Early gestation as the critical time-window for changes in the prenatal environment to affect the adult human blood methylome

The manipulation of pregnancy diets in animals can lead to changes in DNA methylation with phenotypic consequences in the offspring. Human studies have concentrated on the effects of nutrition during early gestation. Lacking in humans is an epigenome-wide association study of DNA methylation in rela...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of epidemiology Vol. 44; no. 4; pp. 1211 - 1223
Main Authors Tobi, Elmar W, Slieker, Roderick C, Stein, Aryeh D, Suchiman, H Eka D, Slagboom, P Eline, van Zwet, Erik W, Heijmans, Bastiaan T, Lumey, LH
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.08.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The manipulation of pregnancy diets in animals can lead to changes in DNA methylation with phenotypic consequences in the offspring. Human studies have concentrated on the effects of nutrition during early gestation. Lacking in humans is an epigenome-wide association study of DNA methylation in relation to perturbations in nutrition across all gestation periods. We used the quasi-experimental setting of the Dutch famine of 1944-45 to evaluate the impact of famine exposure during specific 10-week gestation periods, or during any time in gestation, on genome-wide DNA methylation levels at age ∼ 59 years. In addition, we evaluated the impact of exposure during a shorter pre- and post-conception period. DNA methylation was assessed using the Illumina 450k array in whole blood among 422 individuals with prenatal famine exposure and 463 time- or sibling-controls without prenatal famine exposure. Famine exposure during gestation weeks 1-10, but not weeks 11-20, 21-30 or 31-delivery, was associated with an increase in DNA methylation of CpG dinucleotides cg20823026 (FAM150B), cg10354880 (SLC38A2) and cg27370573 (PPAP2C) and a decrease of cg11496778 (OSBPL5/MRGPRG) (P < 5.9 × 10(-7), PFDR < 0.031). There was an increase in methylation of TACC1 and ZNF385A after exposure during any time in gestation (P < 2.0 × 10(-7), PFDR = 0.034) and a decrease of cg23989336 (TMEM105) after exposure around conception. These changes represent a shift of 0.3-0.6 standard deviations and are linked to genes involved in growth, development and metabolism. Early gestation, and not mid or late gestation, is identified as a critical time-period for adult DNA methylation changes in whole blood after prenatal exposure to famine.
AbstractList The manipulation of pregnancy diets in animals can lead to changes in DNA methylation with phenotypic consequences in the offspring. Human studies have concentrated on the effects of nutrition during early gestation. Lacking in humans is an epigenome-wide association study of DNA methylation in relation to perturbations in nutrition across all gestation periods.BACKGROUNDThe manipulation of pregnancy diets in animals can lead to changes in DNA methylation with phenotypic consequences in the offspring. Human studies have concentrated on the effects of nutrition during early gestation. Lacking in humans is an epigenome-wide association study of DNA methylation in relation to perturbations in nutrition across all gestation periods.We used the quasi-experimental setting of the Dutch famine of 1944-45 to evaluate the impact of famine exposure during specific 10-week gestation periods, or during any time in gestation, on genome-wide DNA methylation levels at age ∼ 59 years. In addition, we evaluated the impact of exposure during a shorter pre- and post-conception period. DNA methylation was assessed using the Illumina 450k array in whole blood among 422 individuals with prenatal famine exposure and 463 time- or sibling-controls without prenatal famine exposure.METHODSWe used the quasi-experimental setting of the Dutch famine of 1944-45 to evaluate the impact of famine exposure during specific 10-week gestation periods, or during any time in gestation, on genome-wide DNA methylation levels at age ∼ 59 years. In addition, we evaluated the impact of exposure during a shorter pre- and post-conception period. DNA methylation was assessed using the Illumina 450k array in whole blood among 422 individuals with prenatal famine exposure and 463 time- or sibling-controls without prenatal famine exposure.Famine exposure during gestation weeks 1-10, but not weeks 11-20, 21-30 or 31-delivery, was associated with an increase in DNA methylation of CpG dinucleotides cg20823026 (FAM150B), cg10354880 (SLC38A2) and cg27370573 (PPAP2C) and a decrease of cg11496778 (OSBPL5/MRGPRG) (P < 5.9 × 10(-7), PFDR < 0.031). There was an increase in methylation of TACC1 and ZNF385A after exposure during any time in gestation (P < 2.0 × 10(-7), PFDR = 0.034) and a decrease of cg23989336 (TMEM105) after exposure around conception. These changes represent a shift of 0.3-0.6 standard deviations and are linked to genes involved in growth, development and metabolism.RESULTSFamine exposure during gestation weeks 1-10, but not weeks 11-20, 21-30 or 31-delivery, was associated with an increase in DNA methylation of CpG dinucleotides cg20823026 (FAM150B), cg10354880 (SLC38A2) and cg27370573 (PPAP2C) and a decrease of cg11496778 (OSBPL5/MRGPRG) (P < 5.9 × 10(-7), PFDR < 0.031). There was an increase in methylation of TACC1 and ZNF385A after exposure during any time in gestation (P < 2.0 × 10(-7), PFDR = 0.034) and a decrease of cg23989336 (TMEM105) after exposure around conception. These changes represent a shift of 0.3-0.6 standard deviations and are linked to genes involved in growth, development and metabolism.Early gestation, and not mid or late gestation, is identified as a critical time-period for adult DNA methylation changes in whole blood after prenatal exposure to famine.CONCLUSIONEarly gestation, and not mid or late gestation, is identified as a critical time-period for adult DNA methylation changes in whole blood after prenatal exposure to famine.
The manipulation of pregnancy diets in animals can lead to changes in DNA methylation with phenotypic consequences in the offspring. Human studies have concentrated on the effects of nutrition during early gestation. Lacking in humans is an epigenome-wide association study of DNA methylation in relation to perturbations in nutrition across all gestation periods. We used the quasi-experimental setting of the Dutch famine of 1944-45 to evaluate the impact of famine exposure during specific 10-week gestation periods, or during any time in gestation, on genome-wide DNA methylation levels at age ∼ 59 years. In addition, we evaluated the impact of exposure during a shorter pre- and post-conception period. DNA methylation was assessed using the Illumina 450k array in whole blood among 422 individuals with prenatal famine exposure and 463 time- or sibling-controls without prenatal famine exposure. Famine exposure during gestation weeks 1-10, but not weeks 11-20, 21-30 or 31-delivery, was associated with an increase in DNA methylation of CpG dinucleotides cg20823026 (FAM150B), cg10354880 (SLC38A2) and cg27370573 (PPAP2C) and a decrease of cg11496778 (OSBPL5/MRGPRG) (P < 5.9 × 10(-7), PFDR < 0.031). There was an increase in methylation of TACC1 and ZNF385A after exposure during any time in gestation (P < 2.0 × 10(-7), PFDR = 0.034) and a decrease of cg23989336 (TMEM105) after exposure around conception. These changes represent a shift of 0.3-0.6 standard deviations and are linked to genes involved in growth, development and metabolism. Early gestation, and not mid or late gestation, is identified as a critical time-period for adult DNA methylation changes in whole blood after prenatal exposure to famine.
Background: The manipulation of pregnancy diets in animals can lead to changes in DNA methylation with phenotypic consequences in the offspring. Human studies have concentrated on the effects of nutrition during early gestation. Lacking in humans is an epigenome-wide association study of DNA methylation in relation to perturbations in nutrition across all gestation periods. Methods: We used the quasi-experimental setting of the Dutch famine of 1944–45 to evaluate the impact of famine exposure during specific 10-week gestation periods, or during any time in gestation, on genome-wide DNA methylation levels at age ∼ 59 years. In addition, we evaluated the impact of exposure during a shorter pre- and post-conception period. DNA methylation was assessed using the Illumina 450k array in whole blood among 422 individuals with prenatal famine exposure and 463 time- or sibling-controls without prenatal famine exposure. Results: Famine exposure during gestation weeks 1–10, but not weeks 11–20, 21–30 or 31-delivery, was associated with an increase in DNA methylation of CpG dinucleotides cg20823026 ( FAM150B ), cg10354880 ( SLC38A2 ) and cg27370573 ( PPAP2C ) and a decrease of cg11496778 ( OSBPL5 / MRGPRG) ( P  < 5.9 × 10 −7 , P FDR  < 0.031). There was an increase in methylation of TACC1 and ZNF385A after exposure during any time in gestation ( P  < 2.0 × 10 −7 , P FDR  = 0.034) and a decrease of cg23989336 ( TMEM105 ) after exposure around conception. These changes represent a shift of 0.3–0.6 standard deviations and are linked to genes involved in growth, development and metabolism. Conclusion: Early gestation, and not mid or late gestation, is identified as a critical time-period for adult DNA methylation changes in whole blood after prenatal exposure to famine.
Author Suchiman, H Eka D
Lumey, LH
Heijmans, Bastiaan T
Slagboom, P Eline
Tobi, Elmar W
Stein, Aryeh D
Slieker, Roderick C
van Zwet, Erik W
Author_xml – sequence: 1
  givenname: Elmar W
  surname: Tobi
  fullname: Tobi, Elmar W
– sequence: 2
  givenname: Roderick C
  surname: Slieker
  fullname: Slieker, Roderick C
– sequence: 3
  givenname: Aryeh D
  surname: Stein
  fullname: Stein, Aryeh D
– sequence: 4
  givenname: H Eka D
  surname: Suchiman
  fullname: Suchiman, H Eka D
– sequence: 5
  givenname: P Eline
  surname: Slagboom
  fullname: Slagboom, P Eline
– sequence: 6
  givenname: Erik W
  surname: van Zwet
  fullname: van Zwet, Erik W
– sequence: 7
  givenname: Bastiaan T
  surname: Heijmans
  fullname: Heijmans, Bastiaan T
– sequence: 8
  givenname: LH
  surname: Lumey
  fullname: Lumey, LH
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25944819$$D View this record in MEDLINE/PubMed
BookMark eNptkU9v1DAQxS1URLctFz4A8hEhhdqJ4yQXJFSVP1KlXujZGtuTxpVjL46z1R747phuqQD1NIf5zZun907IUYgBCXnD2QfOhubc3eG53e-YaF6QDRdSVI3s2yOyYQ1jVdt1_JicLMsdY1wIMbwix3U7CNHzYUN-XkLye3qLS4bsYqCw0DwhNcllZ8DT7Gas7l2w8Z6OMVEzQSg0deGB2yYMkAuHYedSDDOGTHOkMI5o8gMCdvWZTusMgWofo6Uz5mnv44xn5OUIfsHXj_OU3Hy-_H7xtbq6_vLt4tNVZYrhXOnW1jgi57IRknUgLWqDbLBWDlrUVssWQNccJWOAcmSj7gfsGjnURncMmlPy8aC7XfWM1hSTCbzaJjdD2qsITv27CW5St3GnRNv3vZRF4N2jQIo_1hKWmt1i0HsIGNdF8Y73A-dN3xf07d-_np78ybwA7w-ASXFZEo5PCGfqd6GqFKoOhRaY_Qcbd2iq-HT-uZNffcmpWA
CitedBy_id crossref_primary_10_1016_j_biopsych_2016_08_011
crossref_primary_10_1080_15592294_2024_2318516
crossref_primary_10_1007_s10654_019_00555_w
crossref_primary_10_1007_s11427_018_9427_4
crossref_primary_10_1073_pnas_2208530119
crossref_primary_10_1093_humupd_dmae026
crossref_primary_10_3390_ijms22157834
crossref_primary_10_1093_aje_kwy090
crossref_primary_10_1373_clinchem_2017_273052
crossref_primary_10_1038_s41467_018_05714_3
crossref_primary_10_1093_cdn_nzy082
crossref_primary_10_3389_fgene_2018_00584
crossref_primary_10_2217_epi_2021_0220
crossref_primary_10_1080_1028415X_2017_1331524
crossref_primary_10_12688_f1000research_6923_1
crossref_primary_10_1038_mp_2017_35
crossref_primary_10_1111_jpi_12764
crossref_primary_10_1016_j_mrrev_2017_07_002
crossref_primary_10_2217_epi_2019_0055
crossref_primary_10_1016_j_tem_2022_06_002
crossref_primary_10_3390_nu12123602
crossref_primary_10_1186_s40246_017_0129_z
crossref_primary_10_1016_j_bbi_2017_04_014
crossref_primary_10_1017_S0029665119000612
crossref_primary_10_1080_20008066_2023_2219075
crossref_primary_10_7554_eLife_72031
crossref_primary_10_1017_S2040174418000442
crossref_primary_10_1097_WAD_0000000000000187
crossref_primary_10_1186_s13148_024_01635_9
crossref_primary_10_1002_brb3_1579
crossref_primary_10_1093_nutrit_nuae048
crossref_primary_10_1016_j_arr_2019_100957
crossref_primary_10_3390_ijms26062759
crossref_primary_10_2217_epi_2015_0011
crossref_primary_10_5937_arhfarm74_50458
crossref_primary_10_1186_s13072_021_00383_x
crossref_primary_10_3390_ijms23073932
crossref_primary_10_1016_j_fertnstert_2019_01_036
crossref_primary_10_1093_eep_dvab013
crossref_primary_10_1016_j_mad_2017_09_004
crossref_primary_10_3389_fmed_2022_1045692
crossref_primary_10_1093_ije_dyy153
crossref_primary_10_1371_journal_pone_0201672
crossref_primary_10_1007_s00125_021_05455_x
crossref_primary_10_1111_imm_13571
crossref_primary_10_1155_2019_3821409
crossref_primary_10_1007_s10522_019_09818_1
crossref_primary_10_1080_15592294_2021_1955188
crossref_primary_10_1017_thg_2015_74
crossref_primary_10_1002_mnfr_201800034
crossref_primary_10_1017_thg_2019_38
crossref_primary_10_1038_s41598_017_10380_4
crossref_primary_10_1093_hmg_ddx194
crossref_primary_10_1016_j_tifs_2020_04_021
crossref_primary_10_3390_nu13114063
crossref_primary_10_1038_s41598_018_34003_8
crossref_primary_10_1186_s12864_024_11136_x
crossref_primary_10_3389_fnins_2020_00233
crossref_primary_10_1080_15592294_2020_1805694
crossref_primary_10_1016_j_jpsychires_2024_10_028
crossref_primary_10_3390_genes9020078
crossref_primary_10_1017_jns_2024_57
crossref_primary_10_1111_nbu_12322
crossref_primary_10_2174_0929867324666170518095736
crossref_primary_10_1186_s13148_015_0130_0
crossref_primary_10_1186_s13148_019_0616_2
crossref_primary_10_1007_s12018_017_9229_5
crossref_primary_10_18632_aging_103397
crossref_primary_10_2196_45293
crossref_primary_10_1016_j_coemr_2020_07_005
crossref_primary_10_1161_CIRCRESAHA_116_310254
crossref_primary_10_1007_s13679_020_00393_y
crossref_primary_10_1186_s13059_016_1000_6
crossref_primary_10_1093_ije_dyv066
crossref_primary_10_1186_s12916_022_02699_1
crossref_primary_10_1080_15592294_2016_1145329
crossref_primary_10_1007_s12018_019_09263_1
crossref_primary_10_3390_ijerph18179380
crossref_primary_10_3892_mmr_2017_8039
crossref_primary_10_3390_cells12050741
crossref_primary_10_1016_j_jnutbio_2018_01_014
crossref_primary_10_3390_genes13010031
crossref_primary_10_1186_s13148_022_01310_x
crossref_primary_10_1016_j_ejca_2018_04_018
crossref_primary_10_1093_ije_dyv198
crossref_primary_10_1126_sciadv_aao4364
crossref_primary_10_2217_epi_2019_0163
crossref_primary_10_1016_j_celrep_2018_11_023
crossref_primary_10_1016_j_cotox_2017_09_002
crossref_primary_10_1038_s41467_019_09671_3
crossref_primary_10_1016_S2213_8587_15_00279_X
crossref_primary_10_1111_joim_12768
crossref_primary_10_1007_s00394_022_02915_x
crossref_primary_10_1590_1984_3143_ar2022_0076
crossref_primary_10_1097_EE9_0000000000000311
crossref_primary_10_1136_bmjopen_2016_011768
crossref_primary_10_3390_ijerph15050857
crossref_primary_10_1507_endocrj_EJ23_0381
crossref_primary_10_1016_j_neubiorev_2017_05_016
crossref_primary_10_1016_j_ecoenv_2020_110643
crossref_primary_10_1016_j_neubiorev_2017_07_003
crossref_primary_10_1002_jdn_10018
crossref_primary_10_1073_pnas_2319179121
crossref_primary_10_1002_evan_21828
crossref_primary_10_1126_sciadv_aat2624
crossref_primary_10_1186_s13148_023_01557_y
Cites_doi 10.1016/j.numecd.2013.10.026
10.1111/j.0006-341X.1999.00997.x
10.1186/1471-2199-11-3
10.1186/1471-2105-13-86
10.1097/EDE.0b013e31825fa230
10.1073/pnas.0504468103
10.1016/j.cell.2009.06.001
10.1074/jbc.M511710200
10.1158/1055-9965.EPI-13-1256
10.1128/MCB.23.15.5293-5300.2003
10.1146/annurev.nutr.27.061406.093705
10.1371/journal.pone.0007845
10.1038/nature12433
10.1038/ncomms4746
10.1038/nature10163
10.1186/s13059-014-0483-2
10.1186/s13059-014-0503-2
10.1083/jcb.201004142
10.1038/nature11232
10.1002/mnfr.201100008
10.4161/epi.6.7.16263
10.1093/hmg/ddu739
10.1002/bies.20700
10.1093/oxfordjournals.epirev.a017923
10.1073/pnas.1412009111
10.1371/journal.pone.0037933
10.1038/nature13544
10.1093/bioinformatics/btu566
10.1093/ije/dyr147
10.1038/nbt.2153
10.1038/nrg3405
10.1101/gr.176586.114
10.1095/biolreprod.108.068213
10.1093/bioinformatics/btu049
10.1038/ncomms6592
10.1093/hmg/ddp353
10.4161/epi.23470
10.1017/S0007114507894438
10.1038/nature09906
10.1093/hmg/ddv013
10.1111/j.2517-6161.1995.tb02031.x
10.1016/j.gene.2011.11.062
10.1093/hmg/ddt464
10.1038/ng1089
10.4161/epi.25578
10.1371/journal.pone.0009237
10.1093/ije/dym126
10.1016/j.cell.2007.06.013
10.3945/jn.109.105536
10.4161/epi.4.8.10265
10.1111/j.1365-2796.2007.01809.x
10.1371/journal.pone.0063812
10.3945/ajcn.2009.28085
10.1093/ije/dyr225
10.1093/bioinformatics/btu316
10.2337/dc10-1024
10.1111/joim.12231
10.1096/fj.14-255240
10.1038/ng.3021
10.1073/pnas.0806560105
10.1093/ajcn/85.3.869
10.1042/bj3630195
10.2217/epi.12.18
10.1002/dvdy.20724
10.1146/annurev-publhealth-031210-101230
10.1186/1756-8935-6-26
10.1038/emboj.2008.76
ContentType Journal Article
Copyright The Author 2015. Published by Oxford University Press on behalf of the International Epidemiological Association.
The Author 2015. Published by Oxford University Press on behalf of the International Epidemiological Association 2015
Copyright_xml – notice: The Author 2015. Published by Oxford University Press on behalf of the International Epidemiological Association.
– notice: The Author 2015. Published by Oxford University Press on behalf of the International Epidemiological Association 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/ije/dyv043
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1464-3685
EndPage 1223
ExternalDocumentID PMC4588866
25944819
10_1093_ije_dyv043
Genre Historical Article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Netherlands
GeographicLocations_xml – name: Netherlands
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: AG042190
– fundername: NHLBI NIH HHS
  grantid: HL067914
GroupedDBID ---
-E4
.2P
.GJ
.I3
.ZR
0R~
18M
1TH
29J
2WC
354
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
70D
A8Z
AABZA
AACZT
AAJKP
AAJQQ
AAMVS
AAOGV
AAPGJ
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWDT
AAYJJ
AAYXX
ABDFA
ABEHJ
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABKDP
ABNGD
ABNHQ
ABNKS
ABOCM
ABPQP
ABPTD
ABQLI
ABSMQ
ABVGC
ABWST
ABXVV
ABYLZ
ABZBJ
ACFRR
ACGFO
ACGFS
ACIWK
ACPQN
ACPRK
ACUFI
ACUKT
ACUTJ
ACUTO
ACVCV
ACVHY
ACZBC
ADBBV
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADMTO
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEGXH
AEHUL
AEJOX
AEKPW
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFCKW
AFFNX
AFFQV
AFFZL
AFIYH
AFOFC
AFRAH
AFSHK
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGORE
AGQPQ
AGQXC
AGQZG
AGSYK
AHGBF
AHMBA
AHMMS
AHXPO
AI.
AIAGR
AIJHB
AJBYB
AJDVS
AJEEA
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
AMHCJ
APIBT
APJGH
APWMN
AQDSO
AQKUS
ASPBG
ATGXG
ATTQO
AVNTJ
AVWKF
AXUDD
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BTRTY
BVRKM
BWUDY
BZKNY
C1A
C45
CAG
CDBKE
CITATION
CNZYI
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBD
EBS
EE~
EIHJH
EJD
EMOBN
F5P
F9B
FEDTE
FLUFQ
FOEOM
FOTVD
FQBLK
FTKQU
GAUVT
GJXCC
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IH2
IOX
J21
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
MBLQV
N9A
NGC
NOMLY
NOYVH
NPJNY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
OBFPC
OBS
OCZFY
ODMLO
OHH
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
SV3
TEORI
TJX
TMA
TR2
VH1
W8F
WH7
WOQ
X7H
YAYTL
YHZ
YKOAZ
YSK
YXANX
ZGI
ZKX
ZXP
~91
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c444t-b5d2efe11634607a6debce09dd69b42db65aab21e600ae6f0fb89e73692cb70a3
ISSN 0300-5771
1464-3685
IngestDate Thu Aug 21 14:09:49 EDT 2025
Fri Jul 11 00:33:20 EDT 2025
Mon Jul 21 05:55:38 EDT 2025
Thu Apr 24 22:49:55 EDT 2025
Tue Jul 01 03:44:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords DNA methylation, prenatal, Dutch Famine, Hunger Winter, exposure, nutrition
Language English
License The Author 2015. Published by Oxford University Press on behalf of the International Epidemiological Association.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c444t-b5d2efe11634607a6debce09dd69b42db65aab21e600ae6f0fb89e73692cb70a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to the work
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC4588866
PMID 25944819
PQID 1718911388
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4588866
proquest_miscellaneous_1718911388
pubmed_primary_25944819
crossref_primary_10_1093_ije_dyv043
crossref_citationtrail_10_1093_ije_dyv043
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-08-01
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle International journal of epidemiology
PublicationTitleAlternate Int J Epidemiol
PublicationYear 2015
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References 2015093006475013000_44.4.1211.50
2015093006475013000_44.4.1211.51
2015093006475013000_44.4.1211.52
2015093006475013000_44.4.1211.42
2015093006475013000_44.4.1211.43
2015093006475013000_44.4.1211.44
2015093006475013000_44.4.1211.45
2015093006475013000_44.4.1211.46
2015093006475013000_44.4.1211.47
2015093006475013000_44.4.1211.48
2015093006475013000_44.4.1211.49
2015093006475013000_44.4.1211.1
2015093006475013000_44.4.1211.40
2015093006475013000_44.4.1211.41
2015093006475013000_44.4.1211.39
2015093006475013000_44.4.1211.3
2015093006475013000_44.4.1211.31
2015093006475013000_44.4.1211.2
2015093006475013000_44.4.1211.32
2015093006475013000_44.4.1211.5
2015093006475013000_44.4.1211.33
2015093006475013000_44.4.1211.4
2015093006475013000_44.4.1211.34
2015093006475013000_44.4.1211.7
2015093006475013000_44.4.1211.35
2015093006475013000_44.4.1211.6
2015093006475013000_44.4.1211.36
2015093006475013000_44.4.1211.9
2015093006475013000_44.4.1211.37
2015093006475013000_44.4.1211.8
2015093006475013000_44.4.1211.38
2015093006475013000_44.4.1211.70
2015093006475013000_44.4.1211.71
2015093006475013000_44.4.1211.30
2015093006475013000_44.4.1211.28
2015093006475013000_44.4.1211.29
2015093006475013000_44.4.1211.20
2015093006475013000_44.4.1211.64
2015093006475013000_44.4.1211.21
2015093006475013000_44.4.1211.65
2015093006475013000_44.4.1211.22
2015093006475013000_44.4.1211.66
2015093006475013000_44.4.1211.23
2015093006475013000_44.4.1211.67
2015093006475013000_44.4.1211.24
2015093006475013000_44.4.1211.68
2015093006475013000_44.4.1211.25
2015093006475013000_44.4.1211.69
2015093006475013000_44.4.1211.26
2015093006475013000_44.4.1211.27
2015093006475013000_44.4.1211.60
2015093006475013000_44.4.1211.61
2015093006475013000_44.4.1211.62
2015093006475013000_44.4.1211.63
2015093006475013000_44.4.1211.17
2015093006475013000_44.4.1211.18
2015093006475013000_44.4.1211.19
2015093006475013000_44.4.1211.53
2015093006475013000_44.4.1211.10
2015093006475013000_44.4.1211.54
2015093006475013000_44.4.1211.11
2015093006475013000_44.4.1211.55
2015093006475013000_44.4.1211.12
2015093006475013000_44.4.1211.56
2015093006475013000_44.4.1211.13
2015093006475013000_44.4.1211.57
2015093006475013000_44.4.1211.14
2015093006475013000_44.4.1211.58
2015093006475013000_44.4.1211.15
2015093006475013000_44.4.1211.59
2015093006475013000_44.4.1211.16
24781383 - Nat Commun. 2014;5:3746
21677750 - Nature. 2011 Jun 16;474(7351):337-42
17591638 - Int J Epidemiol. 2007 Dec;36(6):1196-204
11315092 - Biometrics. 1999 Dec;55(4):997-1004
12861015 - Mol Cell Biol. 2003 Aug;23(15):5293-300
19923908 - Epigenetics. 2009 Nov 16;4(8):526-31
23975224 - Epigenetics. 2013 Sep;8(9):935-43
25634562 - Hum Mol Genet. 2015 Jun 1;24(11):3021-9
25599564 - Genome Biol. 2014;15(12):503
23314698 - Epigenetics. 2013 Feb;8(2):203-9
22955617 - Nature. 2012 Sep 6;489(7414):75-82
16496324 - Dev Dyn. 2006 Jun;235(6):1638-47
18186951 - Br J Nutr. 2008 Aug;100(2):278-82
23919675 - Epigenetics Chromatin. 2013 Aug 06;6(1):26
17465856 - Annu Rev Nutr. 2007;27:363-88
23817309 - Nat Rev Genet. 2013 Aug;14(8):585-94
24794928 - Bioinformatics. 2014 Aug 15;30(16):2360-6
17344511 - Am J Clin Nutr. 2007 Mar;85(3):869-76
16467304 - J Biol Chem. 2006 Apr 7;281(14):9297-306
24418380 - Nutr Metab Cardiovasc Dis. 2014 May;24(5):483-8
19939982 - Am J Clin Nutr. 2010 Feb;91(2):309-20
20169056 - PLoS One. 2010;5(2):e9237
23925113 - Nature. 2013 Aug 22;500(7463):477-81
23691101 - PLoS One. 2013;8(5):e63812
22781362 - Epidemiology. 2012 Sep;23(5):713-20
11903063 - Biochem J. 2002 Apr 1;363(Pt 1):195-200
24740201 - Cancer Epidemiol Biomarkers Prev. 2014 Jun;23(6):1007-17
22269254 - Int J Epidemiol. 2012 Feb;41(1):74-8
24974849 - Nat Genet. 2014 Aug;46(8):818-25
25145626 - FASEB J. 2014 Nov;28(11):4868-79
12610534 - Nat Genet. 2003 Mar;33 Suppl:245-54
18955703 - Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):17046-9
21441907 - Nature. 2011 May 5;473(7345):43-9
22202639 - Gene. 2012 Feb 15;494(1):36-43
16365304 - Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):19219-24
24605849 - J Intern Med. 2014 Sep;276(3):201-14
24064335 - Hum Mol Genet. 2014 Feb 1;23(3):820-30
22568884 - BMC Bioinformatics. 2012;13:86
20724651 - Diabetes Care. 2010 Nov;33(11):2436-41
25552657 - Hum Mol Genet. 2015 Apr 15;24(8):2201-17
25424739 - Nat Commun. 2014;5:5592
9021310 - Epidemiol Rev. 1996;18(2):158-74
21636975 - Epigenetics. 2011 Jul;6(7):928-36
24478339 - Bioinformatics. 2014 May 15;30(10):1363-9
17444880 - J Intern Med. 2007 May;261(5):412-7
25147358 - Bioinformatics. 2014 Dec 1;30(23):3435-7
22398613 - Nat Biotechnol. 2012 Mar;30(3):224-6
22666415 - PLoS One. 2012;7(5):e37933
25347937 - Genome Biol. 2014;15(10):483
21520493 - Mol Nutr Food Res. 2011 Jul;55(7):1026-35
18197594 - Bioessays. 2008 Feb;30(2):156-66
17719541 - Cell. 2007 Aug 24;130(4):624-37
19656776 - Hum Mol Genet. 2009 Nov 1;18(21):4046-53
25228660 - Genome Res. 2014 Dec;24(12):1905-17
19549753 - J Nutr. 2009 Aug;139(8):1555-61
20078863 - BMC Mol Biol. 2010;11:3
25331893 - Proc Natl Acad Sci U S A. 2014 Nov 4;111(44):15741-5
22690667 - Epigenomics. 2012 Jun;4(3):317-24
19924280 - PLoS One. 2009;4(11):e7845
22422449 - Int J Epidemiol. 2012 Feb;41(1):62-74
18562706 - Biol Reprod. 2008 Oct;79(4):618-23
19563753 - Cell. 2009 Jun 26;137(7):1194-211
21220512 - J Cell Biol. 2011 Jan 10;192(1):121-35
25079557 - Nature. 2014 Jul 31;511(7511):606-10
18418387 - EMBO J. 2008 May 21;27(10):1481-90
21219171 - Annu Rev Public Health. 2011;32:237-62
References_xml – ident: 2015093006475013000_44.4.1211.26
  doi: 10.1016/j.numecd.2013.10.026
– ident: 2015093006475013000_44.4.1211.37
  doi: 10.1111/j.0006-341X.1999.00997.x
– ident: 2015093006475013000_44.4.1211.53
  doi: 10.1186/1471-2199-11-3
– ident: 2015093006475013000_44.4.1211.35
  doi: 10.1186/1471-2105-13-86
– ident: 2015093006475013000_44.4.1211.36
  doi: 10.1097/EDE.0b013e31825fa230
– ident: 2015093006475013000_44.4.1211.44
  doi: 10.1073/pnas.0504468103
– ident: 2015093006475013000_44.4.1211.48
  doi: 10.1016/j.cell.2009.06.001
– ident: 2015093006475013000_44.4.1211.46
  doi: 10.1074/jbc.M511710200
– ident: 2015093006475013000_44.4.1211.69
  doi: 10.1158/1055-9965.EPI-13-1256
– ident: 2015093006475013000_44.4.1211.62
  doi: 10.1128/MCB.23.15.5293-5300.2003
– ident: 2015093006475013000_44.4.1211.6
  doi: 10.1146/annurev.nutr.27.061406.093705
– ident: 2015093006475013000_44.4.1211.18
  doi: 10.1371/journal.pone.0007845
– ident: 2015093006475013000_44.4.1211.33
  doi: 10.1038/nature12433
– ident: 2015093006475013000_44.4.1211.16
  doi: 10.1038/ncomms4746
– ident: 2015093006475013000_44.4.1211.54
  doi: 10.1038/nature10163
– ident: 2015093006475013000_44.4.1211.65
  doi: 10.1186/s13059-014-0483-2
– ident: 2015093006475013000_44.4.1211.30
  doi: 10.1186/s13059-014-0503-2
– ident: 2015093006475013000_44.4.1211.45
  doi: 10.1083/jcb.201004142
– ident: 2015093006475013000_44.4.1211.56
  doi: 10.1038/nature11232
– ident: 2015093006475013000_44.4.1211.11
  doi: 10.1002/mnfr.201100008
– ident: 2015093006475013000_44.4.1211.17
  doi: 10.4161/epi.6.7.16263
– ident: 2015093006475013000_44.4.1211.19
  doi: 10.1093/hmg/ddu739
– ident: 2015093006475013000_44.4.1211.60
  doi: 10.1002/bies.20700
– ident: 2015093006475013000_44.4.1211.2
  doi: 10.1093/oxfordjournals.epirev.a017923
– ident: 2015093006475013000_44.4.1211.41
  doi: 10.1073/pnas.1412009111
– ident: 2015093006475013000_44.4.1211.15
  doi: 10.1371/journal.pone.0037933
– ident: 2015093006475013000_44.4.1211.20
– ident: 2015093006475013000_44.4.1211.9
  doi: 10.1038/nature13544
– ident: 2015093006475013000_44.4.1211.29
  doi: 10.1093/bioinformatics/btu566
– ident: 2015093006475013000_44.4.1211.27
  doi: 10.1093/ije/dyr147
– ident: 2015093006475013000_44.4.1211.34
  doi: 10.1038/nbt.2153
– ident: 2015093006475013000_44.4.1211.57
  doi: 10.1038/nrg3405
– ident: 2015093006475013000_44.4.1211.47
  doi: 10.1101/gr.176586.114
– ident: 2015093006475013000_44.4.1211.8
  doi: 10.1095/biolreprod.108.068213
– ident: 2015093006475013000_44.4.1211.31
  doi: 10.1093/bioinformatics/btu049
– ident: 2015093006475013000_44.4.1211.14
  doi: 10.1038/ncomms6592
– ident: 2015093006475013000_44.4.1211.13
  doi: 10.1093/hmg/ddp353
– ident: 2015093006475013000_44.4.1211.32
  doi: 10.4161/epi.23470
– ident: 2015093006475013000_44.4.1211.10
  doi: 10.1017/S0007114507894438
– ident: 2015093006475013000_44.4.1211.40
  doi: 10.1038/nature09906
– ident: 2015093006475013000_44.4.1211.68
  doi: 10.1093/hmg/ddv013
– ident: 2015093006475013000_44.4.1211.38
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: 2015093006475013000_44.4.1211.21
– ident: 2015093006475013000_44.4.1211.67
  doi: 10.1016/j.gene.2011.11.062
– ident: 2015093006475013000_44.4.1211.42
  doi: 10.1093/hmg/ddt464
– ident: 2015093006475013000_44.4.1211.5
  doi: 10.1038/ng1089
– ident: 2015093006475013000_44.4.1211.71
  doi: 10.4161/epi.25578
– ident: 2015093006475013000_44.4.1211.7
  doi: 10.1371/journal.pone.0009237
– ident: 2015093006475013000_44.4.1211.22
  doi: 10.1093/ije/dym126
– ident: 2015093006475013000_44.4.1211.49
  doi: 10.1016/j.cell.2007.06.013
– ident: 2015093006475013000_44.4.1211.28
  doi: 10.3945/jn.109.105536
– ident: 2015093006475013000_44.4.1211.61
  doi: 10.4161/epi.4.8.10265
– ident: 2015093006475013000_44.4.1211.1
  doi: 10.1111/j.1365-2796.2007.01809.x
– ident: 2015093006475013000_44.4.1211.24
  doi: 10.1371/journal.pone.0063812
– ident: 2015093006475013000_44.4.1211.25
  doi: 10.3945/ajcn.2009.28085
– ident: 2015093006475013000_44.4.1211.58
– ident: 2015093006475013000_44.4.1211.64
  doi: 10.1093/ije/dyr225
– ident: 2015093006475013000_44.4.1211.59
  doi: 10.1093/bioinformatics/btu316
– ident: 2015093006475013000_44.4.1211.66
  doi: 10.2337/dc10-1024
– ident: 2015093006475013000_44.4.1211.55
  doi: 10.1111/joim.12231
– ident: 2015093006475013000_44.4.1211.70
  doi: 10.1096/fj.14-255240
– ident: 2015093006475013000_44.4.1211.39
  doi: 10.1038/ng.3021
– ident: 2015093006475013000_44.4.1211.12
  doi: 10.1073/pnas.0806560105
– ident: 2015093006475013000_44.4.1211.23
  doi: 10.1093/ajcn/85.3.869
– ident: 2015093006475013000_44.4.1211.52
  doi: 10.1042/bj3630195
– ident: 2015093006475013000_44.4.1211.43
  doi: 10.2217/epi.12.18
– ident: 2015093006475013000_44.4.1211.51
  doi: 10.1002/dvdy.20724
– ident: 2015093006475013000_44.4.1211.4
  doi: 10.1146/annurev-publhealth-031210-101230
– ident: 2015093006475013000_44.4.1211.63
  doi: 10.1186/1756-8935-6-26
– ident: 2015093006475013000_44.4.1211.3
– ident: 2015093006475013000_44.4.1211.50
  doi: 10.1038/emboj.2008.76
– reference: 25331893 - Proc Natl Acad Sci U S A. 2014 Nov 4;111(44):15741-5
– reference: 20169056 - PLoS One. 2010;5(2):e9237
– reference: 16496324 - Dev Dyn. 2006 Jun;235(6):1638-47
– reference: 24064335 - Hum Mol Genet. 2014 Feb 1;23(3):820-30
– reference: 17465856 - Annu Rev Nutr. 2007;27:363-88
– reference: 17444880 - J Intern Med. 2007 May;261(5):412-7
– reference: 22398613 - Nat Biotechnol. 2012 Mar;30(3):224-6
– reference: 25599564 - Genome Biol. 2014;15(12):503
– reference: 21220512 - J Cell Biol. 2011 Jan 10;192(1):121-35
– reference: 25552657 - Hum Mol Genet. 2015 Apr 15;24(8):2201-17
– reference: 21677750 - Nature. 2011 Jun 16;474(7351):337-42
– reference: 16467304 - J Biol Chem. 2006 Apr 7;281(14):9297-306
– reference: 19924280 - PLoS One. 2009;4(11):e7845
– reference: 22202639 - Gene. 2012 Feb 15;494(1):36-43
– reference: 21441907 - Nature. 2011 May 5;473(7345):43-9
– reference: 25424739 - Nat Commun. 2014;5:5592
– reference: 22568884 - BMC Bioinformatics. 2012;13:86
– reference: 18418387 - EMBO J. 2008 May 21;27(10):1481-90
– reference: 18197594 - Bioessays. 2008 Feb;30(2):156-66
– reference: 19939982 - Am J Clin Nutr. 2010 Feb;91(2):309-20
– reference: 9021310 - Epidemiol Rev. 1996;18(2):158-74
– reference: 21219171 - Annu Rev Public Health. 2011;32:237-62
– reference: 22781362 - Epidemiology. 2012 Sep;23(5):713-20
– reference: 25228660 - Genome Res. 2014 Dec;24(12):1905-17
– reference: 23691101 - PLoS One. 2013;8(5):e63812
– reference: 19656776 - Hum Mol Genet. 2009 Nov 1;18(21):4046-53
– reference: 22422449 - Int J Epidemiol. 2012 Feb;41(1):62-74
– reference: 24794928 - Bioinformatics. 2014 Aug 15;30(16):2360-6
– reference: 23975224 - Epigenetics. 2013 Sep;8(9):935-43
– reference: 24478339 - Bioinformatics. 2014 May 15;30(10):1363-9
– reference: 11315092 - Biometrics. 1999 Dec;55(4):997-1004
– reference: 25079557 - Nature. 2014 Jul 31;511(7511):606-10
– reference: 12861015 - Mol Cell Biol. 2003 Aug;23(15):5293-300
– reference: 25634562 - Hum Mol Genet. 2015 Jun 1;24(11):3021-9
– reference: 24605849 - J Intern Med. 2014 Sep;276(3):201-14
– reference: 18955703 - Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):17046-9
– reference: 24781383 - Nat Commun. 2014;5:3746
– reference: 12610534 - Nat Genet. 2003 Mar;33 Suppl:245-54
– reference: 17591638 - Int J Epidemiol. 2007 Dec;36(6):1196-204
– reference: 20078863 - BMC Mol Biol. 2010;11:3
– reference: 23817309 - Nat Rev Genet. 2013 Aug;14(8):585-94
– reference: 11903063 - Biochem J. 2002 Apr 1;363(Pt 1):195-200
– reference: 19563753 - Cell. 2009 Jun 26;137(7):1194-211
– reference: 16365304 - Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):19219-24
– reference: 25145626 - FASEB J. 2014 Nov;28(11):4868-79
– reference: 23919675 - Epigenetics Chromatin. 2013 Aug 06;6(1):26
– reference: 18186951 - Br J Nutr. 2008 Aug;100(2):278-82
– reference: 24740201 - Cancer Epidemiol Biomarkers Prev. 2014 Jun;23(6):1007-17
– reference: 21636975 - Epigenetics. 2011 Jul;6(7):928-36
– reference: 22690667 - Epigenomics. 2012 Jun;4(3):317-24
– reference: 22666415 - PLoS One. 2012;7(5):e37933
– reference: 24418380 - Nutr Metab Cardiovasc Dis. 2014 May;24(5):483-8
– reference: 20724651 - Diabetes Care. 2010 Nov;33(11):2436-41
– reference: 22269254 - Int J Epidemiol. 2012 Feb;41(1):74-8
– reference: 25147358 - Bioinformatics. 2014 Dec 1;30(23):3435-7
– reference: 25347937 - Genome Biol. 2014;15(10):483
– reference: 23314698 - Epigenetics. 2013 Feb;8(2):203-9
– reference: 19923908 - Epigenetics. 2009 Nov 16;4(8):526-31
– reference: 24974849 - Nat Genet. 2014 Aug;46(8):818-25
– reference: 23925113 - Nature. 2013 Aug 22;500(7463):477-81
– reference: 19549753 - J Nutr. 2009 Aug;139(8):1555-61
– reference: 21520493 - Mol Nutr Food Res. 2011 Jul;55(7):1026-35
– reference: 22955617 - Nature. 2012 Sep 6;489(7414):75-82
– reference: 17719541 - Cell. 2007 Aug 24;130(4):624-37
– reference: 18562706 - Biol Reprod. 2008 Oct;79(4):618-23
– reference: 17344511 - Am J Clin Nutr. 2007 Mar;85(3):869-76
SSID ssj0014449
Score 2.5199184
Snippet The manipulation of pregnancy diets in animals can lead to changes in DNA methylation with phenotypic consequences in the offspring. Human studies have...
Background: The manipulation of pregnancy diets in animals can lead to changes in DNA methylation with phenotypic consequences in the offspring. Human studies...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1211
SubjectTerms Case-Control Studies
DNA Methylation
Early Life Environment
Environment
Female
History, 20th Century
Humans
Male
Maternal Nutritional Physiological Phenomena
Middle Aged
Netherlands
Pregnancy
Pregnancy Trimester, First
Prenatal Exposure Delayed Effects - genetics
Starvation - history
Title Early gestation as the critical time-window for changes in the prenatal environment to affect the adult human blood methylome
URI https://www.ncbi.nlm.nih.gov/pubmed/25944819
https://www.proquest.com/docview/1718911388
https://pubmed.ncbi.nlm.nih.gov/PMC4588866
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9RAEF7OCiIU0fp2vrGiX6Rsm2Q3m-RjqZVTqYhcod_CbrJHz9qk9HItCv5Q_42zb7mNLaL9Eo5kLuHyPLeZmcw8g9BrBo8gKouCUCk5Af-Wk1xklICvDCFRLQRVRu3zE58csA-H6eFo9CuoWlp2cqv6cWVfyXVQhX2Aq-6S_Q9k-5PCDvgM-MIWEIbtP2Fs1Yn1GyILo1gYP7Ly4wv04HhyAVF3e2HKCW2X78LXNmo5SzM8JOh2076osIrG2sTIc7hBfqbG3YychiB_qHEwzCsGahRqNYC2z91PWzm3FWUn4mxzleMBb9iVeHzRA9rm1XGQwvVDOXcgRjgKypT1LBeXxJ1s7h0Ld8jlMeK0r6Lr_tYfGSyHNIpImtmBLVvKLteMM6Il9MP13OpJOt6yYHHWanbBgz5ObKfzpYeIFdiaf1Wwrb-fR2xgBhQ4PTGEgsgRglu34g9Fuz_v7-oW4JzzG-hmAhGMHq7x9v3H_gUXYzYy8z_KK-cWdBsuvG0vq5Wq3TWGbtOlWOjPkt7AR5reRXdccIN3LFPvoZFqNtCtfVe-sYHWbZIY2963--inITDuCYzFAgPrsCcwDgiMATjsCIznjbHzBMYBgXHXYktgY2IIjA2BsSEw7gn8AB2825vuToibB0IquF0dkWmdqJmKIYRgPMoEr5WsVFTUNS8kS2rJUyFkEitw4oXis2gm80JllBdJJbNI0IdorWkb9RjholZ5mggeVSJjkYCwX4CvW0F8LStwwuUYvfG3u6ycWL6e2fKttEUbtASUSovSGL3qbU-tRMyVVi89aiWs4Pq1nGhUu1yUMbiH4HLQPB-jRxbF_jwe_jHKBvj2BlodfnikmR8ZlXjHvyfX_uZTdHv1P32G1rqzpXoOHngnXxgu_wbGn-dU
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+gestation+as+the+critical+time-window+for+changes+in+the+prenatal+environment+to+affect+the+adult+human+blood+methylome&rft.jtitle=International+journal+of+epidemiology&rft.au=Tobi%2C+Elmar+W&rft.au=Slieker%2C+Roderick+C&rft.au=Stein%2C+Aryeh+D&rft.au=Suchiman%2C+H+Eka+D&rft.date=2015-08-01&rft.pub=Oxford+University+Press&rft.issn=0300-5771&rft.eissn=1464-3685&rft.volume=44&rft.issue=4&rft.spage=1211&rft.epage=1223&rft_id=info:doi/10.1093%2Fije%2Fdyv043&rft_id=info%3Apmid%2F25944819&rft.externalDocID=PMC4588866
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0300-5771&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0300-5771&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0300-5771&client=summon