008 end-page: 1025 ident: bib0170 article-title: Novel method for immobilization of enzymes to magnetic nanoparticles publication-title: J. Nanopart. Res. – volume: 52 start-page: 833 year: 1964 ident: bib0265 article-title: Intermolecular cross linking of a protein in the crystalline state: carboxypeptidase-A publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 1 start-page: 998 year: 2011 end-page: 1009 ident: bib0300 article-title: Simpler is better: high-yield and potential low-cost biofuels production through cell-free synthetic pathway biotransformation (SyPaB) publication-title: ACS Catal. – volume: 67 start-page: 11553 year: 2019 ident: 10.1016/j.colsurfb.2021.111779_bib0110 article-title: Application of immobilized enzymes in food industry publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.9b04385 – volume: 170 start-page: 756 year: 2013 ident: 10.1016/j.colsurfb.2021.111779_bib0400 article-title: Evaluation of enhanced thermostability and operational stability of carbonic anhydrase from Micrococcus species publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-013-0226-y – volume: 10 start-page: 1 year: 2020 ident: 10.1016/j.colsurfb.2021.111779_bib0050 article-title: Comparison of reactions with different calcium sources for CaCO3 production using carbonic anhydrase publication-title: Greenh. Gases. doi: 10.1002/ghg.2007 – volume: 66 start-page: 789 year: 2018 ident: 10.1016/j.colsurfb.2021.111779_bib0165 article-title: Covalent immobilization of cellulase using magnetic poly (ionic liquid) support: improvement of the enzyme activity and stability publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.7b03922 – volume: 35 start-page: 824 year: 2020 ident: 10.1016/j.colsurfb.2021.111779_bib0035 article-title: Activation studies of the β-carbonic anhydrases from Malassezia restricta with amines and amino acids publication-title: J. Enzym. Inhib. Med. Chem. doi: 10.1080/14756366.2020.1743284 – volume: 98 start-page: 316 year: 2020 ident: 10.1016/j.colsurfb.2021.111779_bib0075 article-title: A new approach for describing and solving the reversible Briggs-Haldane mechanism using immobilized enzyme publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.23528 – volume: 6 start-page: 450 year: 2011 ident: 10.1016/j.colsurfb.2021.111779_bib0475 article-title: Effect of substrate (ZnO) morphology on enzyme immobilization and its catalytic activity publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-6-450 – volume: 20 start-page: 61 year: 1997 ident: 10.1016/j.colsurfb.2021.111779_bib0155 article-title: Polyacrylonitrile enzyme ultrafiltration membranes prepared by adsorption, cross-linking, and covalent binding publication-title: Enzyme Microb. Technol. doi: 10.1016/S0141-0229(96)00085-3 – volume: 44 start-page: 87 year: 2011 ident: 10.1016/j.colsurfb.2021.111779_bib0195 article-title: Polymer materials for enzyme immobilization and their application in bioreactors publication-title: Biochem.Mol.Biol.Rep. – volume: 46 start-page: 1010 year: 2011 ident: 10.1016/j.colsurfb.2021.111779_bib0575 article-title: Immobilization of carbonic anhydrase on chitosan beads for enhanced carbonation reaction publication-title: Process Biochem. doi: 10.1016/j.procbio.2011.01.023 – volume: 29 start-page: 146 year: 2014 ident: 10.1016/j.colsurfb.2021.111779_bib0545 article-title: Biomimetic CO2 capture using a highly thermostable bacterial α-carbonic anhydrase immobilized on a polyurethane foam publication-title: J. Enzym. Inhib. Med. Chem. doi: 10.3109/14756366.2012.761608 – volume: 34 start-page: 399 year: 1999 ident: 10.1016/j.colsurfb.2021.111779_bib0290 article-title: Immobilization of Paenibacillus macerans NRRL B-3186 cyclodextrin glucosyltransferase and properties of the immobilized enzyme publication-title: Process Biochem. doi: 10.1016/S0032-9592(99)00017-5 – volume: 84 start-page: 136 year: 2012 ident: 10.1016/j.colsurfb.2021.111779_bib0350 article-title: Improving the catalytic activity of formate dehydrogenase from Candida boidinii by using magnetic nanoparticles publication-title: J. Mol. Catal. B-Enzym. doi: 10.1016/j.molcatb.2012.03.021 – volume: 99 start-page: 739 year: 2017 ident: 10.1016/j.colsurfb.2021.111779_bib0145 article-title: A spectroscopic study on the absorption of carbonic anhydrase onto the nanoporous silica nanoparticle publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.03.030 – volume: 18 start-page: 567 year: 2013 ident: 10.1016/j.colsurfb.2021.111779_bib0225 article-title: Biosequestration of carbon dioxide using a silicified carbonic anhydrase catalyst publication-title: Biotechnol. Bioprocess Eng. doi: 10.1007/s12257-012-0398-2 – volume: 16 start-page: 9595 year: 2000 ident: 10.1016/j.colsurfb.2021.111779_bib0495 article-title: Enzyme multilayers on colloid particles: assembly, stability, and enzymatic activity publication-title: Langmuir doi: 10.1021/la000942h – volume: 52 start-page: 12708 year: 2018 ident: 10.1016/j.colsurfb.2021.111779_bib0480 article-title: Carbonic anhydrase Enzyme-MOFs composite with a superior catalytic performance to promote CO2 absorption into tertiary amine solution publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b04671 – volume: 57 start-page: 95 year: 2017 ident: 10.1016/j.colsurfb.2021.111779_bib0525 article-title: Immobilization and characterization of human carbonic anhydrase I on amine functionalized magnetic nanoparticles publication-title: Process Biochem. doi: 10.1016/j.procbio.2017.03.025 – volume: 115 start-page: 20209 year: 2011 ident: 10.1016/j.colsurfb.2021.111779_bib0430 article-title: Capture and sequestration of CO2 by human carbonic anhydrase covalently immobilized onto amine-functionalized SBA-15 publication-title: J. Phys. Chem. C. doi: 10.1021/jp204661v – volume: 40 start-page: 1451 year: 2007 ident: 10.1016/j.colsurfb.2021.111779_bib0355 article-title: Improvement of enzyme activity, stability and selectivity via immobilization techniques publication-title: Enzyme Microb. Technol. doi: 10.1016/j.enzmictec.2007.01.018 – volume: 90 start-page: 241 year: 2000 ident: 10.1016/j.colsurfb.2021.111779_bib0375 article-title: Folding and stability of human carbonic anhydrase II,the Carbonic Anhydrases publication-title: EXS. – volume: 65 start-page: 3199 year: 2010 ident: 10.1016/j.colsurfb.2021.111779_bib0510 article-title: Selective separation of low concentration CO2 using hydrogel immobilized CA enzyme based hollow fiber membrane reactors publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2010.02.010 – volume: 8 start-page: 1736 year: 2012 ident: 10.1016/j.colsurfb.2021.111779_bib0305 article-title: Multi-enzyme systems: bringing enzymes together in vitro publication-title: Soft Matter doi: 10.1039/C1SM06452E – volume: 49 start-page: 891 year: 2019 ident: 10.1016/j.colsurfb.2021.111779_bib0045 article-title: Characterization of marine bacterial carbonic anhydrase and their CO2 sequestration abilities based on a soil microcosm publication-title: Prep. Biochem. Biotechnol. doi: 10.1080/10826068.2019.1633669 – volume: 91 start-page: 793 year: 2018 ident: 10.1016/j.colsurfb.2021.111779_bib0130 article-title: Progress & prospect of metal-organic frameworks (MOFs) for enzyme immobilization (enzyme/MOFs) publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2018.04.103 – volume: 51 start-page: 142 year: 2013 ident: 10.1016/j.colsurfb.2021.111779_bib0520 article-title: Global strategies and potentials to curb CO2 emissions in cement industry publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2012.10.049 – volume: 127 start-page: 370 year: 2008 ident: 10.1016/j.colsurfb.2021.111779_bib0160 article-title: Urinary & serum oxalate determination by oxalate oxidase immobilized on to affixed arylamine glass beads publication-title: Indian J. Med. Res. – volume: 294 start-page: 66 year: 2014 ident: 10.1016/j.colsurfb.2021.111779_bib0125 article-title: Effects of acoustic wave resonance oscillation on immobilized enzyme publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2013.12.016 – volume: 6 start-page: 185 year: 2013 ident: 10.1016/j.colsurfb.2021.111779_bib0325 article-title: Enzyme immobilization: an update publication-title: J.Chem.Biol. doi: 10.1007/s12154-013-0102-9 – volume: 78 start-page: 2514 year: 2006 ident: 10.1016/j.colsurfb.2021.111779_bib0445 article-title: Enzyme inhibitor screening by capillary electrophoresis with an on-column immobilized enzyme microreactor created by an ionic binding technique publication-title: Anal. Chem. doi: 10.1021/ac052030w – volume: 365 start-page: 59 year: 2010 ident: 10.1016/j.colsurfb.2021.111779_bib0335 article-title: Effect of enzyme location on activity and stability of trypsin and urease immobilized on porous membranes by using layer-by-layer self-assembly of polyelectrolyte publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.08.042 – volume: 349 start-page: 1289 year: 2007 ident: 10.1016/j.colsurfb.2021.111779_bib0135 article-title: Enzyme immobilization: the quest for optimum performance publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.200700082 – volume: 10 start-page: 20608 year: 2020 ident: 10.1016/j.colsurfb.2021.111779_bib0240 article-title: Enzyme immobilization inside the porous wood structure: a natural scaffold for continuous-flow biocatalysis publication-title: RSC Adv. doi: 10.1039/C9RA10633B – year: 2015 ident: 10.1016/j.colsurfb.2021.111779_bib0115 article-title: Encapsulation of biocatalysts (Cell/Enzyme) with high retaining activity publication-title: Dissertat. Theses – Gradworks. – volume: 125 year: 2020 ident: 10.1016/j.colsurfb.2021.111779_bib0550 article-title: Recent advances in carbon dioxide utilization publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2020.109799 – volume: 42 start-page: 6223 year: 2013 ident: 10.1016/j.colsurfb.2021.111779_bib0070 article-title: S. Van Pelt, Enzyme immobilisation in biocatalysis: why, what and how publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60075K – volume: 42 start-page: 6262 year: 2013 ident: 10.1016/j.colsurfb.2021.111779_bib0090 article-title: Efficient immobilisation of industrial biocatalysts: criteria and constraints for the selection of organic polymeric carriers and immobilisation methods publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs35464d – volume: 79 start-page: 719 year: 2015 ident: 10.1016/j.colsurfb.2021.111779_bib0365 article-title: Immobilization of carbonic anhydrase on carboxyl-functionalized ferroferric oxide for CO2 capture publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2015.05.051 – volume: 30 start-page: 6915 year: 2014 ident: 10.1016/j.colsurfb.2021.111779_bib0385 article-title: Electropolymerized carbonic anhydrase immobilization for carbon dioxide capture publication-title: Langmuir. doi: 10.1021/la501333s – volume: 95 start-page: 843 year: 2017 ident: 10.1016/j.colsurfb.2021.111779_bib0245 article-title: Immobilization of levan-xylanase nanohybrid on an alginate bead improves xylanase stability at wide pH and temperature publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2016.12.012 – volume: 113 start-page: 464 year: 2018 ident: 10.1016/j.colsurfb.2021.111779_bib0580 article-title: Combi-metal organic framework (Combi-MOF) of α-amylase and glucoamylase for one pot starch hydrolysis publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2018.02.092 – volume: 9 start-page: 4600 year: 2015 ident: 10.1016/j.colsurfb.2021.111779_bib0615 article-title: Tethering of nicotinamide adenine dinucleotide inside hollow nanofibers for high-yield synthesis of methanol from carbon dioxide catalyzed by coencapsulated multienzymes publication-title: ACS Nano doi: 10.1021/acsnano.5b01278 – volume: 116 start-page: 89 year: 2015 ident: 10.1016/j.colsurfb.2021.111779_bib0590 article-title: Effect of carbonic anhydrase on enzymatic conversion of CO2 to formic acid and optimization of reaction conditions publication-title: J. Mol. Catal. B Enzym doi: 10.1016/j.molcatb.2015.03.014 – volume: 102 start-page: 10194 year: 2011 ident: 10.1016/j.colsurfb.2021.111779_bib0150 article-title: Activity and stability of immobilized carbonic anhydrase for promoting CO2 absorption into a carbonate solution for post-combustion CO2 capture publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.09.043 – volume: 99 start-page: 9 year: 2008 ident: 10.1016/j.colsurfb.2021.111779_bib0330 article-title: Effect of PEG modification on subtilisin Carlsberg activity, enantioselectivity, and structural dynamics in 1, 4‐dioxane publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.21510 – volume: 52 start-page: 833 year: 1964 ident: 10.1016/j.colsurfb.2021.111779_bib0265 article-title: Intermolecular cross linking of a protein in the crystalline state: carboxypeptidase-A publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.52.3.833 – volume: 20 start-page: 6800 year: 2004 ident: 10.1016/j.colsurfb.2021.111779_bib0505 article-title: Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme publication-title: Langmuir. doi: 10.1021/la0497200 – volume: 165 start-page: 1099 year: 2020 ident: 10.1016/j.colsurfb.2021.111779_bib0060 article-title: Immobilization of keratinase on chitosan grafted-β-cyclodextrin for the improvement of the enzyme properties and application of free keratinase in the textile industry publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.10.009 – volume: 7 start-page: 10291 year: 2015 ident: 10.1016/j.colsurfb.2021.111779_bib0080 article-title: Optimization of enzyme immobilization on magnetic microparticles using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) as a crosslinking agent publication-title: Anal. Methods doi: 10.1039/C5AY02670A – volume: 47 start-page: 667 year: 2014 ident: 10.1016/j.colsurfb.2021.111779_bib0450 article-title: Polymer-and dendrimer-coated magnetic nanoparticles as versatile supports for catalysts, scavengers, and reagents publication-title: Accounts Chem. Res. doi: 10.1021/ar400236y – volume: 168 start-page: 708 year: 2021 ident: 10.1016/j.colsurfb.2021.111779_bib0320 article-title: Immobilization of enzymes on nanoinorganic support materials: an update publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.11.127 – volume: 54 start-page: 1223 year: 2020 ident: 10.1016/j.colsurfb.2021.111779_bib0535 article-title: Stabilized and immobilized carbonic anhydrase on electrospun nanofibers for enzymatic CO2 conversion and utilization in expedited microalgal growth publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b05284 – volume: 162 start-page: 391 year: 2010 ident: 10.1016/j.colsurfb.2021.111779_bib0595 article-title: Thermodynamic feasibility of enzymatic reduction of carbon dioxide to methanol publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-009-8758-x – volume: 56 start-page: 14933 year: 2017 ident: 10.1016/j.colsurfb.2021.111779_bib0200 article-title: Enzyme encapsulation by a ferritin cage publication-title: Angew. Chem.-Int. Edit. doi: 10.1002/anie.201708530 – volume: 55 start-page: 375 year: 2019 ident: 10.1016/j.colsurfb.2021.111779_bib0065 article-title: Sequestration of CO2 into CaCO3 using carbonic anhydrase immobilization on functionalized aluminum oxide publication-title: Appl. Biochem. Micro. doi: 10.1134/S0003683819040112 – volume: 99 start-page: 508 year: 2008 ident: 10.1016/j.colsurfb.2021.111779_bib0605 article-title: Particle-tethered NADH for production of methanol from CO2 catalyzed by coimmobilized enzymes publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.21584 – volume: 37 start-page: 3721 year: 2013 ident: 10.1016/j.colsurfb.2021.111779_bib0620 article-title: Reduction of CO2 to methanol by a polyenzymatic system encapsulated in phospholipids–silica nanocapsules publication-title: New J. Chem. doi: 10.1039/c3nj00688c – volume: 27 start-page: 892 year: 2012 ident: 10.1016/j.colsurfb.2021.111779_bib0025 article-title: Biochemical properties of a novel and highly thermostable bacterial α-carbonic anhydrase from Sulfurihydrogenibium yellowstonense YO3AOP1 publication-title: J. Enzym. Inhib. Med. Chem. doi: 10.3109/14756366.2012.703185 – start-page: 711 year: 2019 ident: 10.1016/j.colsurfb.2021.111779_bib0005 article-title: Application of immobilized enzymes in the food industry – volume: 50 start-page: 2234 year: 2015 ident: 10.1016/j.colsurfb.2021.111779_bib0570 article-title: Immobilization of carbonic anhydrase on epoxy-functionalized magnetic polymer microspheres for CO2 capture publication-title: Process Biochem. doi: 10.1016/j.procbio.2015.09.015 – volume: 29 start-page: 1813 year: 2013 ident: 10.1016/j.colsurfb.2021.111779_bib0230 article-title: Immobilization and characterization of carbonic anhydrase purified from E. Coli MO1 and its influence on CO2 sequestration publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-013-1343-z – volume: 14 start-page: 387 year: 2003 ident: 10.1016/j.colsurfb.2021.111779_bib0315 article-title: Immobilised enzymes: carrier-bound or carrier-free? publication-title: Curr. Opin. Biotechnol. doi: 10.1016/S0958-1669(03)00096-X – volume: 21 start-page: 750 year: 2000 ident: 10.1016/j.colsurfb.2021.111779_bib0490 article-title: Preparation of enzyme multilayers on colloids for biocatalysis publication-title: Macromol. Rapid Commun. doi: 10.1002/1521-3927(20000701)21:11<750::AID-MARC750>3.0.CO;2-3 – volume: 42 start-page: 6437 year: 2013 ident: 10.1016/j.colsurfb.2021.111779_bib0250 article-title: Industrial use of immobilized enzymes publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs35506c – volume: 1 start-page: 998 year: 2011 ident: 10.1016/j.colsurfb.2021.111779_bib0300 article-title: Simpler is better: high-yield and potential low-cost biofuels production through cell-free synthetic pathway biotransformation (SyPaB) publication-title: ACS Catal. doi: 10.1021/cs200218f – volume: 50 start-page: 5693 year: 2009 ident: 10.1016/j.colsurfb.2021.111779_bib0395 article-title: Immobilization of carbonic anhydrase by embedding and covalent coupling into nanocomposite hydrogel containing hydrotalcite publication-title: Polymer. doi: 10.1016/j.polymer.2009.09.067 – volume: 139 start-page: 6530 year: 2017 ident: 10.1016/j.colsurfb.2021.111779_bib0190 article-title: Shielding against unfolding by embedding enzymes in metal–organic frameworks via a de novo approach publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01794 – volume: 32 start-page: 759 year: 2017 ident: 10.1016/j.colsurfb.2021.111779_bib0435 article-title: Production and covalent immobilisation of the recombinant bacterial carbonic anhydrase (SspCA) onto magnetic nanoparticles publication-title: J. Enzym. Inhib. Med. Chem. doi: 10.1080/14756366.2017.1316719 – volume: 32 start-page: 319 year: 2015 ident: 10.1016/j.colsurfb.2021.111779_bib0600 article-title: Cascade catalysis in membranes with enzyme immobilization for multi-enzymatic conversion of CO2 to methanol publication-title: New Bioeth. – volume: 146 start-page: 60 year: 2019 ident: 10.1016/j.colsurfb.2021.111779_bib0340 article-title: Meso-molding three-dimensionally ordered macroporous alumina: a new platform to immobilize enzymes with high performance publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2019.03.002 – volume: 24 start-page: 1773 year: 1982 ident: 10.1016/j.colsurfb.2021.111779_bib0360 article-title: Stability studies of immobilized enzyme stir rods publication-title: Biotechnol.Bioeng. doi: 10.1002/bit.260240805 – year: 2018 ident: 10.1016/j.colsurfb.2021.111779_bib0470 article-title: Polysulfone biomimetic membrane for CO2 capture publication-title: Funct. Mater. Lett.11 doi: 10.1142/S1793604718500467 – volume: 41 start-page: 335 year: 2020 ident: 10.1016/j.colsurfb.2021.111779_bib0105 article-title: Controllable and high-performance immobilized enzyme reactor:DNA-directed immobilization of multienzyme in polyamidoamine dendrimer-functionalized capillaries publication-title: Electrophoresis. doi: 10.1002/elps.201900428 – volume: 38 start-page: 111 year: 2003 ident: 10.1016/j.colsurfb.2021.111779_bib0185 article-title: CO2 hydration by immobilized carbonic anhydrase publication-title: Biotechnol. Appl. Biochem. doi: 10.1042/BA20030060 – volume: 39 year: 2020 ident: 10.1016/j.colsurfb.2021.111779_bib0555 article-title: Immobilization of genetically engineered whole-cell biocatalysts with periplasmic carbonic anhydrase in polyurethane foam for enzymatic CO2 capture and utilization publication-title: J. CO2 Util doi: 10.1016/j.jcou.2020.101172 – volume: 1053 year: 2021 ident: 10.1016/j.colsurfb.2021.111779_bib0235 article-title: Mass transfer and reaction in hydrolysis of coconut husk using immobilized enzyme on chitosan magnetic nanoparticle – volume: 21 start-page: 2960 year: 2020 ident: 10.1016/j.colsurfb.2021.111779_bib0030 article-title: Development of thiazolidinones as fungal carbonic anhydrase inhibitors publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21082960 – volume: 361 start-page: 1 year: 2019 ident: 10.1016/j.colsurfb.2021.111779_bib0085 article-title: Immobilization of enzymes in/on membranes and their applications publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201900439 – volume: 136 start-page: 47784 year: 2019 ident: 10.1016/j.colsurfb.2021.111779_bib0460 article-title: Immobilization of carbonic anhydrase on polyethylenimine/dopamine codeposited membranes publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.47784 – volume: 73 start-page: 38 year: 2018 ident: 10.1016/j.colsurfb.2021.111779_bib0370 article-title: Efficient carbon dioxide sequestration by using recombinant carbonic anhydrase publication-title: Process Biochem. doi: 10.1016/j.procbio.2018.08.017 – volume: 5 start-page: 2705 year: 2015 ident: 10.1016/j.colsurfb.2021.111779_bib0380 article-title: Efficient nitrogen-13 radiochemistry catalyzed by a highly stable immobilized biocatalyst publication-title: Catal. Sci. Technol. doi: 10.1039/C5CY00179J – volume: 7 start-page: 428 year: 2012 ident: 10.1016/j.colsurfb.2021.111779_bib0515 article-title: Protein-inorganic hybrid nanoflowers publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.80 – volume: 885 year: 2017 ident: 10.1016/j.colsurfb.2021.111779_bib0560 article-title: Kinetic of carbonic anhydrase immobilized onto amberlite XAD 7 and it application in sequestration of CO2 into CaCO3 precipitate publication-title: J. Phys. Conf. Series doi: 10.1088/1742-6596/885/1/012006 – volume: 65 start-page: 362 year: 2018 ident: 10.1016/j.colsurfb.2021.111779_bib0465 article-title: Immobilization of carbonic anhydrase on polyvinylidene fluoride membranes publication-title: Biotechnol. Appl. Biochem. doi: 10.1002/bab.1629 – volume: 15 start-page: 359 year: 2008 ident: 10.1016/j.colsurfb.2021.111779_bib0410 article-title: Acid activated montmorillonite: an efficient immobilization support for improving reusability, storage stability and operational stability of enzymes publication-title: J. Porous Mat. doi: 10.1007/s10934-006-9089-8 – volume: 122 start-page: 359 year: 2019 ident: 10.1016/j.colsurfb.2021.111779_bib0275 article-title: Catalytic phenol removal using entrapped cross-linked laccase aggregates publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2018.10.147 – volume: 49 start-page: 290 year: 2016 ident: 10.1016/j.colsurfb.2021.111779_bib0010 article-title: Enzymatic properties of immobilized carbonic anhydrase and the biocatalyst for promoting CO2 capture in vertical reactor publication-title: Int. J. Greenh. Gas Control. doi: 10.1016/j.ijggc.2016.03.016 – volume: 27 start-page: 1294 year: 2020 ident: 10.1016/j.colsurfb.2021.111779_bib0055 article-title: Carbonic anhydrase modification for carbon management publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-019-06667-w – volume: 101 start-page: 260 year: 2007 ident: 10.1016/j.colsurfb.2021.111779_bib0420 article-title: Stability evaluation of an immobilized enzyme system for inulin hydrolysis publication-title: Food Chem. doi: 10.1016/j.foodchem.2006.01.042 – volume: 48 start-page: 4210 year: 2009 ident: 10.1016/j.colsurfb.2021.111779_bib0610 article-title: Green and efficient conversion of CO2 to methanol by biomimetic coimmobilization of three dehydrogenases in protamine-templated titania publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie801931j – volume: 50 start-page: 2234 year: 2015 ident: 10.1016/j.colsurfb.2021.111779_bib0440 article-title: Immobilization of carbonic anhydrase on epoxy-functionalized magnetic polymer microspheres for CO2 capture publication-title: Process Biochem. doi: 10.1016/j.procbio.2015.09.015 – volume: 48 start-page: 491 year: 2020 ident: 10.1016/j.colsurfb.2021.111779_bib0015 article-title: Trace metal substitution in marine phytoplankton publication-title: Annu. Rev. Earth Planet. Sci. doi: 10.1146/annurev-earth-053018-060108 – volume: 20 start-page: 1394 year: 2019 ident: 10.1016/j.colsurfb.2021.111779_bib0095 article-title: Artificial cellulosome complex from the self-assembly of Ni-NTA-functionalized polymeric micelles and cellulases publication-title: Chem. Bio. Chem. doi: 10.1002/cbic.201900061 – volume: 32 start-page: 341 year: 2010 ident: 10.1016/j.colsurfb.2021.111779_bib0260 article-title: Carrier-free immobilized enzymes for biocatalysis publication-title: Biotechnol. Lett. doi: 10.1007/s10529-009-0173-4 – volume: 24 start-page: 6198 year: 2010 ident: 10.1016/j.colsurfb.2021.111779_bib0180 article-title: Immobilized carbonic anhydrase for the biomimetic carbonation reaction publication-title: Energy Fuels doi: 10.1021/ef100750y – volume: 1570 start-page: 63 year: 2002 ident: 10.1016/j.colsurfb.2021.111779_bib0220 article-title: Effect of lecithin and MgCO3 as additives on the enzymatic activity of carbonic anhydrase encapsulated in poly(lactide-co-glycolide) (PLGA) microspheres publication-title: BBA - General Subjects. doi: 10.1016/S0304-4165(02)00153-8 – volume: 111 start-page: 209 year: 2014 ident: 10.1016/j.colsurfb.2021.111779_bib0425 article-title: Materials‐based strategies for multi‐enzyme immobilization and co‐localization: a review publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.25136 – volume: 17 start-page: 171 year: 2005 ident: 10.1016/j.colsurfb.2021.111779_bib0485 article-title: Enzyme multilayer-modified porous membranes as biocatalysts publication-title: Chem. Mat. doi: 10.1021/cm048659h – volume: 52 start-page: 12708 year: 2018 ident: 10.1016/j.colsurfb.2021.111779_bib0405 article-title: Carbonic anhydrase Enzyme-MOFs composite with a superior catalytic performance to promote CO2 absorption into tertiary amine solution publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b04671 – volume: 5 start-page: 834 year: 2017 ident: 10.1016/j.colsurfb.2021.111779_bib0585 article-title: Carbon capture and utilization update publication-title: Energy Technol. doi: 10.1002/ente.201600747 – volume: 35 start-page: 15 year: 2015 ident: 10.1016/j.colsurfb.2021.111779_bib0255 article-title: Optimization protocols and improved strategies of cross-linked enzyme aggregates technology: current development and future challenges publication-title: Crit. Rev. Biotechnol. doi: 10.3109/07388551.2013.795516 – volume: 10 start-page: 1009 year: 2008 ident: 10.1016/j.colsurfb.2021.111779_bib0170 article-title: Novel method for immobilization of enzymes to magnetic nanoparticles publication-title: J. Nanopart. Res. doi: 10.1007/s11051-007-9332-5 – volume: 33 start-page: 2065 year: 2011 ident: 10.1016/j.colsurfb.2021.111779_bib0285 article-title: Enhancement of activity and selectivity of Candida rugosa lipase and Candida antarctica lipase A by bioimprinting and/or immobilization for application in the selective ethanolysis of fish oil publication-title: Biotechnol. Lett. doi: 10.1007/s10529-011-0671-z – volume: 136 start-page: S325 year: 2009 ident: 10.1016/j.colsurfb.2021.111779_bib0270 article-title: Synthesis of cross-linked polyethylene glycol diacrylate polymers and their application as supports for laccase immobilization publication-title: Transactions of China Pulp & Paper. – volume: 201 year: 2021 ident: 10.1016/j.colsurfb.2021.111779_bib0100 article-title: DNA directed immobilization of horseradish peroxidase on phase-transitioned lysozyme modified TiO2 for efficient degradation of phenol in wastewater publication-title: Mater. Des. doi: 10.1016/j.matdes.2021.109463 – volume: 60 start-page: 13 year: 2009 ident: 10.1016/j.colsurfb.2021.111779_bib0565 article-title: Immobilization of carbonic anhydrase enriched microorganism on biopolymer based materials publication-title: J. Mol. Catal. B-Enzym. doi: 10.1016/j.molcatb.2009.02.022 – volume: 373 start-page: 1254 year: 2019 ident: 10.1016/j.colsurfb.2021.111779_bib0295 article-title: Recent progress in multienzymes co-immobilization and multienzyme system applications publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.05.141 – volume: 114 start-page: 503 year: 2017 ident: 10.1016/j.colsurfb.2021.111779_bib0140 article-title: Dynamic changes of substrate reactivity and enzyme adsorption on partially hydrolyzed cellulose publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.26180 – volume: 31 start-page: 3002 year: 2017 ident: 10.1016/j.colsurfb.2021.111779_bib0540 article-title: Utility of immobilized recombinant carbonic anhydrase of Bacillus halodurans TSLV1 on the Surface of modified iron magnetic nanoparticles in carbon sequestration publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.6b02777 – volume: 3 start-page: 3332 year: 2015 ident: 10.1016/j.colsurfb.2021.111779_bib0500 article-title: Preparation of titania based biocatalytic nanoparticles and membranes for CO2 conversion publication-title: J. Mater. Chem. A. doi: 10.1039/C4TA05760K – volume: 298 start-page: 529 year: 2013 ident: 10.1016/j.colsurfb.2021.111779_bib0310 article-title: Mechanisms of stability of fibers electrospun from peptides with ionized side chains publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201200331 – volume: 14 start-page: 9076 year: 2012 ident: 10.1016/j.colsurfb.2021.111779_bib0175 article-title: Insight into the effects of graphene oxide sheets on the conformation and activity of glucose oxidase: towards developing a nanomaterial-based protein conformation assay publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp40654c – volume: 250 start-page: 266 year: 1971 ident: 10.1016/j.colsurfb.2021.111779_bib0205 article-title: A kinetic study of microencapsulated bovine carbonic anhydrase publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2744(71)90143-4 – volume: 143 start-page: 128 year: 2016 ident: 10.1016/j.colsurfb.2021.111779_bib0210 article-title: High expression and biosilica encapsulation of alkaline-active carbonic anhydrase for CO2 sequestration system development publication-title: Chemosphere. doi: 10.1016/j.chemosphere.2015.07.020 – volume: 743 start-page: 95 year: 2011 ident: 10.1016/j.colsurfb.2021.111779_bib0120 article-title: Reversible his-tagged enzyme immobilization on functionalized carbon nanotubes as nanoscale biocatalyst publication-title: Int. J. Biol. Macromol. – volume: 36 start-page: 3721 year: 2001 ident: 10.1016/j.colsurfb.2021.111779_bib0455 article-title: Catalytic membrane reaction for methane steam reforming using porous silica membranes publication-title: Sep. Sci. Technol. doi: 10.1081/SS-100108358 – volume: 485 start-page: 185 year: 2012 ident: 10.1016/j.colsurfb.2021.111779_bib0345 article-title: Engineering the third wave of biocatalysis publication-title: Nature. doi: 10.1038/nature11117 – volume: 350 start-page: 2329 year: 2008 ident: 10.1016/j.colsurfb.2021.111779_bib0280 article-title: Linum usitatissimum hydroxynitrile lyase cross‐linked enzyme aggregates: a recyclable enantioselective catalyst publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.200800309 – volume: 153 start-page: 166 year: 2012 ident: 10.1016/j.colsurfb.2021.111779_bib0215 article-title: Enzymatic conversion of CO2 to bicarbonate in functionalized mesoporous silica publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2011.12.005 – volume: 49 start-page: 3191 year: 2013 ident: 10.1016/j.colsurfb.2021.111779_bib0530 article-title: CO2 sequestration by enzyme immobilized onto bioinspired silica publication-title: Chem. Commun. doi: 10.1039/C2CC38225C – volume: 35 start-page: 665 year: 2020 ident: 10.1016/j.colsurfb.2021.111779_bib0040 article-title: Combining carbonic anhydrase and thioredoxin reductase inhibitory motifs within a single molecule dramatically increases its cytotoxicity publication-title: J. Enzym. Inhib. Med. Chem. doi: 10.1080/14756366.2020.1734800 – volume: 4 start-page: 34356 year: 2014 ident: 10.1016/j.colsurfb.2021.111779_bib0415 article-title: Hybrid periodic mesoporous organosilica designed to improve the properties of immobilized enzymes publication-title: RSC Adv. doi: 10.1039/C4RA05362A – volume: 984 start-page: 453 year: 2003 ident: 10.1016/j.colsurfb.2021.111779_bib0390 article-title: CO2 capture by means of an enzyme‐based reactor publication-title: Ann. NY Acad. Sci. doi: 10.1111/j.1749-6632.2003.tb06019.x – volume: 21 start-page: 2922 year: 2020 ident: 10.1016/j.colsurfb.2021.111779_bib0020 article-title: Insights on the functions and ecophysiological relevance of the diverse carbonic anhydrases in microalgae publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21082922 |
SSID | ssj0002417 |
Score | 2.4802756 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•The enzymatic characteristics of immobilized CA are comprehensively summarized.•Approaches for immobilization and the advantages and... Native carbonic anhydrase (CA) has been widely used in several different applications due to its catalytic function in the interconversion of carbon dioxide... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 111779 |
SubjectTerms | carbon dioxide carbonate dehydratase carbonic acid Carbonic anhydrase catalytic activity Catalytic function enzyme stability Immobilized support markets mineralization Recyclability Stability van der Waals forces water solubility |
Title | Enzymatic characteristics of immobilized carbonic anhydrase and its applications in CO2 conversion |
URI | https://dx.doi.org/10.1016/j.colsurfb.2021.111779 https://www.proquest.com/docview/2518994066 https://www.proquest.com/docview/2574339778 |
Volume | 204 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hOBQOVVmKWGiRK6He0s3DceLjagXaUokeKNLeLD9FEGTRPg7Lob-dsZPAUiE49JZE48jyjGa-sb8ZA5xQ6bjmGYtMUvim2pxGJeKIqFTKJYwzlblAkL1g4yt6PsknGzDqamE8rbL1_Y1PD966_TJoV3NwX1WDy5inRVEwjD8-EGUTX8FOC2_lP_4-0zwwQoWSaRSOvPRalfAN_vt2vpw5hXlimnjvUXhK1-sB6h9XHeLP2Sf42AJHMmzmtgsbtu7B3rDGpPluRb6TQOUMe-Q9-DDqrnHrwc5ax8E9UKf1wyp0aSX6ZatmMnWkQqP0ZNkHa4iWM-Xb5hJZX6_MDIMdPhlSLeZk_dCbVDUZ_U5JYK-HrbfPcHV2-mc0jtprFiJNKV1ESiFoKaxLeRFbmlOqdFLGVBp041rbLI-pxUw2kzpWmOzo3KRM21LFRsfOcZvtw2Y9re0BEIdgUBnjuTU5NYxLBEtcasVkEmeG0T7k3doK3fYg91dh3IqObHYjOp0IrxPR6KQPg6dx900XjndH8E514oU9CQwV74791ulaoLL8CYqs7XQ5FwgGMT9FDMTekkFQ5mF1efgfcziCbf_WUA2_wOZitrRfEf4s1HGw72PYGv78Nb54BOB7Bu8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RONAeqrK0Kn2AkarewubhOPERrUDL-wBIe7P8VINoFu3jsBz62zt2ErqgCg7cosSOIo8z3zf25xmAH1Q6rnnGIpMUPqk2p1GJPCIqlXIJ40xlLghkz9nwmh6P8tEKDLqzMF5W2fr-xqcHb93e6bej2b-rqv5lzNOiKBjijweibPQG1ij-vr6Mwd6ffzoPhKhwZhpbR7750jHhG3z57XQ-cQoDxTTx7qPwmq7_I9QTXx0A6PADvG-ZI9lvPm4DVmzdg839GqPm3wvykwQtZ1gk78H6oKvj1oN3SykHN0Ed1PeLkKaV6Me5msnYkQpnpVfL3ltDtJwonzeXyPrXwkwQ7fDKkGo2Jcu73qSqyeAiJUG-HtbePsL14cHVYBi1dRYiTSmdRUohaymsS3kRW5pTqnRSxlQa9ONa2yyPqcVQNpM6Vhjt6NykTNtSxUbHznGbfYLVelzbz0AcskFljBfX5NQwLpEtcakVk0mcGUa3IO_GVug2CbmvhXErOrXZjehsIrxNRGOTLeg_9Ltr0nC82IN3phOPJpRArHix725na4HG8lsosrbj-VQgG8QAFUkQe64NsjLPq8svr_iGHVgfXp2ditOj85Ov8NY_aXSH32B1Npnb78iFZmo7zPW_yOQIfQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enzymatic+characteristics+of+immobilized+carbonic+anhydrase+and+its+applications+in+CO2+conversion&rft.jtitle=Colloids+and+surfaces%2C+B%2C+Biointerfaces&rft.au=Ren%2C+Sizhu&rft.au=Chen%2C+Ruixue&rft.au=Wu%2C+Zhangfei&rft.au=Su%2C+Shan&rft.date=2021-08-01&rft.issn=1873-4367&rft.eissn=1873-4367&rft.volume=204&rft.spage=111779&rft_id=info:doi/10.1016%2Fj.colsurfb.2021.111779&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7765&client=summon |